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SPECIAL FEATURES IN THE RELAXATION PERIODS IN THE 

OXIDATION OF CO ON PLATINUM 

V. I. Bykov, A. N. Gorban', and 
T. P. Pushkareva 

UDC 5~i.124./128 

When studying the process dynamics of chemical reactions the first problem is generally 
considered to be its limiting (for t § ~) conditions. For closed systems this problem has 
been solved for a fairly general case (see [1-3]); i,e., for t § ~ the system tends to a 
unique stationary point for fixed balance relationships, viz., the positive point of a de- 
tailed balance which is a stable "node" [4, 5], A unique solution to this problem evidently 
does not exist for open systems: here a multiplicity of steady states [6, 7], autooscilla- 
tions [8, 9], and more exotic limiting regimes [i0, II] are possible. 

The special features in the limiting behavior of the oxidation of CO on Pt have been 
studied in detail in [12-15]. However, besides a reply to the question "what will happen at 
t § ~?" it is also important to know how rapidly the limiting behavior is established. The 
slow establishment of chemical equilibrium, associated with delays in the reaction far from 
equilibrium (the induction periods) has been studied in chemistry since the time of van't 
Hoff [16]. At present, interest in slow relaxations arises from experiments [17-19] in which 
it was found that for certain chemical (including heterogeneous catalytic) reactions the re- 
actant concentrations may slowly approach their limiting (steady-state) values, although the 
observed rate of reaction may remain fairly high. In the opinion of M. I. Temkin, who ana- 
lyzed the relaxation period in the simplest case of a linear two-stage reaction involving 
one independent substance [20], such a situation is usually caused not by "intrinsic" relax- 
ation processes which are determined directly by the reaction mechanism, but by "extrinsic" 
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relaxation processes arising from reasons of a nonkinetic nature (the diffusion of the sub- 
stances within the catalyst, a slow variation in its structure, etc.). The case of simple 
model reactions taking place in a flow reactor with ideal mixing has been discussed in [21, 
22]. 

However, slow relaxations of a purely kinetic nature are possible.* This possibility 
has been demonstrated, for example, in [14, 23], where a kinetic model for the oxidation of 
CO on Pt, which corresponds to a nonlinear reaction mechanism, was studied numerically. As 
shown in [24, 25], slow relaxations of kinetic origin are associated with the presence of 
bifurcations (critical phenomena) in the system. A detailed mathematical analysis of this 
connection is given in [26, 27]. Our purpose is to study the special features of the relax- 
ation period in the oxidation of CO on Pt on varying the parameters over the range correspond- 
ing to real experimental conditions. Here we use the results of a parametric analysis of 
the steady states of a corresponding kinetic model over the real range of partial pressures 
and temperature presented in [12-15]. 

The non-steady-state kinetic model of a complex catalytic reaction for a constant com- 
position of the gas phase has the form 

$ 

.i=l 

(i) 

where x is a vector for the concentration of the intermediate compounds, the vector yj has 
the coordinates Yji = Bji -- ~i (Bji, ~ji are the corresponding stoichiometric coefficients 
of the stages of a complex reaction mechanism), ~j is the velocity of the j-th stage. The 
range of variation of x is a convex polyhedron D given by the conditions of nonnegativity of 
the concentration x i and by the linear laws of conservation (balance relationships). The 
system (i) possesses the property that for any initial conditions x(0)=x0~D its solution 
x(t) ~D for all t ~ O. Generally, a number of parameters (temperature, partial pressures 
of the substances in the gas phase, rate constants of the stages, etc.) occur in the mathe- 
matical model (I). If they are signified by the vector ~, then (I) is written in the form 

= F(x, ~). (2) 

Since each solution to (2) is determined by fixing a specific value of a and the initial con- 
ditions, we shall therefore write that x = x(t, ~, x~ The steady-state (st.s) of system 
(2) is defined as the solution to the equation F(x*, ~) = 0, The latter implicitly gives the 
dependence of x* on ~, which may be unique or not unique~ respectively, in the cases of a 
unique st.s. or a multiplicity of them. In the second case x* may vary "discontinuously," 
with a change in ~ -- new st,s. may appear or oldst.s, disappear. Such bifurcations are possi- 
ble for even the simplest reactions involving stages of the interaction of different inter- 
mediate substances (e.g., see [7]). The possibility of critical phenomena for the oxidation 
of CO on Pt was shown on models in [12~15]. We may note that at that time quite recent exper- 
imental data characterizing the multiplicity of st,s. in a separate range of parameters [28] 
had not appeared, 

In an analysis of the establishment processes it is not the rate of motion (x) which 
plays the principal role but rather the time of establishment itself, For stable linear sys- 
tems the relaxation period is introduced reasonably as T = --1/Re%, where k is an eigenfunc- 
tion of the matrix for the right-hand sides of the system (2) containing the lowest real part 
with respect to the modulus (a "linear" relaxation period), It is clear that this character- 
istic is suitable in a nonlinear case only when representing a small vicinity of an equilib- 
rium st,s, in which a linear approximation is valid with sufficient accuracy. Furthermore, 
for nonlinear systems the real parts of the eigenfunctions of the matrix of a linear approx- 
imation to a st.s, may not fully characterize the rate of relaxation, and the choice of time 
characteristic representing the rate of change of x(t, ~, x ~ for t § ~ may be indeterminate 

[25, 26]. 

Let us introduce the necessary symbols and definitions, For the fixed initial conditions 
x ~ and set of parameters ~ let us indicate the u-limited set of the solution to (2) x(t, e, 

*Where it is unnecessary we do not indicate what relaxes and in which direction; in these 
cases relaxation always means the tendency of the reactant concentrations (and, correspond- 
ingly, the rates of reaction) to their steady-state values. 
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x ~ by m(x ~ ~). This set consists of points ~ such that x(t, ~, x ~ + x for a specific se- 
quence t i § + ~. We emphasize that for nonlinear systems the cluster of u-limited points 
does not always consist of steady states [8-11]. 

Let g>0, x~ ~1<, x(~, a, x ~ be the solution to (2) with the initial condition x(0) = 
O 

= x . We define the relaxation period of this solution "with an accuracy E" as 

x (x ~ ~z, 8) ---- inf {t ~ 0 : p (x (t', cz, Xo), o (x ~ ~z)) < 8 for t '  > t}, (3)  

where p(x, c0)= infllx--yll is the distance from the point to the set. According to the defi- 

nition (3), T(x, e, e) is the time to the final appearance of the trajectory in the g-vici- 

nity of its w-limited set. The nature of the tendency of the solution to a limited set can 
naturally also be represented by other characteristics. For example, besides (3), the pe- 
riod of residence outside the g-vicinity of the limited set is particularly important (for 
detail see [26] where six relaxation periods are considered~ the period T(3) corresponds to 
T3 from [26]), We shall say that for x~ c t ~ K  slow relaxations exist for the system (2) 
if such an ~ > 0 is found for which T(x ~ ~, ~) is not limited above in D • K; for any t k > 0 
initial conditions x~ and a value a~/( are found such that T(x ~ ~, ~) > t k 

The necessary and sufficient conditions for the presence of slow relaxations for (2) 
have been obtained in [26, 27], There are two possible reasons for slow relaxations corre- 
sponding to the period T" the breakdown of semicontinuity below the function m(x ~ ~): the 
existence of x~ a~l( and x*~c0(x ~ a) such that for certain 6 > 0 and sequences xi ~ § x ~ 

ai § ~ for any i = i, 2, ... 

~(x*, co (x~. ~;)) > 6; (4) 

2) the existence in D for a certain a~K of integral motions which are not positively stable 
according to Poisson [29], for which the &- and u-limited sets intersect, i.e., the presence 
of a~I(, x~ such that x(t, ~, x ~ is determinate and lies in D for all t (both positive 

and negative), x ~ does not belong to m(x~ &) and sequences t i § ~, tjk + ~ are found such 
that 

lira x ( t  i, a ,  x ~ = lira x ( - -  tjk, ~, xO). 

It is natural to call the first special feature in the dynamics (the breakdown of semiconti- 
nuity below w(x ~ e)) the bifurcation of a w-limited set and the second the presence of loops 
(an unstable trajectory with intersecting ~- and w-limiting sets), The initial data (x ~ 
and (~) occur equally in the presented definition of bifurcation (4), in contrast to the tra- 
ditional approach, in which only bifurcations with respect to a parameter are considered as 
a simple example of slow relaxation. 

The behavior of the system (i) if the bifurcation of an m-limited set is associated with 
the appearance of new st.s. may serve as a simple example of a slow relaxation. If the ini- 
tial conditions x ~ fall in the range of attraction of a newly appearing st.s, (with a change 
in the parameters ~) then the relaxation period from these initial conditions to the old st.s. 
tends to infinity as ~ approaches its bifurcation values. Another example is the behavior 

of a system close to the separatrixes dividing the region of attraction of the stable st.s. 
In this case bifurcation is associated with the u-limited set varying discontinuously when 
the initial data are incident on the separatrix. 

Both these situations, the appearance of new st.s. and the delay of the solution in the 
vicinity of the separatrix, may be realized in the specific reaction of the oxidation of CO 
on Pt. As in [12-15], let us consider a two-route mechanism for the reaction: 

I) 02 + 2Pt = 2Pt O, 

3) Pt  0 + Pt CO --~ 2Pt + C02, 

2) CO + Pt ~_ Pt CO, 

4) CO + Pt O -~ Pt + CO~, 

to which corresponds the non-steady-state kinetic model 

x = 21e lp lz  ~ -- 2 t e - y X  2 - -  k a x g  -- k t p 2 x  = P (x ,  g) ,  
(5) 

y = le2p:z - -  k _ 2 g  - -  k 3 x g  = Q (x ,  y ) ,  
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F i g ,  1, Dependence o f  t he  s t e a d y - s t a t e  v a l u e s  
f o r  the  c o n c e n t r a t i o n s  o f  s u r f a c e  subs tances  
x * ,  yW, and r a t e s  o f  r e a c t i o n  w* on the  param- 
e t e r s ,  a) P2 = 10 -7 ;  l )  Pl = 5 x 10-5 ;  2) 8 x 
• 10-6~ 3) 3 • 10-6; b) p2 = 10-'; l) T = 410~ 
2) 450; 3) 470; c) pl = 5 x i0-~; I) T = 450~ 
2) 430; 3) 410, 

where x, y, z : i -- x -- y are the concentrations of PtO~ PtCO, and Pt, respectively; Pl, P2 
are the partial pressures of 02 and CO; ki(T) are the rate constants of the reactions depend- 
ing on the temperature T according to the Arrhenius law. In the system (5) p~, P2, and T oc- 
cur as the parameters, and the phase variables are x and y. Their range of variation D = 
= {x, y: x ~ 0, y ~ O, x + y < i}, The values of the preexponential factors and the activa- 
tion energies occurring in ki(T) are presented in [15], The limits of variation of p~, P2, 
and T were given by the inequalities 300~ ~ T < 600~ 10 -s torr ~ p~ % 10 -3 torr, i0 -8 
torr < P2 < I0 -6 torr, which correspond to the actual conditions of conducting an experiment 
[ 1 2 ] .  

Loops are absent for the dvnamic system (5)~ while the ~-limited sets consist only of 
st.s, which are determined from the equations 

P(x*,y*) = Q { x * , y * ) =  0. (6)  

The solutions x*, y* to the system of algebraic equations (6) depend on the parameters p~, 
P2, and T, Over a wide range of variation of these parameters, (6) may have three solutions 
[15], i,e., the reaction being considered may have three values for the steady-state velocity 
w* = k3x*y* + k~p2x*, Examples of the dependence of the steady-state values of x ~, y*, w ~ 
on the parameters are presented in Fig. i, 

With a change in the parameters px, P2, and T over a definite range two st.s. may appear 
or disappear in the model (5), being produced or removed at the point of bifurcation in a 
single, level st.s. (for a Small variation in the parameters it either disappears from D or 
gives two new st~ This leads to the appearance of hystereses with respect to the corre- 
sponding parameters in the x*, y*, w*(p~, P2, T) relationships (see Fig. I). The range of 
multiplicity of the st.s. for the reaction being considered within the parameters (pl, p=, 
T) has been described in detail in [12, 14, 15]. 

The type of stability of the st.s~ (x*, y*) = (*) is determined by the roots of the char- 
acteristic equation 

%~--0~ + A = O, (7) 
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where 

0P ( ,  0Q oP OQ oP 

In  o u r  c a s e  o f  (5)  ~ < 0 a l w a y s ;  t h e r e f o r e ,  (* )  i s  u n s t a b l e  i f  A < O. So t h e  u n s t a b l e  s t . s .  
is a saddle for which the roots (7) are real and of different sign (for determinacy we shall 

consider ~i < 0, k2 > 0). It is easy to show [13] that a unique st.s. is always stable (a 
stable node); if there are three st.s., then two of them are stable nodes and one is unstable 
(a saddle). 

Phase portrayals of the system (5) give a clear idea of its dynamic behavior [23]. In 
Fig. 2 phase portrayals are presented of (5) corresponding to the cases of one and three st.s. 
In the first case the range of attraction of the st.s, is the whole polyhedron of the reac- 
tion D~ However, if there are three st.s., then D is divided into two parts by the separa- 
trixes occurring in the saddle, viz., regions of attraction of two stable st.s. We may note 
that for our system (5) for any initial conditions (x(0), y(0))~D not lying on the separatrix 
of the saddle, the solution x(t), y(t) is stabilized to one of the stable st.s. 

The nature of the variation in the solution to (5) with the presence of three st.s, in 
time t is shown in Fig. 3. The system first tends rapidly to a certain "general main" (see 
the phase portrayal in Fig, 2) and then it approaches the st.s. along it more slowly. How- 
ever, if the initial conditions x(0), y(0) are distributed in a certain g-vicinity of the sep- 
aratrix occurring in the saddle, then for the passage of a trajectory in the vicinity of an 
unstable st.s. another section of a slow variation in the solution appears. 

As has already been indicated, with a change in the parameters a bifurcation of the st.s. 
may take place. It corresponds either to the merging of a node and a saddle and the appear- 
ance of a level st.s. of the saddle-node type, or the creation in D of a saddle-node and its 
splitting into a node and a saddle, A saddle-node type of st0s, has a region of attraction 
in D, this itself lying at the boundary of this region, The corresponding phase portrayal 
(5) is presented in Fig. 2c. The situation of the existence of a saddle-node is level-limit- 

ing between the cases with one and three rough st.s. The relaxation period T may be as large 
as desired in the vicinity of the subsequent points (x ~ yO ~) ~ D x K (and only in their 
vicinity): i) ~ is a vector of the parameter values for which a level point of the saddle- 
node type exists in the system; (x o, yO) lies in the region of attraction of this saddle-node; 

/ 2 5 z 5 6 t 1o -5 

Fig. 3, Behavior of the solution x(t) 
to the system (5) with time for T = 
= 450~ pl = 3 • 10 -6 , P2 = 10 -7 , 

x(O) = 0: i) y(O) = 0,59; 2) 0.60; 3) 
0.61; 4) 0,62. 
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Fig. 4. Geometrical position of the separatrix of a saddle 
on the phase portrayal: Pl = 3 • 10 -6 , P2 = i0 -7, $I corre- 
sponds to T = 448~ S= = 468~ 

Fig. 5. Surface of the special features of the relaxation 
period. 

2) e is a vector of the parameter values for which (x ~ yO) lies on the separatrix of the 
saddle. 

In the space D • K the multiplicity of these points forms a surface, the description of 
whose special features makes it necessary to calculate the separatrix of the saddle for dif- 
ferent parameter values and to search for the region of attraction of the leVel saddle-nodes. 
The slope of the direction into which the separatrixes enter the saddle is equal to 

_ {~. aP (~))/._~_.(.). a,o 
(8) 

In order to find the required separatrixes numerically it is sufficient to integrate a system 
of ordinary differential equations of (5) in reciprocal time (replacing t by --t) with the ini- 
tial conditions 

xO = x* .4. e (1 _.}_ ~z) ' l /2,  y = y ,  • ~ (1 _.}_ ~2)-It 2 ' ( 9 )  

where B has been calculated in the st.s. (x*, y*) according to (8) and ~ > 0 and is suffi- 
ciently small, It is necessary to integrate the system (5) up tothe emergence of the solu- 
tion x(t), y(t) at the boundary of the region D. 

With a change in one or other parameter, e.g,, temperature T, in the region correspond- 
ing to the multiplicity of st.s. the separatrixes being considered sweep a certain range D* 
on the phase portrayal of D (it is hatched in Fig, 4). Apart from the boundaries of D this 
region is bounded by the separatrixes $I, S= of level st.s., these being saddle-nodes corre- 
sponding to bifurcations of the st,s,, i.e., to the merging or appearance of two st.s. in the 
given case. For example, with a variation in temperature T over the range [440~ 480~ 
(for fixed pressure values pz = 3 • 10 -6 , p2 = 10 -7 ) the bifurcation of the st.s. takes place 
at TI = 448~ T2 = 468~ With a monotonic increase in T the value of TI corresponds to the 
creating of new st.s. (level st.s. of the saddle-node type) which then gives two level st.s. 
in D (saddle and node). The bifurcation value of T= corresponds to the merging of two st.s. 
to the appearance of a level st.s., which for T > T2 disappears from D. If T decreases mono- 
tonically, commencing from a certain value of T > T2, then the sequence of bifurcations is 
similar to the previous one, a saddle-node is generated at first (first bifurcation), then it 
is broken down into two new st.s., one of which, unstable with a further variation in the pa- 
rameter, merges (second bifurcation) with the previously existing st.s. and the only st.s. 
remaining is the stable one appearing with the first bifurcation. The geometrical position 
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f i 

rcr=Tl r T 1 Tcr T2 
Fig. 6. Qualitative nature for the temper- 
ature dependence of the relaxation period, 

of the st.s. on the phase portrayal of D is shown in Fig. 4 by the dotted line. The points 
lying outside D* correspond to the stable st.s,, while those within D* correspond to unstable 
st.s. 

According to the calculation made, the surface of the special features in the relaxation 
period divides the space of the triplet (x o, yO, T) into two parts (Fig. 5). To each value 
of the initial data (x ~ yO) corresponds a unique value of the parameter T in whose vicinity 
the solution to (5) emerging from (x~ yO) may relax as slowly as desired. Let us call this 
critical value of the temperature Tcr(X ~ yO), We may note that in the general case this 
surface may have folds and other special features but inthe example considered it is arranged 
fairly simply. 19 Tcr(X ~ yO) = Ti [i.e., (x o, yO) lies in the region of attraction of a 
saddle-node, which appears at T = T~], then the slow relaxations from these initial condi- 
tions take place in the vicinity of Ti for T < Ti (Fig. 6). If Ti < Tcr(X ~ yO) < T2, then 
slow relaxations are possible in the vicinity of Tcr(X ~ yO) both for T > Tcr(X ~ yO) and 
for T < Tcr(X ~ yO). However, if Tcr(X ~ yO) = T=, then slow relaxations exist in the vi- 
cinity of T2 for T > T2. Besides the surface of the special features it is useful to know 
those dimensions of the region of initial data (for a given T) from which relaxation takes 
place more slowly than a given period To, i.e., to be able to calculate the following quan- 
tity: 

(T, e, xo) = rues {(x ~ 99 : z ~o, Vo, T, e) > zo}, 

where mes is a measure (area) of this region. For large To in the uneven case corresponding 
to the presence of three st~s., an estimate can be obtained from the equation 

lim lnF(T,s,%) _ - - _ ~ ,  (10) 
"t'o'-'* ~ TO 

where % is a positive eigenfunction of the matrix for the linear approach of the right-hand 
sides of (5) to a saddle point. Equation (i0) contains the eigenfunction of the Jacobi ma- 
trix for the right-hand sides of (5) not in a stable st.s. but in a saddle (unstable); we re- 
call that for a "linear" relaxation time the rate of relaxation is determined from the eigen- 
functions at a stable point to which relaxation takes place. 

It should be noted that the retardation of the rate of change in the solutions x(t), 
y(t) when they pass in the E-vicinity of a st,s. (*) does not necessarily take place also in 
the case where (*) ~ D. For example, just before bifurcation (T < Ti) the system (6) has a 
pair of complex solutions which for T = Ti merge into one st.s. ~ D which produces two new 
st.s. with a subsequent growth in T. The situation just after bifurcation corresponds to 
the merging of the st.s. ~ D into one level st.s., which then produces a pair of complex 
roots of (6) outside the region D. In both cases slow motions will be observed just before 
or just after bifurcation, in that part of the region D where st.s, should appear or only 
just disappear, since here the right-hand sides of the system (5) are small with respect to 
E. Consequently, the st.s. which are nonphysical but lying in the vicinity of the region D 
affect the dynamics of the system. Such "out of this world" st.s. may have an effect on the 
actual course of events. A similar observation was made for the first time in [30]. The na- 
ture of the variation in the solutions to the system (5) in situations just before and just 
after bifurcation is analogous to that shown in Fig, 3. If the initial conditions of the 
system (5) are such that on tending to a unique stable st.s. the solutions pass through sec- 
tions of the region D where P, Q are small (of the order of E), then a retardation of the 
rate of change in x(t), y(t) will naturally be observed in this region. 
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Thus, the surface of the special features in the period of relaxation to a st.s, has 
been constructed for a specific catalytic oxidation reaction, A knowledge of it enables us 
to isolate a region of slow establishment of st,s. (the vicinity of the surface of the spe- 
cial features) within the space of the initial compositions and parameters, The approach 
demonstrated may be found useful for studying and understanding the processes of slow estab- 
lishment and induction periods. 

We thank G. S. Yablonskii, who drew our attention to the problem of slow relaxations, 
and also V. I. Elokhin and V. M. Cheresiz for useful discussions, 
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OSCILLATING CHEMICAL REACTIONS WITH THE PARTICIPATION 

OF MACROCYCLIC NICKEL COMPOUNDS 

K. B. Yatsimirskii, L. P. Tikhonova, 
L. N. Zakrevskaya, and Ya, D. Lampeka 

UDC 541.127:546.74 

Oscillating chemical reactions in which different substrates are oxidized by the bromate 
ion under a periodic regime may be of three types: I) oxidation of organic substrates in the 
presence of catalysts -- transition-metal compounds [i]; 2) oxidation of organic substrates in 
the absence of catalysts [2]: 3) oxidation of transition-metal complexes, serving as catalysts 
in reactions of the first type [3-5]. 

Catalysts for oscillating chemical reaction of the first type may be complex compounds 
able to undergo one-electron oxidation--reduction, and characterized by a value of the stan- 
dard redox potential within 1.1-1.6 V. Up to the present, only a small number of such cat- 
alysts are known: cerium(III, IV)* and manganese(II, III) compounds in sulfuric acid solu- 
tions, and also complex compounds of iron(II, III) and ruthenium(II, III) with 2,2'-dipyridyl 
and l,lO-phenanthroline. 

It has already been shown that compounds of iron(II) with phenanthroline are oxidized 
under fairly severe conditions by bromate ion under an oscillating regime without an organic 
reducing agent (third type reaction) [3]. We recently discovered a new class of transition- 
metal compounds, able to participate in oscillating chemical reactions of the first and third 
types. These compounds were copper(II) and nickel(II) complexes with macrocycllc tetraaza 
ligands [4-6]. In reactions of the third type with the participation of macrocyclic copper 
and, in particular, nickel complexes, in contrast to reactions with the participation of com- 
plex compounds of iron with 1,10-phenanthroline, stable reproducible concentration oscilla- 
tions are observed, In the present work we describe the results of a study on oscillating 
chemical reactions of the oxidation of malonic acid by bromate ion with the participation of 
a macrocyclic tetraaza complex of nickel(II), and also the oxidation of this complex in the 
absence of malonic acid. 

*In this case, the oxidation state of the metal-ion catalyst periodically changing in the 
course of the reaction is designated as M(n, n+l). 
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