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Abstract

Three results are presented: First, we solve the problem of persistence of dissipation for reduc-
tion of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied.
Uniqueness of the thermodynamic projector is proven: There exists only one projector which
transforms any vector 8eld equipped with the given Lyapunov function into a vector 8eld with
the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov
function levels.

Second, we use the thermodynamic projector for developing the short memory approximation
and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation
the entropy production increases. (The theorem about entropy overproduction.)

In example, we apply the thermodynamic projector to derive the equations of reduced kinet-
ics for the Fokker–Planck equation. A new class of closures is developed, the kinetic multi-
peak polyhedra. Distributions of this type are expected in kinetic models with multidimensional
instability as universally as the Gaussian distribution appears for stable systems. The number
of possible relatively stable states of a nonequilibrium system grows as 2m, and the number of
macroscopic parameters is in order mn, where n is the dimension of con8guration space, and m
is the number of independent unstable directions in this space. The elaborated class of closures
and equations pretends to describe the e=ects of “molecular individualism”. This is the third
result.
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1. Introduction

Reduction of description for dissipative kinetics assumes (explicitly or implicitly) the
following picture: There exists a manifold of slow motions in the space of distributions.
From the initial conditions the system goes quickly in a small neighborhood of the
manifold, and after that moves slowly along it.
There are three basic problems in the model reduction:

(1) How to construct the slow manifold?
(2) How to project the initial equation onto the constructed slow manifold, i.e., how

to split motions into fast and slow?
(3) How to improve the constructed manifold and the projector in order to make the

manifold more invariant and the motion along it slower?

The 8rst problem is often named “the closure problem”, and its solution is the closure
assumption; the second problem is “the projection problem”. Sometimes these problems
are discussed and solved simultaneously (for example, for the quasiequilibrium, or,
which is the same, for MaxEnt closure assumptions [1–5]). Sometimes solution of the
projection problem after construction of anzatz takes a long time. The known case of
such a problem gives us the Tamm–Mott-Smith approximation in the theory of shock
waves (see, for example, [6]). However if one has constructed the closure assumption
which is at the same time the invariant manifold [6–8], then the projection problem
disappears, because the vector 8eld is always tangent to the invariant manifold.
Let us discuss the initial kinetic equation as an abstract ordinary di=erential equa-

tion, 1

d�
dt

= J (�) ; (1)

where �=�(q) is the distribution function, q is the point in con8guration space (for
the Fokker–Planck equation) or in phase space (for the Liouville equation).
Let the closure assumption be given:

� =�(M |q) ; (2)

where M is the set of macroscopic variables, which are coordinates on the manifold
(2). The tangent space TM0 for the manifold (2) in the point M0 is the image of

1 Many of partial di=erential kinetic equations or integro-di=erential kinetic equations with suitable bound-
ary conditions (or conditions at in8nity) can be discussed as abstract ordinary di=erential equation in the
appropriate space of functions. The corresponding semigroup of shifts in time can be considered too. For
example, the Fokker–Planck equation in a potential well U (q) with a condition U (q)=‖q‖� → ∞ for
‖q‖ → ∞ and some �¿ 0 generates an analytical semigroup. It allows to discuss the Fokker–Planck equa-
tion in such a well on the same way as an ordinary di=erential equation. Sometimes, when an essential
theorem of existence and uniqueness of solution is not proven, it is possible to discuss a corresponding shift
in time with the support of physical sense: the shift in time for physical system should exist. Bene8ts from
the latter approach are obvious as well as its risk.
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the di=erential:

TM0 = im(DM (�(M |q))M0 : (3)

How to construct the dynamic equation for the variables M? This is the projection
problem. The equivalent setting is: how to project J (�(M0|q)) onto TM0? If dM=dt =
F(M) is the equation for M , then the equation on the manifold is d�(M |q)=dt =
(DM�(M |q)) · F(M).
There exist three common ways to construct the projector onto TM0 :

(1) Moment parametrization.
(2) Spectral projectors of Jacobians for Eq. (1).
(3) Spectral projectors of “symmetric part” of Jacobians for this equation.

The moment parametrization is the best way to “hide” the projector problem in a nat-
ural way: Let the macroscopic variables be de8ned not only on the manifold �(M |q),
but in the neighborhood of this manifold: M=m(�), with the identity m(�(M |q)) ≡ M .
Then we can de8ne dM=dt in a natural way:

dM
dt

= (D�m(�(M |q)))J (�(M |q)) : (4)

As it will be demonstrated below, this simple formula is appropriate only for the
quasiequilibrium (MaxEnt) approximation, because in other cases it leads to entropy
decreasing for some initial conditions and, hence, to a perpetuum mobile of the second
kind (this happens in reduced equations, of course, and not in reality).
The idea of slow–fast decomposition through spectral decomposition of Jacobian

seems attractive (see, for example, the theory of the so-called intrinsic low-dimensional
manifold (ILDM) [9]): Let the spectrum of D�J (�) be separated into two parts:
Re �sl¡A�B¡Re �fst ¡ 0. There are two invariant subspaces which correspond to
slow (Esl) and to fast (Efst) points of the spectrum. The suggested solution of the
projection problem is: The tangent space TM of the slow manifold should not be very
di=erent from the slow invariant subspace Esl, and the projection of J onto TM should
be done parallel to the fast invariant subspace Efst.
The eigenvectors and eigenprojectors of the nonself-adjoint operators may be very

unstable in calculations. So, it may be better to use the self-adjoint operator and its
spectral decomposition.
Dynamics of distances depends not on the Jacobian, but on the symmetrized Jacobian:

d(O�;O�)
dt

= (O�; [D�J (�) + (D�J (�))+]O�) + o(O�) ;

where (; ) is the usual scalar product, O� is the di=erence between two solutions of
Eq. (1), � =�(t) is one of these solutions.
In the theory of inertial manifolds [10–12], for example, one usually uses the follow-

ing form of Eq. (1) with self-adjoint linear operator A: �̇+ A�= R(�), and spectral
decomposition of A rules the fast–slow splitting.
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There are di=erent physically motivated ways to select the scalar product and create
the symmetrization [13–15]. But symmetrization does not provide thermodynamicity
and the entropy for the projected equations can decrease.
The construction of the thermodynamic projector that always preserves the dissipa-

tion is simple and transparent. We shall describe it now, in the introduction, and its
uniqueness will be proved in the next section. The proof of uniqueness will demon-
strate, that all other ways of projection are thermodynamically inconsistent, and lead
to entropy decrease, and, hence, to the perpetuum mobile of the second kind.
Let for system (1) the entropy S(�) exist, and

dS
dt

= (D�S)J (�)¿ 0 : (5)

We introduce the entropic scalar product 〈 | 〉�:
〈a | b〉� =−(a; (D2

�S)(b)) ; (6)

where D2
�S is the second di=erential of the entropy.

The thermodynamic projector is de8ned for a given point � and a subspace T
(the tangent space to an anzatz manifold). Let us consider a subspace T0 ⊂ T which
is annulled by the di=erential S in the point �: (D�S)T0 = 0. If T0 = T , then the
thermodynamic projector is the orthogonal projector on T with respect to the entropic
scalar product 〈 | 〉�. Suppose that T0 �= T . Let eg ∈T , eg ⊥ T0 with respect to the
entropic scalar product 〈 | 〉�, and (D�S)(eg) = 1. These conditions de8ne vector eg
uniquely. The projector onto T is de8ned by the formula

P(J ) = P0(J ) + eg(D�S)(J ) ; (7)

where P0 is the orthogonal projector onto T0 with respect to the entropic scalar product
〈 | 〉�.
For example, if T is a 8nite-dimensional space, then projector (7) is constructed in

the following way. Let e1; : : : ; en be a basis in T , and for de8niteness, (D�S)(e1) �= 0.
(1) Let us construct a system of vectors

bi = ei+1 − �ie1; (i = 1; : : : ; n− 1) ; (8)

where �i=(D�S)(ei+1)=(D�S)(e1), and hence (D�S)(bi)=0. Thus, {bi}n−1
1 is a basis

in T0.
(2) Let us orthogonalize {bi}n−1

1 with respect to the entropic scalar product 〈 | 〉�.
We get an orthonormal with respect to 〈 | 〉� basis {gi}n−1

1 in T0.
(3) We 8nd eg ∈T from the conditions:

〈eg | gi〉� = 0; (i = 1; : : : ; n− 1); (D�S)(eg) = 1 : (9)

and, 8nally we get

P(J ) =
n−1∑
i=1

gi〈gi | J 〉� + eg(D�S)(J ) : (10)
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If (D�S)(T ) = 0, then the projector P is simply the orthogonal projector with respect
to the 〈 | 〉� scalar product. This is possible if � is the global maximum of entropy
point (equilibrium). Then

P(J ) =
n∑
i=1

gi〈gi|J 〉�; 〈gi|gj〉� = �ij : (11)

The entropy production for projected vector 8eld (10) is the same, as for the initial
vector 8eld (1):

(D�S)(P(J )) = (D�S)(eg)(D�S)(J ) : (12)

The signi8cance of the case (D�S)(T ) = 0 may not be clear at the 8rst glance,
because such a state � should be the equilibrium point with J (�)=0. Nevertheless, this
case is important as a limit of nonequilibrium �, and for discussion of persistence of
the Onsager relations 2 [16] as well, as for the proof of uniqueness the thermodynamic
projector.
In this paper we do not discuss the third main problem of model reduction: How

to improve the constructed manifold and the projector in order to make the manifold
more invariant and the motion along it more slow. This discussion can be found in
di=erent works [6–8,10,11,15].
The discovery of the molecular individualism for dilute polymers in the Sow [17]

was the challenge to theory from the very beginning. “Our data should serve as a
guide in developing improved microscopic theories for polymer dynamics”... was the
concluding sentence of the paper Ref. [17]. de Gennes invented the term “molecular
individualism” [18]. He stressed that in this case the usual averaging procedures are
not applicable. At the highest strain rates distinct conformation shapes with di=erent
dynamics were observed [17]. Further works for shear Sow demonstrated not only
shape di=erences, but di=erent large temporal Suctuations [19].
Equation for the molecules in a Sow are known. These are the Fokker–Planck equa-

tions with external force. The theory of the molecular individualism is hidden inside
these equations. Following the logic of model reduction we should solve two problems:
to construct the slow manifold, and to project the equation on this manifold. The second
problem is solved: the thermodynamic projector is necessary for this projection. Why
should we use this projector also for driven systems? These systems can be formally
written as

d�
dt

= J (�) + Jex ; (13)

where Jex is the external 8eld (driven force).

2 The preservation of the Onsager reciprocity relations for projected equations follows from the requirement
of persistence of the sign of dissipation. This seems surprising, because these relations do not follow from
the entropy growths. It should be stressed, that only the conditional statement can be proved: if for the initial
system hold the Onsager reciprocity relations, then these relations hold for the projected system.
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The entropy for system (13) can decrease, but the thermodynamic processes modeled
by the term J (�) should always produce the entropy (both in the initial and in the
projected systems). This is the reason to use the thermodynamic projector also for open
systems.
How to solve the 8rst problem? We can 8nd a hint in Ref. [20]. The Gaussian

distributions form the invariant manifold for the FENE-P model of polymer dynamics,
but, as it was discovered in Ref. [20], this manifold can become unstable in the presence
of a Sow. We propose to model this instability as dissociation of the Gaussian peak
into two peaks. This dissociation describes the appearance of an unstable direction in
the con8guration space.
In the classical FENE-P model of polymer dynamics a polymer molecule is rep-

resented by one coordinate: the stretching of molecule (the connector vector between
the beads). There exist simple mean 8eld generalized models for multidimensional
con8guration spaces of molecules. In these models dynamics of distribution functions
is described by the Fokker–Planck equation in a quadratic potential well. The matrix
of coeTcients of this quadratic potential depends on the matrix of the second order
moments of the distribution function. The Gaussian distributions form the invariant
manifold for these models, and the 8rst dissociation of the Gaussian peak after the
appearance of the unstable direction in the con8guration space has the same nature
and description, as for the one-dimensional models of molecules considered below.
At the highest strain there can appear new unstable directions, and corresponding

dissociations of Gaussian peaks form a cascade of dissociation. For m unstable direc-
tions we get the Gaussian parallelepiped: The distribution function is represented as a
sum of 2m Gaussian peaks located in the vertixes of parallelepiped:

�(q) =
1

2m(2 )n=2
√
det!

∑
ji=±1;(i=1;:::;m)

×exp

(
− 1

2

(
!−1

(
q+

m∑
i=1

ji&i

)
; q+

m∑
i=1

ji&i

))
; (14)

where n is the dimension of con8guration space, 2&i is the vector of the ith edge of
the parallelepiped, and ! is the one peak covariance matrix (in this model ! is the
same for all peaks). The macroscopic variables for this model are:

(1) The covariance matrix ! for one peak;
(2) The set of vectors &i (or the parallelepiped edges).

The family of distributions (14) can be improved to include the proper equilibrium
(this is important condition: the equilibrium should belong to the anzatz manifold).
There may be di=erent further re8nements, some of them are discussed below.

2. Uniqueness of thermodynamic projector

In this section, the uniqueness theorem for thermodynamic projector will be proved.
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2.1. Projection of linear vector $eld

Let E be a real Hilbert space with the scalar product 〈 | 〉, Q be a set of lin-
ear bounded operators in E with negatively de8nite quadratic form 〈Ax | x〉6 0 for
every A∈Q, T ⊂−= E be a nontrivial (T �= {0}) closed subspace. For every projector
P :E → T (P2 = P) and linear operator A :E → E we de8ne the projected operator
P(A) :T → T in such a way:

P(A)x = PAx ≡ PAPx for x∈T : (15)

The space T is the Hilbert space with the scalar product 〈 | 〉. Let QT be a set of linear
bounded operators in T with negatively de8ned quadratic form 〈Ax | x〉6 0.

Proposition 1. The inclusion P(Q) ⊆ QT for a projector P :E → T holds if and only
if P is the orthogonal projector with respect to the scalar product 〈 | 〉.

Proof. If P is orthogonal (and, hence, self-adjoint) and 〈Ax | x〉6 0, then

〈PAPx | x〉= 〈APx |Px〉6 0 :

If P is not orthogonal, then Px �= 0 for some vector x∈T⊥ in orthogonal complement
of T . Let us consider the negatively de8ned self-adjoint operator

Ax =− |Px − ax〉〈Px − ax |
(Axy =−(Px − ax)〈Px − ax |y〉). The projection of Ax on T is:

P(Ax) = (a− 1) |Px〉〈Px | :
This operator is not negatively de8nite for a¿ 1.

Immediately from this proof follows the Corollary 1.

Corollary 1. Let Qsym ⊂ Q be a subset of self-adjoint operators in E. The inclusion
P(Qsym) ⊆ QT for a projector P :E → T holds if and only if P is the orthogonal
projector with respect to the scalar product 〈 | 〉.

Corollary 2. Let Qsym
T ⊂ QT be a subset of self-adjoint operators in T . If P(Q) ⊆ QT

for a projector P :E → T , then P(Qsym) ⊆ Qsym
T .

It follows from the Proposition 1 and the obvious remark: If operators A and P are
self-adjoint, then operator PAP is self-adjoint too.
The Proposition 1 means that a projector which transforms every linear vector 8eld

Ax with Lyapunov function 〈x | x〉 into projected vector 8eld PAPx with the same
Lyapunov function is orthogonal with respect to the scalar product 〈 | 〉.
According to the Corollary 1, the conditions of the Proposition 1 can be made

weaker: A projector which transforms every self-adjoint linear vector 8eld Ax with
Lyapunov function 〈x | x〉 into projected vector 8eld PAPx with the same Lyapunov
function is orthogonal with respect to the scalar product 〈 | 〉. In physical applications
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it means, that we can deal with the requirement of dissipation persistence for vector
8eld with Onsager reciprocity relations. The consequence of such a requirement will
be the same, as for the class of all continuous linear vector 8eld: The projector should
be orthogonal.
The Corollary 2 is a statement about persistence of the reciprocity relations.

2.2. The uniqueness theorem

In this subsection we will discuss 8nite-dimensional systems. There are technical
details which make the theory of nonlinear in8nite-dimensional case too cumbersome:
the Hilbert space equipped with entropic scalar product 〈 | 〉� (12) for di=erent �
consists of di=erent functions. Of course, there exists a common dense subspace, and
geometrical sense remains the same, as for the 8nite-dimensional space, but we prefer
to defer the discussion of all these details till a special mathematical publication.
Let E be n-dimensional real vector space, U ⊂ E be a domain in E, and a

m-dimensional space of parameters L be de8ned m¡n, and let W be a domain in
L. We consider di=erentiable maps F :W → U , such that, for every y∈W , the dif-
ferential of F , DyF :L → E, is an isomorphism of L on a subspace of E. That is,
F are the manifolds, immersed in the phase space of the dynamic system (1), and
parametrized by parameter set W .
Let the twice di=erentiable function S on U be given (the entropy). We assume

that S is strictly concave in the second approximation: The quadratic form de8ned by
second di=erential of the entropy D2

�S(x; x) is strictly negative de8nite in E for every
�∈U . We will use the entropic scalar product (6). Let S have the interior point of
maximum in U : �eq ∈ intU .
The function S is Lyapunov function for a vector 8eld J in U , if (D�S)(J (�))¿ 0

for every �∈U .
First of all, we shall study vector 8elds with Lyapunov function S in the neigh-

borhood of �eq. Let 0∈ intW; F :W → U be an immersion, and F(0) =�eq. Let us
de8ne Ty = imDyF(y) for each y∈W . This Ty is the tangent space to F(W ) in the
point y. Suppose that the mapping F is suTciently smooth, and F(W ) is not tangent
to entropy levels:

Ty * kerD�S|�=F(y)

for every y �= 0. The thermodynamic projector for a given F is a projector-valued
function y �→ Py, where Py :E → Ty is a projector. The thermodynamic conditions
read: For every smooth vector $eld J (�) in U with Lyapunov function S the projected
vector $eld Py(J (F(y))) on F(W ) has the same Lyapunov function S(F(y)).

Proposition 1 and Corollaries 1, 2 make it possible to prove uniqueness of the
thermodynamic projector for the weakened thermodynamic conditions too: For every
smooth vector $eld J (�) in U with Lyapunov function S and self-adjoint Jacobian
operator for every equilibrium point (zero of J (�)) the projected vector $eld
Py(J (F(y))) on F(W ) has the same Lyapunov function S(F(y)). We shall not discuss
it separately.
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Proposition 2. Let the thermodynamic projector Py be a smooth function of y. Then

P0 = P⊥
0 and Py = P⊥

y + O(y) ; (16)

where P⊥
y is orthogonal projector onto Ty with respect to the entropic scalar product

〈 | 〉F(y).

Proof. A smooth vector 8eld in the neighborhood of F(0) =�eq can be presented as
A(�−�eq)+o(‖�−�eq‖), where A is a linear operator. If S is Lyapunov function for
this vector 8eld, then the quadratic form 〈Ax | x〉�eq is negatively de8nite. Py=P0+O(y),
because Py is a continuous function. Hence, for P0 we have the problem solved by
the Proposition 1, and P0 = P⊥

0 .

Theorem 1. Let the thermodynamic projector Py be a smooth function of y. Then

Py = P0y + egD�S|�=F(y) ; (17)

where notations of formula (7) are used: T0y is the kernel of linear functional
D�S|�=F(y) in Ty, P0y :T0y → E is the orthogonal projector with respect to the
entropic scalar product 〈 | 〉F(y) (12). Vector eg ∈T is proportional to the Riesz rep-
resentation gy of linear functional D�S|�=F(y) in Ty with respect to the entropic
scalar product:

〈gy | x〉F(y) = (D�S|�=F(y))(x)

for every x∈Ty; eg = gy=〈gy | gy〉F(y).

Proof. Let y �= 0. Let us consider auxiliary class of vector 8elds J on U with addi-
tional linear balance (D�S|�=F(y))(J )=0. If such a vector 8eld has Lyapunov function
S, then �=F(y) is its equilibrium point: J (F(y))=0. The class of vector 8elds with
this additional linear balance and Lyapunov function S is suTciently rich and we can
use the Propositions 1, 2 for dynamics on the auxiliary phase space

{x∈U |(D�S|�=F(y))(x − F(y)) = 0} :
Hence, the restriction of Py on the hyperplane kerD�S|�=F(y) is P0y. Formula (17)
gives the unique continuation of this projector on the whole E.

2.3. Orthogonality of the thermodynamic projector and entropic gradient models

In Euclidean spaces with given scalar product, we often identify the di=erential
of a function f(x) with its gradient: in orthogonal coordinate system (gradf(x))i =
9f(x)=9xi. However, when dealing with a more general setting, one can run into prob-
lems making sense out of such a de8nition. What to do if there is no distinguished
scalar product, and no given orthogonality?
For a given scalar product 〈 | 〉 the gradient gradx f(x) of a function f(x) at a point

x is such a vector g that 〈g|y〉=Dxf(y) for any vector y, where Dxf is the di=erential
of function f at a point x. The di=erential of function f is the linear functional that
provides the best linear approximation near the given point.
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To transform a vector into a linear functional one needs a pairing, that means a bilin-
ear form 〈 | 〉. This pairing transforms vector g into linear functional 〈g|: 〈g|(x)= 〈g|x〉.
Any twice di=erentiable function f(x) generates a 8eld of pairings: at any point x there
exists a second di=erential of f, a quadratic form (D2

xf)(Ox;Ox). For a convex func-
tion these forms are positively de8ned, and we return to the concept of scalar product.
Let us calculate a gradient of f using this scalar product. In coordinate representation∑

i

(gradf(x))i
92f
9xi9xj

=
9f
9xj

; hence; (gradf(x))i =
∑
i

(D2
xf)

−1
ij
9f
9xj

: (18)

As we can see, this gradf(x) is the Newtonian direction, and with this gradient the
method of steepest descent transforms into the Newton’s method of optimization.
Entropy is the concave function and we de8ned the entropic scalar product through

negative second di=erential of entropy (6). Let us de8ne the gradient of entropy by
means of this scalar product: 〈grad� S|x〉� = (D�S)(x). The entropic gradient system
is

d�
dt

= ’(�)grad� S ; (19)

where ’(�)¿ 0 is a positive kinetic multiplier.
System (19) is a representative of a family of model kinetic equations. One replaces

complicated kinetic equations by model equations for simplicity. The main requirements
to such models are: they should be as simple as possible and should not violate the
basic physical laws. The most known model equation is the BGK model [21] for sub-
stitution of collision integral in the Boltzmann equation. There are di=erent models
for simplifying kinetics [22,23]. The entropic gradient models (19) possesses all the
required properties (if the entropy Hessian is suTciently simple). It was invented 8rst
for Lattice–Boltzmann kinetics [24]. In many cases it is more simple than the BGK
model, because the gradient model is local in the sense that it uses only the en-
tropy function and its derivatives at a current state, and it is not necessary to com-
pute the equilibrium (or quasiequilibrium for quasiequilibrium models [14,22]. The
entropic gradient model has a one-point relaxation spectrum, because the gradient vec-
tor 8eld (19) has near an equilibrium �eq an extremely simple linear approxima-
tion: d(O�)=dt=−’(�eq)O�. It corresponds to a well-known fact that the Newton’s
method minimizes a positively de8ned quadratic form in one step.
Direct calculation shows that the thermodynamic projector P (7) in a point � onto

the tangent space T can be rewritten as

P(J ) = P⊥(J ) +
grad� S‖

〈grad� S‖|grad� S‖〉� 〈grad�S⊥|J 〉� ; (20)

where P⊥ is the orthogonal projector onto T with respect the entropic scalar product,
and the gradient grad�S is splitted onto tangent and orthogonal components:

grad�S = grad�S
‖ + grad� S⊥; grad� S‖ = P⊥grad� S;

grad� S⊥ = (1− P⊥)grad� S :
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From Eq. (20) it follows that two properties of an anzatz manifolds are equiva-
lent: orthogonality of the thermodynamic projector and invariance of the manifold with
respect to the entropic gradient system (19).

Proposition 3. The thermodynamic projector for an anzatz manifold + is orthogonal
at any point �∈+ if and only if grad� S ∈T�(+) at any point �∈+.

It should be stressed that it should be possible to think of gradients as in8nites-
imal displacements of points �. Usually there are some balances, at least the con-
servation of the total probability, and the gradient should belong to a given subspace
of zero balances change. For example, for the classical Boltzmann–Gibbs–Shannon
entropy S = − ∫ �(q)(ln�(q) − 1) dnq the entropic scalar product is 〈g(q)|f(q)〉� =∫
g(q)f(q)=�(q) dnq and grad� S = −�(q) ln(�(q)) + c(q), where function (vector)

c(q) is orthogonal to a given subspace of zero balances. This function has to be
founded from the conditions of zero balances for the gradient grad� S. For example,
if the only balance is the conservation of the total probability,

∫
�(q) dnq ≡ 1, then

for the classical Boltzmann–Gibbs–Shannon entropy S

grad� S =−�(q)
(
ln(�(q))−

∫
�(q′) ln(�(q′)) dnq′

)
: (21)

For the Kullback-form entropy (the negative free energy)

S =−F=T =−
∫

�(q)
(
ln
(

�(q)
�eq(q)

)
− 1
)
dnq

the second di=erential and the entropic scalar product are the same, as for the classical
Boltzmann–Gibbs–Shannon entropy, and

grad� S =−�(q)
(
ln
(

�(q)
�eq(q)

)
−
∫

�(q′) ln
(

�(q)
�eq(q)

)
dnq′

)
: (22)

For more complicated system of balances, linear or nonlinear, the system of linear
equations for c(q) can also be written explicitly.

2.4. Violation of transversality condition, singularity of thermodynamic projection
and steps of relaxation

The thermodynamic projector transforms the arbitrary vector 8eld equipped with the
given Lyapunov function into a vector 8eld with the same Lyapunov function for a
given anzatz manifold which is not tangent to the Lyapunov function levels. Sometimes
it is useful to create an anzatz in violation of this transversality condition. The point
of entropy maximum on this anzatz is not the equilibrium. The usual examples are:
the noncorrelated approximation �(x1; : : : ; xn) =

∏
i f(xi), the Gaussian manifold, etc.

For these manifolds the thermodynamic projector becomes singular near the point of
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entropy maximum �∗ on the anzatz manifold. It is obvious from Eq. (20): in the
neighborhood of �∗ it has the form

P(J ) = P⊥(J ) +
grad� S‖

〈grad� S‖|grad� S‖〉� 〈grad�S⊥|J 〉�

=− O�
〈O�|O�〉�∗

-(�∗) + O(1) ; (23)

where O� = � − �∗ is the deviation of � from �∗, -(�∗) = 〈grad�∗ S⊥|J 〉�∗ is
the entropy production at the point �∗, -(�∗) �= 0, because the point of entropy
maximum �∗ is not the equilibrium. In this case the projected system in the neighbor-
hood of �∗ reaches the point �∗ at 8nite time t∗ as

√
t∗ − t. The entropy di=erence

OS = S(�) − S(�∗) = − 1
2 〈O�|O�〉�∗ + o(〈O�|O�〉�∗) goes to zero as −-(�∗)

(t∗ − t) (t6 t∗).
The singularity of projection has a transparent physical sense. The relaxation along

the anzatz manifold to the point �∗ is not complete, because this point is not the
equilibrium. This motion should be rated as a step of relaxation, and after it was
completed, the next step should start. In this sense it is obvious that the motion
to the point �∗ along the anzatz manifold should take the 8nite time. The results
of this step-by-step relaxation can represent the whole process (with smoothing [25],
or without it [26]). The experience of such step-by-step computing of relaxation tra-
jectories in the initial layer problem for the Boltzmann kinetics demonstrated its
eTciency [25,26].

2.5. Thermodynamic projector, quasiequilibrium and entropy maximum

The thermodynamic projector projects any vector 8eld which satis8es the second
law of thermodynamics into the vector 8eld which satis8es the second law too. Other
projectors violate the second law. But what does it mean? Each projector P� onto
tangent space to an anzatz manifold in a point � induces the fast–slow motion splitting:
Fast motion is the motion parallel to ker P� (on the aTne subspace � + ker P� in
the neighborhood of �), slow motion is the motion on the slow manifold and in the
8rst order it is parallel to the tangent space T� in the point � (in the 8rst order this
slow manifold is the aTne subspace �+im P�, T�=im P�), and velocity of the slow
motion in point � belongs to image P�.
If P� is the thermodynamic projector, then � is the point of entropy maximum on

the aTne subspace of fast motion � + ker P�. It gives the solution to the problem

S(x) → max; x∈� + ker P� : (24)

This is the most important property of thermodynamic projector. It was introduced in
our paper [6] as a main thermodynamic condition for model reduction. Let us call it
for nonequilibrium points � the property A:

A ker P� ⊂ kerD�S : (25)
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If the projector P� with the property A can be continued to the equilibrium point,
�eq, as a smooth function of �, then in this point ker P� ⊥ im P�. If this is valid
for all systems (including systems with additional linear balances), then the following
property B holds:

B
(
ker P�

⋂
kerD�S

)
⊥
(
im P�

⋂
kerD�S

)
: (26)

Of course, orthogonality in formulae (25), (26) is considered with respect to the en-
tropic scalar product in point �.
Property A means that the value of entropy production persists for all nonequilibrium

points. The sense of property B is: each point of the slow manifold can be made an
equilibrium point (after the deformation of the system which leads to appearance on
additional balance). And for equilibrium points the orthogonality condition (26) follows
from the property A.
If P� does not have property A, then � is not the point of entropy maximum

on the aTne subspace of fast motion � + ker P�, so either the fast motion along
this subspace does not lead to � (and, hence, the point � does not belong to slow
manifold), or this motion violates the second law, and the entropy decreases. This
is the violation of the second law of thermodynamics during the fast motion. If
P� does not have property A, then such a violation is expected for almost every
system.
On the other hand, if P� is not the thermodynamic projector, then there exists a

thermodynamic vector 8eld J , with nonthermodynamic projection: S is Lyapunov func-
tion for J (it increases), and is not Lyapunov function for P�(J ) (it decreases in the
neighborhood of �). The di=erence between violation of the second law of thermo-
dynamics in fast and slow motions for a projector without property A is: for the fast
motion this violation typically exists, for the slow (projected) motion there exist some
thermodynamic systems with such a violation. On the other hand, the violation in slow
motion is more important for applications, if we use the slow dynamics as an answer
(and assume that the fast dynamics is relaxed).
If P� does not have property B, then there exist systems with violation of the second

law of thermodynamics in fast and slow motions. Here we cannot claim that the second
law violates for almost every system, but such systems exist.
One particular case of thermodynamic projector is known during several decades. It

is the quasiequilibrium projector on the tangent space of the quasiequilibrium (MaxEnt)
manifold.
Let a set of macroscopic (slow) variables be given: M=m(�). The vector of macro-

scopic variables M is a continuous linear function of microscopic variables �. Let the
anzatz manifold be the manifold of conditional entropy maximum:

S(�) → max; m(�) =M : (27)

The solution of problem (27) �qe
M parametrized by values of the macroscopic variables

M is the quasiequilibrium manifold.
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The projector on the tangent space to the quasiequilibrium manifold is:

 qeM = (DM�
qe
M )Mm= (D2

�S)
−1
�qe

M
mT (m(D2

�S)
−1
�qe

M
mT )−1m : (28)

This formula was essentially obtained by Robertson [27]. 3

First of all, the thermodynamic projector (28) for the quasiequilibrium manifold
(27) is the orthogonal projector with respect to the entropic scalar product (6). In
this case both terms in the thermodynamic projector (7) are orthogonal projectors with
respect to the entropic scalar product (6). The 8rst term, P0, is orthogonal projector
by construction. For the second term, eg(D�S), it means that the Riesz representation
of the linear functional D�S in the whole space E with respect to the entropic scalar
product belongs to the tangent space of the quasiequilibrium manifold. This Riesz
representation is the gradient of S with respect to 〈 | 〉�. The following Proposition
gives simple and important condition of orthogonality of the thermodynamic projector
(7). Let + be an anzatz manifold, and let V be some quasiequilibrium manifold,
�∈+

⋂
V , T� be the tangent space to the anzatz manifold + in the point �. Suppose

that there exists a neighborhood of � where V ⊆ +. We use the notation grad�S for
the Riesz representation of the linear functional D�S in the entropic scalar product
〈 | 〉�: 〈grad�S|f〉� ≡ (D�S)(f) for f∈E.

Proposition 4. Under given assumptions, grad� S ∈T�, and the thermodynamic pro-
jector P� is the orthogonal projector onto T� with respect to the entropic scalar
product (6).

So, if a point � on the anzatz manifold + belongs to some quasiequilibrium sub-
manifold V ⊆ +, then the thermodynamic projector in this point is simply the orthog-
onal projector with respect to the entropic scalar product (6).
Proposition 4 is useful in the following situation. Let the quasiequilibrium approxi-

mation be more or less satisfactory, but the “relevant degrees of freedom” depend on
the current state of the system. It means that for some changes of the state we should
change the list of relevant macroscopic variables (moments of distribution function for

3 In his dissertation [27] Robertson has studied “the equation of motion for the generalized canoni-
cal density operator”. The generalized canonical density renders entropy a maximum for given statistical
expectations of the thermodynamic coordinates. He started from the Liouville equation for a general quantum
system. The 8rst main result of Robertson’s paper is the explicit expression for splitting of the motion onto
two components: projection of the motion onto generalized canonical density and the motion in the kernel of
this projection. The obtained projector operator is a speci8c particular case of the quasiequilibrium projector
(28). The second result is the exclusion of the motion in the kernel of quasiequilibrium projector from the
dynamic equation. This operation is similar to the Zwanzig formalism [28]. It leads to the integro-di=erential
equation with delay in time for the generalized canonical density. The quasiequilibrium projector (28) is
more general than the projector obtained by Robertson [27] in the following sense: It is derived for any
functional S with nondegenerate second di=erential D2

�S, for manifold of condition maxima of S and for
any (nonlinear) di=erential equation. B. Robertson emphasized that this operator is non-Hermitian with
respect to standard L2 scalar product and in this sense is not a projector at all. Nevertheless it is self-adjoint
(and, hence, orthogonal), but with respect to another (entropic) scalar product. The general thermodynamic
projector (7) acts with an arbitrary anzatz manifolds and in that sense is much more general. The motion
in transversal direction will be discussed below together with post-processing algorithms.
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generating the quasiequilibrium). Sometimes it can be described as the presence of hid-
den degrees of freedom, which are not moments. In these cases the manifold of reduced
description should be extended. We have a family of systems of moments M�=m�(�),
and a family of corresponding quasiequilibrium manifolds +�: The manifold +� consist
of solutions of optimization problem S(�) → max, m�(�) = M for given � and all
admissible values for M . To create a manifold of reduced description it is possible
to join all the moments M� in one family, and construct the corresponding quasiequi-
librium manifold. Points on this manifold are parametrized by the family of moment
values {M�} for all possible �. It leads to a huge increase of the quasiequilibrium man-
ifold. Another way to extension of the quasiequlibrium manifold is a union of all the
manifolds +� for all �. In accordance with Proposition 4, the thermodynamic projector
for this union is simply the orthogonal projector with respect to the entropic scalar
product. This kind of manifolds gives a closest generalization of the quasiequilibrium
manifolds. An example of such a construction will be described below.
Quasiequilibrium approximation became very popular after works of Jaynes [1]. 4

Due to Eq. (24) the thermodynamic projector gives the presentation of almost arbi-
trary anzatz as the quasiequilibrium manifold. This property opens the natural 8eld for
applications of thermodynamic projector: construction of Galerkin approximations with
thermodynamic properties.
Of course, there is a “law of the diTculty conservation”: for quasiequilibrium with

the moment parameterization the slow manifold is usually not explicitly given, and it
can be diTcult to calculate it. Thermodynamic projector completely eliminates this dif-
8culty: we can use almost any manifold as appropriate anzatz now. On the other side,
on the quasiequilibrium manifold with the moment parameterization (if it is found) it is
easy to 8nd the dynamics: simply write Ṁ =m(J ). The building of the thermodynamic
projector may require some e=orts. Finally, if the classical quasiequilibrium manifold
is found, then it is easy to 8nd the projection of any distributions � on the quasiequi-
librium manifold: � �→ m(�) �→ �qe

m(�). It requires just a calculation of the moments
m(�). The preimage of the point �qe

m(�) is a set (an aTne manifold) of distributions

4 From time to time it is discussed in the literature, who was the 8rst to introduce the quasiequilibrium
approximations, and how to interpret them. At least a part of the discussion is due to a di=erent role the
quasiequilibrium plays in the entropy–conserving and dissipative dynamics. The very 8rst use of the en-
tropy maximization dates back to the classical work of Gibbs [29], but it was 8rst claimed for a principle
by Jaynes [1]. Probably the 8rst explicit and systematic use of quasiequilibria to derive dissipation from
entropy–conserving systems is due to the works of Zubarev. Recent detailed exposition is given in Ref. [2].
For dissipative systems, the use of the quasiequilibrium to reduce description can be traced to the works of
Grad on the Boltzmann equation [30]. The viewpoint of the present authors was inSuenced by the papers
by Rozonoer and co-workers, in particular, [3,4,31]. A detailed exposition of the quasiequilibrium approxi-
mation for Markov chains is given in the book [32] (Chapter 3, Quasiequilibrium and entropy maximum,
pp. 92–122), and for the BBGKY hierarchy in Ref. [5]. We have applied maximum entropy principle to the
description of the universal dependence of the 3-particle distribution function F3 on the 2-particle distribution
function F2 in classical systems with binary interactions [33]. A general discussion of the maximum entropy
principle with applications to dissipative kinetics is given in the review [34]. The methods for corrections
of quasiequilibrium approximations are developed in Refs. [6,7,35,36].
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{�|m(�−�qe
m(�)) = 0}, and �qe

m(�) is the point of entropy maximum on this set. It is
possible, but not so easy, to construct such a projector of some neighborhood of the
manifold + onto + for general thermodynamic projector P� too: for a point . from
this neighborhood

. �→ �∈+; if P�(.−�) = 0 : (29)

A point �∈+ is the point of entropy maximum on the preimage of �, i.e., on the aTne
manifold {.|P�(.−�) = 0}. It is necessary to emphasize that the map (29) can be
de8ned only in a neighborhood of the manifold +, but not in the whole space, because
some of aTne subspaces {.|P�(. − �) = 0} for di=erent �∈+ can intersect. Let
us introduce a special denotation for projection of some neighborhood of the manifold
+ onto +, associated with the thermodynamic projector P� (29): P+ :. �→ �. The
preimage of a point �∈+ is:

P−1
+ � =� + ker P� (30)

(or, strictly speaking, a vicinity of � in this aTne manifold). Di=erential of the
operator P+ at a point �∈+ from the manifold + is simply the projector P�:

P+(� + /.) =� + jP�.+ o(/) : (31)

Generally, di=erential P+ at a point � has not so simple form, if � does not belong +.
The “global extension” P+ of a 8eld of “in8nitesimal” projectors Pf (f∈+) is

needed for discussion of projector operator technique, memory functions and short
memory approximation below.
Is it necessary to use the thermodynamic projector everywhere? The persistence of

dissipation is necessary, because the violation of the second law may lead to strange
nonphysical e=ects. If one creates a very accurate method for solution of initial equation
(1), then it may be possible to expect that the persistence of dissipation will hold
without additional e=orts. But this situation has yet not appeared. All methods of
model reduction need a special tool to control the persistence of dissipation.
In order to summarize, let us give three reasons to use the thermodynamic

projector:

(1) It guarantees the persistence of dissipation: all the thermodynamic processes which
should produce the entropy conserve this property after projecting, moreover, not
only the sign of dissipation conserves, but the value of entropy production and the
reciprocity relations too;

(2) The coeTcients (and, more generally speaking, the right hand part) of kinetic
equations are known signi8cantly worse than the thermodynamic functionals, so,
the universality of the thermodynamic projector (it depends only on thermodynamic
data) makes the thermodynamic properties of projected system as reliable as for
the initial system;

(3) It is easy (much easier than spectral projector, for example).
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3. Post-processing, memory and natural projector

3.1. How to evaluate the anzatz?

Thermodynamic projector transforms almost arbitrary anzatz into thermodynamically
consistent model. So, the simplest criteria of quality of an anzatz (entropy grows,
reciprocity relations, etc.) are satis8ed by the construction of the projector. How to
evaluate the anzatz now?
First of all, we can estimate the defect of invariance 0 = J (�) − P�(J (�)). If

0 is not small (in comparison with the typical value of J ), then the anzatz should
be improved (for details see, for example, [37,38]). It is possible to use 0 for error
estimation and correction of an anzatz after solution of projected equations too (it is
so-called post-processing [39,15]). Let �0(t); (t ∈ [0; T ]) be the solution of projected
equations d�(t)=dt = P�(J (�)), and 0(t) = J (�0(t)) − P�0(t)(J (�0(t))). Then the
following formula:

�1(t) =�0(t) +
∫ t

0
0(1) d1 (32)

gives the Picard iteration for solution of the initial kinetic equation d�(t)=dt = J (�),
with initial approximation �0(t). The integral in the right-hand side of Eq. (32) gives
the estimation of the deviation the anzatz solution �0(t) from the true solution as
well, as the correction for this anzatz solution. For a better estimation we can take into
account not only 0(t), but the linear part of the vector 8eld J (�) near �0(t), and use
di=erent approximations of this linear part [15]. The following representation gives us
one of the simplest approximations: �1(t) =�0(t) + ��(t);

d(��(t))
dt

= 0(t) +
〈0(t)|(DJ )�0(t)0(t)〉�0(t)

〈0(t)|0(t)〉�0(t)
��(t) : (33)

where 0(t) = J (�0(t)) − P�0(t)(J (�0(t))), (DJ )�0(t) is the di=erential of J (�(t)) in
the point �0(t); 〈 | 〉�0(t) is the entropic scalar product (6) in the point �0(t).

The solution of Eq. (33) is

��(t) =
∫ t

0
exp
(∫ t

1
k(3) d3

)
0(1) d1 ; (34)

where

k(t) =
〈0(t)|(DJ )�0(t)0(t)〉�0(t)

〈0(t)|0(t)〉�0(t)
:

The right-hand side of Eq. (34) improves the simplest Picard iteration (32) and gives
both the estimation of the error of the anzatz, and correction for the solution �0(t).

The projection of 0 on the slow motion anzatz is zero, hence, for post-processing
analysis of the slow motion, the estimation (34) should be supplemented by one more
Picard iteration:

��sl(t) = P�0(t)��(t) +
∫ t

0
P�0(1)((DJ )�0(1))��(1) d1 ; (35)

where ��(t) is calculated by formula (34).
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3.2. Short memory and natural projector

At the middle of XX century S. Nakajima (1958), R. Zwanzig (1960), and H. Mori
(1965) discovered a new approach to model reduction in statistical physics: the method
of projection operators. (Relevant bibliography and detailed presentation of this tech-
nique can be found in two books [40,41].) In this section we contrast our approach with
the Nakajima–Zwanzig–Mori theory of projection operators. This theory is based upon
two technical steps: (i) a projection technique for creation of exact integro-di=erential
equations that describe dynamics of “relevant” variables for given initial conditions,
(ii) and various Marcovian, short memory, adiabatic, or other assumptions of this type
that allow us to simplify the exact integro-di=erential equations. Without such a sim-
pli8cation the theory is simply equivalent to the initial detailed microscopic dynamics.
The projection operators approach (it is more adequate to call it “the memory func-

tion approach” [40]) deals with linear equations of microscopic description: Liouville
equation (or generalized quantum Liouville equation). The thermodynamic projector
developed in this paper and a series of previous works [6,7,14,25] can be applied to
any system with entropy, i.e., to a system with a speci8ed function (functional) whose
time derivative should be preserved in model reduction. Of course, it can be applied to
the systems considered in the memory function approach to project the initial equations
onto the manifold of relevant distribution functions. Moreover, the particular case of
the thermodynamic projector, namely the quasiequilibrium projector, was developed for
this purpose by Robertson in the context of Nakajima–Zwanzig approach [27].
In this paper we have discussed only the simple in8nitesimal projection of the vec-

tor 8eld onto the tangent space to anzatz manifold, but it is possible to develop a
hierarchy of short-memory approximations even for general nonlinear equations and an
arbitrary anzatz manifold [35–37,42–45]. This approach joins ideas of Ehrenfests on
coarse-graining [46], methods of projection operators, and methods of invariant man-
ifold [6,7,14]. The essence of this approach can be formulated very simply: we turn
from in8nitesimal projection of vector 8elds to “natural projection” of segments of
trajectories.
Let us consider a dynamical system (1) d�=dt = J (�), an anzatz manifold +, a

8eld of projectors on + :P� :E → T� for �∈+, and a global extension P+ (29), (30)
of this 8eld of in8nitesimal projectors. In this construction the 8eld of projectors P�
is arbitrary, and thermodynamic condition will be necessary only for estimation of the
entropy production (see the next subsection). Let Tt be the shift in time t due to the
dynamical system (1) (the phase Sow). We are looking for a phase Sow #t on + that
should be a coarse-grained dynamical system in a short memory approximation. The
matching equation for the short memory approximation is

#1(�) = P+(T1(�)) for all �∈+ ; (36)

where 1¿ 0 is the time of memory (it may be a function of �: 1= 1(�)).
The phase Sow #t on + is generated by a vector 8eld on +:

d�
dt

=6(�) =
d#1(�)

d1

∣∣∣∣
1=0

∈T� : (37)
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For the short memory it may be natural to seek a vector 8eld 6(�) on the anzatz
manifold + in a form of Taylor series in powers of 1: 6(�)=60(�)+ 161(�)+ · · ·.
Let us expand the right-hand side of the matching equation (36) into Taylor series
in powers of 1. In zero order we get an equality � =�. In 8rst order we obtain an
expected trivial “in8nitesimal” result 60(�) = P�(J (�)). First nontrivial result is an
expression for 61(�):

61(�) = 1
2 {P�[(D�J (�))J (�)]− [D�(P�J (�))](P�J (�))}
+ 1

2 [D
2
�P+(�)](J (�); J (�)) : (38)

In this order we obtain the 8rst short-memory approximation:

d�
dt

= P�(J (�)) +
1
2
{P�[(D�J (�))J (�)]− [D�(P�J (�))](P�J (�))}

+
1
2
[D2

�P+(�)](J (�); J (�)) : (39)

If ker P� does not depend on �, then it is possible to choose such a coordinate system
on + where linear operator P� does not depend on �. Then the last term in Eqs. (38),
(39) vanishes. It is the case of quasiequilibrium manifolds, for example [37,42].
Various physical examples of application of these formulae with quasiequilibrium

manifolds are presented in Refs. [37,42–44,35].
The theory of short memory and coarse-graining in the form given by Eqs. (36), (38),

(39) has one free parameter: the memory time 1(�). The next step is the development
of the theory without such free parameters [45,36].
The 8rst attempt to formalize the short memory approximation and coarse-graining

on the base of the matching equation (36) was made by Lewis [47], but he expanded
only the right-hand side of Eq. (36), and the result was not a solution of this equation.
Very recently the short memory approximation became more popular [48,49].

3.3. The theorem about entropy overproduction in the short memory approximation

The short memory approximation (39) has one important property: it increases the
entropy production for the thermodynamic projectors P�: if for any vector 8eld the
8eld of projectors P� preserves dissipation, then for any vector 8eld the short memory
approximation increases dissipation (and it strictly increases dissipation, if the vector
8eld is not tangent to anzatz manifold +).
This theorem about entropy overproduction can be formulated as an expression for

the entropy production.

Theorem 2. Let P� be the $eld of thermodynamic projectors. Then, due to the short
memory approximation (39) for �∈+

dS
dt

= -0(�) +
1
2
-1(�) +

1
2
〈0(�)|0(�)〉� ; (40)
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where 0 is defect of invariance: 0= J (�)− P�(J (�)),

-0(�) =
dS(T1(�))

d1

∣∣∣∣
1=0

= (D�S(�))(J (�)) ;

-1(�) =
d2S(T1(�))

d12

∣∣∣∣
1=0

= (D�S(�))[(D�J (�))(J (�))]

−〈J (�)|J (�)〉� : (41)

(-0(�) is the entropy production due to initial system at a point �.) The geometrical
proof of this formula (40) is simple. The matching condition (36) represents a mo-
tion according to a short memory approximation as two steps: (i) the motion along
trajectories of initial system during time 1, and (ii) the projection onto manifold + by
means of the operator P+ (29), (30). The entropy increment on the 8rst step is

S(T1(�))− S(�) = 1-0(�) +
12

2
-1(�) + o(12) :

To calculate the entropy increment on the projection step with accuracy 12 we need
to calculate the motion with accuracy 11 only, because the point �∈+ is the point
of entropy maximum on its preimage P−1

+ (�) (here it is crucial that P� is the 8eld
of thermodynamic projectors with the property A (25)). In the 8rst order T1(�) −
P+(T1(�)) = 10(�) and the last term in Eq. (40) is just the Taylor formula for S of
the second order.
First two terms in Eq. (40) give the average entropy production by the initial system

in time 1 (up to the second order in 1). The third term is always non-negative, and
is zero only for zero defect of invariance. In this sense Theorem 2 is the theorem
about entropy overproduction. The following corollary gives an obvious, but physically
important consequence of this theorem.

Corollary 3. Let the initial system (1) be conservative: dS=dt=(D�S(�))(J (�)) ≡ 0.
Then for the short memory approximation (39) entropy production is non-negative:

dS
dt

=
1
2
〈0(�)|0(�)〉�¿ 0 ; (42)

and dS=dt = 0 if and only if the vector $eld J (�) is tangent to anzatz manifold.

The short-memory approximation equipped by the thermodynamic projector gives us
the simplest way to introduce dissipation into a conservative system.

4. The art of anzatz: multi-peak polyhedrons in kinetic systems with instabilities

4.1. Two-peak approximations

The thermodynamic projector guarantees the thermodynamic consistence of anzatz,
and post-processing gives both the estimations of the error and correction for the
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solution. So, the main requirement to an anzatz now is: to capture the essence of
the phenomenon. This is the art of anzatz. Is it possible to formalize this art? In this
subsection we discuss two special anzatz which have been known for several decades
and mysteriously are at the same time simplest and reliable nonperturbative approxi-
mations in the domains of their application. The requested formalization seems to be
possible, at least, partially.

4.1.1. Tamm–Mott-Smith approximation for kinetics of shock waves
Shock waves in gas Sows are important from practical, as well, as from theoretical

points of view. Some integral parameters of the shock wave front can be obtained by
gas dynamics equations with additional thermodynamic relations, for weak shocks the
hydrodynamic approach can give the shock front structure too [50]. For strong shocks
it is necessary to use the kinetic representation, for rare8ed gases the Boltzmann kinetic
equation gives the framework for studying the structure of strong shocks [51]. This
equation describes the dynamics of the one-particle distribution function f(v; x), where
v is the vector of particle velocity, and x is the particle position in space. One of the
common ways to use the Boltzmann equation in physics away from exact solutions
and perturbation expansions consists of three steps:

(1) Construction of a speci8c anzatz for the distribution function for a given physical
problem.

(2) Projection of the Boltzmann equation on the anzatz.
(3) Estimation and correction of the anzatz (optional).

The 8rst and, at the same time, the most successful anzatz for the distribution function
in the shock layer was invented in the middle of the XX century. It is the bimodal
Tamm–Mott-Smith approximation (see, for example, Ref. [51]):

f(v; x) = fTMS(v; z) = a−(z)f−(v) + a+(z)f+(v) ; (43)

where z is the space coordinate in the direction of the shock wave motion, f±(v) are
the downstream and upstream Maxwellian distributions, respectively.
Direct molecular dynamic simulation for the Lennard-Jones gas shows good quan-

titative agreement of the Tamm–Mott-Smith anzatz (43) with the simulated velocity
distribution functions in the shock fronts for a wide range of Mach number (between 1
and 8.19) [52]. For di=erent points in the shock front the bimodal approximation (43)
of the simulated velocity distribution function has appropriate accuracy, but the ques-
tion about the approximation of the a±(z) remained open in the paper [52], because
the authors of this paper had “no way to decide which of the equations proposed in
the literature yields better results”.
The thermodynamic projector gives the unique thermodynamically consistent equa-

tion for the Tamm–Mott-Smith approximation (43) [6] (in our paper [6] we have used
only property A, but for this one-dimensional anzatz it was suTcient for uniqueness
of the projector). These equations have a simple form for the variables:

n(z) =
∫

fTMS(v; z) d3v; s(z) =−kB
∫

fTMS(v; z) lnfTMS(v; z) d3v :
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The particle density n(z) is a linear function of a±(z). The entropy density s is a more
complicated function of a±, but there are simple expansions both for weak and for
strong shocks [6,53].
The equations for n(z; t); s(z; t) in the Tamm–Mott-Smith approximation have the

form:

9s
9t +

9js
9z = -;

9n
9t +

9jn
9z = 0 ; (44)

where

js(z) =−kB
∫

vzfTMS(v; z) lnfTMS(v; z) d3v; jn(z) =
∫

vzfTMS(v; z) d3v ;

and - is the Boltzmann density of entropy production for the TMS distribution (43):

- =−kB
∫

J (fTMS)(v; z) lnfTMS(v; z) d3v ;

where J (f) is the Boltzmann collision integral.
Eqs. (44) were 8rst introduced by Lampis [53] in the ad hoc manner. Direct numer-

ical simulation demonstrated that all other known equations for the Tamm–Mott-Smith
anzatz violate the second law [54].

4.1.2. Langer–Bar-on–Miller approximation for spinodal decomposition
The spinodal decomposition is the initial stage of a phase separation in thermody-

namically unstable solid solution. It requires no activation energy (unstable does not
mean metastable). The order parameter is the composition variable (concentration c
of one of components, for example). Hence, the rate of the spinodal decomposition is
limited by di=usion processes.
The process of spinodal decomposition was described quantitatively in Ref. [55].

This model consists of two coupled equations: for the single-point distribution function
of Suctuations and for the pair correlation function. The Suctuation u(r) = c(r) − c0
is a deviation of the concentration c from the average concentration c0. The time
evolution of the single-point distribution density of Suctuation, :1(u) is described by
the one-dimensional Fokker–Planck equation:

9:1
9t =M

9
9u

(
:1
9F(u)
9u + kBTb

9:1
9u

)
; (45)

where b is a constant, F(u) is a mean-8eld free energy which depends on the value
of u, on the whole function :1 (because F(u) includes some averages in the mean
8eld approximation), and on the two-point correlation function (because it depends on
average square of ∇u(r)). The assumption

:2[u(r); u(r0)] ∼= :1[u(r)]:1[u(r0)]{1 + ;(|r − r0|)u(r)u(r0)} (46)

allows to truncate the in8nite chain of equations for all correlation functions, and
to write the equation for the two-point correlation function. Details are presented in
Ref. [55].
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The mean-8eld free energy function F(u) is nonstationary and may be nonconvex.
Thus, the one-peak representations for :1(u) are far from a physical sense, but it is
possible to try the two-peak anzatz:

:1(u) = a1G-(u− &1) + a2G-(u+ &2) ; (47)

where a1 = &2=(&1 + &2), a2 = &1=(&1 + &2) (because obvious normalization conditions),

and G-(u) is the Gaussian distribution: G-(u) = 1
-
√
2 

exp
(
− u2

2-2

)
.

The systematic use of this two-peak anzatz (47) allowed to get the satisfactory
quantitative description for some features of spinodal decomposition. The authors of
the paper [55] mentioned that the present computational scheme does appear to be
accurate enough to justify its use in the study of realistic metallurgical systems. Instead
of thermodynamic projector which was not known in 1975, they used the projection
onto the 8rst three nontrivial moments (〈u2〉; 〈u3〉; 〈u4〉).

The Langer–Bar-on–Miller bimodal anzatz has a long history of criticizing and com-
parison with experiments and other calculations. During 10 years after this publication
there were some attempts to criticize and improve this theory. Nevertheless, at 1985
this theory was called “the most successful “early-time” theory yet available” [56].
In this paper the nonlinear Langer–Bar-on–Miller theory was again criticized as non-
systematic, “since there is no smallness parameter”. 5 Nevertheless, 20 years of various
attempts to improve this theory of bimodal anzatz were resumed in Ref. [57]: “There
have been many theories that attempt to incorporate nonlinear e=ects in the description
of the spinodal decomposition process. The most successful of these was devised by
Langer, Baron, and Miller”. This situation reminds the situation with TMS anzatz for
shock waves.
More recently, applications of Monte Carlo methods to the self-consistent calculation

of a Ginzburg–Landau free energy functional for Lennard-Jones systems in three dimen-
sions were discussed [58]. It was demonstrated that the parameters in the coarse-grained
free energy can be extracted from a multivariate distribution of energies and particle
densities. Histograms of calculated unimodal and bimodal density distributions are pre-
sented.

4.2. Multi-peak anzatz and mean-$eld theory of molecular individualism

4.2.1. Two-peak approximation for polymer stretching in Eow and explosion of the
Gaussian manifold
We shall consider the simplest case of dilute polymer solutions represented by dumb-

bell models. The dumbbell model reSects the two features of real-world macromolecules
to be orientable and stretchable by a Sowing solvent [59].
Let us consider the simplest one-dimensional kinetic equation for the con8guration

distribution function �(q; t), where q is the reduced vector connecting the beads of the
dumbbell. This equation is slightly di=erent from the usual Fokker–Planck equation.

5 This explicit belief in small parameters and Taylor expansion remains widespread in spite of many
well-known computational algorithms that use no explicit small parameters both in computational mathematics
and mathematical physics.
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It is nonlinear, because of the dependence of potential energy U on the moment
M2[�] =

∫
q2�(q) dq. This dependence allows us to get the exact quasiequilibrium

equations on M2, but this equations are not solving the problem: this quasiequilibrium
manifold may become unstable when the Sow is present [20]. Here is this model:

9t� =−9q{�(t)q�}+ 1
2 9

2
q� : (48)

Here

�(t) = =(t)− 1
2 f(M2(t)) ; (49)

=(t) is the given time-independent velocity gradient, t is the reduced time, and the
function −fq is the reduced spring force. Function f may depend on the second
moment of the distribution function M2 =

∫
q2�(q; t) dq. In particular, the case f ≡ 1

corresponds to the linear Hookean spring, while f = [1 − M2(t)=b]−1 corresponds to
the self-consistent 8nite extension nonlinear elastic spring (the FENE-P model, 8rst
introduced in Ref. [60]). The second moment M2 occurs in the FENE-P force f as the
result of the pre-averaging approximation to the original FENE model (with nonlinear
spring force f=[1−q2=b]−1). The parameter b changes the characteristics of the force
law from Hookean at small extensions to a con8ning force for q2 → b. Parameter b is
roughly equal to the number of monomer units represented by the dumbell and should
therefore be a large number. In the limit b → ∞, the Hookean spring is recovered.
Recently, it has been demonstrated that FENE-P model appears as 8rst approximation
within a systematic self-con8dent expansion of nonlinear forces [37].
Eq. (48) describes an ensemble of non-interacting dumbells subject to a pseudo-

elongational Sow with 8xed kinematics. As is well known, the Gaussian distribution
function,

�G(M2) =
1√
2 M2

exp
[
− q2

2M2

]
; (50)

solves Eq. (48) provided the second moment M2 satis8es

dM2

dt
= 1 + 2�(t)M2 : (51)

Solution (50) and (51) is the valid macroscopic description if all other solutions of
Eq. (48) are rapidly attracted to the family of Gaussian distributions (50). In other
words [7], the special solution (50) and (51) is the macroscopic description if Eq. (50)
is the stable invariant manifold of the kinetic equation (48). If not, then the Gaussian
solution is just a member of the family of solutions, and Eq. (51) has no meaning
of the macroscopic equation. Thus, the complete answer to the question of validity of
Eq. (51) as the macroscopic equation requires a study of dynamics in the neighbor-
hood of manifold (50). Because of the simplicity of model (48), this is possible to a
satisfactory level even for M2-dependent spring forces.

In Ref. [20] it was shown, that there is a possibility of “explosion” of the Gaussian
manifold: with the small initial deviation from it, the solutions of Eq. (48) are very fast
going far from, and then slowly coming back to the stationary point which is located
on the Gaussian manifold. The distribution function � is stretched fast, but loses the
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Gaussian form, and after that the Gaussian form recovers slowly with the new value
of M2. Let us describe brieSy the results of Ref. [20].
Let M2n=

∫
q2n� dq denote the even moments (odd moments vanish by symmetry).

We consider deviations >2n=M2n−MG
2n, where MG

2n=
∫
q2n�G dq are moments of the

Gaussian distribution function (50). Let �(q; t0) be the initial condition to Eq. (48) at
time t = t0. Introducing functions,

p2n(t; t0) = exp


4n

t∫
t0

�(t′) dt′


 ; (52)

where t¿ t0, and 2n¿ 4, the exact time evolution of the deviations >2n for 2n¿ 4
reads

>4(t) = p4(t; t0)>4(t0) ; (53)

and

>2n(t) =
[
>2n(t0) + 2n(4n− 1)

∫ t

t0
>2n−2(t′)p−1

2n (t
′; t0) dt′

]
p2n(t; t0) ; (54)

for 2n¿ 6. Eqs. (52), (53) and (54) describe evolution near the Gaussian solution
for arbitrary initial condition �(q; t0). Notice that explicit evaluation of the integral in
Eq. (52) requires solution to the moment equation (51) which is not available in the
analytical form for the FENE-P model.
It is straightforward to conclude that any solution with a non-Gaussian initial con-

dition converges to the Gaussian solution asymptotically as t → ∞ if

lim
t→∞

∫ t

t0
�(t′) dt′¡ 0 : (55)

However, even if this asymptotic condition is met, deviations from the Gaussian solu-
tion may survive for considerable $nite times. For example, if for some 8nite time T ,
the integral in the Eq. (52) is estimated as

∫ t
t0
�(t′) dt′¿�(t − t0), �¿ 0, t6T , then

the Gaussian solution becomes exponentially unstable during this time interval. If this
is the case, the moment equation (51) cannot be regarded as the macroscopic equation.
Let us consider speci8c examples.
For the Hookean spring (f ≡ 1) under a constant elongation (==const), the Gaussian

solution is exponentially stable for =¡ 0:5, and it becomes exponentially unstable for
=¿ 0:5. The exponential instability in this case is accompanied by the well-known
breakdown of the solution to Eq. (51) due to in8nite stretching of the dumbbell. The
situation is much more interesting for the FENE-P model because this nonlinear spring
force does not allow the in8nite stretching of the dumbbell.
Eqs. (51) and (53) were integrated by the 8fth-order Runge–Kutta method with

adaptive time step. The FENE-P parameter b was set equal to 50. The initial condition
was �(q; 0)=C(1−q2=b)b=2, where C is the normalization (the equilibrium of the FENE
model, notoriously close to the FENE-P equilibrium [61]). For this initial condition,
in particular, >4(0) = −6b2=[(b + 3)2(b + 5)] which is about 4% of the value of M4

in the Gaussian equilibrium for b = 50. In Fig. 1 we demonstrate deviation >4(t)
as a function of time for several values of the Sow. Function M2(t) is also given
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Fig. 1. Deviations of reduced moments from the Gaussian solution as a function of reduced time t in
pseudo-elongation Sow for the FENE-P model. Upper part: Reduced second moment X =M2=b. Lower part:
Reduced deviation of fourth moment from Gaussian solution Y = −>1=24 =b. Solid: = = 2, dash-dot: = = 1,
dash: = = 0:75, long dash: = = 0:5. (The 8gure from Ref. [20], computed by Ilg.)

for comparison. For small enough = we 8nd an adiabatic regime, that is >4 relaxes
exponentially to zero. For stronger Sows, we observe an initial fast runaway from the
invariant manifold with |>4| growing over three orders of magnitude compared to its
initial value. After the maximum deviation has been reached, >4 relaxes to zero. This
relaxation is exponential as soon as the solution to Eq. (51) approaches the steady
state. However, the time constant for this exponential relaxation |�∞| is very small.
Speci8cally, for large =,

�∞ = lim
t→∞ �(t) =− 1

2b
+ O(=−1) : (56)

Thus, the steady-state solution is unique and Gaussian but the stronger is the Sow,
the larger is the initial runaway from the Gaussian solution, while the return to it
thereafter becomes Sow-independent. Our observation demonstrates that, though the
stability condition (55) is met, signi$cant deviations from the Gaussian solution persist
over the times when the solution of Eq. (51) is already reasonably close to the
stationary state. If we accept the usually quoted physically reasonable minimal value
of parameter b of the order 20, then the minimal relaxation time is of order 40 in the
reduced time units of Fig. 1. We should also stress that the two limits, = → ∞ and b →
∞, are not commutative, thus it is not surprising that estimation (56) does not reduce to
the above-mentioned Hookean result as b → ∞. Finally, peculiarities of convergence to
the Gaussian solution are even furthered if we consider more complicated (in particular,
oscillating) Sows =(t). Further numerical experiments are presented in Ref. [62]. The
statistics of FENE-P solutions with random strains was studied recently by Thi=eault
[63].
In accordance with Ref. [64] the anzatz for � can be suggested in the following

form:

�An({-; &}; q) = 1

2-
√
2 

(
e−

(q+&)2

2-2 + e−
(q−&)2

2-2

)
: (57)
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Natural inner coordinates on this manifold are - and &. Note, that now -2 �= M2. The
value -2 is a dispersion of one of the Gaussian summands in (57),

M2(�An({-; &}; q)) = -2 + &2 :

To build the thermodynamic projector on the manifold (57), the thermodynamic
Lyapunov function is necessary. It is necessary to emphasize, that Eqs. (48) are nonlin-
ear. For such equations, the arbitrarity in the choice of the thermodynamic Lyapunov
function is much smaller than for the linear Fokker–Planck equation. Nevertheless,
such a function exists. It is the free energy

F = U (M2[�])− TS[�] ; (58)

where

S[�] =−
∫

�(ln� − 1) dq ;

U (M2[�]) is the potential energy in the mean 8eld approximation, T is the temperature
(further we assume that T = 1).
Note that Kullback-form entropy Sk=− ∫ � ln(�=�∗) also has the form Sk=−F=T :

�∗ = exp(−U ) ;

Sk [�] =−〈U 〉 −
∫

� ln� dq :

If U (M2[�]) in the mean 8eld approximation is the convex function of M2, then the
free energy (58) is the convex functional too.
For the FENE-P model U =−ln[1−M2=b].
In accordance to the thermodynamics the vector I of Sow of � must be proportional

to the gradient of the corresponding chemical potential >:

I =−B(�)∇q> ; (59)

where > = �F
�� , B¿ 0. From Eq. (58) it follows that

> =
dU (M2)
dM2

q2 + ln�

I =−B(�)
[
2
dU
dM2

q+�−1∇q�
]
: (60)

If we suppose here B= D
2�, then we get

I =−D
[
dU
dM2

q� +
1
2
∇q�

]

9�
9t = divqI = D

dU (M2)
dM2

9q(q�) +
D
2
92q� ; (61)
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When D = 1 this equation coincides with (48) in the absence of the Sow: due to
Eq. (61) dF=dt6 0.
Let us construct the thermodynamic projector with the help of the thermodynamic

Lyapunov function F (58). Corresponding entropic scalar product in the point � has
the form

〈f|g〉� =
d2U
dM 2

2

∣∣∣∣
M2=M2[�]

∫
q2f(q) dq

∫
q2g(q) dq+

∫
f(q)g(q)
�(q)

dq : (62)

During the investigation of anzatz (57) the scalar product (62), constructed for the
corresponding point of the Gaussian manifold with M2 = -2, will be used. It will let
us investigate the neighborhood of the Gaussian manifold (and to get all the results in
the analytical form):

〈f|g〉-2 =
d2U
dM 2

2

∣∣∣∣
M2=-2

∫
q2f(q) dq

∫
q2g(q) dq

+ -
√
2 
∫

eq
2=2-2f(q)g(q) dq : (63)

Also we will need to know the functional DF in the point of Gaussian manifold:

DF-2 (f) =

(
dU (M2)
dM2

∣∣∣∣
M2=-2

− 1
2-2

)∫
q2f(q) dq ; (64)

(with the condition
∫
f(q) dq= 0). The point

dU (M2)
dM2

∣∣∣∣
M2=-2

=
1
2-2

;

corresponds to the equilibrium.
The tangent space to manifold (57) is spanned by the vectors

f- =
9�An

9(-2) ; f& =
9�An

9(&2) ;

f- =
1

4-3
√
2 

[
e−(q+&)2=2-2 (q+ &)2 − -2

-2
+ e−(q−&)2=2-2 (q− &)2 − -2

-2

]
;

f& =
1

4-2&
√
2 

[
−e−(q+&)2=2-2 q+ &

-
+ e−(q−&)2=2-2 (q− &)

-

]
; (65)

The Gaussian entropy (free energy) production in the directions f- and f& (64) has a
very simple form:

DF-2 (f&) = DF-2 (f-) =
dU (M2)
dM2

∣∣∣∣
M2=-2

− 1
2-2

: (66)

The linear subspace kerDF-2 in lin{f-; f&} is spanned by the vector f& − f-.
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Let us have the given vector 8eld d�=dt = J (�) in the point �({-; &}). We need
to build the projection of J onto the tangent space T-;& in the point �({-; &}):

Pth
-;&(J ) = ’-f- + ’&f& : (67)

This equation means, that the equations for -2 and &2 will have the form

d-2

dt
= ’-;

d&2

dt
= ’& : (68)

Projection (’-; ’&) can be found from the following two equations:

’- + ’& =
∫

q2J (�)(q) dq ;

〈’-f- + ’&f&|f- − f&〉-2 = 〈J (�)|f- − f&〉-2 ; (69)

where 〈f|g〉-2 = 〈J (�)|f- − f&〉-2 , (62). First equation of (69) means that the time
derivative dM2=dt is the same for the initial and reduced equations. Due to the formula
for the dissipation of the free energy (64), this equality is equivalent to the persistence
of the dissipation in the neighborhood of the Gaussian manifold. Indeed, according to
(64) dF=dt = A(-2)

∫
q2J (�)(q) dq = A(-2) dM2=dt, where A(-2) does not depend of

J . On the other hand, time derivative of M2 due to projected equation (68) is ’-+’&,
because M2 = -2 + &2.
The second equation in (69) means, that J is projected orthogonally on kerDS

⋂
T-;&.

Let us use the orthogonality with respect to the entropic scalar product (63). The
solution of Eqs. (69) has the form

d-2

dt
= ’- =

〈J |f- − f&〉-2 +M2(J )(〈f&|f&〉-2 − 〈f-|f&〉-2 )
〈f- − f&|f- − f&〉-2

;

d&2

dt
= ’& =

−〈J |f- − f&〉-2 +M2(J )(〈f-|f-〉-2 − 〈f-|f&〉-2 )
〈f- − f&|f- − f&〉-2

; (70)

where J = J (�), M2(J ) =
∫
q2J (�) dq.

It is easy to check that the formulas (70) are indeed de8ning the projector: if f-
(or f&) is substituted there instead of the function J , then we will get ’- = 1; ’& = 0
(or ’- = 0; ’& = 1, respectively). Let us substitute the right part of the initial kinetic
equations (48), calculated in the point �(q) =�({-; &}; q) (see Eq. (57)) in Eq. (70)
instead of J . We will get the closed system of equations on -2; &2 in the neighborhood
of the Gaussian manifold.
This system describes the dynamics of the distribution function �. The distribution

function is represented as the half-sum of two Gaussian distributions with the averages
of distribution ±& and mean-square deviations -. All integrals in the right-hand part
of (70) are possible to calculate analytically.
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Fig. 2. Phase trajectories for the two-peak approximation, FENE-P model. The vertical axis (&=0) corresponds
to the Gaussian manifold. The triangle with �(M2)¿ 0 is the domain of exponential instability.

Basis (f-; f&) is convenient to use everywhere, except the points in the Gaussian
manifold, &= 0, because if & → 0, then

f- − f& = O
(
&2

-2

)
→ 0 :

Let us analyze the stability of the Gaussian manifold to the “dissociation” of the
Gaussian peak in two peaks (57). To do this, it is necessary to 8nd 8rst nonzero term
in the Taylor expansion in &2 of the right-hand side of the second equation in system
(70). The denominator has the order of &4, the numerator has, as it is easy to see, the
order not less than &6 (because the Gaussian manifold is invariant with respect to the
initial system).
With the accuracy up to &4:

1
-2

d&2

dt
= 2�

&2

-2
+ o
(
&4

-4

)
; (71)

where

�= = − dU (M2)
dM2

∣∣∣∣
M2=-2

:

So, if �¿ 0, then &2 grows exponentially (& ∼ e�t) and the Gaussian manifold is
unstable; if �¡ 0, then &2 decreases exponentially and the Gaussian manifold is stable.
Near the vertical axis d-2=dt=1+2�-2. The form of the phase trajectories is shown

qualitative in Fig. 2. Note that this result completely agrees with Eq. (53).
For the real equation FPE (for example, with the FENE potential) the motion in the

presence of the Sow can be represented as the motion in the e=ective potential well
Ũ (q) = U (q) − 1

2 =q
2. Di=erent variants of the phase portrait for the FENE potential

are present in Fig. 3. Instability and dissociation of the unimodal distribution functions
(“peaks”) for the FPE is the general e=ect when the Sow is present.
The instability occurs when the matrix 92Ũ =9qi9qj starts to have negative eigenvalues

(Ũ is the e=ective potential energy, Ũ (q) = U (q)− 1
2

∑
i; j =i; jqiqj).
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Fig. 3. Phase trajectories for the two-peak approximation, FENE model: (a) A stable equilibrium on the
vertical axis, one stable peak; (b) a stable equilibrium with &¿ 0, stable two-peak con8guration.

4.2.2. Polymodal polyhedron
The stationary polymodal distribution for the Fokker–Planck equation corresponds

to the persistence of several local minima of the function Ũ (q). The multidimen-
sional case is di=erent from one-dimensional because it had a huge amount of possible
con8gurations. An attempt to describe this picture quantitatively meets the following
obstacle: we do not know the potential U , on the other hand, the e=ect of molecular
individualism [17–19] seems to be universal in its essence, without the dependence
of the qualitative picture on details of interactions. We should 8nd a mechanism that
is as general as the e=ect. The simplest dumbbell model which we have discussed in
the previous subsection does not explain the e=ect, but it gives us a hint: the Sow
can violate the stability of unimodal distribution. If we assume that the whole picture
is hidden inside a multidimensional Fokker–Planck equation for a large molecule in a
Sow, then we can use this hint in such a way: when the Sow strain grows there appears
a sequence of bifurcations, and for each of them a new unstable direction arises. For
a qualitative description of such a picture we can apply a language of normal forms
[65], but with some modi8cation.
The bifurcation in dimension one with appearance of two point of minima from one

point has the simplest polynomial representation: U (q; �)=q4 +�q2. If �¿ 0, then this
potential has one minimum, if �¡ 0, then there are two points of minima. The normal
form of degenerated singularity is U (q) = q4. Such polynomial forms as q4 + �q2 are
very simple, but they have inconvenient asymptotic at q → ∞. For our goals it is
more appropriate to use logarithms of convex combinations of Gaussian distributions
instead of polynomials. It is the same class of jets near the bifurcation, but with given
quadratic asymptotic q → ∞. If one needs another class of asymptotic, it is possible
just to change the choice of the basic peak. All normal forms of the critical form of
functions, and families of versal deformations are well investigated and known [65].
Let us represent the deformation of the probability distribution under the strain in

multidimensional case as a cascade of peak dissociation. The number of peaks will
duplicate on the each step. The possible cascade of peak dissociation is presented
qualitatively in Fig. 4. The important property of this qualitative picture is the lin-
ear complexity of dynamical description with exponential complexity of geometrical
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Fig. 4. Cartoon representing the steps of molecular individualism. Black dots are vertices of Gaussian par-
allelepiped. Zero, one, and four-dimensional polyhedrons are drawn. Presented is also the three-dimensional
polyhedron used to draw the four-dimensional object. Each new dimension of the polyhedron adds as soon as
the corresponding bifurcation occurs. Quasi-stable polymeric conformations are associated with each vertex.
First bifurcation pertinent to the instability of a dumbbell model in elongational Sow is described in the text.

picture. Let m be the number of bifurcation steps in the cascade. Then

• For description of parallelepiped it is suTcient to describe m edges.
• There are 2m−1 geometrically di=erent conformations associated with 2m vertex of

parallelepiped (central symmetry halved this number).

Another important property is the threshold nature of each dissociation: It appears in
points of stability loss for new directions and in these points the dimension of unstable
direction increases.
Positions of peaks correspond to parallelepiped vertices. Di=erent vertices in con-

8guration space present di=erent geometric forms. So, it seems plausible 6 that ob-
served di=erent forms (“dumbbels”, “half-dumbbels”, “kinked”, “folded” and other, not

6 We cannot prove it now, and it is necessary to determine the status of proposed qualitative picture: it
is much more general than a speci8c model, it is the mechanism which acts in a wide class of models.
The cascade of instabilities can appear and, no doubt, it appears for the Fokker–Planck equation for a large
molecule in a Sow. But it is not proven yet that the e=ects observed in well-known experiments have exactly
this mechanism. This proof requires quantitative veri8cation of a speci8c model. And now we talk not about
a proven, but about the plausible mechanism which typically appears for systems with instabilities.
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classi8ed forms) correspond to these vertices of parallelepiped. Each vertex is a meta-
stable state of a molecule and has its own basin of attraction. A molecule goes to the
vertex which depends strongly on details of initial conditions.
The simplest multidimensional dynamic model is the Fokker–Planck equation with

quadratic mean 8eld potential. This is direct generalization of the FENE-P model: the
quadratic potential U (q) depends on the tensor of second moments M2 = 〈qiqj〉 (here
the angle brackets denote the averaging). This dependence should provide the 8nite
extensibility. This may be, for example, a simple matrix generalization of the FENE-P
energy:

U (q) =
∑
ij

Kijqiqj; K = K 0 + E(M2=b); 〈U (q)〉= tr(KM 2=b) ;

where b is a constant (the limit of extensibility), K 0 is a constant matrix, M2 is
the matrix of second moments, and E is a positive analytical monotone increasing
function of one variable on the interval (0; 1), E(x) → ∞ for x → 1 (for example,
E(x) =−ln(1− x)=x, or E(x) = (1− x)−1).
For quadratic multidimensional mean 8eld models persist the qualitative picture of

Fig. 2: there is nonstationary molecular individualism for stationary “molecular col-
lectivism”. The stationary distribution is the Gaussian distribution, and on the way to
this stationary point there exists an unstable region, where the distribution dissociates
onto 2m peaks (m is the number of unstable degrees of freedom).
Dispersion of individual peak in unstable region increases too. This e=ect can

deform the observed situation: If some of the peaks have signi8cant intersection, then
these peaks join into new extended classes of observed molecules. The stochastic walk
of molecules between connected peaks can be observed as “large nonperiodical Suctu-
ations”. This walk can be unexpected fast, because it can e=ectively be a motion in a
low-dimensional space, for example, in one-dimensional space (in a neighborhood of
a part of one-dimensional skeleton of the polyhedron).

4.3. Generalization: neurons and particles

The Gaussian parallelepiped (14) seems to be a “rigid” structure: the possibilities to
extend this anzatz, to make it more exact but with preservation of more or less trans-
parent structure, are not obvious. The simple transformation can improve this situation.
Let us mention the obvious relation: exp(−(x − a)2) = exp(−x2) exp(2ax) exp(−a2).
We can write the simple generalization of Eq. (14):

�(q) =�∗(q)
m∏
i=1

’i((&i; q)) ; (72)

where �∗(q) is the distribution density for one peak, for example, it may be the
multidimensional Gaussian distribution �∗(q) = (1=(2 )n=2

√
det!) exp

(− 1
2 (!

−1q; q)
)
,

&i; (i=1; : : : ; m) are vectors in the con8guration space, (&i; q) is the usual scalar product,
’i(x) are nonnegative functions of one variable x. for example, ’i(x)=Aich(�ix+Fi).
Form (72) is more Sexible than original Gaussian parallelepiped (14). It gives the

possibility to extend the space for model adaptation. Functions of one variable ’i(x)



424 A.N. Gorban, I.V. Karlin / Physica A 336 (2004) 391– 432

are additional variables. They can form a 8nite-parametric family: For example, ’i(x)=
Aich(�ix) give the Gaussian peaks, and if we use ’i(x) = A+

i exp(�
+
i x) + A−

i exp(�
−
i x),

then we obtain a nonsymmetric picture of shifted peaks. On following steps we may
use di=erent spaces (or manifolds) of functions ’i(x) to extend the approximation
capacity of anzatz (72).
Let us describe the tangent space T for anzatz (72) with functions �i(x) = ln’i(x)

from some space L. The space of functions of n variables

L((&; q)) = {�((&; q))|’∈L}
corresponds to a given vector & and the space L. The tangent space T� for the anzatz
(72) in a point � has a form:

T� =�

[
m∑
i=1

L((&i; q)) +
m∑
i=1

(
d�i(x)
dx

)
x=(&i ;q)

E∗
]
; (73)

where E∗ is the space of linear functions of q.
If the space L includes all suTciently smooth functions, then to avoid intersection

between L((&i; q)) and (d�i(x)=dx)x=(&i ;q)E
∗ it is convenient to change in Eq. (73) the

space of all linear functions E∗ to the space of linear functions orthogonal to (&i; q),

E∗
i = {(&; q)|& ⊥ &i} (without any change in the resulting space):

T� =�

[
m∑
i=1

L((&i; q)) +
m∑
i=1

(
d�i(x)
dx

)
x=(&i ;q)

E∗
i

]
: (74)

It means that for suTciently rich spaces L the vectors &i in anzatz (72) could be chosen
on the sphere, (&i; &i) = 1, to provide independence of variables.

Form (72) appears as a quasiequilibrium distribution density in the following par-
ticular case of problem (27):

S(�) → max;
∫

�(x − (&i; q))�(q) dnq= fi(x); i = 1; : : : ; m ; (75)

where S(�) is the Kullback-form Boltzmann–Gibbs–Shannon entropy which measures
a deviation of the distribution density �(q) from the equilibrium density �∗(q):

S(�) =−
∫

�(q) ln
(
�(q)
�∗(q)

)
dnq : (76)

Hence, for 8xed values of &i and for a space of arbitrary nonnegative smooth functions
’i(x) anzatz (72) is the quasiequilibrium approximation with macroscopic variables

fi(x) =
∫

�(x − (&i; q))�(q) dnq :

Let us de8ne the anzatz manifold (72) as a union of the quasiequilibrium manifolds
(75) for all sets of values {&i}mi=1 on the unit sphere. In this case we can apply
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Proposition 4: The thermodynamic projector is the orthogonal projector on T� with
respect to the entropic scalar product in the point �: In the space of density functions

〈f|g〉� =
∫

f(q)g(q)
�(q)

dq ; (77)

and in the conjugated space (for example, for functions � from space L in (73), (74))

〈>|�〉c� =
∫

>(q)�(q)�(q) dq ; (78)

where the scalar product for the conjugated space is marked by the upper index c.
The orthogonal projector P on the direct sum of subspaces

m∑
i=1

L((&i; q)) +
m∑
i=1

(
d�i(x)
dx

)
x=(&i ;q)

E∗
i (79)

is a sum of operators: P =
∑m

i=1 (P�i + P&i), where

imP�i = L((&i; q)); imP&i =
(
d�i(x)
dx

)
x=(&i ;q)

E∗
i : (80)

Operators P�i , P&i can be founded from the de8nition of their images (80) and the
conditions: P2 = P; P+ = P, where P+ is conjugated to P operator with respect of
the scalar product 〈 | 〉c (78). From the 8rst equation of (P2 = P) it follows that each
operator A from the set Q = {P�i}mi=1

⋃{P&j}mj=1 is a projector, A2 = A (it may be not
orthogonal), and for any pair of distinct projectors A; B∈Q the following inclusions
hold: imA ⊆ ker B, imB ⊆ ker A.

In a general case, the constructive realization of orthogonal projector requires
solution of systems of linear equations, or orthogonalization of systems of vectors,
etc. We shall not discuss the details of computational algorithms here, but one impor-
tant possibility should be stressed. The orthogonal projection P(J ) can be computed
by adaptive minimization of a quadratic form:

〈J − P(J )|J − P(J )〉� → min for P(J )∈T� : (81)

The gradient methods for solution of problem (81) are based on the following simple
observation: Let a subspace L ⊂ E of the Hilbert space E be the direct sum of sub-
spaces Li: L=

∑
i Li. The orthogonal projection of a vector J ∈E onto L has a unique

representation in a form: P(J )= x=
∑

i xi; xi ∈Li. The gradient of the quadratic form
(J − x; J − x) in the space L has the form:

gradx(J − x; J − x) = 2
∑
i

P⊥
i (J − x) ; (82)

where P⊥
i is the orthogonal projector on the space Li. It means: if one has the or-

thogonal projectors on the spaces Li, then he can easily write the gradient method for
problem (81).
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The projected kinetic equations, �̇ = x, x∈T�, with the equations for this adaptive
method, for example ẋ=−hgradx〈J − x|J − x〉�, can be solved together. For a rational
choice of the step h this system is stable, and has a Lyapunov functional (for closed
systems). This functional can be found as a linear combination of the entropy and the
minimized quadratic form 〈J − x|J − x〉�.
We consider the FPE of the form

9�(q; t)
9t =∇q{D(q)[�(q; t)(∇qU (q)− Fex(q; t)) +∇q�(q; t)]} : (83)

Here �(q; t) is the probability density over the con8guration space q at the time t,
while U (q) and D(q) are the potential and the positively semi-de8nite ((r; D(q)r)¿ 0)
symmetric di=usion matrix, and Fex(q; t) is an external force (we omit here such mul-
tipliers as kBT , friction coeTcients, etc). Another form of Eq. (83) is

9�(q; t)
9t =∇q

{
D(q)�∗(q)(∇q − Fex(q; t))

(
�(q; t)
�∗(q)

)}
; (84)

where �∗(q) is the equilibrium density: �∗(q; t) = exp(−U (q))=
∫
exp(−U (p)) dp.

For anzatz (72) �(q; t) =�∗(q) exp
∑

i �i((&i; q); t). For this anzatz the left-hand side
of Eq. (84) has the form

J (�) =�


∑

i

(&i; D(q)&i)
(
92�i
9x2

)
x=(&i ;q)

+
∑
i; j

(&j; D(q)&i)
(
9�i
9x

)
x=(&i ;q)

(
9�j
9x

)
x=(&j ;q)

−
∑
i

(
9�i
9x

)
x=(&i ;q)

((&i; D(q)(∇qU (q) + Fex(q; t)))− (∇q; D(q)&i))

+ (∇qU (q); D(q)Fex(q; t))− (∇q; D(q)Fex(q; t))


 ; (85)

where �i = �i(x; t), and (; ) is the usual scalar product in the con8guration space.
The projected equations have the form:

9�i
9t = P�iJ (�);

d&i
dt

= P&i J (�) ; (86)

where the vector 8eld J (�) is calculated by formula (85), and the projectors, P�i and
P&i , are de8ned by Eqs. (80). For adaptive methods the right-hand parts of Eqs. (86)
are solutions of auxiliary equations.
We can return from anzatz (72) to the polymodal polyhedron: It corresponds to a

8nite-dimensional multimodal approximation for each of Eqs. (86). If the number of
maxima in the approximation of �i(x) is ki, then the number of peaks in the polymodal
polyhedron is k =

∏
i ki.
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For further development of approximation (72) it is possible to add some usual
moments to system (75). These additional moments can include a stress tensor and
some other polynomial moments. As a result of such an addition, the equilibrium
density in anzatz (72) will be replaced to a more general nonconstant quasiequilibrium
density.
Ansatz (72) can be discussed and studied from di=erent points of view:

(1) It is an uncorrelated particle representation of kinetics: The distribution density
function (72) is a product of equilibrium density and one-particle distributions,
’i. Each particle has it’s own one-dimensional con8guration space with coordinate
x= (&i; q). The representation of uncorrelated particles is well known in statistical
physics, for example, the Vlasov equation is the projection of the Liouville equa-
tion onto uncorrelated anzatz [66]. There are three signi8cant di=erences between
anzatz (73) and usual uncorrelated anzatz: First, anzatz (72) is not symmetric
with respect to particle permutation, second, the con8guration spaces of particles
for this anzatz are dynamic variables. The third di=erence is: Ansatz (72) includes
the equilibrium density function explicitly, hence, the uncorrelated particles rep-
resent the nonequlibrium factor of distribution, and equilibrium correlations are
taken into account completely.

(2) It is a version of a neural-network approximation [67]. The components of the
vector &i are input synaptic weights for the ith neuron of the hidden layer, and
ln’i(x) is the activation function of this neuron. The activation function of the
output neuron is exp(x). There is no need in di=erent input synaptic weights for
the output neuron, because possible activation functions of the neurons of the
hidden layer form the linear space L, and any real multiplier can be included into
ln’i(x). The only di=erence from usual neural networks is a relatively big space of
activation functions on the hidden layer. Usually, the most part of network abilities
is hidden in the net of connections, and the only requirement to the activation
function is their nonlinearity, it is suTcient for the approximation omnipotence of
connectionism [68–70]. Nevertheless, neural networks with relatively rich spaces
of activation functions are in use too [71,72].

5. Conclusion: POET and the di+erence between ellipsoid and parallelepiped

Let us introduce an abbreviation “POET” (Projection-Of-Everything-Thermodynamic)
for the thermodynamic projector. POET transforms the arbitrary vector 8eld equipped
with the given Lyapunov function into a vector 8eld with the same Lyapunov func-
tion. It projects each term in kinetic equations into the term with the same entropy
production. Moreover, POET conserves the reciprocity relations: if initial kinetics satis-
8es the Onsager relations, then the projected system satis8es these relations too. Thus,
the problem of persistence of thermodynamic properties in model reduction is solved.
POET is an unique operator which always preserves the sign of dissipation, any other
important features of this operator follow from this preservation.
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It is necessary to use POET even for reduction of kinetic models for open systems,
because the processes which produce the entropy in a closed system should produce the
entropy in the open system as well: The di=erence between open and closed systems
is the presence of entropy outSow (or, what is the same, of the free energy inSow),
and the dissipative processes preserve their dissipativity.
One of the most important impacts of POET on the model reduction technology is

the new possibility of constructing thermodynamically consistent reduced model with
almost arbitrary anzatz. On the other hand, it gives the possibility to create thermody-
namically consistent discretization of the problem of model reduction [73].
The short memory approximation gives the coarse-grained equations. Entropy pro-

duction for these equations is larger than for initial equations. This approach allows us
to produce systems with dissipation from conservative systems, for example.
It should be stressed that all the constructions, equations and statements are valid

for arbitrary (linear or nonlinear) vector 8elds, classical or quantum, mechanical, or
not. The only requirement is: the projector 8eld preserves the sign of dissipation, and
such a 8eld was constructed.
In this paper we discussed the important example of anzatz: the multipeak models.

Two examples of these type of models demonstrated high eTciency during decades:
the Tamm–Mott-Smith bimodal anzatz for shock waves, and the Langer–Bar-on–Miller
approximation for spinodal decomposition.
The multimodal polyhedron appears every time as an appropriate approximation for

distribution functions for systems with instabilities. We create such an approximation
for the Fokker–Planck equation for polymer molecules in a Sow. Distributions of this
type are expected to appear in each kinetic model with multidimensional instability as
universally, as Gaussian distribution appears for stable systems. This statement needs
a clari8cation: everybody knows that the Gaussian distribution is stable with respect to
convolutions and the appearance of this distribution is supported by central limit the-
orem. Gaussian polyhedra form a stable class: convolution of two Gaussian polyhedra
is a Gaussian polyhedron and convolution of a Gaussian polyhedron with a Gaussian
distribution is a Gaussian polyhedron with the same number of vertices. On the other
hand, a Gaussian distribution in a potential well appears as an exponent of a quadratic
form which represents the simplest stable potential (a normal form of a nondegenerated
critical point). Families of Gaussian parallelepipeds appear as versal deformations with
given asymptotic for systems with cascade of simplest bifurcations.
The usual point of view is: The shape of the polymers in a Sow is either a coiled

ball, or a stretched ellipsoid, and the Fokker–Planck equation describes the stretching
from the ball to the ellipsoid. It is not the whole truth, even for the FENE-P equation,
as it was shown in Refs. [20,64]. The Fokker–Planck equation describes the shape of a
probability cloud in the space of conformations. In the Sow with increasing strain, this
shape changes from the ball to the ellipsoid, but after some thresholds, this ellipsoid
transforms into a multimodal distribution which can be modeled as the peak paral-
lelepiped. The peaks describe the 8nite number of possible molecule conformations.
The number of this distinct conformations grows for a parallelepiped as 2m with the
number m of independent unstable direction. Each vertex has its own basin of attraction.
A molecule goes to the vertex which depends strongly on details of initial conditions.
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These models pretend to be the kinetic basis for the theory of molecular individu-
alism. The detailed computations will be presented in following works, but some of
the qualitative features of the models are in agreement with some of qualitative fea-
tures of the picture observed in experiment [17–19]: e=ect has the threshold character,
di=erent observed conformations depend signi8cantly on the initial conformation and
orientation.
Some general questions remain open:

• Of course, appearance of 2m peaks in the Gaussian parallelepiped is possible, but
some of these peaks can join in following dynamics, hence the 8rst question is: what
is the typical number of signi8cantly di=erent peaks for an m-dimensional instability?

• How can we decide what scenario is more realistic from the experimental point of
view: the proposed universal kinetic mechanism, or the scenario with long living
metastable states (for example, the relaxation of knoted molecules in the Sow can
give a picture other than the relaxation of unknoted molecules)?

• The analysis of random walk of molecules from peak to peak should be carried out,
and results of this analysis should be compared with observed large Suctuations.

The systematic discussion of a di=erence between the Gaussian elipsoid (and its
generalizations) and the Gaussian multipeak polyhedron (and its generalizations) seems
necessary. This polyhedron appears generically as the e=ective anzatz for kinetic sys-
tems with instabilities.
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