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The entropy maximum approach to constructing equilibria in lattice kinetic equations is revisi
For a suitable entropy function, we derive explicitly the hydrodynamic local equilibrium, prove theH
theorem for lattice Bhatnagar-Gross-Krook models, and develop a systematic method to accou
additional constraints. [S0031-9007(98)06482-5]
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Lattice-based simulations of hydrodynamic phenome
received much attention over the past decade [1]. O
of the realizations, actively discussed at present, is t
lattice Bhatnagar-Gross-Krook method (LBGK) [2]. In
the LBGK method, populations of model fluid particle
Nisr, td, residing on the linki of the lattice siter at the
discrete timet, are updated according to the rule

Nisr 1 ci , t 1 1d 2 Nisr, td ­ 2vfNisr, td

2 N
eq
i sr, tdg , (1)

where ci is the D-dimensional vector of theith link,
and i ­ 1, . . . , b. The right-hand side of Eq. (1) is the
LBGK collision integralDi , the functionN

eq
i is the local

equilibrium, andv $ 0 is a dimensionless parameter. A
the state of the lattice is updated long enough, the d
namics ofNi becomes governed by macroscopic equ
tions for a finite system of local averages. Dependin
on the geometry of the lattice, the averages of intere
are rsr, td ­

Pb
i Nisr, td, rusr, td ­

Pb
i ciNisr, td, and

2rEsr, td ­
Pb

i c2
i Nisr, td. Functionsr, u, and E are

lattice analogs of the hydrodynamic quantities (local de
sity, average velocity, and energy). If it is possible to ca
the lattice macroscopic equations into the form of Navie
Stokes equations, then hydrodynamics is implemented
a fairly simple fully discrete kinetic picture (1).

The central issue of the LBGK method is the local equ
librium. Variational approach to the construction ofN

eq
i

amounts to a maximization of a strictly concave functio
SfNg ­

Pb
i­1 FsNid, subject to certain constraints. The

minimal set of constraints consists of the hydrodynam
constraints which fixr and u. Taking Fsxd ­ 2x ln x,
the formal solution isN

eq
i ­ expsa 1 b ? cid. However,

for lattices of interest, Lagrange multipliersa andb can-
not be explicitly expressed in terms ofr and u. This
applies to all functionsS, closely related to the Boltz-
mann entropy, and it has led to a perturbation techniq
through a low Mach number expansion (LMN) around th
zero-flow equilibriumN

eq
i su ­ 0d ­ b21r. At present,

most of the definitions ofN
eq
i originate from the LMN ex-

pansions, and are motivated by a matching to the Navi
0031-9007y98y81(1)y6(4)$15.00
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Stokes equations in the limit of small average velocitie
These approaches, however, rarely address the entropy
sue directly. This results in the lack of theH theorem,
which is, at least in part, responsible for instabilities a
relatively low Mach numbers.

In this Letter we revisit the variational approach fo
the LBGK method. For the minimal set of hydrodynamic
constraints, we construct a local equilibrium, specific t
a finite system of velocities. This equilibrium has a
simple analytic expression, and it is not based on th
LMN expansions. We prove theH theorem for the
corresponding fully discrete LBGK model, and discuss a
extension of the entropy maximum principle to take int
account additional constraints.

We consider a class of lattices which satisfy usual sym
metry requirements

Pb
i­1 cia ­ 0, and

Pb
i­1 ciacib ­

j2dab, wherea, b ­ 1, . . . , D label components of vec-
tors. Maximization of a concave functionS, subject to
the constraints of fixedr andu, yieldsN

eq
i ­ Gsa 1 b ?

cid. First, disregarding the variational origin of the func
tion G, we ask for a dependence such that the constrainPb

i­1 Gsa 1 b ? cid ­ r and
Pb

i­1 ciGsa 1 b ? cid ­
ru, have an explicit solution in terms ofr andu. This
occurs in the simplest nontrivial caseGs· · ·d ­ s· · ·d2.
The corresponding quadratic hydrodynamic equilibrium
(QHE) has the form

N
eq
i ­ srybd fR 1 c22

s u ? ci 1 s4c4
s Rd21su ? cid2g .

(2a)

Herec2
s ­ b21j2 is the sound speed squared, andR is a

function of the Mach number squared,M2 ­ u2yc2
s ,

R ­ s1y2d s1 1
p

1 2 M2 d . (2b)

The QHE equilibrium (2) is a positive real-valued func
tion inside the domainM # 1. For M . 1, there are no
real-valued solutions to the constraints for the quadra
dependenceG. We denoteV ­ hNi j Ni $ 0, u2fNg ,

c2
s j the set of admissible non-negative populations whic

can be mapped onto the equilibrium (2). The result of th
mapping isN

eq
i fNg ­ N

eq
i frsNd, usNdg, which we will

further denote simply asN
eq
i .
© 1998 The American Physical Society



VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998

the
re
s,
eed

n

he

to

s
e
py

s:
t

s

f

tial

s
d
al
r,
e

on
case
e
ft,
As the next step, we find that the equilibrium (2
maximizes the concave functionS,

S ­ 2

bX
i­1

Ni

p
Ni , (3)

subject to the constraints of fixed density and avera
velocity. FunctionS has a formal relation to the well
known Tsallis entropy withq ­ 3y2 [3]. Now we can
take advantage of the variational origin of the equilibrium
(2) to prove theH theorem.

First, we consider the localH theorem. The local
entropy productionssr, td in the admissible stateNi reads

s ­
bX

i­1

≠S
≠Ni

DifNg ­
3
2

v

bX
i­1

p
Ni sNi 2 N

eq
i d . (4a)

From the variational problem it follows that
bX

i­1

q
N

eq
i sNi 2 N

eq
i d ­ 0 .

Thus, Eq. (4a) may be rewritten as

s ­
3
2

v

bX
i­1

s
p

Ni 2

q
N

eq
i d sNi 2 N

eq
i d $ 0 , (4b)

where we have taken into account thats
p

X 2
p

Y d sX 2

Y d $ 0 for X, Y $ 0. The localH theorem (4b) imme-
diately results in the globalH theorem for the discrete
velocity continuous space-time counterpart of the LBG
equation (1), ≠tNi 1 ci ? =Ni ­ 2vfNi 2 N

eq
i g, and

has the usual formdSydt ­ s, where the overbar
denotes integration over a volumeV , and where suitable
conditions at the boundary≠V (making surface integrals
equal zero) are assumed.

In the fully discrete case, to which we turn now, th
H theorem isdifferent. First, we consider a pure relax-
ation due to the space-independent version of the LBG
equation (1):Nist 1 1d ­ s1 2 vdNistd 1 vN

eq
i . Av-

erage velocityu is a constant, and if the initial population
was admissible, and if0 # v # 1, thenNistd [ V for all
t $ 0. The entropy at time stept 1 1 is

Sst 1 1d ­ 2

bX
i­1

fs1 2 vdNistd 1 vN
eq
i g3y2. (5)

Applying the well known inequality ffs1 2 vdx 1

vyg $ s1 2 vdfsxd 1 vfs yd to the concave function
on the right-hand side of Eq. (5), we derive an estima
for the entropy variation,

Sst 1 1d 2 Sstd $ vfSeq 2 Sstdg . (6)

From the variational origin ofN
eq
i it follows that Seq $

Sstd. Thus, the right-hand side of Eq. (6) is non-negativ
On the other hand, applying inequalityfsvd # fs0d 1

f 0s0dv to the concave function on the right-hand side o
Eq. (5), we derive an estimate from above,

Sst 1 1d 2 Sstd # sstd , (7)

wheresstd is the entropy production (4b) at time stept.
Inequalities (6) and (7) prove theH theorem in the space-
)

ge

K

e

K

te

e.

f

independent case forv [ f0, 1g: If the initial population is
admissible, then the entropy increases monotonically in
course of relaxation to the equilibrium (6), and, since the
are no dissipation mechanisms except for LBGK collision
the increase of entropy per each time step cannot exc
the amount of entropy produced at this step (7).

Let us discuss qualitatively the casev . 1. Formally,
substituting into the right-hand side of Eq. (5) the functio

Ni ­ N
eq
i 1 eDNi , wheree ø 1 and

Pb
i­1 DNi

q
N

eq
i ­

0, and keeping the lowest order terms (which are of t
ordere2), we derive

Sqst 1 1d 2 Sqstd ­
s2 2 vd

2
sqstd . (8)

Here the subscript indicates quadratic approximation
the entropy and entropy production,Sq ­ Seq 2 s3y8dQ

andsq ­ s3y4dQ, while Q ­
Pb

i­1 DN2
i y

q
N

eq
i is a non-

negatively definite quadratic form. Equation (8) implie
that close to equilibrium variation of the entropy per tim
step is equal to a non-negative fraction of the entro
production, ifv belongs to the well known LBGK linear
stability interval,0 # v # 2. However, a justification is
required because functionsNisvd ­ s1 2 vdNi 1 vN

eq
i

become negative for large enoughv . 1, and then
Eq. (5) is not valid. A qualitative argument is as follow
If juj , cs, equilibrium (2) is positive, and therefore i
has a nonempty positive neighborhoodU. Thus,N

eq
i has

a nonempty neighborhoodUV in the admissible domain
(UV ­ U > P, whereP is the hyperplane of population
with fixed u). This neighborhoodUV can be taken small
enough to makeSq a valid approximation, and each o
the two statesN6

i ­ N
eq
i 6 eDNi belongs toUV . [Then

the segmentL joining N1
i and N2

i also belongs toUV ,
and it consists of two parts,L6 (betweenN6

i andN
eq
i )].

Let us take one of the populationN6
i (say,N1

i ) for the
initial condition, and considerSq at the subsequent time
as a function ofv. This functionSqsvd increases asv
varies from0 to 1. As v exceeds1, functionSqsvd starts
decreasing but its value remains higher than in the ini
state N1

i , until v reaches the value2. Then Sqs2d ­
Sqs0d, and the update has arrived intoN2

i . If v [ g0, 1g,
populationsNistd are confined to the segmentL1, and
they tend toN

eq
i . If v [ f1, 2f, populationsNistd are

confined to the segmentL. They also tend toN
eq
i but

in a different way, jumping (“overrelaxing”) each time
from L6 to L7. This qualitative consideration highlight
the entropic origin of the linear stability interval, an
indicates the importance of pairs of states with equ
entropy. A more quantitative analysis, in particula
corrections to the size of stability interval due to th
difference betweenS and Sq, requires an estimate of the
neighborhoodsU andUV, and it is left for a future work.

The goal now is to extend the above considerati
to the space-dependent case. We address here the
v [ f0, 1g. There are three operations involved in th
LBGK equation (1): propagation which acts as a shi
7
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TNisrd ­ Nisr 2 cid; mapping onto local equilibrium
manifold, ENisrd ­ N

eq
i fusrdg; and taking a convex lin-

ear combination of two vectors. Combination of thes
three operations results in the LBGK update

Nisr, t 1 1d ­ s1 2 vdTNisr, td 1 vETNisr, td . (9)

If the functionTNisr, td is admissible, then the right-hand
side of Eq. (9) is positive, and the total entropySst 1 1d
may be written as

Sst 1 1d ­ 2
X

r

bX
i­1

fs1 2 vdTNisr, td

1 vETNisr, tdg3y2,

where summation inr goes over all lattice sites. Unde
suitable boundary conditions (periodic, for instance), w
can write Nisr, td in place of TNisr, td in the latter
expression. (Specification of boundary conditions pla
the same role as in the proof of the globalH theorem
in the continuous space-time case.) In this case,
above results for the space-independentH theorem are
immediately extended onto the space-dependent case
summing over all lattice sites in Eqs. (6) and (7).

Now we come to the most delicate point of analysi
Do populations stay admissible after the propagation ste
Since propagation does not violate positivity, we have
check that the average velocity of the populationTNi is
below the boundary valuecs. If this is the case, then
TNi canbe mapped into local equilibrium, and the LBGK
update (9) exists. Since there is no mechanism in
system which would keep the average velocity belowcs,
the answer to this question depends on the choice of ini
conditions. Here we present some explicit results.

For simplicity, we consider the incompressible ca
r ­ 1. First, we need to specify populations inV,
for which moments after propagation can be explicit
evaluated. We consider convex linear combinations
equilibrium populations (2),

Nisrd ­
mX

j­1

ajsrdNeq
i sujd , (10)

whereN
eq
i sujd are equilibria (2) with fixed vectorsuj of

admissible length, and where non-negative functionsajsrd
satisfy

Pm
j­1 ajsrd ­ 1 for all sites r. Functions (10)

constitute a subsetV0 , V. In particular,V0 contains
local equilibrium populations. Propagation transform
populations (10) intoTNisrd ­

Pm
j­1 ajsr 2 cidN

eq
i sujd.

Moments of the populationTNisrd, and, in particular,
the average velocity, are explicitly computable. [Wit
space Fourier transform of functionsaj, it amounts
to finding the moments generating function,Gsk, ud ­Pb

i­1 exps2ik ? cidN
eq
i sud, which can be done explicitly

for any lattice.]
We present here the result for the simplest case of

one-dimensional lattice with spacingc, and with three
velocities, c6 ­ 6c, and c0 ­ 0. In this case,c2

s ­
s2y3dc2. Exact expression for the average velocity afte
8
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propagation,Tusrd, reads

Tusrd ­
mX

j­1

a1
j srduj 2

csc2 2 c2
s d

6c2
s

mX
j­1

Y sujda2
j srd .

(11)

Here a6
j ­ s1y2d fajsr 1 cd 6 ajsr 2 cdg are symmet-

ric and asymmetric parts of the functionsaj, and func-
tion Y sud depends on the average velocity through Mac
number squared:Y ­ M2R21sM2d, while R is defined by
Eq. (2b). The part of Eq. (11) which containsa1

j keeps
u below cs, and it causes no problems (this part is “spac
averaging”). The second part which containsa2

j candrive
the population out of the admissible domain (this part “re
solves” average velocity at neighboring sites). The ra
of this process is controlled by values of Mach num
bers, and “smoothness” of functionsajsrd. Various es-
timates can be derived from Eq. (11). The simplest (an
rather crude) one is as follows: Letjujsrdj , css1 2 hd,
where1 . h . 0. Taking the absolute value of the right-
hand side in Eq. (11), and replacingY by its maximal
value 2 at M ­ 1, we derive the following: For1 .

h .
p

3yf6
p

2 g (ø 0.2), population stays admissible after
propagation step, independently of spatial behavior
functionsajsrd.

Thus, we have demonstrated that there exists a sub
V00 , V0 which remains inside the admissible domainV

after the first time step. Better estimates become availab
if we take into account functionsaj which vary in space
smoothly (in some appropriate sense) because foraj ­
const the asymmetric terms in (11) vanish. Analysis o
further time steps is more complicated (though possible f
at leastv close to1), and will be addressed in a separate
paper.

Macroscopic equations for the LBGK model (1) with
N

eq
i (2) can be established in a usual way [1]. For exampl

in the case of two-dimensional hexagonal lattice (the FH
lattice, Ref. [1]), the macroscopic equations on the Eule
(inviscid) level have the form

≠tr 1 ≠asruad ­ 0, ≠tsruad 1 ≠bP
eq
ab ­ 0 .

HereP
eq
ab ­

Pb
i­1 ciacibN

eq
i is the pressure tensor in the

equilibrium (2),

P
eq
ab ­ rc2

s dab 1 s4Rd21rsssuaub 2 s1y2du2dabddd .
(12)

Deviations from the real-fluid case (P
eq
ab ­ c2

s rdab 1

ruaub) are twofold. First, the well-known feature of the
FHP lattice is present (P

eq
aa ­ 2c2

s r for any equilibrium
on the FHP lattice). Second, the nonexistence ofNeq (2)
at M . 1, as implemented by the factorR (2b), causes
the velocity-dependent densityr̃ ­ s4Rd21r in the advec-
tion term.

Deviations from hydrodynamic equations are not su
prising since only the minimal set of constraints,r andu,
was used to construct the equilibrium. As is well known
this problem can be fixed by invoking further constraint
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on the equilibrium population, and thus forcing highe
moments to have an appropriate form [4]. We will discus
briefly an extension of our approach to account for add
tional constraints. Specifically, we seek maximum of th
function S (3), subject to an extended set of constraint
r, u, and

Pb
i c2

i Ni ­ 2rE. In the general case, this prob-
lem is not solvable explicitly. However, since the QHE i
explicit, we can utilize this to account the additional (en
ergy) constraint approximately.

The full problem is equivalent to the sequence of tw
subproblems. First, we find a maximum of the functionS,
subject to the hydrodynamic constraints, and disregardi
the energy constraint. The solution is the QHEN0

i sr, ud.
Now the full problem is equivalent to the maximization
of the functionSsN0 1 DNd, subject to the constraintsPb

i h1, cijDNi ­ 0 and
Pb

i c2
i DNi ­ 2rDE. HereDNi is

the unknown deviation from the QHEN0
i due to the energy

constraint. The solution is controlled by one paramete
DE ­ E 2 E0su2d, whereE0 is the value of the energy
in the QHE N0. For small DE, the problem is well
approximated if we confine only the quadratic inDNi

terms in the expansion of the functionS aroundN0
i . Thus,

we finally come to the problem of finding a maximum o
a quadratic form, subject to the linear constraints. Th
solution has the formN

eq
i ­ N0

i sr, ud 1 DNisr, u, DEd,
and is always explicitly found from the corresponding
linear algebraic problem. This method was used earli
to derive Grad-like approximations for the Boltzmann
equation [5].

We will illustrate this approach with an example of the
one-dimensional lattice with2m 1 1 velocitiesci ­ ic,
wherei ­ 2m, . . . , 0, . . . , m. For the QHE, we find

N0
i ­ r

√
Rm

2m 1 1
1

iu
2rmc

1
s2m 1 1di2u2

16r2
mRmc2

!
, (13)

whereRm is given by Eq. (2b) with sound speed square
c2

sm ­ s2rmc2dys2m 1 1d, whererm ­
Pm

i­1 i2. The im-
proved equilibrium, subject to the energy constraint, ha
the form

N
eq
i ­ N0

i 1 r

√
1 1

s2m 1 1diu
4rmRmc

!
sm 1 ni 1 wi2d ,

(14)

where m, n, and w are found from a linear algebraic
system,

m 1
u

2Rmc
n 1

2rm

2m 1 1
w ­ 0 ,

s2m 1 1du
4rmRmc

m 1 n 1
s2m 1 1dlmu

4r2
mRmc

w ­ 0 , (15)

rm

lm
m 1

s2m 1 1du
4rmRmc

n 1 w ­
DE
lmc2

.

Here lm ­
Pm

i­1 i4. The approximation is valid for
jDEj ø lmc2. Recall thatDE is the deviation of the
r
s
i-
e
s:

s
-

o

ng

r,

f
e

er

d

s

energy parameter from its valueE0su2d [6] in the QHEN0

(13). ForDE fi 0, Eq. (15) has a solution, if this system
is not degenerated. However, the system (15) becom
degenerated for the following valueup

m:

up
m ­

4l
1y2
m r

3y2
m

r2
m 1 s2m 1 1dlm

c . (16)

For each m, the average velocityup
m belongs to the

domain of existence of the QHE (up
m , csm). The

solution to the system (15) is easily found explicitly, and
we do not represent the final result here. Instead, we w
discuss what happens at the critical average velocityup

m.
Since the density scales out, the equilibrium on th

lattice has the formN
eq
i ­ rnisu, Ed. For juj , csm,

the family of normalized local equilibrianisu, Ed is two-
parametricif only juj fi up

m. For smallDE, this family
is constructed above. If, however,juj ­ up

m, this two-
parameter family becomes onlyone-parametric. In other
words, for juj ­ up

m, the energy parameter cannot be
chosen independently of the average velocity,and only
the valueEp ­ E0fsup

md2g is coexistent with the rest of the
constraints.

In this Letter, we have constructed a class of nonpe
turbative lattice equilibria (2) using the maximum entropy
principle, introduced a method for taking into account ad
ditional constraints, and given proofs ofH theorems for
LBGK models.
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