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Abstract

Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgradu-

ate students in physics, mathematical physics, material science, chemical engineering and

interdisciplinary research.

Key words: Boltzmann equation, H theorem, kinetic models, Bhatnagar-Gross-Krook

model, quasi-equilibrium approximation, Hilbert method, Chapman-Enskog method, Grad

moment method, method of invariant manifold, Discrete velocity models, Direct simula-

tion.

1 The Boltzmann equation

1.1 The equation

The Boltzmann equation is the first and the most celebrated nonlinear kinetic equation

introduced by the great Austrian physicist Ludwig Boltzmann in 1872. This equation de-

scribes the dynamics of a moderately rarefied gas, taking into account the two processes,

the free flight of the particles, and their collisions. In its original version, the Boltzmann

equation has been formulated for particles represented by hard spheres. The physical

condition of rarefaction means that only pair collisions are taken into account, a mathe-

matical specification of which is given by the Grad-Boltzmann limit: If N is the number

of particles, and σ is the diameter of the hard sphere, then the Boltzmann equation is

expected to hold when N tends to infinity, σ tends to zero, Nσ3 (the volume occupied by

the particles) tends to zero, while Nσ2 (the total collision cross section) remains constant.

The microscopic state of the gas at time t is described by the one-body distribution func-

tion P (x, v, t), where x is the position of the center of the particle, and v is the velocity of

the particle. The distribution function is the probability density of finding the particle at

time t within the infinitesimal phase space volume centered at the phase point (x, v). The

collision mechanism of two hard spheres is presented by a relation between the velocities

of the particles before [v and w ] and after [v′ and w
′] their impact:

v
′ = v − n(n, v − w),

w
′ = w + n(n, v − w),

where n is the unit vector along v − v
′. Transformation of the velocities conserves the

total momentum of the pair of colliding particles (v′ + w = v + w), and the total kinetic
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energy (v′2 + w
′2 = v

2 + w
2) The Boltzmann equation reads:

∂P1

∂t
+

(

v,
∂P1

∂x

)

= (1)

Nσ2
∫

R

∫

B−

(P (x, v′, t)P (x, w′, t) − P (x, v, t)P (x, w, t)) | (w − v, n) | dwdn,

where integration in n is carried over the unit sphere R3, while integration in w goes

over a hemisphere B− = {w | (w − v, n) < 0} . This hemisphere corresponds to the

particles entering the collison. The nonlinear integral operator in the right hand side of

Eq. (2) is nonlocal in the velocity variable, and local in space. The Boltzmann equation

for arbitrary hard-core interaction is a generalization of the Boltzmann equation for hard

spheres under the proviso that the true infinite-range interaction potential between the

particles is cut-off at some distance. This generalization amounts to a replacement,

σ2 | (w − v, n) | dn → B(θ, | w − v |)dθdε, (2)

where function B is determined by the interaction potential, and vector n is identified

with two angles, θ and ε. In particular, for potentials proportional to the n-th inverse

power of the distance, the function B reads,

b(θ, | v − w |) = β(θ) | v − w |
n−5
n−1 . (3)

In the special case n = 5, function B is independent of the magnitude of the relative ve-

locity (Maxwell molecules). Maxwell molecules occupy a distinguished place in the theory

of the Boltzmann equation, they provide exact results. Three most important findings

for the Maxwell molecules are mentioned here: 1. The exact spectrum of the linearized

Boltzmann collision integral, found by Truesdell and Muncaster, 2. Exact transport coef-

ficients found by Maxwell even before the Boltzmann equation was formulated, 3. Exact

solutions to the space-free model version of the nonlinear Boltzmann equation. Pivotal

results in this domain belong to Galkin who has found the general solution to the system

of moment equations in a form of a series expansion, to Bobylev, Krook and Wu who

have found an exact solution of a particular elegant closed form, and to Bobylev who has

demonstrated the complete integrability of this dynamic system.

It is customary to write the Boltzmann equation using another normalization of the

distribution function, f(x, v, t)dxdv, taken in such a way that the function f is compliant

with the definition of the hydrodynamic fields: the mass density ρ, the momentum density

ρu, and the energy density ε:
∫

f(x, v, t)mdv = ρ(x, t),
∫

f(x, v, t)mvdv = ρu(x, t), (4)

∫

f(x, v, t)m
v2

2
dv = ε(x, t).
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Here m is the particle’s mass.

The Boltzmann equation for the distribution function f reads,

∂f

∂t
+

(

v,
∂

∂x
f

)

= Q(f, f), (5)

where the nonlinear integral operator in the right hand side is the Boltzmann collision

integral,

Q =
∫

R3

∫

B−

(f(v′)f(w′
1) − f(v)f(w1))B(θ, v)dwdθdε. (6)

Finally, we mention the following form of the Boltzmann collision integral (sometimes

referred to as the scattering or the quasi-chemical representation),

Q =
∫

W (v, w | v
′, w′)[(f(v′)f(w′

1) − f(v)f(w1))]dwdw
′dw1, (7)

where W is a generalized function which is called the probability density of the elementary

event,

W = w(v, w | v
′, w′)δ(v + w − v

′ − w
′)δ(v2 + w2 − v′2 − w′2). (8)

1.2 The basic properties of the Boltzmann equation

Generalized function W has the following symmetries:

W (v′, w′ | v, w) ≡ W (w′, v′ | v, w) ≡ W (v′, w′ | w, v) ≡ W (v, w | v
′, w′). (9)

The first two identities reflect the symmetry of the collision process with respect to

labeling the particles, whereas the last identity is the celebrated detail balance condition

underpinned by the time-reversal symmetry of the microscopic (Newton’s) equations of

motion. The basic properties of the Boltzmann equation are:

1. Additive invariants of collision operator:
∫

Q(f, f){1, v, v2}dv = 0, (10)

for any function f , assuming integrals exist. Equality (10) reflects the fact that the number

of particles, the three components of particle’s momentum, and the particle’s energy are

conserved by the collision. Conservation laws (10) imply that the local hydrodynamic

fields (4) can change in time only due to redistribution in the space.

2. Zero point of the integral (Q = 0) satisfy the equation (which is also called the

detail balance): For almost all velocities,

f(v′, x, t)f(w′, x, t) = f(v, x, t)f(w, x, t).
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3. Boltzmann’s local entropy production inequality:

σ(x, t) = −kB

∫

ln fQ(f, f)dv ≥ 0, (11)

for any function f , assuming integrals exist. Dimensional Boltzmann’s constant (kB ≈

6 ·10−23J/K) in this expression serves for a recalculation of the energy units into the abso-

lute temperature units. Moreover, equality sign takes place if ln f is a linear combination

of the additive invariants of collision.

Distribution functions f whose logarithm is a linear combination of additive collision

invariants, with coefficients dependent on x, are called local Maxwell distribution

functions fLM ,

fLM =
ρ

m

(

2πkBT

m

)−3/2

exp

(

−m(v − u)2

2kBT

)

. (12)

Local Maxwellians are parametrized by values of five scalar functions, ρ , u and

T . This parametrization is consistent with the definitions of the hydrodynamic fields

(4),
∫

fLM(m, mv, mv2/2) = (ρ, ρu, ε) provided the relation between the energy and the

kinetic temperature T , holds, ε = 3ρ
2mkBT

.

4. Boltzmann’s H theorem: The function

S[f ] = −kB

∫

f ln fdv, (13)

is called the entropy density. The local H theorem for distribution functions in-

dependent of space states that the rate of the entropy density increase is equal to the

nonnegative entropy production,

dS

dt
= σ ≥ 0. (14)

Thus, if no space dependence is concerned, the Boltzmann equation describes relax-

ation to the unique global Maxwellian (whose parameters are fixed by initial conditions),

and the entropy density grows monotonically along the solutions. Mathematical specifi-

cations of this property has been initialized by Carleman, and many estimations of the

entropy growth were obtained over the past two decades. In the case of space-dependent

distribution functions, the local entropy density obeys the entropy balance equation:

∂S(x, t)

∂t
+

(

∂

∂x
,Js(x, t)

)

= σ(x, t) ≥ 0, (15)

where Js is the entropy flux, Js(x, t) = −kB

∫

ln f(x, t)vf(x, t)dv. For suitable boundary

conditions, such as, specularly reflecting or at the infinity, the entropy flux gives no

contribution to the equation for the total entropy, Stot =
∫

S(x, t)dx and its rate of
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changes is then equal to the nonnegative total entropy production σtot =
∫

σ(x, t)dx (the

global H theorem). For more general boundary conditions which maintain the entropy

influx the global H theorem needs to be modified. A detailed discussion of this question

is given by Cercignani. The local Maxwellian is also specified as the maximizer of the

Boltzmann entropy function (13), subject to fixed hydrodynamic constraints (4). For this

reason, the local Maxwellian is also termed as the local equilibrium distribution function.

1.3 Linearized collision integral

Linearization of the Boltzmann integral around the local equilibrium results in the linear

integral operator,

Lh(v) =
∫

W (v, w | v
′, w′)fLM(v)fLM(w)

[

h(v′)

fLM(v′)
+

h(w′)

fLM(w′)
−

h(v)

fLM(v)
−

h(w)

fLM(w)

]

dw
′dv

′dw.

Linearized collision integral is symmetric with respect to scalar product defined by the

second derivative of the entropy functional,
∫

f−1
LM(v)g(v)Lh(v)dv =

∫

f−1
LM (v)h(v)Lg(v)dv,

it is nonpositively definite,
∫

f−1
LM(v)h(v)Lh(v)dv ≤ 0,

where equality sign takes place if the function hf−1
LM is a linear combination of collision

invariants, which characterize the null-space of the operator L. Spectrum of the linearized

collision integral is well studied in the case of the small angle cut-off.

2 Phenomenology and Quasi-chemical representation

of the Boltzmann equation

Boltzmann’s original derivation of his collision integral was based on a phenomenological

“bookkeeping” of the gain and of the loss of probability density in the collision process.

This derivation postulates that the rate of gain G equals

G =
∫

W+(v, w | v
′, w′)f(v)f(w)dv

′dw
′dw,

while the rate of loss is

L =
∫

W−(v, w | v
′, w′)f(w)f(w)dv

′dw
′dw.
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The form of the the gain and of the loss, containing products of one-body distribution

functions in place of the two-body distribution, constitutes the famous Stosszahlansatz.

The Boltzmann collision integral follows now as (G−L), subject to the detail balance for

the rates of individual collisions,

W+(v, w | v
′, w′) = W−(v′, w′ | v, w).

This representation for interactions different from hard spheres requires also the cut-

off of functions β (3) at small angles. The gain-loss form of the collision integral makes it

evident that the detail balance for the rates of individual collisions is sufficient to prove

the local H theorem. A weaker condition which is also sufficient to establish the H

theorem was first derived by Stueckelberg (so-calledsemi-detailed balance), and later

generalized to inequalities of concordance:
∫

dv
′
∫

dw
′(W+(v, w | v

′, w′) − W−(v, w | v
′, w′)) ≥ 0,

∫

dv

∫

dw(W+(v, w | v
′, w′) − W−(v, w | v

′, w′)) ≤ 0.

The semi-detailed balance follows from these expressions if the inequality signes are

replaced by equalities.

The pattern of Boltzmann’s phenomenological approach is often used in order to con-

struct nonlinear kinetic models. In particular, nonlinear equations of chemical ki-

netics are based on this idea: If n chemical species Ai participate in a complex chemical

reaction,

∑

i

αsiAi ↔
∑

i

βsiAi,

where αsi and βsi are nonnegative integers (stoichiometric coefficients) then equations of

chemical kinetics for the concentrations of species cj are written

dci

dt
=

n
∑

s=1

(βsi − αsi)



ϕ+
s exp





n
∑

j=1

∂G

∂cj
αsj



− ϕ−
s exp





n
∑

j=1

∂G

∂cj
βsj







 .

Functions ϕ+
s and ϕ−

s are interpreted as constants of the direct and of the inverse

reactions, while the function G is an analog of the Boltzmann’s H-function. Modern

derivation of the Boltzmann equation, initialized by the seminal work of N.N.Bogoliubov,

seek a replacement condition, and which would be more closely related to many-particle

dynamics. Such conditions are applied to the N -particle Liouville equation should fac-

torize in the remote enough past, as well as in the remote infinity (the hypothesis of

weakening of correlations). Different conditions has been formulated by D.N.Zubarev,

J.Lewis and others. These formulations attempt at possibilities to systematically find

corrections not included in the Stosszahlansatz.
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3 Kinetic models

Mathematical complications caused by the nonlinearly Boltzmann collision integral are

traced back to the Stosszahlansatz. Several approaches were developed in order to simplify

the Boltzmann equation. Such simplifications are termed kinetic models. Various kinetic

models preserve certain features of the Boltzmann equation, while scarifying the rest of

them. The most well known kinetic model which preserve the H theorem is the nonlinear

Bhatnagar-Gross-Krook model (BGK). The BGK collision integral reads:

QBGK = −
1

τ
(f − fLM(f)).

The time parameter τ > 0 is interpreted as a characteristic relaxation time to the local

Maxwellian. The BGK is a nonlinear operator: Parameters of the local Maxwellian are

identified with the values of the corresponding moments of the distribution function f .

This nonlinearly is of “lower dimension” than in the Boltzmann collision integral because

fLM(f) is a nonlinear function of only the moments of f whereas the Boltzmann collision

integral is nonlinear in the distribution function f itself. This type of simplification

introduced by the BGK approach is closely related to the family of so-called mean-field

approximations in statistical mechanics. By its construction, the BGK collision integral

preserves the following three properties of the Boltzmann equation: additive invariants

of collision, uniqueness of the equilibrium, and the H theorem. A class of kinetic models

which generalized the BGK model to quasi- equilibrium approximations of a general form

is described as follows: The quasi-equilibrium f ∗ for the set of linear functionales M(f)

is a distribution function f ∗(M)(x, v) which maximizes the entropy under fixed values

of functions M . The Quasi-equilibrium (QE) models are characterized by the collision

integral,

QQE(f) = −
1

τ
[f − f ∗(M(f))] + QB(f ∗(M(f)), f ∗(M(f))).

Same as in the case of the BGK collision integral, operator QQE is nonlinear in the

moments M only. The QE models preserve the following properties of the Boltzmann

collision operator: additive invariants, uniqueness of the equilibrium, and the H theorem,

provided the relaxation time τ to the quasi- equilibrium is sufficiently small. A different

nonlinear model was proposed by Lebowitz, Frisch and Helfand:

QD = D

(

∂

∂v

∂

∂v
f +

m

kBT

∂

∂v
(v − u(f))f

)

.

The collision integral has the form of the self-consistent Fokker-Planck operator, describing

diffusion (in the velocity space) in the self-consistent potential. Diffusion coefficient D > 0

may depend on the distribution function f . Operator QD preserves the same properties
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of the Boltzmann collision operator as the BGK model. Kinetic BGK model has been

used for obtaining exact solutions of gasdynamic problems, especially its linearized form

for stationary problems. Linearized BGK collision model has been extended to model

more precisely the linearized Boltzmann collision integral.

4 Methods of reduced description

One of the major issues raised by the Boltzmann equation is the problem of the reduced

description. Equations of hydrodynamics constitute a closet set of equations for the

hydrodynamic field (local density, local momentum, and local temperature). From the

standpoint of the Boltzmann equation, these quantities are low-order moments of the one-

body distribution function, or, in other words, the macroscopic variables. The problem

of the reduced description consists in giving an answer to the following two questions:

1. What are the conditions under which the macroscopic description sets in?

2. How to derive equations for the macroscopic variables from kinetic equations?

The classical methods of reduced description for the Boltzmann equation are: the

Hilbert method, the Chapman-Enskog method, and the Grad moment method

4.1 The Hilbert method

In 1911, David Hilbert introduced the notion of normal solutions,

fH(v, n(r, t), u(r, t), T (r, t)),

that is, solution to the Boltzmann equation which depend on space and time only through

five hydrodynamic fields.

The normal solutions are found from a singularly perturbed Boltzmann equation,

Dtf =
1

ε
Q(f, f), (16)

where ε is a small parameter, and Dtf ≡ ∂
∂t

f + (v, ∂
∂r )f . Physically, parameter ε corre-

sponds to the Knudsen number, the ratio between the mean free path of the molecules

between collisions, and the characteristic scale of variation of the hydrodynamic fields.

In the Hilbert method, one seeks functions n(r, t), u(r, t), T (r, t), such that the normal

solution in the form of the Hilbert expansion,

fH =
∞
∑

i=0

εif
(i)
H (17)

9



satisfies the Eq. (16) them by term. Hilbert was able to demonstrate that this is formally

possible. Substituting (17) into (16), and matching various order in ε, we have the

sequence of integral equations

Q(f
(0)
H , f

(0)
H ) = 0, (18)

Lf
(1)
H = Dtf

(0)
H , (19)

Lf
(2)
H = Dtf

(1)
H − Q(f

(0)
H , f

(1)
H ), (20)

and so on for higher orders. Here L is the linearized collision integral. From Eq.(18),

it follow that f
(0)
H is the local Maxwellian with parameters not yet determined. The

Fredholm alternative, as applied to the second Eq. (19) results in

a) Solvability condition,
∫

Dtf
(0)
H {1, v, v2}dv = 0,

which is the set of compressible Euler equations of the non-viscous hydrodynamics. So-

lution to the Euler equation determine the parameters of the Maxwellian f 0
H .

b) General solution f
(1)
H = f

(1)1
H + f

(1)2
H , where f

(1)1
H is the special solution to the linear

integral equation (19), and f
(1)2
H is yet undetermined linear combination of the additive

invariants of collision.

c) Solvability condition to the next equation (19) determines coefficients of the function

f
(1)2
H in terms of solutions to the linear hyperbolic differential equations,

∫

Dt(f
(1)1
H + f

(1)2
H ){1, v, v2}dv = 0.

Hilbert was able to demonstrate that this procedure of constructing the normal solution

can be carried out to arbitrary order n, where the function f
(n)
H is determined from the

solvability condition at the next, (n + 1)-th order. In order to summarize, implementa-

tion of the Hilbert method requires solutions for the function n(r, t), u(r, t), T (r, t) and

obtained from a sequence of partial differential equations.

4.2 The Chapman-Enskog method

A completely different approach to the reduced description was invented in 1917 by David

Enskog, and independently by Sidney Chapman. The key innovation was to seek an

expansion of the time derivatives of the hydrodynamic variables rather than seeking the

time-space dependencies of these functions as in the Hilbert method.

The Chapman-Enskog method starts also with the singularly perturbed Boltzmann

equation, and with the expansion

fCE =
∞
∑

n=0

εnf
(n)
CE .

10



However, the procedure of evaluation of the functions f
(n)
CE differs from the Hilbert method:

Q(f
(0)
CE , f

(0)
CE) = 0, (21)

Lf
(1)
CE = −Q(f

(0)
CE , f

(0)
CE) +

∂(0)

∂t
f

(0)
CE −

(

v,
∂

∂r

)

f
(0)
CE . (22)

Operator ∂(0)/∂t is defined from the expansion of the right hand side of hydrodynamic

equation,

∂(0)

∂t
{ρ, ρu, e} ≡ −

∫

{

m, mv,
mv2

2

}(

v,
∂

∂r

)

f
(0)
CEdv, (23)

From Eq. (21), function f
(0)
CE is again the local Maxwellian, whereas (23) is the Euler

equations, and ∂(0)/∂t acts on various functions g(ρ, ρu, E) according to the chain rule,

∂(0)

∂t
g =

∂g

∂ρ

∂(0)

∂t
ρ +

∂g

∂(ρu)

∂(0)

∂t
ρu +

∂g

∂e

∂(0)e

∂t
,

while the time derivatives ∂(0)

∂t
of the hydrodynamic fields are expressed using the right

hand side of Eq. (23).

The result of the Chapman-Enskog definition of the time derivative ∂(0)

∂t
, is that the

Fredholm alternative is satisfied by the right hand side of Eq. (22). Finally, the solution

to the homogeneous equation is set to be zero by the requirement that the hydrodynamic

variables as defined by the function f (0) + εf (1) coincide with the parameters of the local

Maxwellian f (0):
∫

{1, v, v2}f
(1)
CEdv = 0.

The first correction f
(1)
CE of the Chapman-Enskog method adds the terms

∂(1)

∂t
{ρ, ρu, e} = −

∫

{

m, mv,
mv2

2

}(

v,
∂

∂r

)

f
(1)
CEdv

to the time derivatives of the hydrodynamic fields. These terms correspond to the dis-

sipative hydrodynamics where viscous momentum transfer and heat transfer are in the

Navier-Stokes and Fourier form. The Chapman-Enskog method was the first true success

of the Boltzmann equation since it had made it possible to derive macroscopic equation

without a priori guessing (the generalization of the Boltzmann equation onto mixtures

predicted existence of the thermodiffusion before it has been found experimentally), and

to express the kinetic coefficient in terms of microscopic particle’s interaction.

However, higher-order corrections of the Capman-Enskog method, resulting in hydro-

dynamic equations with derivatives (Burnett hydrodynamic equations) face serve diffi-

culties both from the theoretical, as well as from the practical sides. In particular, they

result in unphysical instabilities of the equilibrium.
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4.3 The Grad moment method

In 1949, Harold Grad extended the basic assumption behind the Hilbert and the Chapman-

Enskog methods (the space and time dependence of the normal solutions is mediated by

the five hydrodynamic moments). A physical rationale behind the Grad moment method

is an assumption of the decomposition of motions:

(i). During the time of order τ , a set of distinguished moments M ′ (which include the hy-

drodynamic moments and a subset of higher-order moment) does not change significantly

as compared to the rest of the moments M ′′ (the fast evolution).

(ii). Towards the end of the fast evolution, the values of the moments M ′′ become unam-

biguously determined by the values of the distinguished moments M ′.

(iii). On the time of order θ � τ , dynamics of the distribution function is determined by

the dynamics of the distinguished moments while the rest of the moments remain to be

determined by the distinguished moments (the slow evolution period).

Implementation of this picture requires an ansatz for the distribution function in order

to represent the set of states visited in the course of the slow evolution. In Grad’s method,

these representative sets are finite-order truncations of an expansion of the distribution

functions in terms of Hermit velocity tensors:

fG(M ′, v) = fLM(ρ, u, E, v)[1 +
N
∑

(α)

aα(M ′)H(α)(v − u)], (24)

where H(α)(v−u) are various Hermit tensor polynomials, orthogonal with the weight fLM ,

while coefficient a(α)(M
′) are known functions of the distinguished moments M ′, and N

is the highest order of M ′. Other moments are functions of M ′: M ′′ = M ′′(fG(M ′)).

Slow evolution of distinguished moments is found upon substitution of Eq. (24) into

the Boltzmann equation and finding the moments of the resulting expression (Grad’s

moment equations). Following Grad, this extremely simple approximation can be im-

proved by extending the list of distinguished moments. The most well known is Grad’s

thirteen-moment approximation where the set of distinguished moments consists of five

hydrodynamic moments, five components of the traceless stress tensor σij =
∫

m[(vi −

ui)(vj − uj) − δij(v − u)2/3]fdv, and of the three components of the heat flux vector

qi =
∫

(vi − ui)m(v − u)2/2fdv.

The time evolution hypothesis cannot be evaluated for its validity within the frame-

work of Grad’s approach. It is not surprising therefore that Grad’s methods failed to work

in situations where it was (unmotivatedly) supposed to, primarily, in the phenomena with

sharp time-space dependence such as the strong shock wave. On the other hand, Grad’s

method was quite successful for describing transition between parabolic and hyperbolic

propagation, in particular the second sound effect in massive solids at low temperatures,
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and, in general, situations slightly deviating from the classical Navier-Stokes- Fourier

domain. Finally, the Grad method has been important background for development of

phenomenological nonequilibrium thermodynamics based on hyperbolic first-order equa-

tion, the so-called EIT (extended irreversible thermodynamics).

4.4 Special approximations

Special approximation of the solutions to the Boltzmann equation has been found for

several problems, and which perform better than results of “regular” procedures. The

most well known is the ansatz introduced independently by Mott-Smith and Tamm for

the strong shock wave problem: The (stationary) distribution function is thought as

fTMS(a(x)) = (1 − a(x))f+ + a(x)f−, (25)

where f± are upstream and downstream Maxwell distribution functions, whereas a(x) is

an undermined scalar function of the coordinate along the shock tube.

Equation for function a has to be found upon substitution of Eq.(25) into the Bolltz-

mann equation, and upon integration with some velocity-dependent function ϕ(v). Two

general problems arise with the special approximation thus constructed: Which function

ϕ(v) should be taken, and how to find correction to the ansatz like Eq. (25).

4.5 The method of invariant manifold

The general approach to the problem of reduced description for dissipative system was

recognized as the problem of finding stable invariant manifolds in the space of distribution

function. The notion of invariant manifold generalizes the normal solution in the Hilbert

and in the Chapman-Enskog method, and the finite-moment sets of distribution function

in the Grad method: If Ω is a smooth manifold in the space of distribution function, and

if fΩ is an element of Ω, then Ω is invariant with respect to the dynamic system,

∂f

∂t
= J(f), (26)

if J(fΩ) ∈ TΩ, for all fΩ ∈ Ω, (27)

where TΩ is the tangent bundle of the manifold Ω. Application of the invariant mani-

fold idea to dissipative systems is based on iterations, progressively improving the initial

approximation, involves the following steps:

1. Thermodynamic projector. Given a manifold Ω (not obligatory invariant), the

macroscopic dynamics on this manifold is defined by the macroscopic vector field, which
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is the result of a projection of vectors J(fΩ) onto the tangent bundle TΩ. The thermo-

dynamic projector P ∗
Ω takes advantage of dissipativity:

kerP ∗
fΩ

⊆ kerDfS |fΩ
. (28)

where DfS |fΩ
is the differential of the entropy evaluated in fΩ.

This condition of thermodynamicity means that each state of the manifold Ω is re-

garded as the result of decomposition of motions occurring near Ω: The state fΩ is the

maximum entropy state on the set of states fΩ + kerP ∗
fΩ

. Condition of thermodynamicity

does not define projector completely; rather, it is the condition that should be satisfied by

any projector used to define the macroscopic vector field, J ′
Ω = P ∗

fΩ
J(fΩ). For, once the

condition (28) is met, the macroscopic vector field preserves dissipativity of the original

microscopic vector field J(f):

DfS |fΩ
·P ∗

fΩ
(J(fΩ)) ≥ 0 for all fΩ ∈ Ω.

The thermodynamic projector is the formalization of the assumption that Ω is the

manifold of slow motion: If a fast relaxation takes place at least in a neighborhood of Ω,

then the states visited in this process before arriving at fΩ were belonged to kerP ∗
fΩ

. In

general, P ∗
fΩ

depends in a non-trivial way on fΩ.

4.6 Iterations for the invariance condition

The invariance condition for the manifold Ω reads,

PΩ(J(fΩ)) − J(fΩ) = 0,

here PΩ is arbitrary (not obligatory thermodynamic) projector onto the tangent bun-

dle of Ω. The invariance condition is considered as an equation which is solved itera-

tively, starting with initial approximation Ω0. On the (n+1)−th iteration, the correction

f (n+1) = f (n) + δf (n+1) is found from linear equations,

DfJ
∗
nδf (n+1) = P ∗

nJ(f (n)) − J(f (n)),

P ∗
nδf (n+1) = 0, (29)

here DfJ
∗
n is the linear selfagjoint operator with respect to the scalar product by the

second differential of the entropy D2
fS |f(n).

Together with the above-mentioned principle of thermodynamic projecting, the selfad-

joint linearization implements the assumption about the decomposition of motions around
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the n’th approximation. The selfadjoint linearization of the Boltzmann collision integral

Q (7) around a distribution function f is given by the formula,

DfQ
∗δf =

∫

W (v, w, | v
′, w′)

f(v)f(w) + f(v′)f(w′)

2
×

[

δf(v′)

f(v′)
+

δf(w′)

f(w′)
−

δf(v)

f(v)
−

δf(w)

f(w)

]

dw
′dv

′dw. (30)

If f = fLM , the selfadjoint operator (30) becomes the linearized collision integral.

The method of invariant manifold is the iterative process:

(f (n), P ∗
n) → (f (n+1), P ∗

n) → (f (n+1), P ∗
n+1)

On the each 1-st part of the iteration, the linear equation (29) is solved with the projector

known from the previous iteration. On the each 2-nd part, the projector is updated,

following the thermodynamic construction.

The method of invariant manifold can be further simplified if smallness parameters

are known.

The proliferation of the procedure in comparison to the Chapman-Enskog method is

essentially twofold:

First, the projector is made dependent on the manifold. This enlarges the set of

admissible approximations.

Second, the method is based on iteration rather than a series expansion in a smallness

parameter. Importance of iteration procedures is well understood in physics, in partic-

ular, in the renormalization group approach to reducing the description in equilibrium

statistical mechanics, and in the Kolmogorov- Arnold-Moser theory of finite-dimensional

Hamiltonian systems.

Quasiequilibrium approximations. Important generalization of the Grad moment

method is the concept of the quasiequilibrium approximations already mentioned above.

The quasiequilibrium distribution function for a set of distinguished moment M maxi-

mizes the entropy density S for fixed M . The quasiequilibrium manifold Ω∗(M) is the

collection of the quasiequilibrium distribution functions for all admissible values of M .

The quasiequilibrium approximation is the simplest and extremely useful (not only in the

kinetic theory itself) implementation of the hypothesis about a decomposition of motions:

If M are considered as slow variables, then states which could be visited in the course of

rapid motion in the visinity of Ω∗(M) belong to the planes ΓM = {f | m(f−f ∗(M)) = 0}.

In this respect, the thermodynamic construction in the method of invariant manifold

is a generalization of the quasiequilibrium approximation where the given manifold is

equipped with a quasiequilibrium structure by choosing appropriately the macroscopic

15



variables of the slow motion. In contrast to the quasiequilibrium, the macroscopic vari-

ables thus constructed are not obligatory moments. A text book example of the quasiequi-

librium approximation is the generalized Gaussian function for M = {ρ, ρu, P} where

Pij =
∫

vivjfdv is the pressure tensor.

The thermodynamic projector P ∗ for a quasiequilibrium approximation was first intro-

duced by B. Robertson (in a different context of conservative dynamics and for a special

case of the Gibbs-Shannon entropy). It acts on a function Ψ as follows

P ∗
MΨ =

∑

i

∂f ∗

∂Mi

∫

miΨdv,

where M =
∫

mifdv. The quasiequilibrium approximation does not exist if the highest

order moment is an odd polynomial of velocity (therefore, there exists no quasiequilibrium

for thirteen Grad’s moments). Otherwise, the Grad moment approximation is the first-

order expansion of the quasiequilibrium around the local Maxwellian.

5 Discrete velocity models

If the number of microscopic velocities is reduced drastically to only a finite set, the

resulting discrete velocity, continuous time and continuous space models can still mimic

the gas-dynamic flows. This idea was introduced in Broadwell’s paper in 1963 to mimic

the strong shock wave.

Further important development of this idea was due to Cabannes and Gatignol in the

seventies who introduced a systematic class of discrete velocity models. The structure of

the collision operators in the discrete velocity models mimics the polynomial character of

the Boltzmann collision integral. Discrete velocity models are implemented numerically

by using the natural operator splitting in which each update due to free flight is followed

by the collision update, the idea which dates back to Grad. One of the most important

recent results is the proof of convergence of the discrete velocity models with pair collisions

to the Boltzmann collision integral.

6 Direct simulation

Besides the analytical approach, direct numerical simulation of Boltzmann-type nonlinear

kinetic equations have been developed since mid of 1960s. The basis of the approach is a

representation of the Boltzmann gas by a set of particles whose dynamics is modeled as

a sequence of free propagation and collisions. The modeling of collisions uses a random

choice of pairs of particles inside the cells of the space, and changing the velocities of
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these pairs in such a way as to comply with the conservation laws, and in accordance with

the kernel of the Boltzmann collision integral. At present, there exists a variety of this

scheme known under the common title of the Direct Simulation Monte-Carlo method.

The DSMC, in particular, provides data to test various analytical theories.

7 Lattice Gas and Lattice Boltzmann models

Since mid of 1980s, the kinetic theory based approach to simulation of complex macro-

scopic phenomena such as hydrodynamics has been developed. The main idea of the

approach is construction of minimal kinetic system in such a way that their long-time

and large-scale limit matches the desired macroscopic equations. For this purpose, the

fully discrete (in time- space-velocity) nonlinear kinetic equations are considered on suf-

ficiently isotropic lattices, where the links represent the discrete velocities of fictitious

particles. In the earlier version of the lattice methods, the particle-based picture has been

exploited, subject to the exclusion rule (one or zero particle per lattice link) [the Lattice

gas model]. Most of the present versions use the distribution function picture, where

populations of the links are non-integer [the Lattice Boltzmann model]. Discrete-time

dynamics consists of a propagation step where populations are transmitted to adjacent

links and collision step where populations of the links at each node of the lattice are equi-

librated by a certain rule. Most of the present versions use the BGK-type equilibration,

where the local equilibrium is constructed in such a way as to match desired macroscopic

equations. The Lattice Boltzmann method is a useful approach for computational fluid

dynamics, effectively compliant with parallel architectures. The proof of the H theorem

for the Lattice gas models is based on the semi-detailed (or Stueckelberg’s) balance prin-

ciple. The proof of the H theorem in the framework of the Lattice Boltzmann method

has been only very recently achieved.

8 Other kinetic equations

8.1 The Enskog equation for hard spheres

The Enskog equation for hard spheres is an extension of the Boltzmann equation to

moderately dense gases. The Enskog equation explicitly takes into account the nonlocality

of collisions through a two-fold modification of the Boltzmann collision integral: First, the

one-particle distribution functions are evaluated at the locations of the centers of spheres,

separated by the non- zero distance at the impact. This makes the collision integral

nonlocal in space. Second, the equilibrium pair distribution function at the contact of the
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spheres enhances the scattering probability. The proof of the H theorem for the Enskog

equation has posed certain difficulties, and has led to a modification of the collision

integral.

Methods of solution of the Enskog equation are immediate generalizations of those

developed for the Boltzmann equation.

8.2 The Vlasov equation

The Vlasov equation (or kinetic equation for a self-consistent force) is the nonlinear equa-

tion for the one-body distribution function, which takes into account a long-range inter-

action between particles:

∂

∂t
f +

(

v,
∂

∂r
f

)

+

(

F,
∂

∂v
f

)

= 0,

where F =
∫

Φ(| r − r
′ |) r−r′

|r−r′|
n(r′)dr

′ is the self-consistent force. In this expression

Φ(| r − r
′ |) r−r′

|r−r′|
is the microscopic force between the two particles, and n(r′)is the

density of particles, defined self-consistently, n(r′) =
∫

f(r′, v)fdv.

The Vlasov equation is used for a description of collisionless plasmas in which case it

is completed by a set of Maxwell equation for the electromagnetic field. It is also used for

a description of the gravitating gas.

The Vlasov equation is an infinite-dimensional Hamiltonian system. Many special and

approximate (wave-like) solutions to the Vlasov equation are known and they describe

important physical effects. One of the most well known effects is the Landau damping:

The energy of a volume element dissipates with the rate

Q ≈ − | E |2
ω(k)

k2

df0

dv

∣

∣

∣

∣

∣

v= ω

k

,

where f0 is the Maxwell distribution function, | E | is the amplitude of the applied

monochromatic electric field with the frequency ω(k) , k is the wave vector. The Landau

damping is thermodynamically reversible effect, and it is not accompanied with an entropy

increase. Thermodynamically reversed to the Landau damping is the plasma echo effect.

8.3 The Smoluchowski equation

Diffusion of particles combined with their reactions has been first studied by R. von

Smoluchowski. The simplest (phenomenological) models for concentration ci of particles

of the i-th species are described with reaction type equations:

∂ci(x, t)

∂t
= Di∇

2ci(x, t) + Pi(c),
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where Di > 0 are diffusion coefficients, whereas Pi(c) are reaction rates, usually given

by mass action low or its generalizations. At present time, there exist a large number

of generalizations of the Smoluchowski equation, including formulations on the level of

two-body distribution functions, coupling to hydrodynamic equation, etc.

Modern development of nonlinear kinetics follows the route of specific numerical meth-

ods, such as direct simulations. An opposite tendency is also clearly observed, and the

kinetic theory based schemes are increasingly used for the development of numerical meth-

ods and models in mechanics of continuous media.
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