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Abstract – We study coupled irreversible processes. For linear or linearized kinetics with
microreversibility, ẋ=Kx, the kinetic operator K is symmetric in the entropic inner product.
This form of Onsager’s reciprocal relations implies that the shift in time, exp(Kt), is also a
symmetric operator. This generates the reciprocity relations between the kinetic curves. For
example, for the Master equation, if we start the process from the i-th pure state and measure
the probability pj(t) of the j-th state (j �= i), and, similarly, measure pi(t) for the process, which
starts at the j-th pure state, then the ratio of these two probabilities pj(t)/pi(t) is constant in
time and coincides with the ratio of the equilibrium probabilities. We study similar and more
general reciprocal relations between the kinetic curves. The experimental evidence provided as an
example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental
data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer
excellent confirmation within the experimental error.

Copyright c© EPLA, 2011

Introduction. –

A bit of history. In 1931, L. Onsager [1,2] gave the
backgrounds and generalizations to the reciprocal rela-
tions introduced in 19th century by Lord Kelvin and
H. v. Helmholtz. In his seminal papers, L. Onsager
mentioned also the close connection between these rela-
tions and the detailed balancing of elementary processes: at
equilibrium, each elementary transaction should be equili-
brated by its inverse transaction. This principle of detailed
balance was known long before for the Boltzmann equa-
tion [3]. A. Einstein used this principle for the linear kinet-
ics of emission and absorption of radiation [4]. In 1901, R.
Wegscheider published an analysis of detailed balance for
chemical kinetics [5].
The connections between the detailed balancing and

Onsager’s reciprocal relations were clarified in detail by
N. G. v. Kampen [6]. They were also extended for various
types of coordinate transformations which may include
time derivatives and integration in time [7]. Recently [8],
the reciprocal relations were derived for nonlinear
coupled transport processes between reservoirs coupled
at mesoscopic contact points. Now, an elegant geometric
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framework is elaborated for Onsager’s relations and their
generalizations [9].
Onsager’s relations are widely used for extraction of

kinetic information about reciprocal processes from exper-
iments and for the validation of such information (see,
for example, [10]): one can measure how process A affects
process B and extract the reciprocal information, how B
affects A.
The reciprocal relations were tested experimentally for

many systems. In 1960, D. G. Miller wrote a remarkable
review on experimental verification of the Onsager recip-
rocal relations which is often referred to even now [11].
Analyzing many different cases of irreversible phenom-
ena (thermoelectricity, electrokinetics, isothermal diffu-
sion, etc), Miller found that these reciprocal relations are
valid. However, regarding the chemical reactions, Miller’s
point was : “The experimental studies of this phenomenon
. . . have been inconclusive, and the question is still open
from an experimental point”.
According to Onsager’s work [1], the fluxes in chemical

kinetics are time derivatives of the concentrations and
potentials are expressed through the chemical potentials.
The fluxes (near equilibrium) are linear functions of
potentials and the reciprocal relations state that the
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coefficient matrix of these functions is symmetric. It is
impossible to measure these coefficients directly. To find
them one has to solve the inverse problem of chemical
kinetics. This problem is often ill-posed.
Such a difficulty, appearance of ill-posed problems in the

verification of the reciprocal relations, is typical because
these relations connect the kinetic coefficients. Sometimes
it is possible to find them directly in separate experiments
but if it is impossible then the inverse problem arises with
all the typical difficulties.
In our work we, in particular, demonstrate how it is

possible to verify the reciprocal relations without the
differentiation of the empiric kinetic curves and solving
the inverse problems, and present the experimental results
which demonstrate these relations for one reaction kinetic
system. For this purpose, we have to formulate the recip-
rocal relations directly between the measurable quantities.
These reciprocal relations between kinetic curves use the

symmetry of the propagator in the special entropic inner
product. A dual experiment is defined for each ideal kinetic
experiment. For this dual experiment, both the initial
data and the observables are different (they exchange
their positions), but the results of the measurement is
essentially the same function of time.

The structure of the paper. We start from the classical
Onsager relations and reformulate them as conditions on
the kinetic operator K for linear or linearized kinetic
equations ẋ=Kx. This operator should be symmetric
in the entropic inner product, whereas the matrix L
that transforms forces into fluxes should be symmetric
in the standard inner product, i.e. Lij =Lji. The form
of reciprocal relations with special inner product is well
known in chemical and Boltzmann kinetics [12,13]. They
are usually proved directly from the detailed balance
conditions. Such relations are also universal just as the
classical relations are.
Real functions of symmetric operators are also symmet-

ric. In particular, the propagator exp(Kt) is symmetric.
Therefore, we can formulate the reciprocal relation
between kinetic curves. These relations do not include
fluxes and time derivatives, hence, they are more robust.
We formulate them as the symmetry relations between the
observables and initial data (the observables–initial-data
symmetry).
A particular case of this symmetry for a network

of monomolecular chemical reactions or for the Master
equation, which describe systems with detailed balance,
seems rather unexpected. Let us consider two situations
for a linear reaction network.

1. The process starts at the state “everything is in Aq”,
and we measure the concentration of Ar. The result
is car(t) (“how much Ar is produced from the initial
Aq”).

2. The process starts at the state “everything is in Ar”,
and we measure the concentration of Aq. The result

is cbq(t) (“how much Aq is produced from the initial
Ar”) (the dual experiment).

The results of the dual experiments are connected by the
identity

car(t)

ceqr
≡
cbq(t)

ceqq
,

where c are concentrations and ceq are equilibrium concen-
trations.
The symmetry with respect to the observables–initial-

data exchange gives the general rule for production of the
reciprocal relations between kinetic curves.
Many real processes in chemical engineering and

biochemistry include irreversible reactions, i.e. the reac-
tions with a negligible (zero) rate of the reverse reaction.
For these processes, the microreversibility conditions and
the backgrounds of classical Onsager relations are not
applicable directly. Nevertheless, they may be considered
as limits of systems with microreversibility when some
of the rate constants for inverse reactions tend to zero.
We introduce the correspondent weak form of detailed
balance, formulate the necessary and sufficient algebraic
conditions for this form of detailed balance and formulate
the observables–initial-data symmetry for these systems.
The experimental evidence of the observables–initial-

data symmetry is presented for the reversible water gas
shift reaction over iron oxide catalyst. The experimental
data are obtained using Temporal Analysis of Products
(TAP) pulse-response studies. These offer excellent confir-
mation within experimental error.

Two forms of the reciprocal relations: forces,

fluxes and entropic inner product. – Let us consider
linear kinetic equations or kinetic equations linearized near
an equilibrium xeq (sometimes, it may be convenient to
move the origin to xeq):

ẋ=Kx. (1)

In the original form of Onsager’s relations, the vector
of fluxes J and the vector of thermodynamic forces X
are connected by a symmetric matrix, J =LX, Lij =Lji.
The vector X is the gradient of the corresponding ther-
modynamic potential: Xi = ∂Φ/∂xi. For isolated systems,
Φ is the entropy. For other conditions, other thermody-
namic potentials are used. For example, for the constant
volume V and temperature T conditions, Φ is −F/T and
for the constant pressure P and temperature conditions,
Φ is −G/T , where F is the Helmholtz energy (free energy)
and G is the Gibbs energy (free enthalpy). These free
entropy functions are also known as the Massieu-Planck
potentials [14]. Usually, they are concave.
For the finite-dimensional systems, like chemical kinet-

ics or the Master equation, the dynamics satisfy the linear
(linearized) kinetic equation ẋ=Kx, where

Kij =
∑

l

Lil
∂2Φ

∂xl∂xj

∣

∣

∣

∣

xeq

, i .e. K =L(D2Φ)xeq .
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Thismatrix is not symmetric but the product (D2Φ)xeqK =
(D2Φ)xeqL(D

2Φ)xeq is already symmetric, hence, K is
symmetric (self-adjoint) in the entropic scalar product

〈a |Kb〉Φ ≡ 〈Ka | b〉Φ, (2)

where

〈a | b〉Φ =−
∑

ij

ai
∂2Φ

∂xl∂xj

∣

∣

∣

∣

xeq

bj . (3)

Further on, we use the angular brackets for the entropic
inner product (3) and its generalizations and omit the
subscript Φ.
For the spatially distributed systems with transport

processes, the variables xi are functions of the space
coordinates ξ, the equations of divergence form appear,
∂txi =−∇ξ ·Ji, thermodynamic forces include also gradi-
ents in space variables, Xi =∇ξ∂Φ/∂xi and the operator
K has the form

Kij =
∑

l

Lil
∂2Φ

∂xl∂xj

∣

∣

∣

∣

xeq

Δξ, i .e. K =L(D
2Φ)xeqΔξ,

where Δξ is the Laplace operator. This operator K is self-
adjoint in the inner product which is just the integral
in space of (3). The generalizations to inhomogeneous
equilibria, non-isotropic and non-Euclidian spaces are also
routine but lead to more cumbersome formulas.
Symmetric operators have many important properties.

Their spectrum is real, for a function of a real variable
f with real values it is possible to define f(K) through
the spectral decomposition of K, and this f(K) is also
symmetric in the same inner product. This property is
the cornerstone for further consideration.

Symmetry between observables and initial

data. – The exponential of a symmetric operator is also
symmetric, hence, Onsager’s relations (2) immediately
imply

〈a | exp(Kt) b〉 ≡ 〈b | exp(Kt) a〉. (4)

The expression x(t) = exp(Kt) b gives a solution to the
kinetic equations (1) with initial conditions x(0) = b.
The expression 〈a |x(t)〉 is the result of a measurement:
formally, for each vector a we can introduce a “device” (an
observer), which measures the scalar product of vector a
on a current state x.
The left-hand side of (4) represents the result of such

an experiment: we prepare an initial state x(0) = b, start
the process from this state and measure 〈a |x(t)〉. In the
right-hand side, the initial condition b and the observer a
exchange their positions and roles: we start from the initial
condition x(0) = a and measure 〈b |x(t)〉. The result is the
same function of time t.
This exchange of the observer and the initial state

transforms an ideal experiment into another ideal exper-
iment (we call them dual experiments). The left- and the
right-hand sides of (4) represent different experimental
situations but with the same results of the measurements.

This observation produces many consequences. As a
first class of examples, we present the time-reversible
Markov chains [15], or the same class of kinetic equations,
the monomolecular reactions with detailed balance (see
any detailed textbook in chemical kinetics, for example,
[12]).
Here a terminological comment is necessary. The term

“reversible” has three different senses in thermodynamics
and kinetics.

– First of all, processes with entropy growth are irre-
versible. In this sense, all processes under considera-
tion are irreversible.

– Secondly, processes with microreversibility, which
satisfy the detailed balance and Onsager relations,
are time-reversible (or, for short, one often calls them
“reversible”). We always call them time-reversible to
avoid confusion.

– In the third sense, reversibility is the existence of
inverse processes: if transition A→B exists then
transition B→A exists too. This condition is signifi-
cantly weaker than microreversibility.

“Time-reversibility” of irreversible processes sounds para-
doxical and requires comments. The most direct interpre-
tation of “time-reversing” is to go back in time: we take
a solution to dynamic equations x(t) and check whether
x(−t) is also a solution. For the microscopic dynamics (the
Newton or Schrödinger equations) we expect that x(−t) is
also a solution to the dynamic equations. Non-equilibrium
statistical physics combines this idea with the description
of macroscopic or mesoscopic kinetics by an ensemble of
elementary processes: collisions, reactions or jumps. The
microscopic “reversing of time” turns at this level into the
“reversing of arrows”: reaction

∑

i αiA→
∑

j βjBj trans-
forms into

∑

j βjBj→
∑

i αiA and conversely. The equi-
librium ensemble should be invariant with respect to this
transformation. This leads us immediately to the concept
of detailed balance: each process is equilibrated by its
reverse process. “Time-reversible kinetic process” stands
for “irreversible process with the time–reversible underly-
ing microdynamics”.
We consider a general network of linear reactions. This

network is represented as a directed graph (digraph) [12]:
vertices correspond to components Ai (i= 1, 2, . . . , n),
edges correspond to reactions Ai→Aj (i �= j). For each
vertex, Ai, a positive real variable ci (concentration)
is defined. For each reaction, Ai→Aj a non-negative
continuous bounded function, the reaction rate constant
kji > 0 is given. The kinetic equations have the standard
Master equation form

dci
dt
=
∑

j, j �=i

(kijcj − kjici). (5)
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The principle of detailed balance (“time-reversibility”)
means that there exists such a positive vector ceqi > 0 that
for all i, j (j �= i)

kijc
eq
j = kjic

eq
i . (6)

The following conditions are necessary and sufficient for
existence of such an equilibrium ceqi > 0:

– Reversibility (in the third sense): if kji > 0 then
kij > 0.

– For any cycle Ai1→Ai2→ · · ·→Aiq →Ai1 the prod-
uct of constants of reactions is equal to the product
of constants of reverse reactions,

q
∏

j=1

kij+1ij =

q
∏

j=1

kijij+1 , (7)

where iq+1 = i1. This is the Wegscheider identity [5].

It is sufficient to consider in conditions (7) a finite number
of basic cycles [12].
The free entropy function for the Master equation (5) is

the (minus) relative entropy

Y =−
∑

i

ci ln

(

ci
ceqi

)

. (8)

In this form, the function −RTY was used already by
L. Onsager [1] under the name “free energy”. The entropic
inner product for the free entropy (8) is

〈a | b〉=
∑

i

aibi
ceqi
. (9)

Let ca(t) be a solution of kinetic equations (5)
with initial conditions ca(0) = a. Then the reciprocity
relations (4) for linear systems with detailed balance take
the form

∑

i

bic
a
i (t)

ceqi
=
∑

i

aic
b
i (t)

ceqi
. (10)

Let us use for a and b the vectors of the standard basis in
R
n: ai = δiq, bi = δir, q �= r. This choice results in the useful
particular form of (10). We compare two experimental
situations, cai (0) = δiq (the process starts at the state
“everything is in Aq”) and c

b
i (0) = δir (the process starts

at the state “everything is in Ar”); for the first situation
we measure car(t) (“how much Ar is produced from the
initial Aq”), for the second one we measure c

b
q(t) (“how

much Aq is produced from the initial Ar”). The reciprocal
relations (10) give

car(t)

ceqr
=
cbq(t)

ceqq
. (11)

More examples of such relations for chemical kinetics are
presented in [16]. It is much more straightforward to check

experimentally these relations between kinetic curves than
the initial Onsager relations between kinetic coefficients.
We give an example of such an experiment below. For
processes distributed in space, instead of concentrations
of A and B some of their Fourier or wavelet coefficients
appear.

Weak form of detailed balance. – For many real
systems some of the elementary reactions are practically
irreversible. Hence the first condition of detailed balance,
the reversibility (if kji > 0 then kij > 0) may be violated.
Nevertheless, these systems may be considered as limits of
systems with detailed balance when some of the constants
tend to zero. For such limits, the condition (7) persists,
and for any cycle the product of constants of direct
reactions is equal to the product of constants of reverse
reactions.
This is a weak form of detailed balance without the

obligatory existence of a positive equilibrium. In this
section, we consider the systems, which satisfy this weak
condition, the weakly time-reversible systems.
For a linear system, the following condition is neces-

sary and sufficient for its weak time-reversibility: in any
cycle Ai1→Ai2→ · · ·→Aiq →Ai1 with strictly positive
constants kij+1ij > 0 (here iq+1 = i1) all the reactions are
reversible (kijij+10) and the identity (7) holds.
The components Aq and Ar (q �= r) are strongly

connected if there exist oriented paths both from Aq to
Ar and from Ar to Aq (each oriented edge corresponds
to a reaction with nonzero reaction rate constant). It is
convenient to consider an empty path from Ai to itself as
an oriented path.
For strongly connected components of a weakly time-
reversible system, all reactions in any directed path
between them are reversible. This is a structural condition
of the weak time-reversibility.
Under this structural condition, the classes of strongly

connected components form a partition of the set of
components: these classes either coincide or do not inter-
sect and each component belongs to one of them. Each
cycle belongs to one class.
Let Aq and Ar be strongly connected. Let us select

an arbitrary oriented path p between Aq and Ar: Aq↔
Ai1↔Ai2↔ · · ·↔Ail↔Ar. For the product of direct
reaction rate constants in this path we use K+p and for the
product of reverse reaction rate constants we use K−p . The
ratio Krq =K

+
p /K

−
p does not depend on the path p and

characterizes the pair Ar, Aq, because of the Wegscheider
identity (7). This is the quantitative criterion of the weak
time-reversibility.
The constant Krq is an analogue to the equilibrium

constant. Indeed, for the systems with positive equilibrium
and detailed balance, Krqc

eq
q = c

eq
r and Krq = c

eq
r /c

eq
q .

For weakly time-reversible system, the reciprocal rela-
tions between kinetic curves can be formulated for any
strongly connected pair Aq and Ar. Exactly for the same
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pair of kinetic curves, as in (11), we obtain

car(t)

cbq(t)
=Krq. (12)

This formula describes two experiments: i) we start the
system at t= 0 from the pure Aq and measure cr(t), then
ii) we start at t= 0 from the pure Ar and measure cq(t).
The ratio of these two kinetic curves, cr(t)/cq(t) does not
depend on t and is equal to the generalized equilibrium
constant Krq.
The weak form of the Wegscheider identity for general

(nonlinear) kinetic systems is also possible. Let us consider
the reaction system:

αr1A1+ · · ·+αrnAn→ βr1A1+ · · ·+βrnAn, (13)

which satisfies the mass action law: ċ=
∑

r γrkr
∏

i c
αi
i ,

where kr > 0, γri = βri−αri is the stoichiometric vector of
the r-th reaction, and the reverse reactions with positive
constants are included in the list (13) separately.
Let us consider linear relations between vectors {γr}:

∑

r

λrγr = 0 and λr �= 0 for some r. (14)

If all the reactions are reversible then the principle of
detailed balance gives us the identity [12]:

∏

r

(k+r )
λr =

∏

r

(k−r )
λr (15)

for any linear relation (14). For reversible reactions, we can
take λr � 0 in (15) for all r: if we substitute the reactions
with λr < 0 by their reverse reactions, then γr and λr
change signs. It is sufficient to consider only the cone Λ+
of non-negative relations (14) (λr � 0) and take in (15) the
direction vectors of its extreme rays. Let k−r = 0 for some
r. The weak form of the identity (15) is
For any extreme ray of Λ+ with a direction vector

λr � 0 the reactions which correspond to the positive coef-
ficients λr > 0 are reversible (k

−
r > 0) and their constants

satisfy the identity (15).

Nonlinear examples. – It seems impossible to find
a general relation between kinetic curves for general non-
linear kinetics far from equilibrium. Nevertheless, simple
examples encourage us to look for a non-trivial theory
for some classes of nonlinear systems. In this section,
we give two examples of nonlinear elementary reactions
which demonstrate the equilibrium relations between non-
equilibrium kinetic curves [16].

2A↔B. The linear conservation law is cA+2cB =
const. Let us take two initial states with the same value
cA+2cB = 1: (a) cA(0)= 1, cB(0)= 0 and (b) cA(0)= 0,
cB(0) = 1/2. We will mark the corresponding solutions by
the upper indexes a, b. The mass action law gives

ċA =−2k+c2A+ k−(1− cA), cB = (1− cA)/2. (16)

The analytic solution easily gives

caB(t)

caA(t)c
b
A(t)

=
k+

k−
=Keq =

ceqB
(ceqA )

2
, (17)

the denominator involves the A concentrations of both
trajectories, ca (started from cA(0) = 1, cB(0) = 0) and c

b

(started from cA(0) = 0, cB(0) = 1/2). A ratio is equal to
the equilibrium constant at every time t > 0. This identity
between the non-stationary kinetic curves reproduces the
equilibrium ratio.

2A↔ 2B. The linear conservation law is cA+ cB =
const. Let us take two initial states with the same
value cA+ cB = 1: a) cA(0)= 1, cB(0)= 0 and b) cA(0)= 0,
cB(0) = 1. The kinetic equation is

ċA =−2k+c2A+ k−(1− cA)2, cB = 1− cA. (18)

It can be solved analytically. For this solution,

caB(t)c
b
B(t)

caA(t)c
b
A(t)

=
k+

k−
=Keq =

(ceqB )
2

(ceqA )
2
, (19)

both the numerator and denominator include trajectories
for both initial states, a and b. This identity between the
kinetic curves also reproduces the equilibrium ratio.

Experimental evidences. – In this work, we inves-
tigate the validity of the reciprocal relations using the
TAP (Temporal Analysis of Products) technique proposed
by Gleaves in 1988 [17]. It has been successfully applied
in many areas of chemical kinetics and engineering for
non–steady-state kinetic characterization [18]. The stud-
ied reaction is a part of the reversible water gas shift
reaction over iron oxide catalyst. The overall reaction is
H2O+CO↔H2+CO2.
Experimental set-up. The TAP reactor system used

in this work is made of quartz and is of the size 33mm
bed-length and 4.75mm inner diameter. The products and
the unreacted reactants coming out of the reactor are
monitored by a UTI 100C quadrupole mass spectrometer
(QMS). The number of molecules admitted during pulse
experiments amounts to 1015 molecules/pulse.
To ensure uniformity of the catalyst along the bed, we

use a thin-zone TAP reactor (TZTR), the width of the
catalyst zone being 2mm. Experiments were performed
over 40mg of Fe2O3 catalyst. The catalyst was packed in
between two inert zones of quartz particles of the same
size (250<dp < 500μm). The temperature of the reactor
was measured by a thermocouple positioned in the center
of the catalyst bed. Several single-pulse experiments were
performed by pulsing CO or CO2 at the temperature of
780K. In all the experiments, the reaction mixture was
prepared with Ar as one of the components, so that the
inlet amount of the components can be determined from
the Ar response.

Application to the measurements. In a thin-zone TAP
reactor, the diffusion occurring in the inert zones flanking
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Fig. 1: Fourier domain result values for the “B from A/A from
B” ratio (20), vs. frequency f in Hz (so that ω= 2πf , s= iω);
real and imaginary part. The error bars were obtained from
10000 resampled measurements.

the thin reactive zone must be accounted for. The Knudsen
regime in these zones guarantees a linear behaviour, so
that the resulting outlet fluxes can be expressed in terms
of convolutions. Switching to the Laplace domain greatly
facilitates the analysis, and we can prove in general that
the fixed proportion property is equivalent to the following
equality in terms of the exit fluxes FBA of gas B given a
unit inlet pulse of gas A and FAB , of A given a unit inlet
pulse of B, see [19]:

Keq =
(cosh

√
sτ1,A)(

√
τ3,B sinh

√
sτ3,B)

(cosh
√
sτ1,B)(

√
τ3,A sinh

√
sτ3,A)

LFBA(s)
LFAB (s)

(20)

identically in the Laplace variable s, where τi,G =
ǫiL

2
i /DG, ǫi denoting the packing density of the i-th zone,

Li its length, and DG the diffusivity of gas G. To apply
this in practice, we set s= iω and switch to the Fourier
domain.
Performing these corrections, with A denoting CO and

B CO2, the results of fig. 1 in the Fourier domain are
obtained. The real and imaginary parts of the right-hand
side in (20) are graphed, with error bars corresponding
to three times the standard deviation estimated from
resampling 10000 times the exit flux measurements
using their principal error components. Ideally, all imag-
inary values should be zero; we see that zero does lie
within all the confidence intervals. We also see that the
smallest error in the real parts occurs for the second
frequency, 2.2Hz. This confidence interval lies snugly
within the others, offering confirmation that (within
experimental error) the same value for all frequencies is
obtained.

Conclusion. – The shift in time operator is symmetric
in the entropic inner product. Its symmetry allows us to
formulate the symmetry relations between the observables
and initial data. These relations could be validated with-
out differentiation of empiric curves and are, in that sense,
more robust and closer to the direct measurements. For

the Markov processes and chemical kinetics, the symme-
try relations between the observables and initial data have
an elegant form of the symmetry between “A produced
from B” and “B produced from A”: their ratio is equal
to the equilibrium constant and does not change in time
(11), (12). For processes distributed in space, instead of
concentrations of A and B some of their Fourier or wavelet
coefficients appear.
The symmetry relations between the observables and

initial data have a rich variety of realizations, which makes
the direct experimental verification possible. On the other
hand, this symmetry provides the possibility to extract
information about the experimental data through the dual
experiments. These relations are applicable to all systems
with microreversibility.
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