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Maximum Entropy Principle for Lattice Kinetic Equations
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The entropy maximum approach to constructing equilibria in lattice kinetic equations is revisited.
For a suitable entropy function, we derive explicitly the hydrodynamic local equilibrium, provél the
theorem for lattice Bhatnagar-Gross-Krook models, and develop a systematic method to account for
additional constraints. [S0031-9007(98)06482-5]
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Lattice-based simulations of hydrodynamic phenomen&tokes equations in the limit of small average velocities.
received much attention over the past decade [1]. On&hese approaches, however, rarely address the entropy is-
of the realizations, actively discussed at present, is theue directly. This results in the lack of th# theorem,
lattice Bhatnagar-Gross-Krook method (LBGK) [2]. In which is, at least in part, responsible for instabilities at
the LBGK method, populations of model fluid particles relatively low Mach numbers.

N;(r,1), residing on the linki of the lattice siter at the In this Letter we revisit the variational approach for
discrete timer, are updated according to the rule the LBGK method. For the minimal set of hydrodynamic
. constraints, we construct a local equilibrium, specific to

Nir + eit + 1) = Nilr,1) = —o[Ni(r,1) a finite system of velocities. This equilibrium has a
— Ni'(r,n], (1) simple analytic expression, and it is not based on the
LMN expansions. We prove thél theorem for the
corresponding fully discrete LBGK model, and discuss an
extension of the entropy maximum principle to take into

where ¢; is the D-dimensional vector of theth link,
andi = 1,...,b. The right-hand side of Eq. (1) is the
LBGK collision integralA;, the functionn; " is the local

ibri A = 0is 3 di onl tor. A account additional constraints.
equiibrium, andw = V1S a diMENSIONIESS parameter. AS —yq consider a class of lattices which satisfy usual sym-
the state of the lattice is updated long enough, the dy-

namics of N; becomes governed by macroscopic equalcty requirements) /_; cia = 0, and 3.i_; ciacip
0.8, Wherea, B = 1,..., D label components of vec-

tions for a finite system of local averages. Dependin Maximizati ; functiost. subiect t
on the geometry of the lattice, the averages of interes rs. Maximization of a concave une((:]l , subject 1o
the constraints of fixeg andu, yieldsN;” = G(a + b -

— SP A = Sbe N
are p(r.1) = 3./ Ni(r, 1), pulr,r) = 3/ ¢;N;(r,1), and ¢;). First, disregarding the variational origin of the func-

=Sl 2N, i
IzaﬁtiEc(elz.’atlz\a_loni g;]tvﬁérht)drozuggrlr?igsp ljalriiit?egd(f)cze dention G, we ask for a dependence such that the constraints,
9 yarody 9 S Gla+b-e)=p and ¥ ¢;Gla+b-e) =

sity, average velocity, and energy). If it is possible to cas 7 o .
the lattice macroscopic equations into the form of Navier " hav_e an exp_I|C|t solution In terms of andE. Th;s
ccurs in the simplest nontrivial cas@(---) = (---)=.

Stokes equations, then hydr(_)dyrjamlcs 's implemented I$he corresponding quadratic hydrodynamic equilibrium
a fairly simple fully discrete kinetic picture (1). (QHE) has the form
The central issue of the LBGK method is the local equi-

- - . eq - -
librium. Variational approach to the construction 2§ Ni" = (p/b)[R + c%u - ¢; + (4ciR) " (u - ¢;)°].
amounts t}()) a maximization of a strictly concave function (2a)
minimal set of constraints consists of the hydrodynamicfynction of the Mach number squared? = u?/c2,
constraints which fixo andu. Taking F(x) = —xInx, _ )

the formal solution iV;* = expla + b - ¢;). However, R=@1/20+v1-M"). (2b)

for lattices of interest, Lagrange multipliessandb can- ~ The QHE equilibrium (2) is a positive real-valued func-
not be explicitly expressed in terms of andu. This tion inside the domaid/ = 1. ForM > 1, there are no
applies to all functionss, closely related to the Boltz- real-valued solutions to the constraints for the quadratic
mann entropy, and it has led to a perturbation techniqué?pendenC(G- We denote = {N; |N; = 0,u’[N] <
through a low Mach number expansion (LMN) around thec;} the set of admissible non-negative populations which
zero-flow equilibriumN;*(u = 0) = b~ 'p. At present, can be mapped onto the equilibrium (2). The result of this
most of the definitions ai;* originate from the LMN ex- mapping isN; '[N] = N; [p(N),u(N)], which we will
pansions, and are motivated by a matching to the Navieffurther denote simply a&’; *.
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As the next step, we find that the equilibrium (2) independent case far € [0, 1]: If the initial population is

maximizes the concave functidh

b
S =—> NN, (3)
i=1

admissible, then the entropy increases monotonically in the
course of relaxation to the equilibrium (6), and, since there
are no dissipation mechanisms except for LBGK collisions,
the increase of entropy per each time step cannot exceed

subject to the constraints of fixed density and averagéhe amount of entropy produced at this step (7).

velocity. FunctionS has a formal relation to the well
known Tsallis entropy withy = 3/2 [3]. Now we can

Let us discuss qualitatively the case> 1. Formally,
substituting into the right-hand side of Eq. (5) the function

take advantage of the variational origin of the equilibriumy _ N 4 AN, wheree < 1and>?” [ ANNY =
l ’ 1= 1

(2) to prove theH theorem.
First, we consider the local{ theorem. The local
entropy productionr (r, ¢) in the admissible stat®¥; reads

b b

d

o= > BN = S0 VNN - N (4a)
i=1

From the variational problem it follows that

i=1 IN;
b
> YN (N = N = 0.
i=1

Thus, Eqg. (4a) may be rewritten as
b
7= S0 N - VW - N =0, (@)
i=1

where we have taken into account thia®X — VY ) (X —
Y) =0 for X,Y = 0. The localH theorem (4b) imme-
diately results in the globall theorem for the discrete

velocity continuous space-time counterpart of the LBGK

equation (1), 3,N; + ¢; - VN; = —w[N; — N;'], and
has the usual formdS/dt = &, where the overbar
denotes integration over a volun¥e and where suitable
conditions at the boundar§V (making surface integrals
equal zero) are assumed.

In the fully discrete case, to which we turn now, the

H theorem isdifferent First, we consider a pure relax-
ation due to the space-independent version of the LBG
equation (1):N;(t + 1) = (1 — w)N;(r) + @N; . Av-
erage velocityu is a constant, and if the initial population
was admissible, andf = w = 1, thenN;(r) € Q for all

t = 0. The entropy at time step+ 1 is

b
S+ 1) == - &N+ &N P2 (5)
i=1

Applying the well known inequality f[(1 — w)x +
wy]= (1 — w)f(x) + wf(y) to the concave function

on the right-hand side of Eqg. (5), we derive an estimat

for the entropy variation,
Sit+1) — St = w89 — S(1)]. (6)
From the variational origin ofV;" it follows that $¢4 =

0, and keeping the lowest order terms (which are of the
ordere?), we derive

. ®

Here the subscript indicates quadratic approximation to
the entropy and entropy productiof, = $¢4 — (3/8)Q

ando, = (3/4)Q, whileQ = Y7, AN?/\/E is a non-
negatively definite quadratic form. Equation (8) implies
that close to equilibrium variation of the entropy per time
step is equal to a non-negative fraction of the entropy
production, ifw belongs to the well known LBGK linear
stability interval,0 = w = 2. However, a justification is
required because function(w) = (1 — @)N; + wN; "
become negative for large enough > 1, and then
Eq. (5) is not valid. A qualitative argument is as follows:
If lu|l < ¢, equilibrium (2) is positive, and therefore it
has a nonempty positive neighborhotid Thus,~N;? has

a nonempty neighborhootl, in the admissible domain
(Ua = U N P, whereP is the hyperplane of populations
with fixed u). This neighborhood/(, can be taken small
enough to makes, a valid approximation, and each of
the two state®V;” = N; ! * eAN; belongs toaU. [Then
the segment. joining N;" and N;” also belongs td/q,
iand it consists of two partd, (betweenv;” andN; ).
Let us take one of the populatia¥;~ (say,N;") for the
initial condition, and conside§, at the subsequent time
as a function ofw. This functionS,(w) increases as
varies from0to 1. As w exceedd, functionS,(w) starts
decreasing but its value remains higher than in the initial
state N;", until w reaches the valué. Then 5,(2) =
S,4(0), and the update has arrived im . If v €]0, 1],
populationsN;(¢) are confined to the segment,, and
they tend toN;?. If w € [1,2[, populationsN;(r) are
gonfined to the segmerit. They also tend tav; ! but

in a different way, jumping (“overrelaxing”) each time
from L+ to L=. This qualitative consideration highlights
the entropic origin of the linear stability interval, and
indicates the importance of pairs of states with equal

)

Sq(t + 1) = §,(1) = oy(1).

S(¢). Thus, the right-hand side of Eq. (6) is non-negative €Ntropy. A more quantitative analysis, in particular,

On the other hand, applying inequalif{w) = f(0) +

corrections to the size of stability interval due to the

f'(0)w to the concave function on the right-hand side ofdifference betweers andS,, requires an estimate of the

Eq. (5), we derive an estimate from above,
St+1)—80) =o(), @

where o (¢) is the entropy production (4b) at time step
Inequalities (6) and (7) prove thé theorem in the space-

neighborhood4/ and U, and it is left for a future work.
The goal now is to extend the above consideration

to the space-dependent case. We address here the case

o € [0,1]. There are three operations involved in the
LBGK equation (1): propagation which acts as a shift,

7
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TN;(r) = N;(r — ¢;); mapping onto local equilibrium propagationyu(r), reads

manifold, EN;(r) = N; '[u(r)]; and taking a convex lin- m o(c? — ¢?) &
ear combination of two vectors. Combination of these Tu(r) = Z aj (Nuj — ———5—* Z Y(uja; (r).
three operations results in the LBGK update j=1 b¢; j=1

(11)

Here aj = (1/2)[a;(r + ¢) = a;(r — ¢)] are symmet-
ric and asymmetric parts of the functioms, and func-
tion Y (u) depends on the average velocity through Mach
, number squared! = M*R~'(M?), while R is degined by
- _ _ Eq. (2b). The part of Eq. (11) which contains keeps
St +1) = 2- l; [ = @)TNi(r, 1) u below ¢, and it causes no problems (this part is “space
. 32 averaging”). The second part which containscandrive
+ wETN(r, )], the population out of the admissible domain (this part “re-

where summation i goes over all lattice sites. Under Solves” average velocity at neighboring sites). The rate
suitable boundary conditions (periodic, for instance), weof this process is controlled by values of Mach num-
can write N;(r,7) in place of TN;(r,?) in the latter bers, and “smoothness” of functioms(r). Various es-
expression. (Specification of boundary conditions playgimates can be derived from Eq. (11). The simplest (and
the same role as in the proof of the glokidltheorem ~ rather crude) one is as follows: Lbt;(r)| < cs(1 — 7),
in the continuous space-time case.) In this case, thwherel > n > 0. Taking the absolute value of the right-
above results for the space-independghtheorem are hand side in Eqg. (11), and replacirig by its maximal
immediately extended onto the space-dependent case M@lue 2 at M = 1, we derive the following: Forl >
summing over all lattice sites in Egs. (6) and (7). n > /3/[65/2](= 0.2), population stays admissible after
Now we come to the most delicate point of analysis:Propagation step, independently of spatial behavior of
Do populations stay admissible after the propagation stepnctionsa;(r).
Since propagation does not violate positivity, we have to Thus, we have demonstrated that there exists a subset
check that the average velocity of the populatien; is " C Q' which remains inside the admissible domé&in
below the boundary value,. If this is the case, then after the first time step. Better estimates become available
TN; canbe mapped into local equilibrium, and the LBGK if we take into account functions; which vary in space
update (9) exists. Since there is no mechanism in thémoothly (in some appropriate sense) becauseufor
system which would keep the average velocity belgw ~ const the asymmetric terms in (11) vanish. Analysis of
the answer to this question depends on the choice of initidHrther time steps is more complicated (though possible for

N,‘(l‘,l + 1) = (1 - a))TN,-(r, l) + a)ETN,'(I', t). (9)

If the function7N;(r, ¢) is admissible, then the right-hand
side of Eq. (9) is positive, and the total entrofi + 1)
may be written as

conditions. Here we present some explicit results. at leastw close tol), and will be addressed in a separate
For simplicity, we consider the incompressible casePaper. _ _ .
p = 1. First, we need to specify populations i@, Macroscopic equations for the LBGK model (1) with

for which moments after propagation can be explicitly_l\/fq (2) can be established in a usual way [1]. Forexample,
evaluated. We consider convex linear combinations off the case of two-dimensional hexagonal lattice (the FHP

equilibrium populations (2), lattice, Ref. [1]), the macroscopic equations on the Euler
m (inviscid) level have the form
(r) = . Ay .
M) = 2 a; (DN @), A0 G+ dulpua) = 0. aulpua) + 9P — 0.

€ eq . .
whereN "(u,) are equilibria (2) with fixed vectora; of ~ HerePag = X ciacigN;" is the pressure tensor in the
admissible length, and where non-negative functioyts) equilibrium (2),
satisfy >, a;(r) = 1 for all sitesr. Functions (10) eq _ 2 -1 _ 2
constitute all sjubsdﬂ’ C Q. In particular,Q’ contains Pap = pesdap + 4R pluqug = (1/2u 5a5)(-12)
local equilibrium populations. Propagation transforms
populations (10) intd'N;(r) = >, a;(r — ¢;)N;(u;).  Deviations from the real-fluid case’{j; = c2pdap +
Moments of the populatiorfN;(r), and, in particular, puqug) are twofold. First, the well-known feature of the
the average velocity, are explicitty computable. [With FHP lattice is presentPes = 2¢2p for any equilibrium
space Fourier transform of functions;, it amounts on the FHP lattice). Second, the nonexistenc& tf (2)

to finding the moments generating functioi(k,u) = at M > 1, as implemented by the facta@t (2b), causes
Zle exp(—ik - ¢;)N; '(u), which can be done explicitly the velocity-dependent densjty= (4R)"'p in the advec-
for any lattice.] tion term.

We present here the result for the simplest case of the Deviations from hydrodynamic equations are not sur-
one-dimensional lattice with spacing and with three prising since only the minimal set of constraingsandu,
velocities, c+ = *¢, and ¢g = 0. In this case,c§ = was used to construct the equilibrium. As is well known,
(2/3)c?. Exactexpression for the average velocity after this problem can be fixed by invoking further constraints

8
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on the equilibrium population, and thus forcing higherenergy parameter from its valug(«?) [6] in the QHEN?
moments to have an appropriate form [4]. We will discusq13). ForAE # 0, Eq. (15) has a solution, if this system
briefly an extension of our approach to account for addiis not degenerated. However, the system (15) becomes
tional constraints. Specifically, we seek maximum of thedegenerated for the following valug, :
function S (3), subject to an extended set of constraints:
p,u,andY; ¢’N; = 2pE. Inthe general case, this prob- . 41M2,.3/2
lem is not solvable explicitly. However, since the QHE is Um = 2 ¢ 2m + 1) c. (16)
explicit, we can utilize this to account the additional (en- " "
ergy) constraint approximately. L

The full problem is equivalent to the sequence of twoFOr €achm, the average velocity,, belongs to the
subproblems. First, we find a maximum of the functipn domain of existence of the QHEuf < cy,). The
subject to the hydrodynamic constraints, and disregarding0!ution to the system (15 is easily found explicitly, and
the energy constraint. The solution is the QNE(p,u). we do not represent the final re;_ult here. Instead,_we will
Now the full problem is equivalent to the maximization d'SC.USS what happ_ens at the critical average \{elox;;;ty
of the functionS(N° + AN), subject to the constraints Slnce the density Se%a'es out, the equilibrium on the
31, ¢;}JAN; = 0andY? c?AN; = 2pAE. HereAN,; is lattice has the formV,” = pn;(u, E). For |ul < cqm,
the unknown deviation from the QHZEE,Q due to the energy the famlly .Of normalized I*ocal equilibria; (u, E) IS tW.O'
constraint. The solution is controlled by one parameterip"’”amemcnc odnlyblul # Mfm.h For smal%E; th'ﬁ. family
AE = E — Ey(u?), whereE, is the value of the energy S constructe _above. If, howevely| = U this two-
in the QHE NO. For small AE, the problem is well parameter family becomes onbneparametric. In other

. , . . words, for |u| = u*,, the energy parameter cannot be
approximated if we confine only the quadratic XWV; chosen inde endénntl of the average velogityd onl
terms in the expansion of the functiGraroundN,Q. Thus, P y 9 4 y

2P 0 i .
we finally come to the problem of finding a maximum of 22?1:31;2?8 Eol(u;,)"]is coexistent with the rest of the

a quadratic form, subject to the linear constraints. The™| " Letter, we have constructed a class of nonper-

; q _ 0 )
SO'(ljJt'.on Tas the fO“|Wiﬂ _f Ni ((jp];“) +t€N’ (p,u, AE)(’j. turbative lattice equilibria (2) using the maximum entropy
and Is always explicitly tfound irom the corrésponding rinciple, introduced a method for taking into account ad-

linear glgebram problem. Th's method was used earlie itional constraints, and given proofs &f theorems for
to derive Grad-like approximations for the Boltzmann LBGK models

equation [5]. I.V.K. acknowled
oL . . V. K. ges the support of the CNR and the
Wz.w'” |Ilgstra|1tt|e :P'S apglrioac_r: \;\"th Ian '?.xampl_e 9f the 5p RAS; also the support of the RFBR (Grant No. 95-02-
one-dimensional fattice witim velocities ¢; = 1¢,  n3836-a) is acknowledged (A.N.G. and I. V. K.).

wherei = —m,...,0,...,m. Forthe QHE, we find
R iu Q2m + 1)i*u?
N? = 2+ + , (13
! p(Zm +1  2rpc 16r2 R, c? (13)
whereR,, is given by Eq. (2b) with sound speed squared
c2 = (2rnc®)/@2m + 1), wherer,, = >, i>. Theim- *Author to whom correspondence should be addressed.
proved equilibrium, subject to the energy constraint, has  Present address: IACNR, V. del Policlinico, 137,
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