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Abstract

Neural networks based on construction of orthogonal
projectors in the tensor power of space of signals are
described. A sharp estimate of their ultimate information
capacity is obtained. The number of stored prototype
patterns (prototypes) can many times exceed the number
of neurons. A comparison with the error control codes is
made.

1. Introduction

The number of patterns which the Hopfield network
can store and precisely reproduce has been reported to be
limited to 14% ofithe number of neurons, and in this case
the patterns must be weakly correlated. The most
important is the condition of weak correlation, since in
practice it is usually necessary to distinguish similar
objects. For example, different letters of the alphabet are
strongly correlated in most cases.

A large body of research has been made to modify the
Hopfield networks to eliminate the restrictions mentioned.
One modification is the projective network (see, for
example, [2]). The main idea of the projective network is
to turn the network connection matrix into an orthogonal
projector. (A variety of other approaches have been
analyzed by Michel, et. al. [7])

In contrast to the original Hopfield network [1], the
projective network can distinguish strongly correlated
patterns. However, if among the prototypes there exist N
linearly independent vectors (where N is the number of
neurons, i.e. dimension of the space), then the network
matrix becomes an identity matrix, and the network
transmits the input signals without any change.
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The quadratic part of the "energy" H in the Hopfield
networks is interpreted as an analogue of the potential
energy of two-particle interaction. The transition to three-,
four- and higher degrees of interaction gives rise to
associative memory working much better than the
Hopfield networks [3,4].

Similarly, in the case of projective network one can
turn to the space of two-, three-, and of higher order k-
particle functions [4,5]. The tensor networks proposed in
the present paper combine the advantages of both
projective and multi-particle networks.

2. High order orthogonal tensor networks
(HOOT-networks)

Denote the set of prototypes as {xi}im=1- The tensor

power x®k is k-index variable x@.k .
iig ...y,

=xl-1 -xiz K -xl-k . The set of the vectors {v,- }znil is

called dual to the set of vectors { fi }:11 if the following
conditions are satisfied: (fi,vi) =, i=1K,m;

(f,-,vj)=0 under [ # j and {v; }1”;1 belongs to the

. m m
linear envelope of {fl }i=1' If the set of vectors {fz }i=1
is linearly independent, then the vectors of the dual set are

calculated from the formula

m
vi=Y (gt )

j=1



where ( g -1 ) ij is the ij-th element of the matrix which
is inverse to the Gram matrix of the set of vectors
m .
{f, }i=1 » with the elements g;; = (f,,fj)
Let the coordinates of the vectors be only +1.

The tensor network of the valence k transforms the input
vector x into output vector x’in the following way:

m
x"=S1gn 2(v,-,x®k)xi : ' 2
i=l
where {v,- },m=1 is the set of vectors, dual to the set
®k 1"
{xl- } | ; @ Sign is a coordinate-wise acting function

=

defined by the following formula: (Sign(y))=sign(y;).

Since (a®k , b®k )= (a, b)k , one can rewrite (2) in the
following form:
o mm k
x’=Sign -21-21(g Dilejox) xi | 3
i=lj=

where ( g_1 ) ij is the ij-th element of the matrix which

is inverse to the Gram matrix of the set of vectors

k™ . k
X; _ . with the elements 8ij = (x X j) .
1=
Formula (3) does not use the tensors, thus the calculation
time and the memory required for this do not depend on
the valence of the tensors.

3. Information capacity of HOOT-networks

The benefit of transition to projecting in the tensor
space can be briefly explained as follows: tensor powering
can turn the linearly dependent vectors of prototypes, thus
increasing the information capacity of the network.

The memory of the projection network is “absolute”:
when one of the prototypes is given to the input of
network this prototype is also at the output. This merit of
the network is useless when the number of prototypes
exceeds a certain value and the network becomes
“transparent” - every input vector yields the same output
vector. Sometimes “transparency” can be eliminated by
increasing valence.

The information capacity of the tensor network of k
valence is considered to mean the number of prototypes
which the tensor network of this valence is capable to
remember and reproduce without errors. The question of
the upper bound of the information capacity is reduced to
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the question of maximum possible rank of the vectors’ set

k1™
{xi },-=1

The simplest but very excessive estimate is given by the
value n* . To be more exact the rank sought for does not
exceed the dimension of the symmetrical tensor space.
This dimension is found by the Euler formula and is equal

to Cﬁ:}c 1 (where Cﬁn is the binomial coefficient of m
by J). Yet, even this estimate is excessive.

Theorem. With k <n
ko .
max{rank{x®k }}: >Ch-
i=0

Denote this value 7, . A small modification of Pascal’s

triangle (Fig. 1) is used to calculate r,; . The first line

contains two, since with n=2 there always are two non-
collinear vectors in the set. In the transition to the next
line the first element is produced by adding a unity to the
first element of the previous line, the second - as the sum
of the first and second elements of the previous line, the
third - as the sum of the second and the third elements,
and so on.

The last element is produced by doubling the last
element of the previous line.

Table 1 compares three estimates for certain values of
n and k. One can easily see that the correction in transition

to the estimate 7,; is quite considerable. The limit

information capacity can, on the other hand, considerably
exceed the number of neurons.

4. Reliability of HOOT-networks -

It is important to find out how reliable is the operation
of the neural network in the presence of noise, and how
often it correctly transforms the input vector into the
nearest prototype. The operation of tensor networks in the
presence of noise was compared to the potentialities of the
linear codes correcting errors. By a linear code correcting
k errors we call a linear subspace in the n-dimensional
space over GF) all vectors of which are distant from each
other not less than by 2k+1 (see, for example [6]). A
linear code is called perfect when for every vector of the
n-dimensional space there is a cod e vector distant from
the given one by not more than k. The tensor network
input was given all code vectors of the code taken for the
sake of comparison.

Numerical experiment with perfect codes demonstrated
that the tensor network of the minimum required valence
decodes all vectors correctly. For the imperfect codes the



picture was worse - among the stable images there were
spurious states - vectors that did not belong to the set of
prototypes.

Detailed results of experiments are given in Tables 2
and 3. In the case of n=10, k=1 (see Tables 2 and 3, line
1) with valences 3 and 5 the tensor network operated as an
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2
3 4
4 7 8
5 11 15 16
6 16 26 31 32
7 22 42 57 63 64
8 29 64 99 120 127 128
9 37 93 163 219 247 255 256
10 46 130 256 382 466 502 511 512
111 M2 113 "14 "5 A6 H17 118 119 1110

Fig. 1. Modified Pascal triangle

Table 1
k| nb k| T
5 2 25 15 11
3 125 35 15
101 3 1 000 220 130
6 1 000 000 5005 466
8 100 000 000 24310 511
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