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Abstract

Overview of statistical methods of gene identification are made.
Particular attention is given to the methods which need not a train-
ing set of already known genes. After analysis several statistical ap-
proaches are proposed for computational exon identification in whole
genomes. For several genomes an optimal window length for averag-
ing GC-content function and calculating codon frequencies has been
found. Self-training procedure based on clustering in multidimensional
codon frequencies space is proposed.
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1 Introduction

More than 5 years elapsed since first genomes were fully decoded. Now the
world data bank of decoded (and fully or partially annotated) sequences
consist of 51 complete genomes available in public databases. Overall, nearly
13 billion nucleotides of sequence are contained in the GenBank database.

There is a kind of boom in molecular biology, and it is evident now that
main expectations of mankind from science has been shifted to the area
of biotechnologies allowing to interfere to the program of living cell and to
construct in prospect artificial alive systems with programmable properties.

During the last decade much attention has been focused on the compu-
tational methods of gene identification. Though biochemical machinery in
a live cell detects coding regions in DNA highly effectively, there is no sim-
ple way to predict them computationally with good accuracy. Nevertheless
many programs now identify genes more or less effectively and some compu-
tational techniques proved to be useful. Most of the programs use for gene
recognition some statistical methods such as linear discriminant analysis or
its generalizations. Usually methods require preliminary training phase when
weights of the decision function or neural network are calculated.

Generally, there are two basic directions in technologies of pattern recog-
nition. First is the methods that use a training set to tune a classification
rule. These methods are traditionally referred to as ”learning with teacher”
or supervised learning. The other group of methods are traditionally called
”learning without teacher” or ”self-training”, ”self-organizing” or unsuper-
vised techniques.

This work considers methods of gene identification giving particular at-
tention to the approaches where no training set and phase of learning on
already known genes and junk of analogous sequences is necessary.

The main accent in the work has been made on the trying to undestand
better some aspects of statistical approach in the problem of gene identifica-
tion. The methods described are not ready practical instruments for gene-
finding, but they may be applied in real practice using some additional tools
(signal sensors, alignment etc.), because none of the modern gene-finders uses
the only method.

ACKNOWLEDGMENTS. This work was initiated in the autumn of 2000
when one of the authors (Prof. A.Gorban) worked in IHES (Institut des
Hautes Etudes Scientifiques, France). Our efforts were inspired by attention
of Prof. M.Gromov to the work. We are thankful to Prof. A.Carbone and
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Figure 1: Scheme of processing of protein production by biochemical ma-
chinery of a living cell

Dr. R.Incitti (IHES) for stimulating discussion and help. The work was
finished in the summer of 2001 in kind atmosphere of IHES, where two of
authors were staying as visitors. The paper of A.Carbone and M.Gromov
(2001) was a good inspiring example for us of how molecular biology can be
thought from a mathematical angle.

2 Methods of automated gene identification

All information necessary to maintain cell life cycle is embedded in the se-
quence order of four nucleotides: A (Adenine), C(Cytosine), G(Guanine),
T(Thymine) in the long DNA molecule. Receiving aminoacids from outside
and using double DNA helix as a template, a cell produces all materials nec-
essary for its life. This view on the cell functioning is usually referred to as
”Crick’s dogma” (named by the Nobel Prize winner in molecular biology),
see Fig.1.

Physically DNA is a long molecule intricately packed in space and its
structure is determined by the forces of two kinds.

Covalent bonds provide forming of polynucleotides. Molecule of each nu-
cleotide A, C, G, T is built out of the sugar-phosphate group and the base
attached to it. Sugar-phosphate groups are naturally polarized. They can
bound with each other, forming molecules with hundreds of thousands nu-
cleotides. One hundred bases long and shorter sequences are called oligonu-
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cleotides (and they can be produced in vitro according to a given specification
of letters).

Hydrogen bonds are weaker in the order of magnitude, and they provide
DNA complementarity. So, DNA is two polinucleotides with equal length
bound by hydrogen bonds , and in one of them every A letter is substituted
by T in another, C replaced by G, and vice versa.

GC-bond is provided by three hydrogen bonds, AT-bond - by two, thus
we may consider the two DNA strands as a binary sequence of strong (G-C)
and weak (A-T) bonds.

A section of DNA in a gene, coding biological information, is called exon.
Exons can be classified in four classes: ”starting” exon, ”inner” exon, ”ter-
minal” exon and ”single” exon (in case when the gene has no introns). Re-
placment of one nucleotide in an exon for an other one (as well as operations
of inserting ”superfluous” and deleting ”necessary” nucleotide) may change
properties of coded protein radically, so exon compositions are practically
identical for genes of organisms of the same species. Moreover, genomes
of higher species contain in many genes almost the same base sets as their
distant primitive ancestors.

Sections of DNA, that do not code information, may be junk or introns.
Junk fills areas between genes. Junk function is forming the skeleton of DNA
- its secondary space structure. It seems that small changes in junk compo-
sition don’t lead to considerable modifications in DNA properties. Introns
are areas dividing exons in a gene. In translation process introns are cut off
and the information coded in them is not present in the resulting protein.

The problem of automated (not experimental) genes identification may
be formulated as following:

A sequence of letters A, C, G, T, corresponding to the order of nucleotides
in genome, is given at the input of computer program. At the output we need
to have a list of identified genes (biologically active sections of DNA) with
indicated start, end and gene structure - division into the exons and introns,
and to depict the scheme of translation of mature RNA to protein with
possible assumptions for the structure and the function of resulting product.

This problem definition can be specified (and simplified) in a way and it
determines the method of evaluating identification accuracy. For example, it
is possible to consider following definitions:

1) Evaluate the confidence of nucleotide in the definite position to belong
to the biochemically active section of genome (exon of a gene). It is identifica-
tion of the nucleotide level. As a result of the work of identification program,
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every nucleotide could be classified on the four groups: a) ”predicted” and
already ”known”; b) ”not predicted” and ”known”; c) ”predicted” and ”un-
known”; d) ”not predicted” and ”unknown”. Comparing with known full
annotation to evalute the accuracy of the method, we should count coding
nucleotides predicted to be coding (true positives), non-coding nucleotides
predicted to be non-coding (true negatives), and the errors of two type: cod-
ing nucleotides predicted to be non-coding (false negatives) and non-coding
nucleotides predicted to be coding (false positives).

2) Identification on the exon level. In this definition exons are identified
(without considering their gene membership). After work a program gives a
set of exons and each of them belongs to one of the three classes: a) ”pre-
dicted” and ”known”; b) ”predicted” and ”unknown”; c) ”not predicted” and
”known”. An exon may be predictected exactly (with both of its borders),
partially (only one border exactly predicted), and in the sense of overlapping
(the predicted exon only overlaps the real one).

3) Gene identification. Start of gene, end of gene and structure of gene
are predicted.

There are two ways of DNA analysis. One is to consider both complemen-
tary strands separately, and to identify separately W-(Watson) and C-(Crick)
genes. The other way is to analyze only W-strand (taking into account com-
plementarity). On the second way the problem of genes overlapping appears,
when two different genes in the upper (W) and lower (C) strands correspond
to the same base pair position.

Possibility of alternative translation is an additional complexity for iden-
tification procedures, when different divisions of the gene into exons and
introns correspond to different products of translation.

It is possible to distinguish three different approaches in the methods of
gene identification. They could be called similarity search, content search
and signal search.

Similarity search is one of the first group of methods that were applied
to identificate genes in new genomes. It is based on the statement that the
function of a gene defines to some extent its nucleotide composition, and if
two genes code similar products then the corresponding sites of DNA will be
similar.

One of the early attempts to evaluate the possibilities of similarity search
in a new genome using already known analogs in a database was made by
Seely (1990). Rather big collection of genetic sequencies (Genbank release
56) was arbitrarily divided into two halfs. Then genes from one part of the
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collection were searched with use of the other part as a database. The result
was almost 75% correctly identified genes. But when applied to the real new
experimentally annotated genomes the method gave only 20-25% of identified
genes. Now it is stated that in new decoded genomes up to 50% of all genes
may be identified by methods of similarity search.

Content search is based on the fact that statistical characteristics, calcu-
lated in DNA analysis, differ considerably in coding and non-coding regions.
For more than 15 years the whole ”zoo” of such features was formed. All these
features appeared from observation of structure of nucleotide compositions
in genes and junk. The earliest features - frequencies of codon (triplets) us-
age, some types of Fourier-transform were thoroughly investigated and their
ability for gene identification was systematically tested (see, for example,
Fickett, 1996).

The earliest attempts to undertake content search looked for a discrim-
inate function (linear, as a rule) in multidimensional space of the features.
This approach yielded quite good results and some methods proposed were
included in computer programs (for example, HEXON, GRAIL) that be-
came real instruments for primary investigation of new decoded sequences.
These programs usually use discriminating rule that is trained on the known
analogous samples.

A recent kind of fashion in this field is to develop such features and
rules separating genes and junk, that do not require preliminary training.
As a rule, these methods use one or two integral measures (for example,
nonuniformity of codon usage expressed in entropy terms, patchiness of junk,
expressed in difference of the means calculated in small and large windows,
probability of DNA melting etc.).

It is worth noticing that methods of content search and similarity search
share common ideological premise which can be called ”comparison with
sample”. In case of similarity search such comparison is made at the level
of alphabet, and in case of content search some integral characteristics are
compared. On one end of an imaginary scale there is a method of reducing all
information about the site under consideration to one value. On the other
end - a case when features are such expressions as ”on the first position
letter b1, on the second - b2” and so on, and as a result we have highly
multidimensional space where set of samples (sequences from database) are
disposed.

The third principle of genes identification - signal search - is based on the
hypotheses about physical and chemical processes, initiating transcription.
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The molecule that initiates the start of transcription ”recognizes” it by the
presence of active sites - signals, that are short sequences with a definite
structure. There is no clear concept of what are the factors that cause some
sites of DNA to serve as signals. Dictionaries of signals - initiators and
terminators of transcription - are known, but all these sequences may occur
in DNA without initiating any process.

At the early stages of using signal search there were hopes that it would be
possible to construct one or more consensus signal sequences and to measure
the distance from DNA site to the consensus (using alignment). The following
approach was supposed: the first letter of consensus sequence is the most
frequent first letter in all already known signals, the second is the most
frequent second letter and so on. Though this approach turned out to be too
primitive, at present one of its generalization is successfully applied (when
all four letters are used rather than one with calculated probabilities, and
resulting consensus is a probability matrix).

At present tens of programs and algorithms realize automated gene iden-
tification, recent excelent overview of perfomance of part of them is given in
the paper of Rogic, Mackworth, Ouellette (2001). The most effective pro-
grams use several approaches simultaneously. Unfortunately to choose one
best program is not a trivial task as well as to compare in a reasonable way
results of their analysis. First, different algorithms show different results on
different databases of annotated genomes. Second, so far there is no single
opinion how to compare one program with an other (especially it concerns
comparing predicted gene structures). Nevertheless computer prognosis of
genes allocation is now the necessary stage in experimenter’s work.

3 Features used in content search

In this section we make a short overview (using Fickett, 1996) of the features
that help to do content search of genes (exons).

1. Codon Usage. Sequence under investigation are divided into successive
non-overlapping nucleotide triplets (test codons), and all their frequencies are
calculated. As a result we have vector with 64 = 43 components.

2. Hexamer-n, n=0,1,2 or Inphase Hexamers. Frequencies of hexamers
usage (there are 4096 = 46 possible hexamers) offset by n are calculated. The
Hexamer-0 measure gives dicodon frequencies. The Hexamer-1,2 measures
give dicodon frequencies offset by 1,2 from Hexamer-0.
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3. Hexamer Usage. Sequence under investigation are divided into succes-
sive non-overlapping hexamers, and all their frequencies are calculated.

4. Open Reading Frame. Length of the longest site in the window starting
from start-codon and ending with stop-codon. Possibly start-codon really
initiate transcription, but it may occur ”accidentally”.

5. Amino Acid Usage Measure. The 21-vector obtained by translating the
sample window of sequence, beginning with the first base, according to the
appropriate genetic code, and counting the frequencies of the 20 amino-acids
and ”stop”.

6. Diamino Acid Usage Measure. The 441-vector given by translating
the window and counting all the (overlapping) dipeptides (including ”stop”
as an ”aminoacid”).

7. Stability at Hydrophobicity Measure. First define the information value
of a codon as

∑
j=1,3[

∑
j=1,nj(pi × dij)]/nj, where nj is the number of sense

mutations of the codon, pi is the probability of the i−th mutation, and dij
is the difference in hydrophobicity caused by the mutation. The information
value of a window, which we take as the Stability of Hydrophobicity Measure,
is then the average information value of the test-codons in that window.

8. Composition Measure. f(b, i), where for each base b = A, C, G, T and
each test-codon position i = 1, 2, 3; f(b, i) is the frequency of b in position i.

9. Position Asymmetry Measure.
Define µ(b) =

∑
i[f(b, i)]/3 and asymm(b) =

∑
i[f(b, i)− µ(b)]2. Then define

the position asymmetry measure to be [assym(A), asymm(C), asymm(G),
asymm(T)].

10. Entropy Measure.
Given f(b, i) as above, define entropy(i) =

∑
b f(b, i) ln[f(b, i)]. If the three

values of entropy(i) are significantly different a coding region is predicted,
and the one with the largest difference from random is predicted to be third
codon position.
We define the Entropy Measure to be [entropy(1), entropy(2), entropy(3)].

11. Autocorrelation Measure. Let auto(b, i) be the number of pairs of
base b with i intervening bases. For the measure we correct for the number of
such pairs expected on the basis of base composition alone, giving the matrix
[auto(b, i)/(windowlength− i− 1)(frequencyofb)2], where b=A,C,G,T, and
i = 0, 1, ..., 9.

12. Fourier Measure. Let the window be 2M long. Let EQ(x, y) be the
function which is 1 if x = y and 0 otherwise.
Define the n−th Fourier coefficient (dropping the constant 1/4M2 for sim-

8



plicity) by: FC(n) =
∑
p{
∑
m[EQ(basem, basem− p)]} exp(πinp/M).

Then define the Fourier Measure to be [FC(2M/2), FC(2M/3), ..., FC(2M/9)]
(i.e. the Fourier coefficients of the autocorrelation function for periods 2-9).

13. Word Measure. Divide the window into successive. non-overlapping
words of length 2 and also into words of length 3. The measure is the pair
of chi-squared values comparing the frequency distributions of these words
with the uniform distribution.

14. Run Measure. Lets S1, S2, S3, ..., S14 be the non-trivial subsets of the
set A, C, G, T. For each Si construct a new sequence by replacing each base
in Si with 1 and replacing each base not In Si, with 0. Using this sequence
define rij to be the number of runs of 1 of length j, for j = 1, 2, 3, 4, 5 and
let ri6 be the number of runs of 1 of length greater than 5. The run measure
will be the set of values [rij].

15. Dinucleotide Bias Measure. Let f(w), for any possible word w, be
the frequency of w in the sample window. Now for each dinucleotide ab let
bias(ab) = f(ab) − f(a)f(b)]/f(a)f(b). The Dinucleotide Bias Measure will
be the bias values for the 16 dinucleotides.

Fickett made an attempt to benchmark these measures for their ability to
distinguish between coding and non-coding sequences. There were homoge-
neous (fully coding or fully non-coding) sequences taken from the database.
This set was divided into training and testing subsets. Linear division rules
were learnt on the trainig set, and then it was tested on the second set. The
average accuracy on the coding and non-coding parts of the test set was
taken as the overall accuracy of the measure.

Derivable from each other measures turned out to give similar results.
Maximum of the accuracy with using only one measure was 76%. Use of
several measures yielded the accuracy of 82-88% in different experiments.

The most effective measure was Inphase Hexamer Frequencies which
seems to embody little biological understanding.

Another result was that some measures give considerably different linear
rules (their weight values) for sequences with different GC-concentration.
Several authors tuned linear rules for different groups of sequences which
differ by GC-bonds concentration and then defined procedures of linear in-
terpolation of the weights.

Additionally we take a note of the following regularities which were dis-
covered in content search:

a) introns differ considerably from exons and from junk (have their own
characteristics such as the two-base periodicity in the occurrence of certain
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oligonucleotides)
b) intergenic DNA has statistical properties very different from gene flank-

ing sequences
c) not all components of multidimensional measure vectors are equally in-

formative. Possibly ”signal-to-noise” ratio of the measure could be improved
by pruning out the less informative variables.

In the end it is possible to conclude that the epoch of invention new
statistical measures come to the end. We think that the future generation of
gene identification programs will use methods which do not require a training
set for learning and the methods will be applicable for whole genomes.

For example, in the work of Bernaola et.al., 2000 the following procedure
of finding borders between junk and exons has been proposed: a pointer
slides along the genome and divides it into two subsequences in each of them
a measure analogous to the entropy introduced above is calculated. The
measure of current position is the value characterizing the degree of het-
erogeneity of two parts as compared to the whole sequence (similar to the
mixing entropy). As far as the measure exceeds the value calculated for a
random sequence with a definite significance level, the sequence is cut at this
point. Otherwise the sequence remains undivided. The procedure continues
recursively for each of the two resulting subsequences created by each cut.
Before a new cut is accepted, a check that the subsequences formed by the
cut remain significantly different from their neighbors is perfomed. The pro-
cess stops when none of the possible cutting points has a significance level
exceeding threshold s. Then the authors say that a sequence is segmented
at ”significance level” s.

In the next section we look at an approach when DNA is considered as
a two linear complimentary chains of nucleotides, that is stapled by strong
and week hydrogen bonds.

4 DNA Thermal Stability Maps

Thinking of a DNA molecule as a linear chain of strong and week hydrogen
bonds between nucleotides, one may model statistically the process of melt-
ing of DNA (thermal disruption of complementary bonds with temperature
growth).

Every microscopic state of the chain is described by a binary sequence of
closed (1) and opened (0) complementary bonds. Three factors determine
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Figure 2: DNA melting

the energy of the state: a) open ends of the chain; b) consecutive bonded
units; c) loops of length j: they are j consequtive nonbonded units that
are both preceeding and followed by at least one bonded unit. A symbolic
picture of the melting process is shown in fig.2.

It is natural to assign to the open end of the chain statistical weight 1 (it
corresponds to the zero energy). Every bonded unit gives contribution si (it
may have two values: sGC and sAT ). Statistical weight of a loop is described
by function ω(j), where j is the length of the loop.

Form of ω(j) dependence is an essentially unknown characteristic of the
model. On the other hand, this dependence is responsible for the presence
of long-range correlations and cooperative effects like zipping. For the linear
chain and in the model of random walk of the loop one can get dependence
w(j) ∼ j−α, where α is a number in range from 1,5 to 2 (see Wada, Jacobson,
1980).

Full enumeration of all possible binary combinations for calculation of the
partition function demands the number of computational operations propor-
tional to 2N , where N ∼ 106 is length of sequence. Since it is unrealistic
to solve the task with the present state of computational powers (and is im-
probable to be ever possible), it is necessary to optimize the enumeration
taking into account specificity of the problem.

It turns out that good organization of enumeration and optimal grouping
of the states reduce the number of operations to proportional to N2. So
the overall number of operations needed to calculate the probability of every
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bond to be opened is proportional to N3. This number is still too great to
make operative calculations (it is mentioned in the work of Yeraminan, 2000
that when using Sun Ultra2 workstation 200MHz it took 5 days to make
calculation for the sequence of 48kbp length).

The number of operations proportional to N2 is necessary because to
calculate the partition function one should take into account the contribution
of loops of different lengths (from j = 1 to N). The idea suggested in the
work of Frank-Kamenetskii,1969 based on a simple statement that if w(j)
meets condition w(i + j) = w(i)w(j), then a long loop could be considered
as a sequence of loops with lengths 1 and 2. This is possible only when
w(j) ∼ exp(kj). Unfortunately such a form of function w has no physical
meaning.

Nevertheless, if one approximates function w(j) with a sum of exponents,
i.e.

w(j) ∼
K∑
i=1

Ai exp(kij),

then the process of calculating the partition function could be separated into
several threads then in each of them the contribution of the loop is described
by exponent. As a result the number of computational operations reduces to
K ×N , where K is number of exponents in approximation of w(j).

In the calculation that was made by Yeramian 1990,2000, for approxima-
tion of the function by exponential series, Pade-Laplace transform method
(see Yeramian E., Claverie P., 1987) was applied. The approximation error
of function w(j) = j−α on interval j ∈ [0..2000] was 0.04%. Applying the
approximation to the calculation of DNA stability gives resulting error less
then 1%.

The map of gene allocations was superposed with the picture of prob-
ability of DNA disruption. For a definite temperature correlation between
genome annotation and probability graph becomes clear. As a rule genes are
more ”refractory” then junk areas. The author explains it by the hypothesis
about genome origin as a result of chaining ancient genes or RNA in one long
molecule. With growth of temperature first junk areas are disrupted, and
genes after them.
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5 Local Binding Energy. Optimal Window

for GC-averaging.

Unfortunately even though the above described calculations claim to have
direct relationship to the real DNA double-helix they use some simplified
approximations. First, it is the replacement of the intricate spatial structure
of the DNA in cell by a linear chain. Second, it is unknown realistic statis-
tical weight of a loop. Third, the picture of correlation differs considerably
with changing temperature, so the temperature at which the method has
predictive power is one of the parameters to be fitted.

Calculation of the partition function is rather complicated procedure
though it seems to us that comparable results can be obtained by calculating
incomparably simpler functions. In the next sections we will show several
possible approaches to analyze genome structure and all of them have to
some extent predictive power for gene identification.

Calculation of DNA stability map and comparing it with genome an-
notation shows that probably a considerable part of the information about
allocations of coding regions in genome is contained in the simple and physi-
cally clear value of locally evaluated energy of binding of two complementary
strands of DNA.

Of course, the optimal form of the kernel to average GC-function is un-
known. In our work we consider two simple variants of step-function (this
section) and an exponent (next section). Detailed analysis of suitable basis
for the optimal expansion of the kernel is an opened direction.

Presentation of DNA as a chain of strong and weak bonds corresponds
to projection S({A,C,G, T} → {0, 1}) = ({G,C} → 1, {A, T} → 0), that
leads to loss of a part of information, contained in the DNA word (one bit
is needed to encode every nucleotide but not two). But, one can expect that
in such a coding an essential part of information, needed for distinguishing
genes and junk, is nevertheless preserved.

Let’s analyze statistical characteristics of the binary sequence.
Averaging the sequence with sliding window of different widths we get

graphs of changing local binding energy vs position of DNA. Let’s determine
optimal window width. Averaging with this window we hope to get the most
contrast picture of correlation of binding energy with allocations of coding
regions.

Divide all genome for the regions of genes (in one of two complementary
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strands) and regions of junk.
We will average the binary sequence with sliding window of width W ,

which for simplicity we make an even number. The mean value is denoted
by

AW (i) =
1

W

i+W/2∑
j=i−W/2

C(j),

where C(j) = 1, if a GC-pair is in the j-th position of DNA and C(j) = 0 if
otherwise.

Let a genome contain NG exactly identified genes, each of them occupies
a region Gk, k = 1 . . . NG. Let’s separate in genome NJ regions in the areas
between ORF’s (where nonoccurence of genes is guaranteed). Each of them
occupies region Jk, k = 1 . . . NJ . Value

AG(W ) =

∑
k=1...NG

∑
i∈Gk AW (i)∑

k=1...NG

∑
i∈Gk 1

(1)

is the local binding energy, calculated with sliding window of W width,
averaging for the genes. So

AJ(W ) =

∑
k=1...NJ

∑
i∈Jk AW (i)∑

k=1...NJ

∑
i∈Jk 1

(2)

is an analogous value, but averaged for junk areas. Let’s choose window
W such that

∆(W ) =
AG(W )− AJ(W )√

DAW
→ max, (3)

where D is dispersion.
We had in experiments several sequences: Prototheca wickerhamii (Gen-

Bank U02970), Plasmodium falciparum (Chromosome II) AE001362, Yeast
genome (Chromosome I,II,III,IV,VIII). We chose these sequences wishing to
compare the results with calculations of probability of DNA melting (see
previous section). Specificity of the Yeast genome is that in correspond-
ing annotation the genome has already separated into the ORF’s which are
characterized by definite value of ”reliability”: how confident a presence of
biologically active site is detected. ORF with reliability ”1” corresponds to
the genes found experimentally. Reliability ”6” corresponds to the ORF,
where a gene is either not detected or the resulting function of the protein
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Figure 3: Normalized on standard deviation difference between genes and
junk vs window width

is unknown. For calculations we take ORFs with reliability ”1” (gene in any
case).

Graphs of ∆(W ) dependence for several genomes are shown in fig.3. For
genomes of Yeast and Plasmodium falciparum the optimal window width is
Wopt ∼ 400, for a short (50 kbp) mitochondrial genome Prototheca wicker-
hamii Wopt ∼ 100. It is interesting that the dependence has bimodal char-
acter. One more local maximum corresponds to W ∼ 100000. Bimodality
∆(W ) can be explained: first, we have statistical difference of genes and junk
themselves, and also we have regions in a genome with length about 100000,
where one gets more genes (or junk) as the average.

Graphs of local binding energy AW (i) that obtained by optimal averaging
are shown in fig. 4. It is apparent that setting an acceptable threshold (this
value may be optimal for a ”training” set of gene and junk regions or evalu-
ated from reasonable considerations: the simplest way to choose EAW , where
E - averaging operator), one can get quite a contrast picture of correlation
values of the local binding energy and allocations of coding regions. The
separation accuracy calculated as a number of correctly classified nucleotides
was 60-70 %.

Let’s characterize every homogenous (fully coding or fully non-coding)
region Sk of a genome by two measures: the value of local binding energy,
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Figure 4: GC-concentration vs DNA nucleotde position
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calculated by averaging on Sk, i.e. A(Sk) =

∑
i∈Sk

C(i)∑
i∈Sk

1
and average value on

the region of local binding energy that was calculated with optimal window

width: AW (Sk) =

∑
i∈Sk

AWopt (i)∑
i∈Sk

1
. Let’s visualize then all Sk on the AW × A

plane (see fig. 5). It is obvious that the homogeneous regions of genes and
junk are separated with confidence: genes are allocated in the area of large
A and AW , besides for them AW < A, and the junk regions are allocated in
the area of small A and AW , and for them AW > A, as a rule.

Finer tuning of the two-dimensional linear discriminate function gives
the following separation errors: Prototheca wickerhamii - 0%, Plasmodium
falciparum - 1,5%, Yeast Chromosome VIII - 5%.

It is worth noticing that for Prototheca wickerhamii genome it is possible
to see the grouping of the points, corresponding to the regions that have
a definite function. So, a separate ”cloud” of points corresponds to the
comparatively short (∼ 70b) tRNK-genes.

It is easy to understand the character of points separation in fig.5 if ob-
serve (see fig.4) that the genes are represented by the Λ-like form of graph,
and the junk - V -like. Calculation of AW (Sk) included not only information
about the region itself but also from flanking regions of the gene (with length
about W/2). So, for a gene value AW becomes smaller then A(Sk), calculated
for the region Sk only.

Other Measures. Reconstructed Frequencies.

For the window in binary sequence it is possible to calculate different
integral characteristics. For example, one can consider the binary sequence
to consist of the words made of units or zeros only. For example, for sequence
{00011010001111} the dictionary consist of words {{0}, {00}, {000},
{1}, {11}, {111}, {1111}} (a three-zeros word may be considered as a separate
word or a concatenation of shorter words).

The frequency of occurrence of {1} word is the value of GC-concentration
in the window. In addition we can choose as measures of the window fre-
quencies of all words encountered with a definite length, entropy of such
frequencies distribution, average length of the zero-words or unit-words and
so on.

A more systematic approach is based on the reconstruction of the word
frequencies using frequencies of other, shorter subwords.
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Figure 5: Analysis of the regions of junk and genes on the A× AW plane
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If the occurrence of the units is an independent random event then the
frequency of the word {11} should be equal to c̃11 = (c1)2. We denote by c11

the real value of frequency of the word {11}. Reconstructed frequency of the

word c111 is equal to (c11)2

c1
, that corresponds to reconstructed dictionary with

maximal entropy (see Gorban, Popova, Sadovsky). For measures we can take
relations between real and reconstructed frequencies - ”reconstruction error”,
i.e.

dk = ck/c̃k − 1,

where

d21 = c2
1/c11 − 1, d20 = c2

0/c00 − 1,

dn1 =

c11..1︸ ︷︷ ︸
n

c̃11..1︸ ︷︷ ︸
n

− 1 =

c11..1︸ ︷︷ ︸
n

c11..1︸ ︷︷ ︸
n−2

(c11..1︸ ︷︷ ︸
n−1

)2
− 1,

dn0 =

c00..0︸ ︷︷ ︸
n

c̃00..0︸ ︷︷ ︸
n

− 1 =

c00..0︸ ︷︷ ︸
n−2

c00..0︸ ︷︷ ︸
n

(c00..0︸ ︷︷ ︸
n−1

)2
− 1,

A set of such features for n = 1..N describes differences between the given
distribution of zeros and units and a random sequence making by multiple
interchanges of the parts of initial sequence.

Unfortunately, possibilities of such a consideration are rather poor. The
simplest consideration shows that statistical ”noise” expected while calculat-
ing dk is about

∆dk =
1√
W

√
1− c̃k
c̃k

,

where W is the window length, where dk is calculated, c̃k is the correspond-
ing reconstructed frequency. For the window length of 1000 basepairs and
ck ∼ 0.4 we get ∆dk ∼ 0.04 and this value grows rapidly when c̃k de-
creases. So to reconstruct the frequencies of the words {111,000,1111,0000}
and longer, the window length about several thousands basepairs is not suf-
ficient. Calculations made on several genomes showed that no significant
differences of reconstructed frequencies from real were detected. More pre-
cisely, values of dk do not exceed significantly the values of ∆dk.
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6 Laplace Transform of GC-content Function

By averaging GC-content in a window with length W , we mean that the
properties of the current position of DNA are determined by the whole region
with length W/2 surrounding the point. In the case of simple averaging all
basepairs in the window make equal contributions to the resulting sum.

In this section we will consider nonlocality by using integral Laplace trans-
form of GC-content function C(i). Recall that it is equal to 1 if in the i-th
position of DNA we have GC-bond and 0 otherwise.

Let’s introduce forward and backward Laplace transforms of C(i) :

fi(p) =
N∑
j=i

C(j) exp (i− j)p,

bi(p) =
i∑

j=1

C(j) exp (j − i)p,

where N is the length of the whole sequence. Parameter p defines effective
length (∼ 1/p basepairs) of the region that has influence on the properties
of DNA in the i-th position.

Let’s consider Taylor series of bi(p) and fi(p) functions at point p = p0 :

fi(p) ≈ fi(p0) +
nt∑
k=1

f
(k)
i (p0)(p− p0)k,

bi(p) ≈ fi(p0) +
nt∑
k=1

b
(k)
i (p0)(p− p0)k,

where

f
(k)
i (p0) =

1

k!

N∑
j=i

(i− j)kC(j) exp (i− j)p0,

b
(k)
i (p0) =

1

k!

i∑
j=1

(j − i)kC(j) exp (j − i)p0.

If we calculate values of fi(p0), f
(k)
i (p0), bi(p0), b

(k)
i (p0) in every position of

sequence, then the following recurrent formulas are useful (they make the task
of calculating the functions N-linear by the number of computer operations):
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fi−1(p) = exp (−p)fi(p) + C(i− 1),

bi+1(p) = exp (−p)bi(p) + C(i+ 1),

f
(k)
i−1(p) = exp(−p)

k∑
j=0

Ck
j f

(k)
i (−1)j,

b
(k)
i+1(p) = exp(−p)

k∑
j=0

Ck
j b

(k)
i (−1)j,

where Ck
j are binomial coefficients. In these formulas the forward function is

calculated in the left direction to avoid roundoff errors accumulation.
Graphs of equal scale adjusted values of f

(k)
i and b

(k)
i with p0 = 0.01,

calculated for a fragment of Prototheca wickerhamii sequence, are shown in
fig. 6.

It is apperent that Taylor coefficients reveal strong correlation with each
other and dependencies of i become smoother for higher k and ”shift” to the
left for the forward function and to the right for the backward.

We can consider the values of fi(p0), f
(k)
i (p0), bi(p0), b

(k)
i (p0) as multidi-

mensional coordinates of the i-th DNA position. Since the values do not
change considerably with every step by i then in the multidimensional space
of the Taylor coefficients we have almost continuous trajectory parametrized
by i. We can get visual presentation of the curve by viewing it projected in
the three-dimensional subspace of principal vectors of distribution of points
along the curve. The resulting pictures are shown in fig.7. The trajectories
are rather tangled spiral-like curves. It points out to the presence of some
periodicity in averaged GC-content.

7 Mixing Entropy

In section 3 more than twenty different characteristics were described that
are used in statistical DNA analysis for content genes search. It is worth
noticing that not all of these features have clear physical meaning.

Note one more time, that almost always the decision rules to be con-
structed on the features are learned on some training set of coding and non-
coding sequences and then applied to the new ones.
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Figure 6: Coefficients f
(k)
i (p0) and b

(k)
i (p0) for fragment of Prototheca wick-

erhamii genome
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Figure 7: Trajectory of DNA in multidimensional space of Taylor coefficients
of GC-content Laplace transform

In this section we will consider one more feature that we called mixing en-
tropy. This feature has clear interpretation and holds promise for possibility
to build gene identification procedures that need no training phase.

The information that defines the order of aminoacids in protein are coded
in DNA by codons - triplets of nucleotides. Note that this coding is excessive:
from 64 possible codons 61 may code 20 aminoacids (three definite codons
are stop-signals for translation process). Some aminoacids (methionine, tryp-
tophan) are coded by a single codon, other can be coded by one of the two,
three and even six codons.

It was noticed long ago that there is a kind of discrimination in us-
ing codons. Some codons are used more frequently that their synonyms
in aminoacids coding.

Several authors (see Beranola) used this fact to construct procedures of
finding borders of exons by comparing entropies of distribution of codons on
the left and on the right side of the border. Actually the whole sequence in
these works was divided on the homogeneous parts.

We introduce here a formally similar approach but it seems that to use the
concept of codons discrimination is not necessary for protein coding exons
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identification in DNA. Actually we make an accent on the idea of distin-
guished phase in distribution of codons.

If we take an arbitrary window of coding sequence (without introns) and
divide it into successive non-overlapping triplets, starting from the first base
pair in window, then this decomposition and arrangement of the real codons
may not be in phase. We can divide the window into triplets in three ways,
shifting every time on one base pair from the beginning. So we have three
triplet distributions and one of them coincides with the real codons distri-
bution. So the protein coding region are characterized by the presence of
distinguished phase.

Junk evidently has no such property because, as it was mentioned above,
inserting and deleting the base pair in junk do not change properties of
DNA considerably, thus this kind of mutations is allowed in the process of
evolution. But every such mutation breaks the phase, so we can expect than
distributions of triplets in junk will be similar for all three phases.

Fig. 8 demonstrates that it is really true. In this figure distributions of
triplets in three phases are compared for the sequence of randomly selected
gene nad4 of Prototheca wickerhamii (GenBank U02970) and for a junk sector
from the same genome. All possible triplets are enumerated and the number
of the triplet is X-coordinate with Y is its frequency.

It is worth noticing that the distribution of frequiencies is quite non-
uniform. There are eight sharp peaks in the junk‘s distribution which cor-
respond to the triplets whithout G and C letters. It is because of the high
AT-richness in this piece of junk.

So if we mix all three distributions together then the summary triplet
distribution in junk will be similar to all of three distributions. But in case
of protein coding region we will get more uniform distribution with greater
entropy.

Let’s characterize the sliding window by value of mixing entropy:

ME =
1

3
(3S − S(0) − S(1) − S(2)),

where S(k) = −∑i(f
(k)
i ln(f

(k)
i )) is entropy for the triplet distribution

with phase k, S is the entropy of the mixed distribution, i iterates through
all possible codons.

To calculate the optimal window size where the triplet frequencies are
calculated we scanned through window lengths just as we did it to find op-
timal window of GC-averaging. The resulting graphs are shown in fig. 9.
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Figure 8: Comparison of triplet distributions for junk and gene regions. All
codons are enumerated and X-axis is the codon number, Y is its frequency.
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Figure 9: Normalized mean difference in mixing entropy values for junk and
genes vs window width

It turns out that the value of ME is more suitable for separating genes and
junk compared to the value of GC-content.

Graphs of the ME values along a sequence are shown in fig. 10.

8 Visualizing Triplet Distribution and Self-

Training Procedure of Exon Identification

In this section we investigate distribution of frequencies of using triplets in a
window sliding along the whole sequence. Visualizing of the distribution of
frequencies in multidimensional space will allow us to formulate the procedure
of gene identification without knowing anything about a new sequence.

We analyzed DNA as a single strand (without distinguishing W- and
C-strand separately). The sliding window was divided into successive non-
overlapping triplets, starting from the first base pair in the window (triplets in
0-phase) and frequencies of all triplets were calculated. So, every base pair is
characterized by a 64-dimensional vector of frequencies. For our experiments
we took every 12-th base pair in the case of short mitochondrial DNA and

26



Figure 10: Mixing Entropy vs DNA nucleotde position
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every 60-th base pair in the case of longer sequences of chromosomes of the
Yeast genome.

As a result we have a set of multidimensional data points xi, i = 1...N in
the space of frequencies. The data were centered and normalized on the unit
standard deviation of every coordinate:

x̃ki =
xki − x̄k

σk
,

where xki is value of the k-th frequency characterizing the i-th base pair, x̃ki
is normalized value, σk and x̄k are standard deviation and mean value of the
k-th coordinate.

To visualize the set of data points three principal vectors were calculated.
Principal vectors are eigen vectors of covariance matrix of data distribution.
In these directions dispersions of the cloud of data points reach their max-
imums. After orthogonal projecting in the subspace of the three principal
vectors we can visually represent the cloud of data points.

The resulting pictures of data (plan view and side view) are shown in
figures 11,12. It is evident that the distribution has 4 clusters. Central
cluster is junk distribution and other three are distributions of protein coding
regions in three different phases.

Taking into account all mentioned above, the pictures are quite under-
standable. Since the junk has no distinguished phase, it is represented by
almost normal distribution situated in the center of the data point cloud.
Protein coding regions with different phases forms three wings on the sides
of the junk kernel.

Using this representation we may formulate the procedure of determining
whether the base pair belongs to a protein coding region or not.

Assume that we know nothing about exon allocations. Nevertheless we
may construct the data point cloud in the space of frequencies and perform
clustering on 4 clusters. We do not consider here different methods of clus-
tering. In our work we used simplest clustering using iterative algorithm of
dynamical centroids with the distance from a point to a cluster as a dis-
tance to its geometric center. Four clusters correspond to the four types of
homogeneous in a certain sense regions of genome.

The resulting pictures of clustering are shown in fig. 13.
Then we determine whether the base pair belongs to the junk or coding

region in the definite phase just by calculating the distance of the point in
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Figure 11: Visualizing Triplet Distributions For Prototheca wickerhamii
genome
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Figure 12: Visualizing Triplet Distributions For Yeast Chromosome III
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Figure 13: Clustering Triplet Distributions
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Figure 14: Exon predictions for Prototheca wickerhamii genome

frequencies space to all four clusters and choosing the closest one. We did it
for analyzed sequences and compared with real exon allocations. Accuracy
of point determination turns out to vary from 60% of all base pairs to 82%
in case of ”well-clustered” Prototheca wickerhamii genome. Note here that
this is accuracy of classification of points (does the basepair in the position
belong to an exon or not).

Fragments of resulting graphs are shown in fig.14,15. In these figures
dashed line denotes borders between real genes given in the annotation. Be-
sides in the case of Yeast Chromosome III different heights of the bars cor-
respond to the different reliabilities of the gene presence. The highest bars
correspond to the surely reliable genes. The solid line is the graph of phase
(cluster number) of triplet distribution in the window centered in the current
position. It is clear that base pairs, which belong to the same exon, tend to
have equal phase in the window.
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Figure 15: Exon predictions for Yeast Chromosome III
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9 Discussion: Codon Usage, GC-content, Hex-

amers and other

Lets try to make a summary of the results of our simple experiments.
First consider the ancient codon usage measure. Methods of pattern

recognition applied to the gene identification is based on the belief that in
coding regions there is some specific codon composition compared to junk
regions due to the phenomenon of codon discrimination in coding amino-
acids.

But we could see that the form of distribution of 64-dimensional vectors,
each of them corresponds to the codon usage measure calculated in a winndow
of DNA, has amazing bullet-like structure. The structure can be explained
by the notion of existence of distinguished phase in the triplet distribution
in coding regions. In this space points which correspond to junk and exons
can be separated by a linear function, but this separation is not the most
perfect one.

From other hand, the level of GC-content (or local binding energy) evi-
dently has influence on the codon distribution (when GC-content is low, the
codons AAA, AAT, ATA, ATT, TAA, TAT, TTA, TTT have greater fre-
quency than others). Actually, GC-content function is linear functional in
the 64-dimensional space of codon frequencies and its gradient is a distin-
guished direction in the space along what the ”exon-junk” separation is quite
good:

GC% =
64∑
i=1

αifi,

where i enumerates all codons, fi is frequency of i−th codon, αi is the
fixed weight of the codon (for example, αAAA = 0, αGAT = 1

3
, αGCA =

2
3
, αGCG = 1 and so on). It seems that linear discriminant function sepa-

rating junk windows and exon windows in 64-dimensional space of codon
frequencies should have similar weights.

Second, it is known that inphase hexamers measure (described in section
3) is the best single measure for separating coding and non-coding regions. It
is interesting that the idea of using inphase measures is very close to the idea
of using mixing entropy. Actually, many other measures (Entropy, Assymetry
etc.) use the difference in distribution of triplet decomposition with three
different phases. But it seems that none of them use the idea in the explicit
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form, except inphase hexamers.
Actually it is easy to see that inphase codon usage measure can be derived

from hexamer usage measure. Let‘s take distributon f (0) of triplets in 0-
phase, and the distribution h(0) of pairs of these triplets. Then frequencies
of triplets in 1-phase and 2-phase equal

f
(1)
XY Z =

∑
I,J,K

h
(0)
IXY ZJK ,

f
(2)
XY Z =

∑
I,J,K

h
(0)
IJXY ZK ,

X, Y, Z, I, J,K ∈ {A,C,G, T}.

So, distributions of triplets in any phase can be derived from the distri-
bution of pairs of triplets in one phase.

Another important note is that codon usage in the one DNA strand ev-
idently defines codon usage in the opposite strand. The notion of distin-
guished phase does not allow to determine in what strand predicted exon is
situated. It is interesting that most programs analyse two strands separately,
though the measures in the complementary regions are not independent. We
think that this question needs in more detailed consideration.

The last note concerns normalizing codon usage in our experiments on
the unity standart deviation of every frequency. It means that we take into
account not the absolute value of the variances but the relative ones. Our
experiments shows that it is crucial for existence of bullet-like structure in
the space of codon frequencies.

In the overview made by J.-M. Claverie (1997) three general problems
of current computational gene identification methods were underlined: A)
the most of the methods detect only protein coding exons; B) most of the
methods work with a piece of sequence containing only one gene; C) most of
the programs use methods of pattern recognition with learning with teacher
- they need a traning set for tuning their parameters. We hope that the
next generation of gene-finders will overcome the last two problems, may be
using similar ideas as described in this paper. We hope that such physically
clear characteristics as local binding energy and related measures (see, for
example, Yeramian E., 2000) can help to solve the A problem although.
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10 Resume

In the paper we tried to touch upon the problem of automated gene identifi-
cation considering some recent statistical approaches such as calculations of
DNA stability map and entropy segmentation method. These approaches are
rather specific because 1) they do not require the preliminary stage of learn-
ing on the known sample database, 2) the methods are applicable mainly to
the whole DNA sequence rather than its separate fragments.

Considering calculations of DNA thermal stability we believe that the
complicated procedure of calculation of the partition function gives results
which can be compared by efficiency for gene finding with the much simpler
value of local binding energy, calculated by averaging GC-concentration with
the window of some optimal width. The width was evaluated (∼ 400bp for
long genomes, and∼ 120bp for the short mitochondrial one) and this revealed
some interesting regularities. Providing the borders of hypothetical genes
are known (say, using analysis of start and stop codons), more than 90% of
genes may be identified using only two simple features. Several approaches
for further investigations have been proposed.

Discussing such ancient sequence measures as Codon Usage, Assymetry,
Entropy, Inphase Hexamers and the recent method of entropy segmentation
we thought that there is one common principle that underlies all of them
and the principle is simply the fact that the genes are carriers of biological
information coded by codons. The phase of the coding stands out among all
possible partitions of a gene onto consecutive non-overlapping triplets and
the phase should be strictly conserved in the process of evolution. The junk
lacks this feature because even if there was long time ago such a phase then
it was broken in the process of evolution because mutations that did it were
allowable.

Visual confirmation of the hypothesis is the picture of multidimensional
distribution of windows of DNA in the triplet frequencies space. Viewing the
picture we formulated the procedure of exon identification which has the same
specificity that two mentioned methods have. The procedure is self-training
(uses learning without teacher): it does not require any additional training
set and is based on the good DNA clustering in the triplet frequencies space
due to the presence of the distinguished coding phase. The measured quality
of the clustering is simultaneously an evaluation of the method accuracy.
The pictures of superposition of genetc map and graph of coding phase are
rather convincing.
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