COROLLARY 2. Not every variety of commutative semigroups is contained in some minimal non~
commutative variety of semigroups.

For example, the variety of all commutative semigroups is not contained in any of the five varieties
indicated in Theorem 2 or in a variety of semigroups which is a variety of groups.

COROLLARY 3. The variety u; is generated by the semigroup M= {i,n, 0} with the following multiplica-
tion table:

n n 0 0

Each proper subsemigroup of Il is commutative. The variety u, is generated by its free semigroup of rank 2,
which is a semigroup whose proper subsemigroups are all commutative.

Indeed, let F, be a free semigroup in yy with free generators ¢ and b. Then, putting i =ab, n =b?, 0 =
a’b, and using the identities of p3, we see that the indicated multiplication table holds for Hand that Il€u,,
Since [l€u,, it follows that Il generates a subvariety of p;. But His noncommutative, hence it cannot generate
a proper subvariety of us. ‘
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CERTAIN PROPERTIES OF FREDHOLM
ANALYTIC SETS IN BANACH SPACES

A. N, Gorban' and V. B, Melamed UDC 513.88

With the aid of the Lyapunov—Schmidt method of transition to a finite-dimensional equation {a modern
treatment can he found, e.g., in [1, pp.374-385]), we prove in this paper certain assertions about analytic
sets in complex Banach spaces. The principal result is a counterpart of the finite~dimensional Remmert—
Stein thecrem (see, e.g., [2]), stating that an analytic set in an open set U is either discrete, or it contains
points that are as close as desired to the boundary of U.

As an application we shall prove the nonnegativeness of the rotation of the vector field x—Ax with an
analytic and completely continuous operator A; we also consider the finiteness of the number of solutions of
an equation that depends on a parameter.

Some of the results of this paper were presented in [3] with an additional assumption about the existence
of a basis in the Banach spaces under consideration. This assumption proved unnecessary.

1. Let E be a Banach space over the field of complex numbers C.
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Definition. A Fredholm analytic set in an open set UC E is a subset S of the set U that has the
following property: For any point a €U there exists an open connected neighborhood V C U of the Banach space

E, and a holomorphic operator F: V — E, whose derivative at the point ¢ is a linear Noether operator such
that

SNV={aeV|F(x)="0}
LEMMA 1. A Fredholm analytic set is locally isomorphic to a finite~-dimensional analytic set.

Proof. Let a€S. According to the definition, the set S/ V coincides in an open connected neighborhood
V of the point a with the set of solutions of the equation

F(z) =08, (1)

where F is an operator that is analytic in V and has a Noether derivative. Now let us use the Lyapunov—
Schmidt method of investigation of the solutions of Eg. (1) in a small neighborhood of the point a; according

to it, there exists a bijective correspondence (realized by holomorphic functions) between the set of solutions
of Eq. (1) and the set of solutions of a finite-dimensional system of holomorphic equations, and this proves
the lemma.

Fredholm analytic sets satisfy the maximum modulus principle.

THEOREM 1. Let S be a connected Fredholm analytic set in an open set UC E. If the functional f is
holomorphic in U and its modulus restricted to S reaches a maximum, then f will be a constant on 8.

Proof. A finite-dimensional counterpart of this theorem is well known [4], and the possibility of reduc-
tion to the finite~dimensional case has been proved in the above lemma.

LEMMA 2. Let S be a compact Fredholm analytic set in an open set U of the space E. Then S will be
finite.

Proof. By virtue of Lemma 1, S is locally connected. By virtue of compactness it consists of finitely
many connected components. Let P be any of these components. Let us consider a continuous linear func-
tional I restricted to P. Since P is compact, the modulus of / restricted to P will reach a maximum. By
virtue of Theorem 1, I is constant on P. But for any two points of the space E there exists a continuous linear
functional separating these points; therefore P cannot contain more than one point. This proves the finiteness
of S.

Remark. For analytic sets in infinite-dimensional spaces, compactness does not in general imply
finiteness.

THEOREM 2 (Counterpart of Remmert—Stein Theorem). Let U be a bounded open set in E and let H
be a neighborhood of the set U (the closure of U}; let the operator A:H — E be analytic and completely contin~-
uous in H, and suppose that the equation

r=Ax (2)
does not have solutions on the boundary of U. Then the set S of solutions of this equation in U will be finite.

"Proof. The set S is closed. Indeed, if x,€S, n =1,2,..., and Xp —-_b, then b = Ab and b€U, since Eq.
(2) does not have solutions on U \U. Since S belongs to the compact set AU, it follows that S is a compact
set. By virtue of Lemma 2, the set S is finite.

Just as in the finite~-dimensional case, we obtain from Theorem 2 the following

COROLLARY (see [2]). Let U be a bounded open set in E that contains 6, let H be a neighborhood of
the set U, and let the operator A:H — E be analytic and completely continuous in H, A6 =6. Let fi,...s/m
be continuous linear functionals such that  is an isolated solution of the system

{:c=‘49;,
| fi(2) =0, j=1, ..., m

Then there exist neighborhoods Wj of elements fj in the conjugate space E* such that for any system

IJT:AI.
Vimy=0.7=1,....m,

where fJYEW~, the point 6 is an isolated solution.
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Proof. It can be assumed that m =1 (otherwise we go over from the space E to the subspace L = {XE El
Fi&) = fp® =0 })a Letus assume that f£;(x) = 0 (otherwise the assertionis obvious), and consider the subspace
E, ={X€E|f,(x) =0}. Let us denote by P a sphere in E, that is centered at the origin and has a sufficiently
small radius r, and on which the equation x = Ax does not have solutions., From the complete continuity of the
operator A it evidently follows that there exists a positive number 8 such that for x¢Py we have

le—AzlZ=3. (3)

Let W, = {f {EE I —FAllps < £}, where ¢ is a positive number. For S1'€W, let us denote by P,.' a
sphere centered at ¢ that has a radius r which lies in the subspace E = {XQE fix) =0;. I x€P.', then
7 er

o @ =)
- It

_
ple By =T i

<

With the aid of this inequality it is easy to show that p(x,Py) is smaller than a preassigned positive § for a
sufficiently small . It hence follows by virtue of (3) that the equation x = Ax does not have solutions on P."
for a sufficiently small e. By virtue of Theorem 2, the interior of the sphere Py' contains only finitely many
solutions of the equation x = Ax, which completes the proof.

2. For a completely continuous vector field &(x) = x— Ax that does not vanish on the boundary D of a
bounded open connected region U of the space E, a rotation on D has been defined in [5]. In the case that the
field ®(x) has finitely many fixed points in U, a rotation of &(x) on D is equal to the sum of the indices of these
fixed points. If the operator A is not only compietely continuous, but also analytic in U, and E is a complex
Banach space, then the index of a fixed point of the field ¢(x) = x-~ Ax will be larger than zero. This has
been proved in fact by Cronin in [6,7] (see [6, Theorem 5.1, pp. 228~230], and [7, Theorem 3, pp. 177~180]).
From this result of Cronin and Theorem 2 we directly obtain

THEOREM 3. Suppose that the conditions of Theorem 2 are satisfied. Then the rotation v of the field
¢(x) =x— Ax on the boundary of U will be nonnegative.

Remark, If y =1, then Eq. (2) will have a unique solution in U,

3. Under the conditions of Theorem 2, Eq. (2) has finitely many solutions in U. ZLet us consider the
"perturbed" equation

z=Ax+Q(1, }), 4)

where A is a complex parameter that varies in a circle M of the complex plane centered at the origin, and @:
H X M —E is an analytic mapping, Q(x,0) =8. Under certain general conditions, a finite number of solutions
of Eq. (4) branch off from each solution of Eq. (2}.).

THEOREM 4. Suppose that the conditions of Theorem 2 are satisfied. Let i Q(x,\) | ~0 for x =~ 0
uniformly in x = U. Then there exists a positive o such that for I\l < o the equation {4) has finitely many solu-
tions in U.

Proof. At first let us impose on the operator Q(x,A) the additional condition of completfe continuity in U
for any A€M. As we noted in obtaining the corollary of Theorem 2, from the complete continuity of the oper-
ator A there follows the existence of a positive number 8 such that for x€U \U we have

lz—Axi>3.
On the other hand, there exists a positive & such that for x€U and Al < & s
10 (z, )<<

It follows from these two inequalities that for Al < o Eq. (4) does not have solutions on the boundary of U.
But in this case it follows from Theorem 2 that for [MI< o Eq. (4) has finitely many solutions in U,

Now let us consider the general case. Suppose that the set 8§ of solutions of Eqg.(2) in U consists of the
points h;,...,hy (the case of S empty can be considered in exactly the same way). In a small neighborhood
of the point hy (k =1,...,n), Eq.(2) is equivalent to the Lyapunov—Schmidt branching equation in finite~dimen-
sional space. Since the branching equation is an equation with completely continuous operators, it is possible
to apply to it the above analysis. Thus there exists a positive o and open neighborhoo_ds Vj of the points b
(i =1,...,n) such that for [Al < @ Eq. {4) has finitely many solutions in Vj. TLet W = U\ Q Vj . Let us show
that for sufficiently small A Eq. (4) does not have solutions in W, Let us assume the contr’if'y, Then there
exists a sequence {Aj}; that converges to zero, and a sequence {xi};° of points in W such that



ri=AxQ(x; M.

The sequence {Q(xj, Aj)}] converges to 8 , and from the sequence {Ax;} it is possible to select a convergent
subsequence. By going over to the limit with respect to this sequence, we obtain the equation h = Ah for an
h€W, which is impossible.
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A BOUNDARY-VALUE PROBLEM FOR AN
ELLIPTIC-PARABOLIC EQUATION

I. E. Egorov UDC 517.946

Let 2 be a bounded domain of an n-dimensional Euclidean space such that € is the same sum of two
domains €, and Q,, where £, is a strictly interior subdomain of the domain . Let S be the boundary of £
and Sk the boundary of Qi, k =1,2. In what follows, weput '=8;, I't = I' X [0,T], ST =8 %X [0, T}, Qilk) =
Qx X [0,T], k=1,2.

Let the function K(x,t) = 0; further, we introduce the notation
L= {(z, 0):2Qs, K(z, 0) >0}, I'=T.
Our concern here is the following boundary-value problem.

Problem. Determine a function u(x,t) satisfying in the domain Q&%) an elliptic equation of the form

Lu=fi(z, t), (1)
and in the domain Q(?I)‘ a parabolic equation of the form
Hou=K(x, tyu,+ZLm=]/:(z, 1), 2)

2. [ag’;)(x, ,:)Ti} 0 (2, 1) 2 ¢ (z, 1), k=1,2; at t = 0 the function u(x, ) is to satisfy the
o i i

where %, = —
initial condition

ulp, = 0, : 3
on the boundary ST, one of the classical boundary conditions, e.g., the first boundary condition

ulST = 0. (4)
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