
d(h(a), a ) < s ( a )  and  h(A)crintQXs5 I t  i s  p o s s i b l e  t o  v e r i f y  t h a t  h: A ~ ( ( - - l . t )  X s )  ~ i s  an 
inclusion that is identical on B and h(A) is a closed set in s x s ~. Since h(A)=U{h(A)n 
X~jn ~ I} is the countable union of Z-sets, h(A) is itself a Z-set. This means that h is a 
Z-inclusion that is ~ -close to idIA. The lemma is proved. 

Note that ifBcAn(oXs'), then h(A)cdXs'; thus, it has been shown that the space 
o x s is a ~-absorbing set in s x s. 

In conclusion, the author would like to express kind appreciation to M. M. Zarichniy 
for attention in the work and the useful discussion of results. 
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JOINTLY DISSIPATIVE OPERATORS AND THEIR APPLICATIONS 

V. I. Verbitskii and A. N. Gorban' UDC 517.9 

The jointly dissipative operators introduced by Verbitskii and Gorban' [i] find appli- 
cation in the analytis of dynamical properties of nonlinear systems of ordinary differential 
equations [i, 2] and in some applications (chemical kinetics [I, 2], numerical analysis). 
In the present paper we discuss the properties of jointly dissipative operators and some of 
their applications. 

Let g be an n-dimensional real or complex linear space, and let L(E) be the space of 
linear operators in E. Let us introduce a norm II" li on E and the corresponding norm in L(E). 
An operator A~L(E) is said to be dissipative [4] if Ilexp(tA);i~i for all t~>0. 

Definition I. An operator A~L(E) is said to be roughly dissipative if there is an 
e > 0 such that llexp(tA)il~<exp(-~ 0 for all t~>0. 

The dissipativity of an operator is determined by the sign of its Lozinskii logarithmic 
norm [5] : 

? (A) = lira IIf '-- hA !f - - I I  
h~+o h 

where I is the identity operator. It is easy to show that an operator is dissipative [respo, 
roughly dissipative] with respect to a given norm if the corresponding Lozinskii norm is 
nonpositive [resp., negative]. Since for Euclidean and polyhedral nor~ns the logarithmic norm 
of an operator is relatively easy to express through its matrix elements [5, 6], verifying 
dissipativity [resp., rough dissipativity] of an operator in such norms is not a complicated 
task. 

It is readily seen that a norm with respect to which a given operator A is dissipative 
exists if and only if the system 

$x 
d-T = Ax ( i ) 
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is Lyapunov-stable. As is known [7], in order for this to be the case it is necessary and 
sufficient that the spectrum of A lie in the closed left half-plane and the set of Jordan 
blocks corresponding to purely imaginary eigenvalues (including the zero eigenvalue) be 
diagonal. For the existence of a norm with respect to which the operator A will be roughly 
dissipative it is necessary and sufficient that the system (i) be asymptotically stable, 
i.e., that the matrix of A be stable (i.e., that the spectrum of A Lie in the open left half- 
plane). This condition is verified constructively by means of the Routh-Hurwitz criterion 
[7]. 

The notions of dissipativity and rough dissipativity can be interpreted geometrically 
as follows. For each point x of the unit sphere (IIxU = i) one defines an open cone Qx, 
directed "strictly inward" the unit ball: y ~Q~ if and only if there exists an ~0 > 0 such 
thatIlr§ i for all ~(0~ ~0) . In [i] it is proved that an operator A~L(E) is roughly- 
dissipative in a given norm if and only if for any point x of the unit sphere Az~Q~, and the 
operator A is dissipative if and only if for any point x of the unit sphere Ax belongs to Qx 
(the closure of Qx)" 

As a consequence of this result the set of all operators that are roughly dissipative 
with respect to a norm IL'II can be identified with the interior of the set of all operators 
that are dissipative with respect to II'II. Therefore, the rough dissipativityIproperty is 
preserved under small perturbations of operators. 

In [i] it is also established that the dissipative [resp., roughly dissipative] opera- 
tors in a given norm form a closed [resp., open] cone. This cone is uniquely determined by 
the norm up to a scalar factor. 

Let us now give our main 

Definition 2. A family of operators {As} is said to be jointly dissipative [resp., 
jointly roughly dissipative] if there exists a norm with respect to which all operators A s 
are dissipative [resp., roughly dissipative]. 

The need for this definition can be motivated, for example, by the fact that operators 
that are dissipative, each in its own norm, are not necessarily jointly dissipative. Indeed, 
consider the operators given by the matrices 

A1 = - - I  : A2 = 3 1 " 

E a c h  o f  t h e m  i s  r o u g h l y - d i s s i p a t i v e  i n  i t s  own n o r m ,  b e c a u s e  t h e  m a t r i c e s  A 1 a n d  A 2 a r e  
s t a b l e .  H o w e v e r ,  

A I +  A 2 =  3 - - 2 "  

The  s p e c t r u m  o f  t h i s  m a t r i x  c o n t a i n s  t h e  p o i n t  I = 1,  w h i c h  d o e s  n o t  b e l o n g  t o  t h e  c l o s e d  
l e f t  h a l f - p l a n e .  T h u s ,  t h e  o p e r a t o r  (A x + A 2) i s  n o t  d i s s i p a t i v e ,  w h a t e v e r  t h e  n o r m ,  a n d  
therefore the operators A I and A 2 are not jointly dissipative. 

The problem of finding necessary and sufficient conditions for the joint dissipativity 
of an arbitrary family of operators is apparently extremely difficult. Some sufficient con- 
ditions can be obtained by imposing various constraints on the operators. The sufficient 
conditions of joint dissipativity given below are based on algebraic properties of the given 
family. Recall [8] that a family of matrices generates a solvable Lie algebra if and only 
if its members are simultaneously reducible to triangular form in some complex basis. 

THEOREM i. Suppose the family {A~} is compact, generates a solvable Lie algebra, and 
all matrices A~ are stable. Then {A~} is jointly roughly dissipative. 

We first carry out the proof for the case of a complex space E. Consider the matrices 
n �9 A s in basis {ek}k= 1 in which they are triangular. Suppose each matrix A s has the form 

~ 0 o . . .  0 / 
~ ~ o . . .  o 

A n =  " . . . .  . ( 2 )  
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n 
Let us show that there exists a set of positive numbers {ak}n= I such that all A s are roughly 
dissipative in the norm 

ilzlt= max {Izhl/ak}, (3) 
IKhKn 

where z k is the k-th coordinate of the vector z in the basis {ek}. Clearly, a ball in this 
norm is a polycylinder 

Iz~[ ~ a ;  ( k = l ,  . . . ,  n). (4) 

The norm (3) coincide with the s with respect to the basis {akek}. Using the 
explicit form of the Lozanskii norm for the s [6J, we infer that the conditions of 
rough dissipativity of the matrices (2) with respect to the norm (3) have the form 

h--1 

~_ a j lpk~j l+a~ .ReXh<0 ( k = 2  . . . .  ,n); a , > 0 .  (5)  
J = l  

Set  ~ =  sup lg~ ~f; ~ = - - s u p r e m e .  From t h e  h y p o t h e s e s  o f  t h e  theorem i t  f o l l o w s  t h a t  0 < 
a,h~l  a,k 

< +~ and 0 < p < +~. In  o r d e r  f o r  (5) t o  be s a t i s f i e d  i s  s u f f i c e s  t h a t  t h e  f o l l o w i n g  i n -  
e q u a l i t i e s  h o l d :  

(alq-...+az-~).u<a~, ( k = 2 ,  ..., n); el>0. (6)  

L e t  us  show t h e  c o m p a t i b i l i t y  o f  sys t em ( 6 ) .  Se t  a~ = 1. Then choose  t h e  r e m a i n i n g  a k so 
t h a t  

a2 > g/X; a3 > (1  +a2)~/K; ...; a~ > ( 1  + a 2 + . . . +  q~-l)~/k. (7)  

Then i n e q u a l i t i e s  (6 )  ho ld ,  and the  theorem i s  e s t a b l i s h e d  in  t he  case where E i s  complex.  

Now suppose E i s  a r e a l  space. In  t h i s  case we c o n s i d e r  t he  i n t e r s e c t i o n  o f  t he  p o l y -  
cylinder (4) with the original space E. We obtain a ball in a norm with respect to which the 
family {As} is jointly roughly dissipative. This completes the proof of the theorem. 

If instead of roughly dissipative we simply consider dissipative operators, the analogue 
of Theorem 1 is no longer true starting with the real dimension 4 (respectively, complex di- 
mension 2). A counterexample is constructed as follows. In C ~ consider the two matrices 

Each of them is dissipative in its own norm (their spectra lie in the closed left half-plane , 
and the matrices are simultaneously reducible to diagonal form)~ A finite family is compact. 
Moreover~ A I and A 2 generate a solvable Lie algebra. However, 

The unique eigenvalue of this matrix is purely imaginary, and it cannot be reduced to diagonal 
form. Therefore, this matrix is not dissipative, whatever the norm, i.e., the matrices A I 
and A 2 are not jointly dissipative. To produce a counterexample over the real field, it re- 
main to realify the matrices: 

i t 0 0 

A ~ =  0 00-- 

0 O2 

o o 
0 0 - -  " 

O~ 

In order that the assertion on joint dissipativity remain in force for operators that 
are not roughly dissipative, it suffices to strengthen the compactness requirement to finite- 
ness, and that of solvability to nilpotency. It is known [8] that to any operator A in a 
space E there corresponds the operator adA in L(E), acting according to the rule 

(ad A)B ~ A B - B A .  

A family {A~} generates a nilpotent Lie 'algebra if and only if there exists an m~N 
such that for any collection {Aah}n~irepetition of elements is allowed) and any a one has that 

kfI (ad A~h) A~ = 0. (8)  
=1  
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A nilpotent Lie algebra is always solvable. A commutative algebra is obviously nil- 
potent (for it m = i), and hence solvable. 

THEOREM 2. Suppose the family {Aa} is finite, generates a nilpotent Lie algebra, and 
for each operator A~ there exists a norm with respect to which A~ is dissipative. Then the 
family {A~} is jointly dissipative. 

Sketch of the Proof. With no loss in generality one can assume that none of the opera- 
tors Aa is scalar (if A = II, whereRei~<0, then A is dissipative in any norm) and that for 
at least one of them (call it A I) the spectrum contains purely imaginary eigenvalues (other- 
wise we would be in the hypotheses of Theorem i). 

The proof is carried out by induction on the dimension of the space. In dimension 1 the 
assertion of the theorem is trivial. Let I be a purely imaginary eigenvalue of A I, and let E' 
be the corresponding eigensubspace (in view of the fact that the corresponding Jordan blocks 
are diagonal, E' coincides with all root subspaces corresponding to I). Let E" be the sum 
of root subspaces corresponding to all other eigenvalues of A. Clearly, E decomposes into 
the direct sum of E' and E". From the fact that the Lie algebra generated by {As} is nil- 
potent one can infer that E' and E" are invariant under all operators A~. Moreover, dimE' < 
n, dimE" < n; otherwise, A is scalar. To complete the proof it remains to use a simple fact: 
if a space E is decomposed into a direct sum of subspaces E i that are invariant under the 
family {As} and the restriction of {As} to any E i is jointly dissipative [resp., jointly 
roughly dissipative], then {A~} is itself jointly dissipative [resp., jointly roughly dissi- 
pat ive ]. 

A particular consequence of Theorems i and 2 is that a compact [resp., finite] commu- 
tative family of operators, each of which is roughly dissipative [resp., dissipative] in its 
own norm is jointly roughly dissipative [resp., jointly dissipative]. 

To conclude the paper let us consider some applications of joint dissipativity to the 
dynamics of nonlinear systems. 

We shall consider nonlinear, generally speaking nonautonomous systems of the form 

dx 
dt - - / ( x ,  t), (9) 

where f is an R '~ -valued map of class Cl,~ x S) (i.e., smooth in x forx~U, with U a do- 
main inR'~, and continuous in t for t~S, with S either a ray [O; +~), with0~R, or the full 
real line R). Let B c U be a convex forward-invariant set of system (9). 

Definition 3 [I]. System (9) is said to be contractive [resp., exponentially contrac- 
tive] on the set B with respect to the norm 11"ll if there exists an ~ ~0 such that for any two 
solutions x1(t), x2(t) of (9) with initial conditions xl(to)~B, x2(~)~B (toES) the inequality 

Ilxl ( t )  - -  x2 (t)J! ~ exp  ( - e  (t  - s)  )llxl (s) - -  x2 (s)[I ( 1 0 )  

h o l d s  f o r  a l l  t > s ~ t 0 .  

Clearly, a system that is contractive [resp., exponentially contractive] on a set B with 
respect to some norm is stable [resp., exponentially stable] in the wide sense [9] with re- 
spect to B. 

We shall denote by J(x, t) the restriction of the derivative of the map f with respect 
to x to the subspace parallel to the affine hull of B. 

THEOREM 3. If order that the system (9) be contractive [resp., exponentially contrac- 
tive] on B in the norm II-II it is necessary and sufficient that there exist a v ~0 [resp., 

v > O] such that 

~(](x, t ) ) < - v  (11) 

for all x ~B. t ~ S (where y is the Lozanskii norm corresponding to ll-il). If this is the case, 

then inequality (10) holds with e = v. 

From Theorem 3 it follows that for the existence of a norm with respect to which the 
system (9) will be contractive [resp., exponentially contractive] it is necessary and suffi- 
cient that the operators J(x, t)(x~B, tES) be jointly dissipative [resp., that there exists 
a ~ > 0 such that the operators {J(x, t) + ~I} are jointly dissipative; if B is compact and 
the system is autonomous, then the last condition means that the operators J(x, t) are jointly 

roughly dissipative]. 
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Sketch of the Proof. One shows that inequality (i0) holds for system (9) if and only if 
it holds for the solutions of any variational system corresponding to (9). After this, the 
necessity and sufficiency of inequality (ii) is established by resorting to the following 
estimate of the solutions of the system dx/dt = A(t)x: 

d 
,~-r II ~: (t)il ~< V (.t (t))tf x (0 I!- 

In this way, the problem of contractivity has been reduced to a problem of joint dissipativ- 
ity. Theorem 3 can be used, for example, to investigate the stability of systems of chemical 
kinetics [i, 2]. 

Let us consider the autonomous system 

dx 
f i t  - -  f(~:)' (12) 

where f(x) is a twice-differentiable map (UcR" ~ R~). Let B c U be a convex, compact, for- 
ward-invariant set for (12), let J(x) denote the Jacobi matrix of f, let Tt, t ~0 , be the 
time-t map of the phase flow of system (12). Let M= n TtB be the maximal attractor of 

system (12) in B. Define a linear operator R ~ in the k-th exterior power of~as follows: 

~.,~(u, A . . .  A ~ )  = (J ,y , )  A ~ A . . -  A u~ + ~, A ( J ~ )  A . . .  A y~+  . . -  ~ y, A . . .  A ~ - ~  A CY~) .  

THEOREM 4. If the family {~ (x~B)} is jointly roughly dissipative, then the Hausdorff 
dimension of M does not exceed k [i0]. 

Theorem 4 represents a generalization of a result of ll'yashenko and Chetaev [10g Ii] 
(the conditions of the ll'yashenko-Chetaev theorem actually reduce to the joint dissipativity 
of the operators ~ is a concrete Euclidean norm). The proof is carried out following the 
same scheme as in [I0], Theorem 4 allow one, under wider hypotheses than in [I0, Ii], to 
estimate the Hausdorff dimension of attractors of autonomous systems. 

In conclusion let us point out that the utilization of joint dissipativity of operators 
allows one to generalize a number of known theorems on stability [12, 13]. 
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