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Abstract
A new formal model of parallel computations – the Kirdin kinetic machine – is suggested in
[1]. It is expected that this model will play the role for parallel computations similar to
Markov normal algorithms, Kolmogorov and Turing machine or Post schemes for sequential
computations. The basic ways in which computations are realized are described; correctness
of the elementary programs for the Kirdin kinetic machine is investigated. It is proved that the
deterministic Kirdin kinetic machine is an effective calculator. A simple application of the
Kirdin kinetic machine – heap encoding – is suggested. Subprograms similar to usual
programming enlarge the Kirdin kinetic machine.

Introduction
The problem of effective programming with fine-grained parallelism is far from being solved.
It seems that, despite numerous efforts, we have not yet understood parallel computations,
considering them mainly as result of usual algorithm parallelization. There are some
promising approaches based on models of computing environments constructed from large
number of elementary calculators of the same type (neural networks, cellular automata etc.). If
it is possible to implement a problem in such environment (for example, by methods of neural
networks training [7]), further realization with parallel computers can be easily constructed
within the framework of the ideas "similar tasks for different elements". There are other
perspective ideas and approaches to construction of models of fine-grained parallelism besides
neural networks.

Parallel Substitution Algorithms (PSA) [9] conceptually go back to von Neumann cellular
automata, but have more powerful expressive capabilities. The following fundamental
concepts form the background of the Parallel Substitution Algorithm:

1) Fine-grained parallelism. Each data-item is introduced being attached to a point in the
computation space represented as a countable discrete set of names. The computation is an



iterative procedure over a data array in this space. At each step certain data subarrays are
replaced by other ones, these actions being done all over the whole data-array.

2) Decentralized control. No order of operation execution is defined in the model. Each
substitution is performed when and where the ready conditions coincide with a data-pattern in
the space. Thus, the associative mechanism of the time-spatial control of the computation
process is performed, the spatial relations being explicitly represented by means of the
functions defined in the computational space.

3) Synchronous mode of execution. An abstract outer clock is presumed to exist, making the
computational process to obey the following rules:

• all operations ready to be executed should be executed simultaneously with the first
coming clock pulse,

• no changes in the array are allowed out of the clock pulses. The asynchronous mode of
execution is also of great theoretical interest. Its investigation is very important for
understanding the behavioral properties of computations in the cellular spaces.

4) Interpretability by automata nets. A set of substitutions representing the cellular
computation admits the direct mapping onto a net of automata. This allows one to construct
methods and tools for architectural design of hardware implementation of cellular algorithms.

The direction of the development of the PSA theory is stipulated by the objective of its
creation: to constitute the fundamentals for methods of synthesis of algorithm-oriented
architectures of cellular processors

The chemical computer (SCAM – Statistic Cellular Automata Machine) is offered in [8] in
development of the cellular automata theory. SCAM is based on imitation simulation by
Monte-Carlo methods of a class of heterogeneous chemical reactions occurring in a thin layer
of molecules adsorbed on the surface of a crystal catalyst. Algorithmic universality for SCAM
has been proved.

Artificial Immune Systems [10] are highly distributed systems based on the principles of
natural system. This is a subject of great research interest because of its powerful processing
capabilities. In particular, it performs many complex computations in a completely parallel
and distributed fashion. Like the nervous system, the immune system can learn new
information, recall previously learned information and performs pattern recognition tasks in a
decentralized fashion. Also its learning takes place by evolutionary processes similar to
biological evolution. [10] reviews the models that have been developed based on various
computational aspects of the immune system. The existing immunity-based methods emulate
one or the other mechanisms of the natural immune system. Further study should integrate all
the potentially useful properties in a single framework in order to develop a robust immunity-
based system. There are many potential application areas in which immunity-based models
appear to be very useful. They include fault detection and diagnosis, machine monitoring,
signature verification, noise detection, computer and data security, image and pattern
recognition, and so forth. It is to be noted that the mechanisms of the immune system are
remarkably complex and poorly understood, even by immunologists. Understanding the
immune system is important, both because of determining its role in handling complex
diseases and because of potential applications to computational problems. Moreover, if we
can understand the functionality and the inherent mechanisms of various components of the
immune system from the computational viewpoint, we may gain better insights about how to
engineer massively parallel adaptive computations.



In [14] E.A. Liberman suggested in 1972 an interesting model. He insists that the living cell is
controlled by molecular stochastic computer of parallel-successive action.  MMC operates
with molecules-words (DNA, RNA, proteins) according to the program recorded in DNA and
RNA. Operations are produced by molecular devices (RNA- and DNA-polimerases, ligases,
proteinases and so on) contained in proteins and RNA-molecules. Molecular devices
operating with molecules-words are recorded on molecules themselves, and they are read off
by ribosomes. Therefore the program of the reorganization of the program itself may be
recorded on the molecules-word. MCC operates with molecular words having definite
addresses. The words and the operators collide by Brownian movement and combine if the
molecular surfaces of an address segment are complementary and properly oriented. It is
possible to reproduce not only the program but also the operators of MCC. Molecular
computer operates with words-molecules according to the program , recorded in DNA, with
the aim of predicting outer situation in the next time-moment and selecting macroscopic
motion. Each step of direct calculation needs the consumption of minimally necessary portion
of free energy and search is due to the Brownian movement without free energy loss. A search
of words of RNA-alphabet is performed by means of steady-state chemical reactions catalyzed
by polynucleotide phosphorylases. Price of action DA is determined as a product of the value
of free energy loss by one operation EO and these operations time TO: DA≈EOTO≈1013h; and
for a search DA≈103 h, where h is Planck constant (quantium of action). The hypotheses are
proposed in that paper, that MCC of neurons is adopted for the work of brain.

A new abstract model of computations – the Kirdin kinetic machine – is investigated in this
paper. This model is expected to play the same role for parallel computations as the Turing
machine and other abstract algorithmic calculators for sequential computations.

The Kirdin kinetic machine is based on chemical reactions in liquids or gases. Our optimistic
expectations go back to the theorem of M.D.Korzuhin [12] on chemical reaction ability to
imitate any dynamic system for finite times and to the theorem of A.N.Gorban [13] on
chemical systems approximating any dynamic systems.

1. The Kirdin Kinetic Machine
A processed unit for the Kirdin kinetic machine is an ensemble of strings M from the alphabet
L, which is identified with a function FM taking non-negative integer values: FM:L*→N∪{0}.

The value of FM(s) is interpreted as a number of copies of a
string s in the ensemble M.

The processing consists of an aggregate of elementary
events, which occur non-deterministically and in parallel. An
elementary event S:M M’ means that from the ensemble M
an ensemble K– is removed (it is possible if for arbitrary s

)()( sFsF MK ≤− )and an ensemble K+ is added. The
ensembles K– and K+ are unambiguously set by rules or
commands, which are combined in a program. The
commands can be of only three kinds (u, w – arbitrary, v, f,
g, k, q, s are fixed):

1) Disintegration uvw → uf + gw;

2) Synthesis uk + qw → usw;

3) Replacement uvw → usw.

Fig.1. A jar with strings



The program P is applicable to an ensemble M, if any command of P is applicable to M .
Elementary event S is unambiguously determined by a rule p from the list of commands of the
program P, and by an ensemble K– determined by this rule and such that F s F sK M

− ≤( ) ( ) for
any s. An elementary event S is allowable for an ensemble M and a program P if there is a rule
p in the list of commands of the program P and the values of function FM for strings in the left
part of this rule are positive.

We shall say that N of allowable events are compatible, if 0
1

≥− ∑
=

−
n

i
iM FF , where −

iF  is a

removed ensemble for the i-th event.

Ensemble M is called a final ensemble if no command of the program P is applicable to it. P
is referred to as a finite program if application of commands of the program to the initial
ensemble always leads to a final ensemble. If all final ensembles coincide, the program P is
named deterministic for the ensemble M.

The Kirdin kinetic machine can be informally described as a jar with strings. We add rules-
catalysts to this jar, some of them, colliding with the strings, promote their disintegration,
others, meeting a pair of suitable strings, promote their synthesis, and the third replace some
substrings in strings.

The basic ways of realization of calculations are described, correctness of elementary
programs for the Kirdin kinetic machine is investigated.

2.Statistical method of implementation
The "statistical" method of implementation of the Kirdin kinetic machine is of particular
interest. In the limit of large ensembles it gives kinetic behavior, similar to the behavior of a
complex system of chemical reactions (wherefrom, in fact, the name "the Kirdin kinetic
machine" appears). Some non-negative number ri – "constant of rate" is compared with each i-
th command in statistical realization. The realization can be presented as follows: for small ∆t
with the probability ri∆t one of commands-reactions is chosen, and with probability 1-Σiri∆t
empty command is chosen (nothing occurs); the probability of choice of two or more
commands is infinitesimal (o(∆t)). If i-th command-reaction is chosen, then from the
ensemble strings are chosen randomly and with equal probability, in the amount necessary for
fulfillment of the command. If the command is applicable to this set of strings, it is executed
and we pass to the following ∆t, if it is inapplicable, the ensemble does not change and we
pass to the following ∆t all the same. In the limit ∆t→0 we obtain random process – statistical
model of the Kirdin kinetic machine.

3. Correctness of the programs consisting of one command

3.1. Desintegration

Consider the program consisting of a single disintegration command uvw → uf + gw

Applicability

This program is applicable for an ensemble M if there exist such strings u, w∈L* , that
FM(uvw)>0 .

Finiteness

Lemma 1. The program P consisting of a single disintegration command is not finite, if v⊂ f
or v⊂ g .



Proof. Let v⊂ f or v⊂ g. That is the program gwvfufuvw +→ 21  or wvggufuvw 21+→ . In
both cases the program application results in a new string uf1vf2 or g1vg2w for which the
program is applied and so on is not finite. Lemma 1 is proved.

Example. uAw→uAB+Baw

The program is applied to an arbitrary ensemble if one string at least includes symbol A. With
every disintegration of such a string, two more strings will be generated for which a program
is applied, that is the reason why the program won’t be finite.

Lemma 2. Program P consisting or a single disintegration command won’t be finite for the
ensemble M, if

1) there are two possibly similar divisions of the string v=a1b1=a2b2;

2) f=b1b2x, g=ya1a2, where x and y are some fixed strings;

3) there exists a string uvw (FM(uvw) > 0) that u=u1a1 or w=b2w1.

Proof. Under lemma conditions

v=a1b1=a2b2, wayaxbubuvw 2121 +→ ,

FM(u1a1vw) > 0 or FM(uvb2w1) > 0.

To prove infiniteness it is enough to indicate one infinite sequence of elementary events.

We shall consider disintegration of the string u1a1vw:

1) {u1a1vw} {u1a1b1b2x, ya1a2w};

2) the program is applied to the string u1a1b1b2x as v=a1b1: {u1a1b1b2x} {u1 b1b2x,
ya1a2b2x}

3) the program is applied to the string ya1a2b2x as v=a2b2: {ya1a2b2x} { ya1 b1b2x, ya1a2x}

4) the string ya1b1b2x includes the string a1b1b2 as well as the string u1a1b1b2x.
Disintegration of the former was discussed in 2). This string generates a string including
a1a2b2. . Disintegration of the former was discussed in 3). Every disintegration step will
generate new strings including alternately changing strings a1b1b2 or a1a2b2.

We shall now discuss disintegration of the string uvb2w1:

1) { uvb2w1} {u b1b2x, ya1a2b2w1};

2) the string ya1a2b2w1 includes the string a1a2b2, it will generate the string with a1b1b2 and
so on.

Thus we indicate infinite sequences of events under the lemma conditions. Lemma is proved.

Criterion of disintegration finiteness
Theorem 1. Program P consisting of a single disintegration command gwufuvw +→  is finite
for the ensemble M if

I. v⊄f, v⊄g

II. for two arbitrary divisions v=а1b1= а2b2 where a1=a2 or b1=b2 are possible, at least one
of three conditions is not fulfilled

(1) f=b1b2f1, where f1 is an arbitrary fixed string



(2) g=g1a1a2 where g1 is an arbitrary fixed string

(3) there exists the string uvw, FM(uvw) > 0 such u=u1a1 or w=b2w1, where u1 and w1
are fixed strings

Proof. Consider an arbitrary string of the type uvw∈M. Let us build for it a binary tree as a
derivation of all possible strings. The second line of every tree vertex indicates the conditions
under which the disintegration program is applicable for the given string. The third line
presents the form of the given string under these conditions. A descendant inherits conditions
of all its ancestors. A left edge indicates a string of the type uf, a right adge – gw. The left and
right tree branches are given separately.

We shall give explanations to the figures. The very left branch has the maximal length equal
to u  under the condition that substring u is of the type a1...a1a2, otherwise the branch is
shorter. With every step to the right it generates the string gf1. The conditions of its
disintegration are analogous to the branch 1.2. Branch 1.2 has the maximal length to the right
equal to f  under the condition that the substring f is of the type b1b2...b2, otherwise the
branch is shorter.

With every step to the right branch 1.2 generates strings of the type g1b1b2...b2f2 obtained
under the condition f=b1b2f2, while their disintegration is possible only in the case g=g2a1a2
which contradicts the criterion conditions.

uvw

1.uf
u=u1a1,f=b1f1

u1a1b1f1

1.1.u1b1f1
u=u2a1a2

u2a1b1f1

1.2. gf1
g=g1a2 , f=b1b2f2

g1a2b2f2

1.1.1.u2b1f1
u=u3a1a1a2

u3a1b1f1

1.1.2.gf1
g=g1a2 , f=b1b2f2

g1a2b2f2

1.2.1. g1b1b2f2
g=g2a1a2

1.2.2.g1a2f2
f=b1b2b2f3
g1a2b2f3

1.2.2.1. f1b1b2b2f3
g=g2a1a2

1.2.2.2. g1a2f3
f=b1b2b2b2f4

g1a2b2f4

Fig.2. The left branch of disintegration tree.



The
right branch of the binary tree is symmetrical with a precision of resignations.

Thus we see that when the criterion conditions are met all sequences of elementary events will
be finite for a program consisting of a single disintegration command, that was requested to
prove.

Example. Infinite program: aawubbuabw +→
Let string aab∈M.

aab→{abb,aa};

abb→{bb,aab}.

We obtained the string aab from which we started. The given program is applied to this string
as well.

Determination
A program is not deterministic if in the initial ensemble M0 or in one of ensembles obtained
by one or several elementary events of the ensemble M0 there is a string for which the
allocation of substrings v takes place ambiguously. It may happen in cases when one or
several symbols from the beginning of string v is included in its end in the same order.

Let string v be included in the string h (FM(h)>0) more than once without meeting. I.e. the
string h can be presented as u1v(1)u2v(2)…unv(n)w, where n denotes the number of
incorporations v into h. Elementary events taking place in an arbitrary order divide string h
into n+1 strings: u1f, gu2f, … , gunf, gw.

uvw

2.gw
w=b2w1,g=g1a2

g1a2b2w1

2.1.g1f
g=g2a1a2, f=b1f1

g2a1b1f1

2.2. g1a2w1

w=b2b2w2

g1a2b2w2

2.1.1.g2b1f1
g=g3a1a1a2

g3a1b1f1

2.1.2.g2a1a2f1
f=b1b2f2

2.2.1. g1f
g=g2a1a2, f=b1f1

g2a1b1f1

2.2.2.g1a2w2

w=b2b2b2w3

g1a2b2w3

2.1.1.2. g3a1a1a2f1
f=b1b2f2

2.1.1.1. g3b1f1
g=g4a1a1a1a2

g4a1b1f1

Fig. 3. The right branch of disintegration tree.



Criterion of disintegration determination
Theorem 2. Disintegration program is non-deterministic if there exist a division of string
v=aba and at least one of the following conditions is met.

1. ∃u,w such that FM(uababaw)>0;

2. f=xababay or g=xababay, where x, y are fixed strings

3. f=df1 , ∃ u1,w such that FM(u1cvw) > 0 ,where cd=ababa;

4. g=g1c , ∃ u,w1 such that FM(uv dw1) > 0, where cd=ababa.

Otherwise disintegration is deterministic.

Proof. Under the condition uabaw→ uf+gw.

1. ∃u,w such that FM(uababaw)>0. Disintegration is applied to the string uababaw with two
methods: uababaw→ uf+gbaw and uababaw→ uabf+gw which results in two different
ensembles. Hence, in this case disintegration is non deterministic.

2. f=xababay or g=xababay, where x, y are fixed strings. The disintegration command can
be presented in one of following ways: uabaw → uxababay + gw; uabaw→
uf+gxababay; uabaw → uxababay+gx1ababay1.For every case an arbitrary allowable
elementary event generates the ensemble including strings with ambiguous separation out
of the string aba for which point 1 of the given criterion is applicable.

3. f=df1 , ∃ u1,w such that FM(u1cvw) > 0 ,where cd=ababa. Here cd is possible another
division of the string ababa. A disintegration command is presented as follows:
uabaw→udf1+gw. Applying the program to the string u1cvw we obtain two strings u1cdf1
and gw. Application of disintegration to the string u1cdf1= u1ababaf1 is non-deterministic
(see point 1).

4. g=g1c , ∃ u,w1 such that FM(uv dw1) > 0, where cd=ababa. A disintegration command is
presented as follows: uabaw→uf+g1cw. Applying the program to the string uvdw1 we
obtain two strings uf and g1cdw. Application of disintegration to the string
g1cdw=g1ababaw is non-deterministic (see point 1).

If there exists a division of the string v=aba but none of conditions 1-4 is met, then the initial
ensemble and all ensembles obtained with elementary events from the initial ones do not
generate the strings including the string ababa. Therefore such disintegration is deterministic.

Let the string v be impossible to present as the string aba, then intersected incorporation of v
into each strings are impossible. Therefore non-determination is impossible for every
ensemble.

The criterion of determination of disintegration is asserted.

Example. uABABw → uf + gw , FM(ABABAB)>0.

The string v can be presented as the division aba: a=AB, b is nil.The string ABABAB meets
the condition 1 of the criterion, therefore the string disintegration is non-deterministic. In fact,
two different ensembles can be obtained from the string ABABAB by applying disintegration
command:

FM1(f)=1, FM1(gAB)=1;

FM2(Abf)=1, FM2(g)=1.



3.2. Synthesis.

Consider a program consisting of a single command of the type uk+qw→usw.

Applicability
The program is applicable to arbitrary ensembles containing a pair of strings of the type uk
and qw. FM(uk) > 0, FM(qw) > 0

Finiteness
It is obvious that the program is always finite. It glues all pairs of corresponding strings until
they are exhausted.

Determination
In the general case the program is non-deterministic as it glues arbitrary strings ambiguously.

Synthesis determination criterion
Theorem 3. The synthesis program is deterministic if and only if at least one of the following
conditions is met:

1. ( ){ } 10 =>ukFuk M and ( ){ } 10 =>qwFqw M

2. ( ){ } 10 =>ukFuk M and ( ) ( )∑
∈

≥
Mqw

MM qwFukF

3. ( ){ } 10 =>qwFqw M and ∑
∈

≥
Mqw

MM ukFqwF )()(

Proof.

1. Let the initial ensemble be FM(uk)=n, FM(qw)=m where u and w are some fixed strings and
there are no other strings of the type uk and qw. The final ensemble for the given ensemble is
always the following.

FM'(usw)= FM(usw)+n, FM'(uk)=0, FM'(qw)=m–n if n<m.

FM'(usw)= FM(usw)+m, FM'(uk)= n–m, FM'(qw)=0 if m<n.

2. Let the initial ensemble be.

FM(uk)=n, FM(qw1)=m1, FM(qw2)=m2,… FM(qwl)=ml,

where u, w1, w2,…, wl are some fixed strings with nm
l

i
i ≤∑

=1
, and there are no other words of

the type uk and  qw. The final ensemble for the given ensemble is always the following:

( ) ∑
=

−=
k

i
iM nmqwF

1
' , FM'(u1k)=0, FM'(u2k)=0,…, FM'(ulk)=0,

FM'(u1sw)=n1, FM'(u2sw)=n2,…, FM'(ulsw)=nl .

Notice that condition (1) is a special case for (2) or (3) with respect of whether n is more than
m and vice versa. If these conditions are not met, then we can indicate at least two different
ensembles, which are final for the given program. Let the initial ensemble be the following:

FM(uk)=n, FM(qw1)=m1, FM(qw2)=m2,…, FM(qwl)=ml,



Where u, w1, w2,…, wl are some fixed strings with nm
l

i
i ≥∑

=1
, and there are no other words

of the type uk and  qw. And for definiteness ∀j=1…l nmm j
l

i
i ≤−∑

=1
. We indicate two

possible final ensembles:

3. FM'(uk)=0, ( ) nmqwF
l

i
iM −= ∑

=1
1' , FM'(qw2)=0,…, FM'(qwl)=0,

( ) nmmuswF
l

i
iM +−= ∑

=1
11' , FM'(usw2)=m2,…, FM'(uswl)=ml .

4. FM'(uk)=0, FM'(qw1)=0, ( ) nmqwF
l

i
iM −= ∑

=1
2' ,…, FM'(qwl)=0, FM'(usw1)=m1,

( ) nmmuswF
l

i
iM +−= ∑

=1
22' ,…, FM'(uswl)=ml .

In the case when condition (3) is not met, non-determination is proved in a similar way.
Hence, the determination is proved in a similar way. Therefore, the determination criterion for
the program consisting of a single synthesis command is proved.

Example (non-deterministic synthesis)

uK+Qw→uSw. FM(AK) =1, FM(QB)=1, FM(QA) = 1

Ensemble M has one string of the type Qw. Therefore the ensemble does not meet any of the
criterion conditions. Hence, that synthesis is non-deterministic. Truly, here there are two
allowable incompatible events. Two different ensembles can be final:

FM1(ASA) =1, FM1(QB)=1, and

FM2(ASB) =1, FM2(QA)=1.

Example (deterministic synthesis)

uK+Qw→uSw. FM(AK) =3, FM(QB)=1, FM(QA) = 1

The given ensemble meets condition (2) of the criterion hence synthesis is deterministic. Final
ensemble is ensemble M such that

FM(AK) =1, FM(ASB)=1, FM(ASA) = 1

3.3. Replacement

Consider a program consisting of a single command of the type uvw → usw.

Applicability

The program is applicable to ensemble M if there exist such strings u, w∈L* that FM(uvw) >
0.

Finiteness

Replacement does not change the number of strings in an ensemble, it is finite if v⊄s.

Determination



The conditions of replacement determination are similar to those of disintegration
determination. Also we are to check if the strings v can be decomposed into substrings of the
type aba and if strings of the type ababa are included into strings of the initial ensemble or an
ensemble obtained from the initial one.

Replacement determination criterion
Theorem 4. Replacement program is non-deterministic if there exists a division of string
v=aba and at least one of the following conditions is met.

1. ∃u,w such that FM(uababaw)>0;

2. s=xababay, where x, y are fixed strings

3. s=ds1, ∃ u1,w such that FM(u1cvw) > 0 ,where cd=ababa;

4. s=s1c, ∃ u,w1 such that FM(uvdw1) > 0, where cd=ababa;

5. s=d, ∃u1,w1 such that FM(u1c v ew1) > 0, where cde=ababa.

Otherwise, replacement is deterministic.

3.4. Summary.
The commands of disintegration and replacement are non-deterministic, if conditions 1&2 or
1&3 of the following list are fulfilled.

1. The string v to be replaced can be decomposed as aba, i.e. its beginning and end coincide.

2. In strings, to which these commands are applicable, there are the strings of the kind ababa,
i.e. the string v  can be chosen in two ways.

3. In the strings obtained after application of these commands there are strings of the kind
ababa, i.e. the string v  can be chosen in two ways.

For the programs consisting of any number of commands of disintegration and replacement,
these criteria are easily generalized.

A program consisting of commands of synthesis is always finite, and in general cases non-
deterministic.

4. Algorithmic universality of the Kirdin kinetic machine
We assume that the Kirdin kinetic machine will be of a universal character. Thus a question
arises: how the Kirdin kinetic machine correlates with consecutive standard algorithmic
formal models.

Theorem. The deterministic Kirdin kinetic machine is equivalent to any consecutive standard
algorithmic formal model, such as the Turing machine or Markov normal algorithms. Hence,
it  is an effective calculator.

Proof. Let us build Kirdin kinetic machine modelling an arbitrary Turing machine. Since the
Turing machine is deterministic and sequential, Kirdin kinetic machine will be deterministic.
So for every moment of time there will exist only one allowable event. A Kirdin kinetic
machine alphabet is L=A∪Q. An initial ensemble consists of a single string corresponding to
the standard initial configuration of the Turing machine M0={ q0α }, where α∈А*. Turing
mating command modelling can be described with a table with a command of the Turing
machine in its first column and the corresponding system of Kirdin kinetic machine
commands in its second column.
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e Kirdin kinetic machine partially deterministic, if its program consists of
mmands of replacement and disintegration and any commands of synthesis.

rministic Kirdin kinetic machine can be modeled by a specially arranged
thmic calculators, for instance, let them be the Turing machines.

ally deterministic Kirdin kinetic machine, M is the number of strings in its
 the beginning M Turing machines are initialized, each of them processes
The program for each machine consists of commands of replacement and
he application of a command of disintegration means initiation of a new

, and the configuration of the first of them corresponds to the string uf, and the
 the second – to the string gw.

me, an over-calculator is functioning, with a program consisting of all
nthesis of the initial program. It compares configurations of Turing machines
nd qw. If both are present in the configurations, it “switches off” one of these
e configuration of the another turns into usw.

ed memory
mory is an organic elementary application of the Kirdin kinetic machine. Its

 store the information about a long text by means of a special dictionary,
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consisting of strings which length is much shorter than the length of the initial text. The list of
all strings of length q, included in the given text, referred to as q-carrier of the given text.
Strings starting from any place in the text are considered. For a text of the length N there are
N-q+1 of such strings. If each string of the q-carrier is put into correspondence to the
frequency of its occurrence in the text, we obtain the frequency dictionary of length q.

Transition from the text to its frequency dictionary is a useful technique, which allows
comparing texts of different lengths and performing their information analysis, which was
successfully made for genetic texts in [11]. Besides, the frequency dictionary fixes the
information about the text in a set of small objects – strings with their frequencies, which can
be stored separately, “in a heap”. There exist probabilistic estimations of the length of the
dictionary, sufficient for the text unambiguous reconstruction.

If a dictionary of the length d contains strings, which occur uniquely, then for the dictionary of
the length d+1 and larger the text is restored unambiguously. This very case will be
considered. The following program for the Kirdin kinetic machine constructs the dictionary of
the length k from an initial (long) text. This program is finite and deterministic. If the final
ensemble will consist of an unique string – !, then the obtained dictionary does not contain
complete information about the initial text. It means, that such length of the dictionary is
insufficient for the unambiguous reconstruction of the initial text. Hence, the given procedure
should be started anew for the initial text, but with k increased by 1. And so on, until we
obtain a dictionary of length k as final ensemble, and now it is necessary to start the program
for the last time, to construct the dictionary of length k+1, from which the initial text can be
reconstructed unambiguously.

Introduce a new designation: kv  in the left part of a rule denotes an arbitrary string of the
length k in the initial alphabet. All entries of kv  in one rule denote the same string. Entries of
the symbol kv  in different rules are not connected.

!!
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1
1

1111
1

11

→+

→+

+→ −−−

k

kk

kkk

v
vv

wvvvuvwvvuv

Now, storing and, probably, transferring the initial text through communication channels as
the dictionary, we can always unambiguously reconstruct it from this dictionary. The
following program of the Kirdin kinetic machine is intended for this purpose.

wuvwvuv kkk →+

6. Structural programming in structureless parallelism
A natural necessity arose from programming for the Kirdin kinetic machine to create an
analogue of subprograms in usual programming. The subprograms can be useful for conveyer
programming and for encapsulation of a piece of an ensemble with its own program.

A processed unit for an enlarged Kirdin kinetic machine is at this time an ensemble of strings
from a certain alphabet L. At the moment of initialization a number of employ cells for
subprograms appears. For every cell an identificator is created. It consists of symbols from the
alphabet I (with L∩I=∅) and positive integer number – i.e. this cell arity. For example,
Cell(3) – a cell with the Cell identificator and 3 arity. Arity corresponds to the number of
position for input string – parameter of a cell.



The processing consists of an aggregate of elementary events, which occur non-
deterministically, in parallel and are regulated by rules or commands. The commands of
disintegration, synthesis and replacement for the basic program effect the ensemble without
cells. To exchange strings between a subprogram (cell) and the ensemble there are special
commands in a program. They are the commands of conditional adsorption and desorption.

Adsorption: Cell()i+uvw→Cell(uvw)i

Cell()i is the i-th vacant position in the Cell. Expression Cell(uvw)i means the i-th position is
taken by the string uvw.

When the program starts working the strings of the Cell()i type are initiated for all input
strings of all subprogram cells. One of commands of the type Cell()i+uvw→Cell(uvw)i having
been applied, the i-th input position of the Cell is taken until it is released from the
subprogram Cell as demonstrated below. Then the string Cell()i again appears in the
ensemble.

Every cell is associated with a subprogram consisting of disintegration, synthesis and
replacement commands. The subprogram effects only the strings occurring in this cell. Input
cell parameters can be used with the release of an input parameter position or without it. For
the use of an input parameter without a position release a special command appears similar to
the synthesis command of the type

In(uk)i+qw→usw+ In(uk)i  or uk + In(qw)i →usw+ In(qw)i.

For the use of an input parameter with a position release the command In(uvw)i →uvw+ In()i
is applied. Application of the command formally means the appearance of the string Cell()i in
the basic ensemble of the Kirdin kinetic machine.

Desorption is initiated out of a cell/ The right part of any subprogram command can carry
Out(usw) string for synthesis command or Out(uf) or Out(gw) strings for disintegration
commands. The application of such a command means that the string s from the Out(s) ia
taken from a cell and goes to the basic ensemble of the Kirdin kinetic machine.

The following types of information processing in cell are possible:

1.Sequential processing:

• A necessary set of strings goes into a cell

• Processing takes place inside the cell

• The modified set of strings goes out of the cell

• The cell is ready to accept a new set of strings

2.Parallel processing:

• A cell is constantly ready to accept new strings which are included into the process
occuring inside the cell

• From time to time the cell discharges strings-results of its perfomance into the basic
ensemble.

3.Conveyer processing:

• New strings constantly enter a cell

• Strings are processed without any interaction between themselves



• After processing the strings goes out of the cell independently

The example of a program with subprograms

Problem: an ensemble consists of a set of patterns-strings from the alphabet L. A detected
string is added to it and indicated with the symbol * in the beginning (with *∉L). The problem
is to find out if the string coincides with a pattern.

Program:

Main: Reverse1()+∗w→Reverse1(∗w)

Compare1()+u∗→Compare1(u∗)

Compare2()+u(L)→Compare2(u(L))

Reverse(1): In1(∗w)→In1(∗w)+∗w

u∗v1w→uv1×∗w

uv1
1v1×w→uv1×v1

1w

v1×w→v1w

v(L)∗→Out(v(L)∗)

Compare(2): In2(u(L))→In2()+u(L)

In1(u∗)+v(L)→u∗v(L)+ In1(u∗)

uv1∗v1w→u∗w

∗→Out(∗)

uv1
1∗v2

1w→ u×w

uv1∗w→ u×w

u∗v1w→ u×w

×+w→w

This program is finite and deterministic. Subprogram Reverse(1) realize sequential processing.
Subprogram Compare(1) realize conveyer processing. The answer to the problem is “yes” if
final ensemble consists of one or several * symbols, “no” if final ensemble is empty.

 Conclusions
 The Kirdin kinetic machine is based on two paradigms:

• fine-grained parallelism

• structureless parallelism

These seem to be the most perspective directions of the development of computer science.

We have seen that the Kirdin kinetic machine is a universal calculator. The ways of solution
of the problem of program execution correctness for the Kirdin kinetic machine are offered.
Determination of finiteness for the Kirdin kinetic machine is very complicated and, in the
general case, unsolvable. But the same is known about the Turing machine.



Determinacy means definiteness of the result. Most likely, for some range of problems we will
not be interested in strict determinacy, but in near determinacy or even simply probabilistic
distributions of the final ensemble.

According to the well-known “Minsky hypothesis” the efficiency of a parallel system increase
proportionally to logarithm of processor number. To overcome this restriction the following
approach often applied. Extremely parallel algorithms of solutions are built for different types
of problems. The algorithms use some abstract paradigm of fine-grained parallelism, for
example, structureless parallelism. For particular parallel computers means of parallel
processes realization with a given abstract architecture are created. As a result an effective
tool for parallel program production appears.
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