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In this paper we solve the problem: how to determine maximal allowable errors, possible for 
signals and parameters of each element of a network proceeding from the condition that the vector 
of output signals of the network should be calculated with given accuracy? “Back-propagation of 
accuracy” is developed to solve this problem. 
 

In the present time there are various technical realizations of neural networks, including neural network simulations 
which are computer models of neural networks. Neural network simulations are flexible means for training of 
networks and working with them. It is possible to carry out various operations with neural network simulations: to 
train, to determine the most and the least significant connections, to contrast, i.e. to remove the least significant 
connections etc. We will consider trained neural network simulation, i.e. for which the values of synapse weights 
are calculated. Neural network simulation working on digital computer allows to calculate synapse weights with 
high accuracy, what is difficult to obtain with other technical realizations of network because of their limited 
accuracy. Therefore there is the problem of binarization of synapse weights, that is reduction of synapse weights to 
some set of particular values (for example, 0 or 1 – absence or presence connection between neurons, -1 or 1 etc.). It 
is attained by change of the architecture of network – by addition of new synapses, new summators, by creation of 
cascades of summators etc. On binarization of a network, it is technically difficult to obtain the result with the same 
degree of accuracy as the result of neural network simulation, because sometimes for exact realization it is required 
about thousands, tens of thousands or more connections instead of one initial. Therefore one should beforehand 
determine some accuracy of the result of network operation after binarization, that is to choose an interval of 
variations of the values of the vector of output signals of the network. 

The effect of weight and input signal errors to functioning of neural networks was study in [3,4,5]. 
The idea of the method has arisen when solving the problem of binarization of neural network. But back-

propagation of accuracy is interesting not only in the application to a problem of binarization. It can be applied for 
solving a number of other problems. For example, having calculated allowable errors for the whole network, one 
can find out, in which limits it is possible to vary input data and signals on any part of networks in order that the 
vector of output signals would change within the given limits. 

In addition we assume that the network has layered structure. A network of layered structure consists a 
number of layers of standard neurons, interconnected by synapses with the weights calculated in training. The 
signals are transferred only in one direction, from the previous layer to the following. Standard neuron we 
understand as a set of elements, which are adaptive summator, nonlinear transformer and branch point (Fig.1.). The 
branch point is an element sending output signal of the nonlinear transformer to inputs of several standard neurons 
of the following layer. Description of structures of such type see in  [1,2].  
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Since we deal with the networks of layered 
structure consisting of layers of standard neurons, the 
output signals of one layer are the input signals of other 
layer. In turn, the output signal of one element (for 
example, summator) is the input signal of other element (for 

example, nonlinear transformer) inside standard neuron. Thus, starting from the output signals of the network it is 

α n
.  .  ..  .  .

α2

α1

Σ



possible to find out from which element of the network the given element has received the signal. Since the 
allowable errors of calculations for output signals of the network are given, it is possible to calculate allowable 
errors for each element, passing from element to element in reverse direction. 

 
Typical part of network is standard neuron. Any 

neural network consists of a number of standard neurons. 
Therefore it is enough to find out how are calculated 
allowable errors for elements of standard neuron. Then 
we will have possibility to calculate allowable errors for 
any part of network.  

Let consider the problem of distribution of 
accuracy for the following typical part of a network, 
consisting of the summator  and nonlinear 
transformer, the result of work of which is a output signal 
y (here and further y denotes component of the vector of 
output signals of network), and also of summators 
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i∑  
and nonlinear transformer, the output signals of which 
are the input signals of the summator  (Fig.2). 
Actually we consider two last layers of neural network 

consisting of standard neurons. 
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Let directly consider the method. We have to calculate allowable errors for each element of this part of the 
network, recognizing that the output signal y changes not more than at δ. 

Since the last element of standard neuron is the branch point, let begin consideration of back-propagation 
of accuracy just from it. 

The errors ε i  coming to the branch point during back-propagation may be unequal. Choosing as an error 
the smallest value, we can only increase the accuracy of calculations. Thus, it is necessary to choose 

 as the allowable error, which should leave the branch point for further calculation of errors. At the 
considered part of network (Fig.2) standard neuron of the last layer does not include branch point, since the output 
signal of the nonlinear transformer is simultaneously the output signal of the network. 

ε ε= =min{ }i i
n

1

The following element of standard neuron is the nonlinear transformer with input signal , activation 
function ϕ and output signal y

A0
= ϕ ( A0 ) . Let calculate the maximal error ε of input signal of the nonlinear 

transformer, that is find an interval [A0-ε , A0+ε]  such that for any x∈ [A0-ε,A0+ε]  =ϕ(x) differs from  

y=ϕ(A

~y

0)  not more than by  δ:  | ~ -y| ≤ δ. y
Owing to continuity and differentiability of activation function of nonlinear transformer it is obvious that 

ε δ ϕ≤ / |max ' δ )(x)|,  where  x . ∈ − +− −[ ]ϕ δ ϕ1 1( ) , (y y
According to traditional way, let estimate allowable error in linear 

approximation:ϕ(A0±ε)≈ ϕ( A0 )±ϕ' (A0) ⋅ε . We can select ε  as follows:  ε δ ϕ≤ /| '( ) |A0 . In this case the 
formula for calculation of allowable errors is more simple but less exact. 

We have obtained an error, allowable for input signal of nonlinear transformer, which simultaneously is 
allowable error for the result of work of the summator  . We can similarly calculate the error of input signal of 
nonlinear transformer of any standard neuron if the error of its output signal is known. 

A0

Come to the following element of standard neuron – the adaptive summator with k synapses being its 
inputs. The adaptive summator is the summator, in which the input signals x  are summarized with weights  i α i . 

Each input  x  of the summator i ∑0  also has some error ε i . For uniform distribution of error we assume 
that all inputs of the summator have equal accuracies ( ε1= ε i , i=2,..., k). 

Let   =  be the result of work of initial summator. Then  {  is the results of work of the 

summator, when the vector of input signals of the summator comes through the vertices of  k-dimensional cube with 
center in the point  (  and edge of length  
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where z ={-1,1}. In order all the set  {   to belong to the interval [A 0 -i }'
0A ε , A +0 ε ] it is necessary that  
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above assumption about  ε i  we obtain the required estimation for  ε i :  ε i ≤ ε α/ |
k
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The distribution of allowable errors through inputs of the summator such that the error of each input is 

calculated using the formula   ε i ≤ ε / |
i

k
i

=
∑

1
α | ,  is called uniform. 

In addition to uniform distribution of errors through inputs of the adaptive summator it is possible also to 
use proportional and priority distribution. 

Under proportional distribution of errors the summator allowable error is divided at first by the number of 
inputs, and then for each input it is divided by corresponding synapse weight. That is, under proportional 
distribution of errors the formula for calculation of allowable error for each input of the summator has the form: 
ε i = ε α/ ( )n i⋅ , where  ε  is the summator allowable error,   n  is the number of inputs of the summator,   α i   is 
a synapse weight of the corresponding input of the summator. 

Under priority distribution of errors, at first the errors are attributed to those inputs which are most 
significant according to some criterion, and then the rest of the summator allowable error is distributed between the 
other inputs uniformly or proportionally. 

Similarly it is possible to calculate allowable errors for input signals of the summator of any standard 
neuron if the errors for the result of work of the summator are known. 

A special case of the adaptive summator considered above is the simple summator, in which the input 
signals are summarized without weights. For it the allowable error of each input is calculated using the formula:  
ε εi n≤ / . 

For the adaptive summator it is possible to calculate both allowable errors of input signals of the summator 
and allowable errors of synapse weights. As well as for an allowable errors of input signals, for calculation of 
allowable errors of synapse weights it is possible to use uniform, proportional and priority distributions of errors. 
Under uniform distribution the allowable errors for synapse weights are calculated using the formula: 

ε i ≤ ε / |
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| , where   x i is input signals of the summator. 

Under proportional distribution the allowable errors for synapse weights are calculated using the formula: 
ε i = ε / ( )n xi⋅ , where n is the number of inputs of the summator,   x  is the input signals of the summator. 

Under priority distribution at first allowable errors are attributed to those inputs which are most significant 
according to some criterion, and then the remainder part of the summator allowable error is 
distributed between the other inputs uniformly or proportionally. ε 1
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Now we know how to calculate the error for any elements of standard neuron by 
the back-propagation of accuracy. 

1) Branch point.  If under the back-propagation of accuracy the incoming errors 
of the branch point are   ε ε ε1 2, ,..., n

i i
n
=1

 then as the error coming through the branch point 

one should choose   min{ }  (Fig.3). ε
 

2) Nonlinear transformer. Let under direct functioning the input signal of the 
nonlinear transformer is equal to  A, the output signal is equal to  y,  its allowable error is 
equal to  δ  and the nonlinear transformer has activation function  ϕ . If under back-
propagation the incoming error is  , then after the nonlinear transformer we have the error 

ε ϕ/ max| '( )|x  where x∈ −  or in linear approximation     (Fig.4).   +− −) (ϕ δ ϕ1 1y y,[ ( )]δ ε ϕ/ )A' (

ϕ εε ϕ/| ' ( ) |A
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3) Adaptive summator. If under back-propagation of accuracy to the output of the adaptive summator the 

incoming error is  ε , then the error of each input of the summator should not exceed   ε i  (Fig.5). 
 



When knowing how to calculate allowable errors for all elements 
of standard neuron, one can calculate allowable errors of signals for the 
whole network. If allowable errors for output signals of network are given, 
it is possible to calculate allowable errors for the last layer of the network. 
When the allowable errors of all input signals of the last layer of the 
network are calculated, we pass to calculation of allowable errors of 
previous layer and so on. 

The back-propagation of accuracy can be applied not only to 
networks of layered structure, but also to cyclic and fully connected networks. Considering a step of functioning of 
a network as a layer, we "unfold" recurrent feed forward  and fully connected networks to a network of layered 
structure. We calculate allowable errors for elements of standard neurons of each layer. Then we "roll up" the 
layered network to the initial. Since each layer of obtained networks is actually a step of functioning, for each 
element of a network at different steps we obtain different allowable errors. As allowable error for each element of 
the network the minimum of allowable errors over all steps is chosen. 
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We have considered how allowable errors of elements of networks are calculated for one example from 
training set. To calculate allowable errors of elements of network over all training set, it is necessary to calculate 
allowable errors for each example, and then for each element of the network as allowable error the minimal 
allowable error over all examples is chosen. 

If we deal not with training set but with the range of values of input data, for calculation of allowable 
errors of elements over the whole range it is necessary to estimate the maximum of activation function of nonlinear 
transformers and for determination of allowable error of the input signal of nonlinear transformer to use in the 
formula the maximum of the activation function over the whole range: |maxΩϕ|  where Ω  is the range of values of 
input data. 

Thus, the solution of the problem of calculation of allowable errors for each element of network by back-
propagation of accuracy is surprisingly similar to a back-propagation of error, but with other rules of passing 
through the elements. The method allows to formulate the requirements to the accuracy of calculations and to the 
realization of technical devices, if the requirements to the accuracy of output signals of the network are known.  
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