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ABSTRACT

A detailed structure of the chapman-Enskog expansion for
the linearized Grad moment equations is determined . A
method of partial summing of the Chapman-Enskog series
is introduced, and is wused to remove short-wave
instability of the Burnett approximations.

1. INTRODUCT ION

Obtaining hydrodynamics from the Boltzmann equation
is a classical problem. At the same time, a number of
questions arising here are still unanswered . Thus, it is
not quite clear which equations should follow the
Navier-Stokes approximation . The classical
Chapman-Enskog method ([1} gives, in principle, the
possibility to correct the Navier-Stokes approximation .
However, as it has been shown in (2], the first
corrections (the Burnett and the super-Burnett
corrections) result in a catastrophe: short-wave
instability of sonic waves occurs. As it was stated in
[2], this result contradicts the #-theorem. It is
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commonly known that the entropy growth results in a
decrease of any small perturbation of the equilibrium.

The ultra-violet catastrophe" of the Burnett
approximations makes us think that we have to take into
account the very remote terms of the Chapman-Enskog
expansion . This situation is similar to that which
occurs in quantum field theory and statistical
mechanics . Singularities of expansions which occur there
can be removed by approximations of the whole series
(partial summing of infinite subsequences of diagrams,
Pade approximations, etc.).

In this paper we make an attempt to correct the
Burnett approximations by partial summing of the
Chapman-Enskog series. The difficulties in obtaining the
terms of these series from the Boltzmann equation are
common knowledge. For example, the Burnett and the
super-Burnett approximations for the simplest case of
Maxwell molecules have only recently been completely
obtained (3]. Therefore, we deal with the Chapman-Enskog
expansion for the linearized Grad hydrodynamic equations
[4] rather than with the Boltzmann equation. At least in
this (linear) case the difference between the results
for Grad equations and the Boltzmann equation is
negligible. Grad equations give us certain technical
advantages, especially when working with the
Chapman-Enskog series as a whole.

The structure of this paper is as follows: 1In
section 2 the structure of the Chapman-Enskog
coefficients for the linearized temsion tensor and for
the heat flow vector is set . The expression (2.7)
particularizes the appropriate Grad'’s result for the
linearized Boltzmann equation ([S]. In section 3 we
introduce a method of consecutive approximations, which
approximates the Chapman-Enskog recurrent procedure.



CHAPMAN-ENSKQOG EXPANSION 103

This method involves  partial summing of the
Chapman-Enskog series. Some applications of this method
to the linearized Grad equations are considered.

The results of this paper were presented at the
CHISA International Congress (Praha, 1990) [6].

2 . STRUCTURE OF THE CHAPMAN-ENSKOG EXPANSION

Denote as p,, 7,, and §0=0 the equilibrium values
of density, temperature and the flow velocity wvector
respectively . Notations p’, 7, and 7' represent small
deviations of hydrodynamic parameters from their
equilibrium values.

Grad hydrodynamic equations {[4], which will soon
appear, contain the viscosity coefficient {4 which
relates Grad hydrodynamic equations to the Boltzmann
equation. We use the representation W@ )=M@T ). The
function M) depends upon the choice of the collision
medel in the Boltzmann equation. In particular, TM=const
for Maxwell molecules, and M is proportional to r1/2
for rigid spheres. Everywhere below we use the scale
system with the Boltzmann constant and the particle’s
mass equal to unity.

Let us introduce the dimensionless variables:

-2 “1/2”/ ’ ’ -3 -1 "'1/2 2,
a=r VR, p=ptipy,  T=T Ty, E=M@y) T X

t=(r ) ‘ot - (2.1)

Here X' represents the spatial vector, and ¢’ is the
time .

The linearized 13-moment Grad equations have the
following form in terms of the variables (2.1):

Oglly=-0P=0,T-0,0 ;g
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2
040 5=~ (04U *0,¥ ;730140585 )™
(61qk+6kql _szasqs) & Ozk’

atqk=-(5/z)akT—aiol.k—(z/s)e'lqk. (2.2)

Here and further Cik> where 1 ,k=1,2,3, represents the
traceless part of the tension tensor, and Iy where
k=1,2,3, represents the heat flow vector. Notation 8;
represents the partial derivative 8/0x; . In two repeated
indices summation is assumed, and £ is a small parameter
(the Knudsen number). The terms which are proportional
to g1 appear from the Boltzmann collision integral.

The application of the Chapman-Enskog method to the
system (2.2) involves representing Ok and 9y in the
form of the series:

o0 0
=y Oe”“ o). ap =1 oe"” g™ (2 .3)
= =

The coefficients 01(-2) and qén) are obtained from the
following recurrent procedure:

0 {0mm (@ U 48,0~ (213008 ) . g == (1514)9,T

n-1
ny_ §). (A-$-1)_2 (n-1) (n-1 (n-1)
Oék)' §= Oat( Oik (alq +0 q )- '61kasq ),

n-1
s - (S$+1 -1
qlg")=—(3/2){§=oat( )qlg" ¢ ))+61~0}Z )}, for n21. (2.4)
Operators at(s) , where s20, act as follows:
of®p=—vou , of°or=-(2/308., 8{%)ou =-po, (r+p),

at(S )pp=0 , at(s Jpr=-2 2089 (s-1)
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8\ pu=-p0 0 $571) s>1. (2.5)

Here and further D represents an arbitrary differential
1,1,1
operator: o—a 6 26 3, where 1120, and ag=1.

Accordlng to (2 .4) and (2.5) the coefficients in
expansion (2.3) are expressed as spatial derivatives of
the functions p, 7, and u,.

wWe now introduce the notations:

<Q U p>=08 ;U +0,u ——5 Bl s

1

The main result of this section is as follows:

coefficients O}z) and qé") in expansions (2.3) have the
form :

o(2n), -1

Otk =¢ A <0 uk>+d AT ip k9l
52ne1)_, an

Ok =a, A Plkp+b A Plk

2
qé ")=anA”6kp+ﬁnA"6kT,

2n+1 1
qé ”+ )=wnAn6kasus+¢nA"+ up; (2.7)

for all n>0. Here a_, b,,c
the numerical coefficients.
we represent a sketch of a proof by induction.

Immediate calculations show:

n 9p % Bp+ @, and ¢, are

0§ )= o+ (/200 7, gfP=-(13/4)0,0 1 ugt (3/2)huy . (2.8)
ikP ik’ 9% s k

After taking into account O}k) and qéo) (2.4), we see
that the statement (2.7) is proved for mn=0. Let the

structure (2.7) be set for a certain n>0. Then for n+t
we have
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2n+1

0(2("+1))=—(Z G(S)O(Z(I”l)—(S+1))+%(61~q1§2”+1)+

(2m+1)_ (2n+1) n+1
+044; ~30.14959¢ )= ‘2 SFon-p 30,387 <8 o

+A7T 8 ta, ~b -z(p +i§ (c (c_+4d _))+
ik m n 5¥n 3 n-p‘"p Tp

32 b,, p@po ¥y )Had,_Lc#d )Y (2.9)

It is obv1ous that the structure of this expression
coincides with the the structure of the corresponding

coefficient O(M) in (2.7). 1t is easy to check that the

(2@)

coefficients 01(12(m+1), 9% (22+1)

and g also have the

structure (2.7).

The break of the series (2.3) at some certain n20
yields a closed set with respect to p, T, w, . The
stationary solution of this set for n=2z is obtained
from equations:

Ap,(0)p + By (A)T=0, C, d)p +D, (A)T=0, B.u =0,
o n

A (b)Y, apsszAp“, B(hy= 3 ﬁpezpuApn,
p=0 p=0

n-1 o-1
cm(A)=A+% 2 a 82(p+1)Ap+1, Dm(A)=A+%p§0bp82(p+l)Ap+lu

5 82P+lc APy =0, k=1,2,3. (2 .10)
p=0 P
For n=2m+1 stationary -equations are obtained fron
equations (2.10) by replacing m-1 with = in the
operators Cm(A) and Dm(A).

For n=0 (the Navier-Stokes approximation) the
stationary equations are:

AT=0, Ap=0, agu =0, Azuk=0. (2 .11)
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These equations result in degeneration of the
time-independent Chapman-Enskog expansion (2.7): the

only non-zero terms are qéo), qé1), 0}2), G}}) and G}i).
Due to the equality

0{1)a,0(2)-5,g (=0,

the account of the terms G}i)’ Oéz) and qél) does not
change equations (2.11). This degeneration of the
Chapman-Enskog series was obtained recently by V.S.
Galkin ([7) for the linearized Boltzmann equation .

In a non-stationary case, the break of the series
(2.3) for arbitrary finite order n>0 can result in
short-wave instability of the equilibrium point, as it
was shown in [2] for n=1 and n=2. As it was mentioned in
the Introduction, an account of all the orders in the
Chapman-Enskog expansion is necessary . Expression (2.9)
shows that the recurrent procedure (2.4) for obtaining
numerical coefficients (2.7) is rather complicated. In
the next section we introduce a method of consecutive
approximations of equations (2.4). This  method
approximates the series (2.3) in whole.

3 . APPROX IMAT IONS OF THE CHAPMAN-ENSKOG EXPANSION

our approximation of the Chapman-Enskog recurrent
system (2.4) is as follows.

Fix an arbitrary integer ko, where k0>1. Equations
(2 .4) are replaced by:

@y, BV _(m).(n-(@+1)),2 (n-1)) (-1
Oip ==L 9 0 500,91 rapg [1)-

~61k6 qén 1))}, where n=0,...,k;
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k -1
(k0+m) 0 (k +m-(S+1)) (k ,+m~1) (k +m-1)
_ (5)g o 2 0 o= %)
O L% ik * 5059k 0l
2 (k0+m-1)
“Eijalql )}, wvhere m2>1; (3.1)

and , by analogy, for qé"). The operators a}s), where
s=0,...,k0-1, are defined according to (2.5). Thus, we
restrict ourselves to a finite set of operators a}s)
according to the choice of k,. Therefore, all terms up
to the kb—th order in expansion (2.3) are taken into
account without any rcut-offs", and all of the other
terms with k>k, are approximated . For k> the system
(3.1) coincides with the system (2.4). One can prove
that the system (3.1) preserves the structure of (2.7).
The approximation introduced resulis only in a changing
of the values of numerical coefficients a,, bn’ €, dys
a, . ﬁn, ¢, and ¢,

Generally speaking, the -equations (3.1) are
simpler, than the system (2.4). In some cases equations
(3.1) can be solved exactly. The last step of the
algorithm consists of summing the series (2.3) with
approximate coefficients (3.1).

The procedure introduced here is of a recipe
character. Wwe call this method rregularization" for
short. Now we will consider some examples of its
application .

ve start with the simplest case of linearized
one-dimensional 10-moment Grad equations :

8,p=-0,u, o,1=-%5.u,
0,u=-8, (T+p+0), 0,0=-30 u-€" %o . (3.2)

Here O represents the xx-component of the tensor Orkr
and x represents the one-dimensional coordinate.
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Fix k0=1, and introduce variables v and 0=7T+p. In
this case the approximate recurrent procedure (3.1) is:

0(0)=_%axu, 0(1)"at(0)0(0)’ 0(")~—at(°)o("'1), 2
(0)g. 3 (0),=—
6; 8= 30,4 » 8; ‘u=-8,6. (3.3)
The structure of coefficients o) (3.3) is as follows:
(2n)_ 2n+1 (2n+1)_ 2n1+2 )
o} =a,0,"" U, o} =b, 0, 0. (3 .4)

Coefficients a, and bn are determined by the recurrent
rule:

5 4
a7bns A ™340 29573 (3-5)
From (3.4) and (3.5) we obtain:
2
o= 302y (—g8,u), oM (JoZ)M(30%8).  (3.6)

o Lml (7
summing the series ) &€ o)

n=90

with coefficients (3.6)

yields:

N o .5.2:2.~1
0,~R0,, Ri=(1-38°3;)

4 2.2
1R , O,~—3(E0,u+£°3,8). (3.7)

The expression 0, represents the Burnett approximation
0of the nonequilibrium tension tensor 0.
Fix kj=2. In this case equations (3.1) are:

60ty u, g(Mg(0g(0), G2 p(0)g(1)_g(1)5(0),

0 M- {0 (1~1)_5 ()5 (1=2) | for np3,

of16=0, 0fVu=402u . (3 .8)

coefficients o@) in (3.8) have the form (3.4).
Coefficients a, 6 and b, are defined by a recurrent
procedure which is obtained from (3.5) by substituting
1/3 instead of 5/3. This results in:

1,252 -1
0,5~R,0, R,=(1-387°0x") . (3.9)
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The super-Burnett approximation o, has the form:
4.3.3
0,=0,~3€°0,u . (3.10)
Note the appearance of the non-local operators R, and R,
in hydrodynamics equations.
. . (0) .
Substituting O » 041 04p 0, and O,p instead of G
into the equations
6t9=—§axu, atu=-ax(e+c), (3.11)
then using the variables ¢”’=f{/¢ and x"=x/g€, and also
using the representation
u=u.Q, 0=0.,9, P=expWt"+ikx" ), (3.12)
we obtain dispersion relationships W) for sonic waves.

These relationships are:

2,2, , 4,2 5.1/2
W, =3k ek (GkE=3) ! (3.13)

for the Navier-Stokes approximation 0(0);

4 2
(,)1’2=—%k2ik(%k2—§(l+-§k2))1/ (3.14)

for the Burnett approximation 0,

2142 75k va1kle15) 172
Wy o~ 7 13 3 7
2 345k 25kt+30k%49

=2
for the regularized Burnett approximation O
O, ok (k*-3)x g7 4kt (3-k1)2-ask? (4k243))3 12 (316

for the super-Burnett approximation P

2 4 2 1/2
0. =-2K -k[lOOk +312k +1so] (3.17)

P +I—=
L2 auk? 720ty 18k%e21
for the regularized super-Burnett approximation Oy -
Dispersion curves for the Burnett approximation
(3.14) (dashed line) and for the regularized Burnett
approximation (3.15) (smooth line) are shown in Fig.1.
The directions of the arrows indicate increases of the
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wave vector square k. Dispersion curves for the
super-Burnett approximation (3.16) (dashed line) and for
the regularized super-Burnett approximation (3.17)
(smooth 1line) are depicted in Fig.2. Regularization
removes short-wave instability of the super-Burnett
approximation (3.16).

The next example is the one-dimensional variant of
the 13-moment system (2.2). The Burnett approximation is
as follows:

_ 4 _4.2,2,..2.2,2 __15 1,222
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AIm @

Fig. 2

Substituting the expression (3.18) into the one-
dimensional equations (2.2), we obtain the dispersion
equation :

1803+ 6902k 240k 2 (30+497k*-14k* )+ 15k* (3442 )=0 . (3.19)
Exactly in this case, short-wave instability was
detected in [27].

Fix k=1 in the one-dimensional variant of

0
equations (3.1). Then the approximate recurrent system



CHAPMAN-ENSKOG EXPANSION 113

(3.1) takes the form:

(0)__4 n), 5(0)5(m-1)__8 n-1
020w, a0 25 1) p3q,

(0)__15 (), 35(0) (2-1)_3 (n-1)
q(=-L35,7, ¢gMn35{%)q 58,0 , 21,

0f%=-0u, 08%r=-25u, 08f%u=<5 a+p), (3.20)
and for kb=1 the approximate equalities are exact. In

the one-dimensional case the structure (2.7) is as
follows:

(2m)_ 2n+1 (2n+1)_ 20+2 2n+2
o) 'Cnax u, o —anax T+bnax P,
(2n)_, ~2n+1 2n+1 Qa+1)_,, 2n+2
q _anax T+ﬁn6x P, q _@nax u. (3.21)

It is useful to introduce the objects: the space x=r3
including the vectors X, with components (an,bn,@n); the
space y=g3 including the vectors Y, With components
(cn,an,ﬁn) . From equations (3.20) we obtain a vector
analog of scalar equations (3.5):

_ _ 4 15
xn"synv .yn+1_ani }’0—( 30 4 0)1 (3'22)
Here matrices S and L are:
1 ~-8/15 0 2/3 1 ~8/15
S={1 0 -8/15) , I[={~3/2 0 3/2 . (3.23)
-3/2 1 3/2 0 -3/2 372

The solution of the equations (3.22) is as follows:
YKy X =Sk, K=LS . (3.24)

The next steps of regularization involve nothing new in
comparison with the examples suggested above. Finally we
obtain :

_ 2.2 2.2
O =P R Y EOU+P SR Y (€ G T+PySR y (£°0.0,

_ 2,2
q15’Pak1Y0€axT+PﬂR1yoeaxp+P@5R1y08 0,4,

2,.2.~1
R = (1-€7K8) (3.25)
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Here P, represents the projector on the appropriate axis
in the space X or in the space Y (e .g. Py =Cn)- The
dispersion equation for the approximation (3.25) is
rather complicated, and therefore it is not represented
here. Dispersion curves for the Burnett approximation
(3.18) (dashed line) and for the regularized Burnett
approximation (3.25) (smooth line) are depicted in
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Fig .3. Only acoustic branches are shown, diffusive
branches for both of the approximations (3.18) and
(3.25) are practically the same:

Finally, we introduce the result of regularization
of the Burnett approximation (k0=1) for equations (2.2):

-1 2
C,pik" PR Y Os<al.uk>+Pd1e N OA Piksas”s“’a” Y o€ I‘l.kp+

2
+PpSR .y € Pikr*
2 2
q1Rk=PaRlyoeakp+PﬁR1y0€6kT+P(pSRlyoe 8,8 U +Py SRy E"Au, ,
R=(-e’s0)t, y=(0, -1, 0, -1 (3 .26)
when obtaining expression (3.26) we used
four-dimensional vectors X= (@, bn’ ®p > ¢n) and yn=(dn’
Cp» an, Qn). The analogous representation was used in

the previous example. Notations S$ and L represent the
matrices:

1 1 -2/5 0 1 3/2 2/5 0

S=1 1 1 0 -2/51, =1 0 0 0 2750 . (3.27)
-2 -1/2 3/2 1 -2 0 3/2 312
0 -3/2 0 0 0 -2 3/2 372

4 . CONCLUSIONS

The method of regularization introduced in section
3, is based on ideas of the Pade approximations (8] and
on partial summing of series. One cannot predict whether
or not this method indeed results in stability of the
wave spectrum . This situation is typical for the methods
which use the Pade approximations. A number of curious
examples are collected in the monograph {97].

The examples suggested in section 3 predict limit
of the decrement in short-wave asymptotic.
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For the linearized Grad equations one can approach
the problem of the wave spectrum stability without any
break of the sequence of the operators a}s). For
example, in the case of the 10-moment equations the
regularized stress tensor O,r Can be supposed to be as
follows:

2.2
Cn=F (6 )8, U+F . (8,)8 0.

The symbols of the operators Fin(- kz) and an(_kz)
are defined as the series in powers of -k%. The first n
coefficients of these series are given. The rest of the
coefficients are defined according to a more or less
complicated recurrent rule. The functions Fy (-kz) and

e kz) are inserted into the dispersion equatlon Ve
have to construct an approximation of the functions
F n(—kz) and FZH(—kz) so that this approximation would
preserve the given segment of the Taylor series, and so
that the #-theorem will be valid .

The dependence of the functions Fy (aﬁ) and F2n(6§)
only on a is the result of the 51mp1e structure (2.7)
and (3.4). The formal transfer of the procedure (3.1) to
the nonlinear Grad equations is not difficult. However,
in this case one cannot obtain any simple structure
similar to (2.7) and (3.4). Nevertheless, one can select
some of the similar summands in every term of expansion
(¢e.g., the maximal nonlinear terms (6 u)”+1) The
regularization in  this case can ellmlnatc the
nonphysical 'negative viscosity" of the Burnett
approximations . Another paper will be devoted to these
problems .

After this paper was prepared, we learned that a
similar approach was developed recently by a group of
mathematicians for the regularization of semi-classical
expansion for the Schroedinger equation [9-12].
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