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Abstract

Explicit method of constructing of approximations (Triangle Entropy Method)
is developed for strongly nonequilibrium problems of Boltzmann’s–type kinetics, i.e.
when standard moment variables are insufficient. This method enables one to treat
any complicated nonlinear functionals that fit the physics of a problem (such as, for
example, rates of processes) as new independent variables.

The method is applied to the problem of derivation of hydrodynamics from the
Boltzmann equation. New macroscopic variables are introduced (moments of the
Boltzmann collision integral, or collision moments). They are treated as independent
variables rather than as infinite moment series. This approach gives the complete
account of rates of scattering processes. Transport equations for scattering rates are
obtained (the second hydrodynamic chain), similar to the usual moment chain (the
first hydrodynamic chain). Using the triangle entropy method, three different types
of the macroscopic description are considered. The first type involves only moments
of distribution functions, and results coincide with those of the Grad method in the
Maximum Entropy version. The second type of description involves only collision
moments. Finally, the third type involves both the moments and the collision mo-
ments (the mixed description). The second and the mixed hydrodynamics are sen-
sitive to the choice of the collision model. The second hydrodynamics is equivalent
to the first hydrodynamics only for Maxwell molecules, and the mixed hydrody-
namics exists for all types of collision models excluding Maxwell molecules. Various
examples of the closure of the first, of the second, and of the mixed hydrodynamic
chains are considered for the hard spheres model. It is shown, in particular, that
the complete account of scattering processes leads to a renormalization of transport
coefficients.
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1 Triangle Entropy Method

Many works are devoted to the problem of constructing approximate solutions of the
Boltzmann kinetic equation, and to obtaining a closed macroscopic description. Hilbert
[14], Chapman-Enskog [16] and Grad [19] methods, as well as their modifications are most
commonly used for solving this problem. In the present section, which is of introductory
character, we shall mean for certainty the Boltzmann kinetic equation for simple gas whose
state (in the microscopic sense) is described by the one-particle distribution function
f(v,x, t) depending on the velocity vector v = {vk}3

k=1, the spatial position x = {xk}3
k=1

and time t. The the Boltzmann equation describes the evolution of f and in the absence
of external forces is

∂tf + vk∂kf = St(f, f), (1)

where ∂t ≡ ∂/∂t is the time partial derivative, ∂k ≡ ∂/∂xk is partial derivative with
respect to k-th component of x, here summation in two repeating indices is assumed, and
St(f, f) is the collision integral (its concrete form is of no importance for the present, just
note that it is functional-integral operator quadratic with respect to f).

The Boltzmann equation possesses two properties principal for the subsequent reason-
ing.

1. There are exactly five scalar functions ψα(v)(additive collision invariants), 1,v,v2

such that for any their linear combination with coefficients depending on x, t and for
arbitrary f ensuring existence of the integrals the following equality is true:

∫ 5
∑

α=1

aα(x, t)ψα(v)St(f, f)dv = 0. (2)

2. The equation (1) possesses global Lyapunov functional: the H-function,

H(t) ≡ H [f ] =
∫

f(v,x, t) ln f(v,x, t)dvdx, (3)

the derivative of which by virtue of the equation (1) is non-positive under appropriate
boundary conditions:

dH(t)/dt ≤ 0 (4)

and turns into zero in the only point of the space, corresponding to the spatially uniform
Maxwell distribution function f0(v). The H-function is unique within the accuracy of
adding to it of a moment with respect to f of arbitrary linear combination of additive
collision invariants.

Grad’s method [19] and its variants result in constructing of closed systems of equations
for macroscopic parameters are represented by moments (or, in more general consider-
ation, linear functionals) of the distribution function f (hence their alternative name is
“moment methods”). The entropy maximum method [11] is of particular importance for
the subsequent reasoning. It consists in the following. A finite set of the moments describ-
ing macroscopic state is chosen. Then, the distribution function of the quasi-equilibrium
state under given values of the chosen moments is determined, i.e. the problem is solved

H [f ] → min, for M̂i[f ] = Mi, i = 1, . . . , k, (5)
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where M̂i[f ] are linear functionals with respect to f ; Mi are the corresponding values of
the chosen set of k macroscopic parameters. The obtained quasi-equilibrium distribution
function f ∗(v,M(x, t)), M = {M1, . . . ,Mk}, parametrically depends on Mi, its depen-
dence on space x and on time t being represented only by M(x, t). Then the obtained f ∗

is substituted into the Boltzmann equation (1).
As a result we have closed systems of equations with respect to Mi(x, t), i = 1, . . . , k:

∂tMi + M̂i[vk∂kf
∗(v,M)] = M̂i[St(f

∗(v,M), f ∗(v,M))]. (6)

The following heuristic explanation [6, 7, 11, 15] can be given to the entropy method. A
state of the gas can be described by a finite set of moments on some temporal scale θ only if
all the other (“fast”) moments of the distribution function during some characteristic time
τ, τ << θ, relax to their values determined by the chosen set of “slow” moments, while
the latter almost do not change during the time τ . In the process of the fast relaxation the
H-function decreases, and in the end of this fast relaxation process a quasi-equilibrium
state sets in with a distribution function being solution of the problem (5). Then “slow”
moments relax to the equilibrium state by virtue of (6).

The entropy method has a number of advantages in comparison with the classical Grad
method [2]. Firstly, being not necessarily restricted to any specific system of orthogonal
polynomials, and leading to solving an optimization problem, it is more convenient from
the technical point of view. Secondly, and what is more important, the resulting quasi-
equilibrium H-function, H∗(M) = H [f ∗(v,M)], decreases due of the moment equations
(6).

Let us note one common disadvantage of all the moment methods, and, in particular,
of the entropy method. Macroscopic parameters, for which these methods enable to
obtain closed systems, must be moments of the distribution function. On the other hand,
it is easy to find examples when the interesting macroscopic parameters are not linear
functionals of the distribution function. In the case of simple gas those are the integrals
of velocity polynomials with respect to the collision integral St(f, f) of (1), for chemically
reacting mixture those are the reaction rates and so on. If the characteristic relaxation
time of such non-linear macroscopic parameters is comparable with that of the “slow”
moments, then they should be included into the list of “slow” variables on the same
footing.

In this paper for constructing closed systems of equations for non-linear (in a general
case) macroscopic variables the triangle entropy method proposed in [8, 9, 10] is used.
Let us describe the scheme of this method after the example of the equation (1).

Let a set of M̂ [f ] =
{

M̂1[f ], . . . , M̂k[f ]
}

linear, and N̂ [f ] =
{

N̂1[f ], . . . , N̂l[f ]
}

nonlin-

ear (in a general case) macroscopic variables be chosen. Then, just as for the problem (5),
the first quasi-equilibrium approximation is constructed under fixed values of the linear
macroscopic parameters M :

H [f ] → min for M̂i[f ] = Mi, i = 1, . . . , k, (7)

and the resulting distribution function is f ∗(v,M). After that, we seek the true distribu-
tion function in the form,

f = f ∗(1 + ϕ), (8)

where ϕ is a deviation from the first quasi-equilibrium approximation. In order to deter-
mine the latter, the second quasi-equilibrium approximation is constructed. Let us denote
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∆H [f ∗, ϕ] as the quadratic term in the expansion of the H-function into powers of ϕ in
the neighbourhood of the first quasi-equilibrium state f ∗. The distribution function of
the second quasi-equilibrium approximation is the solution to the problem,

∆H [f ∗, ϕ] → min for

M̂ [f ∗ϕ] = 0, i = 1, . . . , k

∆N̂j[f
∗, ϕ] = ∆N̂j , j = 1, . . . , l, (9)

where ∆N̂j are linear operators characterizing the linear with respect to ϕ deviation of

(nonlinear) macroscopic parameters Nj from their values, N∗

j = N̂j [f
∗], in the first quasi-

equilibrium state. The obtained distribution function,

f = f ∗(v,M)(1 + ϕ∗∗(v,M,∆N)) (10)

is used to construct the closed system of equations for the macroparameters M , and ∆N .
Further in this section some examples of using the triangle entropy method for chem-

ically non-reacting gases are considered. Applications of the triangle entropy method to
chemically reacting gases see in [10].

Finally, let us note that the entropy and triangle entropy methods are particular cases
of elimination of rapid variables by means of the Lyapunov function (general statements
and detailed analysis of this problem for Pauli equation see in [6]).

2 Linear Macroscopic parameters

Let us consider the simplest example of using the triangle entropy method, when all the
macroscopic parameters both of the first and of the second quasi-equilibrium states are
the moments of the distribution function.

2.1 Quasi-equilibrium projector

Let µ1(v), . . . , µk(v) be the microscopic densities of the moments M1(x, t), . . . .,Mk(x, t)
determining the first quasi-equilibrium state,

Mi(x, t) =
∫

µi(v)f(v,x, t)dv, (11)

and, let ν1(v), . . . , νl(v) be the microscopic densities of the moments N1(x, t), . . . ., Nl(x, t)
determining together with (1) the second quasi-equilibrium state,

Ni(x, t) =
∫

νi(v)f(v,x, t)dv. (12)

The choice of the set of the moments of the first and second quasi-equilibrium approxima-
tions depends on a specific problem. The only natural restriction being always imposed
on the distribution function is the normalization condition. Further on we will suppose
that the microscopic density µ0 ≡ 1 corresponding to that condition is always included
in the list of microscopic densities of the moments of the first quasi-equilibrium state
(µ1 = µ0 = 1). The distribution function of the first quasi-equilibrium state results from
solving the optimization problem,
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H [f ] =
∫

f(v) ln f(v)dv → min (13)

for
∫

µi(v)f(v)dv = Mi, i = 1, . . . , k.

Let us denote by M = {M1, . . . ,Mk} the vector of moments of the first quasi-equilibrium
state, and by f ∗(v,M) let us denote the solution of the problem (13).

The distribution function of the second quasi-equilibrium state is sought for in the
form,

f = f ∗(v,M)(1 + ϕ). (14)

Expanding the H-function (3) in the neighbourhood of f ∗(v,M) into powers of ϕ to
second order, we obtain,

∆H(x, t) ≡ ∆H [f ∗, ϕ] = H∗(M) +
∫

f ∗(v,M) ln f ∗(v,M)ϕ(v)dv +

+
1

2

∫

f ∗(v,M)ϕ2(v)dv, (15)

where H∗(M) = H [f ∗(v,M)] is the value of the H-function in the first quasi-equilibrium
state.

When searching for the second quasi-equilibrium state, it is necessary that the true
values of the moments M coincide with their values in the first quasi-equilibrium state,
i.e.,

Mi =
∫

µi(v)f ∗(v,M)(1 + ϕ(v))dv =
∫

µi(v)f ∗(v,M)dv = M∗

i , i = 1, . . . , k. (16)

In other words, the set of the uniform restrictions on ϕ in the problem (9),
∫

µi(v)f ∗(v,M)ϕ(v)dv = 0, i = 1, . . . , k, (17)

ensures a shift (change) of the first quasi-equilibrium state only due to introducing the
new moments N1, . . . , Nl in addition to M . In order to take this condition into account
automatically, let us introduce the following structure of a Hilbert space:
1. Define the scalar product

(ψ1, ψ2) =
∫

f ∗(v,M)ψ1(v)ψ2(v)dv. (18)

2. Let Eµ be the linear envelope of the set of moment densities {µ1(v), . . . , µk(v)}. Let us
construct a basis of Eµ {e1(v), . . . , er(v)} orthonormal in the sense of the scalar product
(18):

(ei, ej) = δij , (19)

i, j = 1, . . . , r; δij is the Kronecker symbol.

3. Define a projector P̂ ∗ on the first quasi-equilibrium state,

P̂ ∗ψ =
r
∑

i=1

ei(ei, ψ). (20)
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The projector P̂ ∗ is orthogonal: for any pair of functions ψ1, ψ2,

(P̂ ∗ψ1, (1̂ − P̂ ∗)ψ2) = 0, (21)

where 1̂ is the unit operator. Then the condition (17) means that

P̂ ∗ϕ = 0, (22)

and the expression for the quadratic part of the H-function (15) takes the form,

∆H [f ∗, ϕ] = H∗(M) + (ln f ∗, ϕ) + (1/2)(ϕ, ϕ). (23)

Now, let us note that the function ln f ∗ is invariant with respect to action of the
projector P̂ ∗:

P̂ ∗ ln f ∗ = ln f ∗. (24)

This directly follows from the solution of the problem (13) using of the method of Lagrange
multipliers:

f ∗ = exp
k
∑

i=1

λi(M)µi(v),

where λi(M) are Lagrange multipliers. Thus, if the condition (22) is satisfied, then from
(21) and (24) it follows that

(ln f ∗, ϕ) = (P̂ ∗ ln f ∗, (1̂ − P̂ ∗)ϕ) = 0.

Condition (22) is satisfied automatically, if ∆Ni are taken as follows:

∆Ni = ((1̂ − P̂ ∗)νi, ϕ), i = 1, . . . , l. (25)

Thus, the problem (9) of finding the second quasi-equilibrium state reduces to

∆H [f ∗, ϕ] −H∗(M) = (1/2)(ϕ, ϕ) → min for

((1̂ − P̂ ∗)νi, ϕ) = ∆Ni, i = 1, . . . , l. (26)

Note that it is not strictly necessary to introduce the structure of the Hilbert space.
Moreover that may be impossible, since the “distribution function” and the “microscopic
moment densities” are, strictly speaking, elements of different (conjugate one to another)
spaces, which may be not reflexive. However, in the examples considered below the
mentioned difference is not manifested.

In the remainder of this section we demonstrate how the triangle entropy method is
related to Grad’s moment method.

2.2 Ten-moment Grad approximation.

Let us take the five additive collision invariants as moment densities of the first quasi-
equilibrium state:

µ1 = 1; µ1+k = vk (k = 1, 2, 3); µ5 = mv2/2, (27)
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where vk are Cartesian components of the velocity, and m is particle’s mass. Then the
solution to the problem (13) is the local Maxwell distribution function f (0)(v,x, t):

f (0) = n(x, t)

(

2πkBT (x, t)

m

)

−3/2

exp

{

−m(v − u(x, t))2

2kBT (x, t)

}

, (28)

where n(x, t) =
∫

f(v)dv is local gas density, u(x, t) = n−1(x, t)
∫

f(v)vdv is local flow

density, T (x, t) =
∫

f(v)m(v−u(x,t))2

3kBn(x,t)
dv is local temperature, kB is the Boltzmann constant.

Orthonormalization of the set of moment densities (27) with the weight (28) gives

e1 = [5kBT −m(v − u)2]/[(10n)1/2kBT ],

e1+k = m1/2(vk − uk)/(nkBT )1/2, k = 1, 2, 3, (29)

e5 = m(v − u)2/[(15n)1/2kBT ].

For the moment densities of the second quasi-equilibrium state let us take,

νik = mvivk, i, k = 1, 2, 3. (30)

Then

(1̂ − P̂ (0))νik = m(vi − ui)(vk − uk) −
1

3
δikm(v − u)2, (31)

and, since ((1̂− P̂ (0))νik, (1̂− P̂ (0))νls) = (δilδks + δklδis)PkBT/m, where P = nkBT is the
pressure, and σik = (f, (1̂− P̂ (0))νik) is the traceless part of stress tensor, then from (14),
(27), (28), (31) we obtain the distribution function of the second quasi-equilibrium state
in the form

f = f (0)
(

1 +
σikm

2PkBT

[

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

])

(32)

which is precisely the distribution function of the ten-moment Grad approximation [11, 19]
(let us recall that here summation in two repeated indices is assumed).

2.3 Thirteen-moment Grad approximation

In addition to (27), (30) let us extend the list of moment densities of the second quasi-
equilibrium state with the functions

ξi = mviv
2/2, i = 1, 2, 3. (33)

The corresponding orthogonal complements to the projection on the first quasi-equilibrium
state are

(1̂ − P̂ (0))ξi =
m

2
(vi − ui)

(

(v − u)2 − 5kBT

m

)

. (34)

The moments corresponding to the densities (1̂ − P̂ (0))ξi are the components of the heat
flux vector qi:

qi = (ϕ, (1̂ − P̂ (0))ξi). (35)
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Since
((1̂ − P̂ (0))ξi, (1̂ − P̂ (0))νlk) = 0

,
for any i, k, l, then the constraints

((1̂ − P̂ (0))νlk, ϕ) = σlk, ((1̂ − P̂ (0))ξi, ϕ) = qi

in the problem (26) are independent, and Lagrange multipliers corresponding to ξi are

1

5n

(

kBT

m

)2

qi. (36)

Finally, taking into account (27), (32), (34), (36), we find the distribution function of
the second quasi-equilibrium state in the form

f = f (0)
(

1 +
σikm

2PkBT

(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

+

+
qim

PkBT
(vi − ui)

(

m(v − u)2

5kBT
− 1

))

, (37)

which coincides with the thirteen-moment Grad distribution function [11, 19].
Let us remark on the thirteen-moment approximation. From (37) it follows that

for large enough negative values of (vi − ui) the thirteen-moment distribution function
becomes negative. This peculiarity of the thirteen-moment approximation is due to the
fact that the moment density ξi is odd power of vi. In order to eliminate this difficulty,
one may from the very beginning consider that in a finite volume the square of velocity
of a particle does not exceed a certain value v2

lim, which is finite owing to the finiteness of
the total energy, and qi is such that when changing to infinite volume qi → 0, v2

lim → ∞
and qi(vi − ui)(v − u)2 is finite.

On the other hand, the solution to the optimization problem (5) does not exist (is not
normalizable), if the highest-order velocity polynomial is odd, as it is for the 13-moment
Grad moment system.

Approximation (32) yields ∆H(5) as follows:

∆H = H(0) + n
σikσik

4P 2
, (38)

while ∆H corresponding to (37) is,

∆H = H(0) + n
σikσik

4P 2
+ n

qkqkρ

5P 3
, (39)

where ρ = mn, and H(0) is the local equilibrium value of the H-function

H(0) =
5

2
n lnn− 3

2
n lnP − 3

2
n
(

1 + ln
2π

m

)

. (40)

These expressions coincide with the corresponding expansions of the quasi-equilibrium
H-functions obtained by the entropy method, if microscopic moment densities of the first
quasi-equilibrium approximation are chosen as 1, vi, and vivj , or as 1, vi, vivj , and viv

2.
As it was noted in [11], they differs from the H-functions obtained by the Grad method
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(without the maximum entropy hypothesis), and in contrast to the latter they give proper
entropy balance equations.

The transition to the closed system of equations for the moments of the first and
of the second quasi-equilibrium approximations is accomplished by proceeding from the
chain of the Maxwell moment equations, which is equivalent to the Boltzmann equation.
Substituting f in the form of f (0)(1+ϕ) into equation (1), and multiplying by µi(v), and
integrating over v, we obtain

∂t(1, P̂
(0)µi(v)) + ∂t(ϕ(v), µi(v)) + ∂k(vkϕ(v), µi(v)) +

+∂k(vk, µi(v)) = MSt[µi, ϕ]. (41)

Here

MSt[µi, ϕ] =
∫

St(f (0)(1 + ϕ), f (0)(1 + ϕ))µi(v)dv

is a moment (corresponding to the microscopic density) µi(v) with respect to the collision
integral (further we will term MSt the collision moment). Now, if one uses f given by
equations (32), and (37), then the system (41) gives closed ten- and thirteen-moment Grad
equations, respectively, whereas only linear terms in ϕ should be kept when calculating
MSt.

Let us note some limitation of the truncating the chain (41) by means of the quasi-
equilibrium distribution functions (32) and (37) (or for any other depending on the mo-
ments of the distribution functions only). When such closure is used, it is assumed
implicitly that the collision moments in the right hand side of (41) “rapidly” relax to
their values determined by “slow” (quasi-equilibrium) moments. Collision moments are,
generally speaking,independent variables. This peculiarity of the chain (41), resulting
from non-linear character of the Boltzmann equation, distinguishes it essentially from the
other hierarchy equations of statistical mechanics (for example, from the BBGKY chain
[3] which follows from the linear Liouville equation). Thus, equations (41) are not closed
twice: into the left hand side of the equation for the i-th moment enters the (i + 1)-th
moment, and the right hand side contains additional variables: collision moments.

A consequent way of closure of (41) should address both sets of variables (moments
and collision moments) as independent variables. The triangle entropy method enables
to do this.

3 Transport Equations for Collision Moments in the

Neighbourhood of Local Equilibrium. Second and

Mixed Hydrodynamic Chains

In this section we derive equations of motion for the collision moments. It proves conve-
nient to use the following form of the collision integral St(f, f):

St(f, f)(v) =
∫

ŵ(v′

1
,v′|v,v1) (f(v′)f(v′

1
) − f(v)f(v1)) dv

′dv′

1
dv1, (42)

where v and v1 are velocities of the two colliding particles before the collision, v′ and
v′

1
are their velocities after the collision, ŵ is a kernel responsible for the post-collision
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relations v′(v,v1) and v′

1
(v,v1), momentum and energy conservation laws being taken

into account in ŵ by means of corresponding δ-functions. The kernel ŵ has the following
symmetry property with respect to its arguments:

ŵ(v′

1
,v′|v,v1) = ŵ(v′

1
,v′|v1,v) = ŵ(v′,v′

1
| v1,v) = ŵ(v,v1 | v′,v′

1
). (43)

Let µ(v) be the microscopic density of a moment M . The corresponding collision
moment MSt[f, µ] is defined as follows:

MSt[f, µ] =
∫

St(f, f)(v)µ(v)dv. (44)

First, we should obtain transport equations for collision moments (44), analogous to
the moment transport equations. Let us restrict ourselves to the case when f can be
represented in the form,

f = f (0)(1 + ϕ), (45)

where f (0) is local Maxwell distribution function (28), and all the quadratic with respect
to ϕ terms will be neglected below.

Since, by detail balance,

f (0)(v)f (0)(v1) = f (0)(v′)f (0)(v′

1
) (46)

for all such (v, v1), (v′, v′

1
) which are related to each other by conservation laws, we

have,

MSt[f
(0), µ] = 0, for any µ. (47)

Further, by virtue of conservation laws,

MSt[f, P̂
(0)µ] = 0, for any f. (48)

From (46)-(48) it follows,

MSt[f
(0)(1 + ϕ), µ] = MSt[ϕ, (1̂ − P̂ (0))µ] =

= −
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v)f (0)(v1)
{

(1 − P̂ (0))µ(v)
}

dv′dv′

1
dv1dv. (49)

We used notation,

{ψ(v)} = ψ(v) + ψ(v1) − ψ(v′) − ψ(v′

1
). (50)

Also, it proves convenient to introduce the microscopic density of the collision moment,
µSt(v):

µSt(v) =
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)
{

(1 − P̂ (0))µ(v)
}

dv′dv′

1
dv1. (51)

Then,
MSt[ϕ, µ] = −(ϕ, µSt), (52)

where (·, ·) is the scalar product with the distribution function f (0)(28).
Now, we obtain transport equations for the collision moments (52). We write down

the time derivative of the collision integral due to the Boltzmann equation,
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∂tSt(f, f)(v) = T̂St(f, f)(v) + R̂St(f, f)(v), (53)

where

T̂ St(f, f)(v) =
∫

ŵ(v′,v′

1
| v,v1) [f(v)v1k∂kf(v1) + f(v1)vk∂kf(v)−

−f(v′)v′1k∂kf(v′

1
) − f(v′

1
)v′k∂kf(v′)] dv′dv′

1
dv1dv; (54)

R̂St(f, f)(v) =
∫

ŵ(v′,v′

1
| v,v1) [St(f, f)(v′)f(v′

1
) + St(f, f)(v′

1
)f(v′)−

−St(f, f)(v1)f(v) − St(f, f)(v)f(v1)] dv
′dv′

1
dv1dv. (55)

Using the representation,

∂kf
(0)(v) = Ak(v)f (0)(v);

Ak(v) = ∂k ln(nT−3/2) +
m

kBT
(vi − ui)∂kui +

m(v − u)2

2kBT
∂k lnT, (56)

and after some simple transformations using the relation

{Ak(v)} = 0, (57)

in linear with respect to ϕ deviation from f (0) (45), we obtain in (53):

T̂ St(f, f)(v) = ∂k

∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)f
(0)(v) {vkϕ(v)} dv′

1
dv′dv1 +

+
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)f
(0)(v) {vkAk(v)} dv′dv′

1
dv1 +

+
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v)f (0)(v1) [ϕ(v)Ak(v1)(v1k − vk)+

+ϕ(v1)Ak(v)(vk − v1k) + ϕ(v′)Ak(v
′

1
)(v′k − v′1k) +

+ϕ(v′

1
)Ak(v

′)(v′1k − v′k)] dv
′

1
dv′dv1; (58)

R̂St(f, f)(v) =
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v)f (0)(v1) {ξ(v)}dv′

1
dv′dv1;

ξ(v) =
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1) {ϕ(v)} dv′dvdv1; (59)

∂tSt(f, f)(v) = −∂t

∫

ŵ(v′,v′

1
| v,v1)f

(0)(v)f (0)(v1) {ϕ(v)} dv′dv′

1
dv1 (60)

Now, multiplying (58)-(60) by the microscopic moment density µ(v) and performing
integration over v using the symmetry property of the kernel ŵ (43) which follows from
(43), (46),

∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)f
(0)(v)g1(v) {g2(v)} dv′dv′

1
dv1dv =

∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)f
(0)(v)g2(v) {g1(v)} dv′dv′

1
dv1dv, (61)

and is true for any two functions g1, g2 ensuring existence of the integrals, and also using
the consequence

{ϕ(v)} =
{

(1̂ − P̂ (0))ϕ(v)
}

(62)

12



of the conservation laws, it is straightforward to obtain the required transport equation
for the collision moment in th linear neighbourhood of the local equilibrium:

−∂t∆MSt[ϕ, µ] ≡ −∂t(ϕ, µSt) =

= (vkAk(v), µSt((1̂ − P̂ (0))µ(v))) +

+∂k(ϕ(v)vk, µSt((1̂ − P̂ (0))µ(v))) +
∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)f
(0)(v) ×

×
{

(1̂ − P̂ (0))µ(v)
}

Ak(v1)(v1k − vk)ϕ(v)dv′dv′

1
dv1dv +

+
(

ξ(v), µSt

(

(1̂ − P̂ (0))µ(v)
))

. (63)

The chain of equations (63) is an analogue of the hydrodynamic moment chain (41)
for collision moments (further on, we will call equation (63) the second chain, and (41)
- the first chain). The second chain possesses the same way of chaining as the first one:
the last term in the right part of (32) (ξ, µSt((1̂− P̂ (0))µ)) depends on the whole totality
of moments and collision moments and may be treated as a new variable. Therefore,
generally speaking, we have an infinite sequence of chains of increasingly higher orders.
Only in the case of a special choice of collision model - Maxwell potential U = −κr−4 -
this sequence degenerates: the second and the sequent chains are equivalent to the first
(see below).

Let us restrict ourselves to the first and second hydrodynamic chains. Then deviation
from local equilibrium state and transition to closed macrodescription equations may be
performed in three different ways for the microscopic density µ(v). Firstly, one can specify
the moment M̂ [µ] and perform closure of the chain (41) by the triangle method given in
sections 1,2, and leading to Grad’s moment method. Secondly, one can specify collision
moment M̂St[µ] and perform closure of the second hydrodynamic chain (32). Finally, one

can use simultaneously both M̂ [µ] and M̂St[µ](mixed chain). Quasi-equilibrium distribu-
tion functions corresponding to the last two variants will be constructed in the following
section. As collision models, hard spheres and Maxwell molecules will be considered.

4 Distribution Functions of the Second

Quasi-equilibrium Approximation

for Collision Moments

4.1 First five moments plus collision stress tensor

Throughout below as first quasi-equilibrium approximation local equilibrium state f (0)(28)
is chosen.

Let us choose νik = mvivk(30) as the microscopic density µ(v) of the second quasi-
equilibrium state. Let us write down the corresponding collision moment (collision stress
tensor) ∆ik in the form,

∆ik = −(ϕ, νStik
), (64)

where

νStik
(v) = m

∫

ŵ(v′,v′

1
| v1,v)f (0)(v1) ×

13



×
{

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

}

dv′dv′

1
dv1 (65)

is the microscopic density of the collision moment ∆ik.
Function of the second quasi-equilibrium approximation under the given collision mo-

ment (64) is determined as the solution to the problem

(ϕ, ϕ) → min for

(ϕ, νStik
) = −∆ik. (66)

The method of Lagrange multipliers yields

ϕ(v) = λikνStik(v),

λik(νStik
, νStls

) = ∆ls, (67)

where λik are the Lagrange multipliers.
In the considered below examples of collision models (and in general, for central in-

teraction forces of particles) νStik is of the form

νStik(v) = (1̂ − P̂ (0))νik(v)Φ((v − u)2), (68)

where (1̂− P̂ (0))νik is determined only by the correlation (31), and Φ depends only on the
absolute value of the peculiar velocity (v − u). Then

λik = r∆ik;

r−1 = (2/15)
(

Φ2((v − u)2), (v − u)4
)

, (69)

and the distribution function of the second quasi-equilibrium approximation for collision
moments (64) is given by the expression

f = f (0)(1 + r∆ikµStik). (70)

The form of the function Φ((v−u)2), and the value of the parameter r are determined
by the model of particle’s interaction. In the Appendix, they are obtained for hard spheres
and Maxwell molecules models (see equations 129-134). The distribution function (70) is
given by the following expressions:
For Maxwell molecules:

f = f (0)
{

1 + µM.M.
0 m(2P 2kBT )−1∆ik

(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)}

,

µM.M.
0 =

kBT
√

2m

3πA2(5)
√
κ
, (71)

where µM.M.
0 is a viscosity coefficient obtained at first approximation of the Chapman-

Enskog method (exact in this case), κ is a force constant, A2(5) is a number, A2(5) ≈ 0.436
(see [16], p.209);

For the hard spheres model:

14



f = f (0)

{

1 +
2
√

2r̃mµH.S.
0

5P 2kBT
∆ik

∫

−1

+1
exp

{

−m(v − u)2

2kBT
y2

}

(1 − y2)(1 + y2)×

×
(

m(v − u)2

2kBT
(1 − y2) + 2

)

dy
(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

}

,

µH.S.
0 = (5

√

kBTm)/(16
√
πσ2), (72)

where r̃ is a number represented as follows:

r̃−1 =
1

16

∫ +1

−1

∫ +1

−1
α−11/2β(y)β(z)γ(y)γ(z) ×

×(16α2 + 28α(γ(y) + γ(z)) + 63γ(y)γ(z))dydz, (73)

α = 1 + y2 + z2, β(y) = 1 + y2, γ(y) = 1 − y2.

Numerical value of r̃−1 is 5.212 to the third digit accuracy.
Distribution function of the second quasi-equilibrium approximation under fixed val-

ues of moment and collision moment corresponding to the microscopic density (30) is
determined as solution of the problem

(ϕ, ϕ) → min for (74)

((1̂ − P̂ (0))νik, ϕ) = σik,

(νStik, ϕ) = ∆ik.

Taking into account the relation (68), we obtain the solution of the problem (74) in
the form,

ϕ(v) = (λikΦ((v − u)2) + βik)((vi − ui)(vk − uk) − (1/3)δik(v − u)2). (75)

Lagrange multipliers λik, βik are determined from the system of linear equations,

ms−1λik + 2PkBTm
−1βik = σik,

mr−1λik +ms−1βik = ∆ik, (76)

where
s−1 = (2/15)(Φ((v − u)2), (v − u)4). (77)

If the solvability condition of the system (76) is satisfied,

D = m2s−2 − 2PkBTr
−1 6= 0, (78)

then the distribution function of the second quasi-equilibrium approximation exists and
takes the form

f = f (0)
{

1 + (m2s−2 − 2PkBTr
−1)−1×

×[(ms−1σik − 2PkBTm
−1∆ik)Φ((v − u)2) +

+(ms−1∆ik −mr−1σik)]((vi − ui)(vk − uk) − (1/3)δik(v − u)2)
}

. (79)
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The condition (78) means independence of the set of moments σik from the collision
moments ∆ik. If it is not satisfied, then the collision moments ∆ik may be represented
in the form of linear combinations of σik (with coefficients depending on space and time).
Then the closed by means of (70) equations of the second chain are equivalent to ten
moment Grad equations, while the mixed chain does not exist. This happens only in the
model of Maxwell molecules. Indeed, in this case

s−1 = 2P 2kBT (m2µM.M.
0 )−1;D = 0.

The transformation changing ∆ik to σik is

µM.M.
0 ∆ikP

−1 = σik. (80)

For hard spheres:

s−1 =
5P 2kBT

4
√

2µH.S.
0 m2

· s̃−1, s̃−1 =
∫ +1

−1
γ(y)(β(y))−7/2

(

β(y) +
7

4
γ(y)

)

dy (81)

The numerical value of s̃−1 is 1.115 to third digit. The condition (77) takes the form,

D =
25

32

(

P 2kBT

mµH.S.
0

)2

(s̃−2 − r̃−1) 6= 0. (82)

Consequently, for the hard spheres model the distribution function of the second quasi-
equilibrium approximation of the mixed chain exists and is determined by the expression

f = f (0)
{

1 +m(4PkBT (s̃−2 − r̃−1))−1×

×
[(

σiks̃
−1 − 8

√
2

5P
µH.S.

0 ∆ik

)

∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

×

×(1 − y2)(1 + y2)

(

m(v − u)2

2kBT
(1 − y2) + 2

)

dy +

+2

(

s̃−1 · 8
√

2

5P
µH.S.

0 ∆ik − r̃−1σik

)]

(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

}

.(83)

4.2 First five moments plus collision stress tensor, plus collision

heat flux vector

Distribution function of the second quasi-equilibrium approximation which allows for
collision heat flux vector Q is constructed in a similar way. The microscopic density ξSti
corresponding to Qi is

ξSti
(v) =

∫

ŵ(v′,v′

1
| v,v1)f

(0)(v1)

{

(1̂ − P̂ (0))
v2

i v

2

}

dv′dv′

1
dv1. (84)

The desired distribution functions are the solutions to the optimization problems: for
the second chain it is the solution to the problem (66) with additional conditions,

m(ϕ, ξSti) = Qi, (85)
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for the mixed chain the distribution functions is the solution to the problem (74) with
additional conditions,

m(ϕ, ξSti) = Qi, (86)

m(ϕ, (1̂ − P̂ (0))ξi) = qi. (87)

Here ξi = viv
2/2 (see (33)). In the Appendix ξSti

are determined for Maxwell molecules
and hard spheres (see (134)-(139)). Since

(ξSti, νStkj) = ((1̂ − P̂ (0))ξi, νStkj) =

= (ξSti
, (1̂ − P̂ (0))νkj) = ((1̂ − P̂ (0))ξi, (1̂ − P̂ (0))νkj) = 0, (88)

the conditions (85) do not depend on the restrictions of the problem (66), and the condi-
tions (87) do not depend on the restrictions of the problem (74).

Distribution function of the second quasi-equilibrium approximation of the second
chain under given ∆ik, Qi is of the form,

f = f (0)(1 + r∆ikνStik
+ ηQiξSti

). (89)

The parameter η is determined by the relation

η−1 = (1/3)(ξSti
, ξSti

). (90)

According to (138), for Maxwell molecules

η =
9m3(µM.M.

0 )2

10P 3(kBT )2
, (91)

and the distribution function (89) is

f = f (0)
{

1 + µM.M.
0 m(2P 2kBT )−1∆ik((vi − ui)(vk − uk) − (1/3)δik(v − u)2)+

+µM.M.
0 m(P 2kBT )−1(vi − ui)

(

m(v − u)2

5kBT
− 1

)}

. (92)

According to the Appendix, for hard spheres

η = η̃ · 64m3(µH.S.
0 )2

125P 3(kBT )2
, (93)

where η is a number equal to 16.077 to third digit accuracy.
The distribution function (89) for hard spheres takes the form

f = f (0)

{

1 +
2
√

2r̃mµH.S.
0

5P 2kBT
∆ik

∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

β(y)γ(y)×

×
(

m(v − u)2

2kBT
γ(y) + 2

)

dy
(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

+

+
2
√

2η̃m3µH.S.
0

25P 2(kBT )2
Qi

[

(vi − ui)

(

(v − u)2 − 5kBT

m

)

×
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×
∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

β(y)γ(y)

(

m(v − u)2

2kBT
γ(y) + 2

)

dy +

+(vi − ui)(v − u)2
∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

β(y)γ(y)×

×
(

σ(y)
m(v − u)2

2kBT
+ δ(y)

)

dy

]}

. (94)

The functions β(y), γ(y), σ(y) and δ(y) are

β(y) = 1 + y2, γ(y) = 1 − y2, σ(y) = y2(1 − y2), δ(y) = 3y2 − 1. (95)

The condition of existence of the second quasi-equilibrium approximation of the mixed
chain (78) should be supplemented with the requirement

R = m2τ−2 − 5P (kBT )2

2m
η−1 6= 0. (96)

Here

τ−1 =
1

3

(

(1̂ − P̂ (0))
v2

i v

2
, ξSti

(v)

)

. (97)

For Maxwell molecules
τ−1 = (5P 2k2

BT
2)/(3µM.M.

0 m3),

and the condition (96) is not satisfied. Distribution function of the second quasi-equilibrium
approximation of mixed chain does not exist. The variables Qi are changed to qi by the
transformation

3µM.M.
0 Qi = 2Pqi. (98)

For hard spheres

τ−1 = τ̃−1 =
25(PkBT )2

8
√

2m3µH.S.
0

, (99)

where

τ̃−1 =
1

8

∫ +1

−1
β−9/2(y)γ(y) {63(γ(y) + σ(y) + 7β(y)(4− 10γ(y) + 2δ(y) − 5σ(y))+

+β2(y)(25γ(y)− 10δ(y)− 40) + 20β3(y)
}

dy. (100)

Numerical value of τ̃−1 is about 4.322.
Then the condition (96) is satisfied:

R ≈ 66m−4(PkBT )4(µH.S.
0 )2.

Finally, under given values of σik,∆ik, qi and Qi the distribution function of the second
quasi-equilibrium approximation of the second chain for hard spheres is of the form,

f = f (0) {1+

+
m

4PkBT
(s̃−2 − r̃−1)−1

[(

s̃−1σik −
8
√

2

5P
µH.S.

0 ∆ik

)

∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

×
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×β(y)γ(y)

(

m(v − u)2

2kBT
γ(y) + 2

)

dy + 2

(

s̃−18
√

2

5P
µH.S.

0 ∆ik − r̃−1σik

)]

×

×
(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

+

+
m2

10(PkBT )2
(τ̃−2 − η̃−1)−1

[(

τ̃−1qi −
4
√

2

5P
µH.S.

0 Qi

)

×
(

(vi − ui)

(

(v − u)2 − 5kBT

m

)

∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

×

×β(y)γ(y)

(

m(v − u)2

2kBT
γ(y) + 2

)

dy + (vi − ui)(v − u)2 ×

×
∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

β(y)γ(y)

(

m(v − u)2

2kBT
σ(y) + δ(y)

)

dy

)

+

+2

(

4
√

2

5P
µH.S.

0 τ̃−1Qi − η̃−1qi

)

(vi − ui)

(

(v − u)2 − 5kBT

m

)]}

. (101)

Thus, the expressions (71), (72), (83), (92), (94) and (101) give distribution functions of
the second quasi-equilibrium approximation of the second and mixed hydrodynamic chains
for Maxwell molecules and hard spheres. They are analogues of ten- and thirteen-moment
Grad approximations (32), (36).

The next step is to close the second and mixed hydrodynamic chains by means of the
found distribution functions.

5 Closure of the the Second and Mixed Hydrody-

namic Chains

The distribution function of the second quasi-equilibrium approximation under fixed ∆ik

for Maxwell molecules (71) presents the simplest example of closure of the first (40) and
second (63) hydrodynamic chains. With the help of it, we obtain from (40) the following
transport equations for the moments of the first (local equilibrium) approximation:

∂tρ+ ∂i(uiρ) = 0;

ρ(∂tuk + ui∂iuk) + ∂kP + ∂i(P
−1µM.M.

0 ∆ik) = 0; (102)
3

2
(∂tP + +ui∂iP ) +

5

2
P∂iui + P−1µM.M.

0 ∆ik∂iuk = 0 (103)

Now, let us from the collision moment transport chain (63) find an equation for ∆ik which
closes the system (64). Substituting (71) into (63), we obtain after simple calculations:

∂t∆ik + ∂s(us∆ik) + ∆is∂suk + ∆ks∂sui −
2

3
δik∆ls∂sul +

+P 2(µM.M.
0 )−1

(

∂iuk + ∂kui −
2

3
δik∂sus

)

+ P (µM.M.
0 )−1∆ik + ∆ik∂sus = 0. (104)

For comparison, let us give ten-moment Grad equations obtained when closing the chain
(40) by the distribution functions (32):

∂tρ+ ∂i(uiρ) = 0;
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ρ(∂tuk + ui∂iuk) + ∂kP + ∂iσik = 0;
3

2
(∂tP + +ui∂iP ) +

5

2
P∂iui + σik∂iuk = 0; (105)

∂tσik + ∂s(usσik) + P
(

∂iuk + ∂kui −
2

3
δik∂sus

)

+

+σis∂suk + σks∂sui −
2

3
δikσls∂sul + P (µM.M.

0 )−1σik = 0. (106)

Using the explicit form of µM.M.
0 (71), it is easy to make sure that the transformation

(80) maps the systems (102), (104) and (105) into one another. This is a consequence
of the degeneration of the mixed hydrodynamic chain which was discussed in the end
of the section 3. The systems (102), (104) and (105) are essentially equivalent. These
specific properties of Maxwell molecules result from the fact that for them the microscopic
densities (1̂ − P̂ (0))vivk and (1̂ − P̂ (0))viv

2 are eigen-functions of the linearized collision
integral.

We now turn our attention to the case of closure of the second and of the mixed
hydrodynamic chains for the hard spheres model. Substituting the distribution function
(72) into (40) and (63), we obtain an analogue of the systems (102) and (104) (second
chain, hard spheres):

∂tρ+ ∂i(uiρ) = 0;

ρ(∂tuk + ui∂iuk) + ∂kP + r̃s̃−1 · 8
√

2

5
∂i(µ

H.S.
0 P−1∆ik) = 0;

3

2
(∂tP + ui∂iP ) +

5

2
P∂iui + r̃s̃−1 · 8

√
2

5
µH.S.

0 P−1∆ik∂iuk = 0;

∂t∆ik + ∂s(us∆ik) + r̃ã1(∂sus)∆ik +
5s̃−1P 2

8
√

2µH.S.
0

(

∂iuk + ∂kui −
2

3
δik∂sus

)

+

+r̃(ã1 + ã2)
(

∆is∂suk + ∆ks∂sui −
2

3
δik∆ls∂sul

)

+

+r̃(ã1 + ã3)
(

∆is∂kus + ∆ks∂ius −
2

3
δik∆ls∂sul

)

+ (P r̂ã0/µ
H.S.
0 )∆ik = 0. (107)

The dimensionless parameters ã0, ã1, ã2 and ã3 are determined by the quadratures

ã1 =
1

16

∫ +1

−1

∫ +1

−1
β(y)β(z)γ2(z)γ(y)α−13/2(y, z) ×

×{99γ(y)γ(z)(γ(z) − 1) + 18α(y, z)(2γ(z)(γ(z) − 1) +

+4γ(y)(4γ(z) − 3)) + 8α2(y, z)(4γ(z) − 3)}dydz;

ã2 =
1

16

∫ +1

−1

∫ +1

−1
β(y)β(z)γ(y)γ2(z)α−11/2(y, z){63γ(y)γ(z) +

+14α(y, z)(3γ(y) + 2γ(z)) + 24α2(y, z)}dydz;

ã3 =
1

16

∫ +1

−1

∫ +1

−1
α−11/2(y, z)β(y)β(z)γ(y)γ(z)×

×{63γ(y)γ(z)(γ(z) − 1) + 14(2γ(z)(γ(z) − 1) +

+γ(y)(3γ(z) − 2))α(y, z) + 8α2(y, z)(3γ(z) − 2)}dydz; (108)

ã0 ≈ 1

1536
√

2

∫ +1

−1

∫ +1

−1

∫ +1

−1
(ψ(x, y, z))−13/2β(x)β(y)β(z) ×

×γ(x)γ(y)γ(z){10395γ(x)γ(y)γ(z) + 3780ψ(x, y, z) ×
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×(γ(x)γ(y) + γ(x)γ(z) + γ(y)γ(z)) + 1680ψ2(x, y, z) ×
×(γ(x) + γ(y) + γ(z)) + 960ψ3(x, y, z)}dxdydz;
ψ(x, y, z) = 1 + x2 + y2 + z2. (109)

Their numerical values are ã1 ≈ 0.36, ã2 ≈ 5.59, ã3 ≈ 0.38, ã0 ≈ 2.92 to second digit.
Closure of the mixed hydrodynamic chain at the functions (83) gives the following

modification of the system of equations (107):

∂tρ+ ∂i(uiρ) = 0;

ρ(∂tuk + ui∂iuk) + ∂kP + ∂iσik = 0;
3

2
(∂tP + ui∂iP ) +

5

2
P∂iui + σik∂iuk = 0;

∂tσik + ∂s(usσik) + P
(

∂iuk + ∂kui −
2

3
δik∂sus

)

+

+σis∂suk + σks∂sui −
2

3
δikσls∂sul + ∆ik = 0;

∂t∆ik + ∂s(us∆ik) +
5P 2

s̃8
√

2µH.S.
0

(

∂iuk + ∂kui −
2

3
δik∂sus

)

+

+
5P

4
√

2µH.S.
0 (s̃−2 − r̃−1)

{

ã1

2
(∂sus)αik +

1

2
(ã1 + ã2) (αis∂suk+

+αks∂sui −
2

3
δikαls∂sul

)

+
1

2
(ã1 + ã3)

(

αis∂kus + αks∂ius −
2

3
δikαls∂sul

)

+

+b̃1(∂sus)βik + (b̃1 + b̃2)
(

βis∂suk + βks∂sui −
2

3
δikβls∂sul

)

+

+(b̃1 + b̃3)
(

βis∂kus + βks∂ius −
2

3
δikβls∂sul

)}

+

+
5P 2

8
√

2(µH.S.
0 )2(s̃−2 − r̃−1)

{

5

8
√

2r̃
βik + ã0αik

}

= 0; (110)

αik = s̃−1σik −
8
√

2

5P
· µH.S.

0 ∆ik;

βik = s̃−18
√

2

5P
· µH.S.

0 ∆ik − r̃−1σik. (111)

It is clear from the analysis of distribution functions of the second quasi-equilibrium
approximations of the second hydrodynamic chain that in the Grad moment method a
substitution of a constant for the function Φ(c2) is performed. Finally, let us note the
simplest consequence of variability of Φ(c2). If µ0 is multiplied with a small parame-
ter (Knudsen number Kn equal to the ratio of the main free path the to characteristic
spatial scale of variations of hydrodynamic values), then the first with respect to Kn

approximation of collision stress tensor ∆
(0)
ik has the form,

∆
(0)
ik = P

(

∂iuk + ∂kui −
2

3
δik∂su

)

(112)

for Maxwell molecules, and

∆
(0)
ik =

5r̃

8
√

2s̃ã0

P
(

∂iuk + ∂kui −
2

3
δik∂sus

)

(113)
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for hard spheres. Substitution of these expressions into the momentum equations results
in the Navier-Stokes equations with effective viscosity coefficients µeff,

µeff = µM.M.
0 (114)

for Maxwell molecules and

µeff = ã−1
0 µH.S.

0 (115)

for hard spheres. When using ten-moment Grad approximation which does not distinguish
Maxwell molecules and hard spheres, we obtain µeff = µH.S.

0 .

6 Appendix: Calculation of distribution functions

of the second quasi-equilibrium approximation of

the second and mixed hydrodynamic chains for

Maxwell molecules and hard spheres

Write νStik (65) in the standard form:

νStik
=
∫

f (0) | v1 − v |
{

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

}

bdbdεdv1, (116)

where b is the impact parameter, ε is the angle between the plane containing the trajectory
of the particle being scattered in the system of the center of mass and the plane containing
the entering asymptote, the trajectory, and a certain fixed direction. It is convenient to
switch to the dimensionless velocity c:

ci =
(

m

2kBT

)1/2

(vi − ui) (117)

and to the dimensionless relative velocity g:

gi =
1

2

(

m

kBT

)1/2

(v1i − ui) (118)

After standard transformations and integration with respect to ε (see [16], p. 212) we
obtain in (116)

νStik =
3P

m
π−1/2

∫

exp(−c21)ϕ
(2)
1 (g)

(

(c1i − ci)(c1k − ck) −
1

3
δik(c1 − c)2

)

dc1 (119)

Here

ϕ
(2)
1 =

∫

(1 − cos2 χ) | v1 − v | b(χ)

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

dχ, (120)

and χ is an angle between the vectors g and g′.
The dependence of ϕ

(2)
1 on the vector g is determined by the choice of the model of

particle’s interaction.
For Maxwell molecules,
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ϕ
(2)
1 =

(

2κ

m

)1/2

A2(5), (121)

where κ is a force constant, A2(5) is a number, A2(5) ≈ 0.436.
For the model of hard spheres

ϕ
(2)
1 =

√
2σ2

3

(

kBT

m

)1/2

| c1 − c |, (122)

where σ is diameter of the sphere modelling the particle.
Substituting (121) and (122) into (119), we transform the latter to the form:

for Maxwell molecules

νStik
=

3P

4m

(

2κ

πm

)1/2

A2(5) exp(−c2)
(

∂

∂ci

∂

∂ck
− 1

3
δik

∂

∂cs

∂

∂cs

)

TM.M.(c2),

TM.M.(c2) =
∫

exp(−x2 − 2xkck)dx; (123)

for hard spheres

νStik =
Pσ2

2
√

2m

(

kBT

πm

)1/2

exp(−c2)
(

∂

∂ci

)

∂

∂ck
− 1

3
δik

∂

∂cs

∂

∂cs
TH.S.(c2),

TH.S.(c2) =
∫

| x | exp(−x2 − 2xkck)dx. (124)

It is an easy matter to perform integration in (123), the integral is equal to π3/2ec2.
Therefore for Maxwell molecules,

νStik
=

3

2
nπ

(

2κ

m

)1/2

A2(5)
(

(vi − ui)(vk − uk) −
1

3
δik(v − u)2

)

. (125)

The integral TH.S. in (124) can be transformed as follows:

TH.S.(c2) = 2π + π
∫ +1

−1
exp(c2(1 − y2))c2(1 + y2)dy. (126)

Then for the model of hard spheres,

νStik
=

√
2πnσ2

(

kBT

m

)3/2 (

cick −
1

3
δikc

2
)

×

×
∫ +1

−1
exp(−c2y2)(1 + y2)(1 − y2)(c2(1 − y2) + 2)dy. (127)

Let us note a useful relationship:

dnTH.S./d(c2)n = π
∫ +1

−1
exp(c2(1 − y2)) ×

×(1 + y2)(1 − y2)n−1(c2(1 − y2) + n)dy, n ≥ 1. (128)
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Use the expressions for the viscosity coefficient µ0 which are obtained in the first
approximation of the Chapman-Enskog method:
for Maxwell molecules,

µM.M.
0 =

(

2m

κ

)1/2 kBT

3πA2(5)
; (129)

for hard spheres,

µH.S.
0 =

5(kBTm)1/2

16π1/2σ2
. (130)

Transformation of (125), (127) to the form of (68) gives the following functions
Φ((v − u)2):

for Maxwell molecules,

Φ = P/µM.M.
0 ; (131)

for hard spheres

Φ =
5P

16
√

2µH.S.
0

∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

×

×(1 + y2)(1 − y2)

(

m(v − u)2

2kBT
(1 − y2) + 2

)

dy. (132)

The parameter r from (69) is:
for Maxwell molecules:

r =
(

mµM.M.
0

)2
/(2P 3kBT ); (133)

for hard spheres:

r = r̃
64
(

mµM.M.
0

)2

25P 3kBT
. (134)

The dimensionless parameter r̃ is analytically represented as follows:

r̃−1 =
1

16

∫ +1

−1

∫ +1

−1
α−11/2β(y)β(z)γ(y)γ(z) ×

×(16α2 + 28α(γ(y) + γ(z)) + 63γ(y)γ(z))dydz. (135)

Here and below the following notations are used:

β(y) = 1 + y2, γ(y) = 1 − y2, α = 1 + y2 + z2. (136)

Numerical value of r̃−1 is 5.212 to third digit.
The parameter (77) is:

for Maxwell molecules

s−1 = (2P 2kBT )/
(

m2µM.M.
0

)

; (137)
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for hard spheres

s−1 = s̃−15
√

2P 2kBT

8m2µH.S.
0

. (138)

The dimensionless parameter s̃−1 is of the form

s̃−1 =
∫ +1

−1
γ(y)β−7/2(y)

(

β(y) +
7

4
γ(y)

)

dy. (139)

Numerical value of s̃−1 is 1.115 to third digit.
The collision moment density (84) is of the form,

ξSti
=

√
2

(

kBT

m

)3/2
∫

f (0)(v1) | v1 − v |
{

ci

(

c2 − 5

2

)}

bdbdεdv1. (140)

Standard transformation of the expression {ci(c2 − 5/2)} and integration with respect to
ε change (140) to the form,

ξSti
=

P√
2πm

∫

exp(−c21)ϕ
(2)
1 (3(c21 − c2)(c1i − ci) − (c1 − c)2(c1i + ci))dc1 (141)

Further, using the expressions (121) and (122) for ϕ
(2)
1 , we obtain:

for Maxwell molecules:

ξSti
=

P

m2

(

κkBT

π

)1/2

A2(5) exp
(

−c2
)

D̂iT
M.M.(c2); (142)

for hard spheres:

ξSti
=
PkBTσ

2

√
πm2

exp(−c2)D̂iT
H.S.(c2). (143)

The operator D̂i is of the form

1

4

∂

∂ci

∂

∂cs

∂

∂cs
+

3

2
cs

∂

∂cs

∂

∂ci
− 1

2
ci
∂

∂cs

∂

∂cs
. (144)

The operator D̂i acts on the function ψ(c2) as follows:

d2ψ

d(c2)2
2ci

(

c2 − 5

2

)

+ cic
2

(

d2ψ

d(c2)2
− d3ψ

d(c2)3

)

. (145)

From (142), (143) we obtain:
for Maxwell molecules:

ξSti =
P

3µM.M.
0

(vi − ui)

(

(v − u)2 − 5kBT

m

)

; (146)

for hard spheres:
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ξSti
=

5P

16
√

2µH.S.
0

{

(vi − ui)

(

(v − u)2 − 5kBT

m

)

×

×
∫ +1

−1
exp

(

−m(v − u)2

2kBT
y2

)

β(y)γ(y)

(

m(v − u)

2kBT

2

γ(y) + 2

)

dy +

+(vi − ui)(v − u)2
∫ +1

−1
exp

(

−m(v − u)

2kBT

2

y2

)

β(y)γ(y)

(

σ(y)
m(v − u)

2kBT

2

+ δ(y)

)

dy

}

(147)

The functions σ(y), δ(y) are of the form

σ(y) = y2(1 − y2), δ(y) = 3y2 − 1. (148)

The parameter η from (90) is:
for Maxwell molecules:

η =
9m3

(

µM.M.
0

)2

10P 3(kBT )2
; (149)

for hard spheres:

η = η̃
64m3

(

µH.S.
0

)2

125P 3(kBT )2
. (150)

The dimensionless parameter η̃ is of the form

η̃−1 =
∫ +1

−1

∫ +1

−1
β(y)β(z)γ(y)γ(z)α−13/2

{

639

32
(γ(y)γ(z) + σ(y)σ(z)+

+σ(y)γ(z) + σ(z)γ(y)) +
63

16
α(2γ(y) + 2γ(z) − 5γ(y)γ(z) +

+2(σ(y) + σ(z)) + γ(z)δ(y) + γ(y)δ(z) + σ(y)δ(z) + σ(z)δ(y)) +

+
7

8
α2(4 − 10γ(y)− 10γ(z)) +

25

4
γ(y)γ(z) + 2δ(y) +

+2δ(z) − 5σ(y) − 5σ(z) − 5

2
(γ(z)δ(y) + γ(y)δ(z) + δ(y)δ(z)) +

+
1

4
α3
(

−20 +
25

4
(γ(y) + γ(z)) − 5(δ(y) + δ(z))

)

+
5

2
α4
}

dydz. (151)

Numerical value of η̃−1 is 0.622 to second digit.
Finally, from (146), (147) we obtain τ−1(97):

for Maxwell molecules

τ−1 =
5(PkBT )2

3µM.M.
0 m3

; (152)

for hard spheres

τ−1 = τ̃−1 25P 2(kBT )2

8
√

2m3µH.S.
0

,

τ̃−1 =
1

8

∫ +1

−1
β−9/2(y)γ(y){63(γ(y) + σ(y)) +

+7β(y)(4− 10γ(y) + 2δ(y) − 5σ(y)) + 20β3(y) +

+β2(y)(25γ(y)− 10δ(y) − 40)}dy ≈ 4.322. (153)
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