
COROLLARY 2. Not e v e r y  v a r i e t y  of c o m m u t a t i v e  s e m i g r o u p s  i s  con t a ined  in s o m e  m i n i m a l  non-  
c o m m u t a t i v e  v a r i e t y  of  s e m i g r o u p s .  

F o r  e x a m p l e ,  the  v a r i e t y  of a l l  c o m m u t a t i v e  s e m i g r o u p s  is  not  c o n t a i n e d  in any of the f ive v a r i e t i e s  
i n d i c a t e d  in T h e o r e m  2 o r  in a var iety-  of s e m i g r o u p s  which  is a v a r i e t y  of g r o u p s .  

The v a r i e t y  #3 i s  g e n e r a t e d  by the  s e m i g r o u p  t] = { i , n ,  0} wi th  the  fo l lowiug  m u l t i p l i c a -  COROLLARY 3. 

tion table: 

i i n 0 
I 

i I i 0 0 
i' 

n I n 0 0 
m 

0 0 0 0 

Each proper subsemigroup of 11 is commutative. The variety ~2 is generated by its free semigroup of rank 2, 

which is a semigroup whose proper subsemigroups are all commutative. 

Indeed, let F 2 be a free semigroup in P3 with free generators a and b. Then, putting i = ab, n = b2, 0 = 
a2b, and using the identities of ~3, we see that the indicated multiplication table holds for II and that l-i~# 3. 

Since llEP3 , it follows that rl generates a subvariet:y of Ps. But II is noncommutative, hence it cannot generate 

a proper subvariety of t~3~ 

I~ 

2. 
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CERTAIN PROPERTIES OF FREDHOLM 

ANALYTIC SETS IN BANACH SPACES 

A. N. Gorban' and V. B. Melamed UDC 513.88 

With the  a id  of  the  L y a p u n o v - - S c h m i d t  m e t h o d  of  t r a n s i t i o n  to a f i n i t e - d i m e n s i o n a l  equa t ion  (a m o d e r n  
t r e a t m e n t  can  be  found,  e . g . ,  in [1, pp .  374-385]) ,  we p r o v e  in th i s  p a p e r  c e r t a i n  a s s e r t i o n s  about  ana ly t i c  
s e t s  in c o m p l e x  Banach  s p a c e s .  The p r i n c i p a l  r e s u l t  is  a c o u n t e r p a r t  of the  f i n i t e - d i m e n s i o n a l  R e m m e r t ~  
Ste in  t h e o r e m  ( see ,  e . g . ,  [2]), s t a t i n g  tha t  an a n a l y t i c  s e t  in an open s e t  U i s  e i t h e r  d i s c r e t e ,  o r  i t  con ta ins  
po in t s  tha t  a r e  as  c l o s e  as  d e s i r e d  to the  b o u n d a r y  of U. 

As an a p p l i c a t i o n  we s h a l l  p r o v e  the n o n n e g a t i v e n e s s  of the  r o t a t i o n  of the  v e c t o r  f i e ld  x ~ A x  with an 
a n a l y t i c  and c o m p l e t e l y  con t inuous  o p e r a t o r  A; we a l s o  c o n s i d e r  the  f i n i t e n e s s  of  the  n u m b e r  of so lu t i ons  of  
an equa t ion  tha t  depends  on a p a r a m e t e r .  

Some of the  r e s u l t s  of th is  p a p e r  w e r e  p r e s e n t e d  in [3] with an a d d i t i o n a l  a s s u m p t i o n  about  the  e x i s t e n c e  
of a b a s i s  in the  Banaeh  s p a c e s  u n d e r  c o n s i d e r a t i o n .  Th i s  a s s u m p t i o n  p r o v e d  unneces sa ry - .  

1. Let  E be a Banach  s p a c e  o v e r  the  f i e ld  of c o m p l e x  n u m b e r s  C. 
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Def in i t ion .  A F r e d h o l m  ana ly t ic  se t  in an open se t  U C E is  a s u b s e t  S of the se t  U that  has the 
fol lowing p rope r ty :  F o r  any point  a ~ U t h e r e  ex is t s  an open connec ted  ne ighborhood V C U of the Banach  space  
E a and a ho lomorph ic  o p e r a t o r  F :  V ~ E a whose d e r i v a t i v e  at the point  a is  a l i n e a r  Noe the r  o p e r a t o r  such  
that  

s n V={xEV]F(~)=% 

LEMMA 1. A Fredholm analytic set is locally isomorphic to a finite-dimensional analytic set. 

Proof. Let aeS. According to the definition, the set S N V coincides in an open connected neighborhood 
V of the point a with the set of solutions of the equation 

F(x) = 0 ,  (1) 

where  F is  an o p e r a t o r  that  is  ana ly t i c  in V and has a Noether  de r i va t i ve .  Now let  us use  the Lyapunov--  
Schmidt  method  of i nves t i ga t i on  of the so lu t ions  of Eq. (1) in a s m a l l  ne ighborhood of the point  a; a c c o rd ing  
to i t ,  t h e r e  ex i s t s  a b i j e e t i ve  c o r r e s p o n d e n c e  ( rea l i zed  by ho lomorphic  funct ions)  be tween  the se t  of so lu t ions  
of Eq.  (1) and the se t  of so lu t ions  of a f i n i t e - d i m e n s i o n a l  s y s t e m  of ho lomorph ic  equa t ions ,  and this  p roves  

the l e m m a .  

F r e d h o l m  ana ly t i c  se t s  sa t i s fy  the m a x i m u m  modulus  p r i n c i p l e .  

THEOREM 1. Let  S be a connec ted  F r e d h o l m  ana ly t ic  se t  in an open se t  U C E. If the func t iona l  f is  
ho lomorph ic  in U and i ts  modulus  r e s t r i c t e d  to S r e a c he s  a m a x i m u m ,  then f wil l  be a cons t an t  on S. 

P roof .  A f i n i t e - d i m e n s i o n a l  c o u n t e r p a r t  of this  t h e o r e m  is well  known [4], and the pos s ib i l i t y  of r e d u c -  
t ion to the f i n i t e - d i m e n s i o n a l  ca se  has been p roved  in the above 1emma.  

LEMMA 2. Let S be a compac t  F r e d h o l m  analy t ic  se t  in an open se t  U of the space  E.  Then  S wil l  be 

f in i te .  

Proof .  By v i r t ue  of L e m m a  1, S is loca l ly  connec ted .  By v i r tue  of c o m p a c t n e s s  it  c o n s i s t s  of f in i te ly  
many  connec ted  c o m p o n e n t s .  Let P be any of t hese  c ompone n t s .  Let us c o n s i d e r  a cont inuous  l i n e a r  func-  
t i ona l  l r e s t r i c t e d  to P.  Since P is  compac t ,  the modulus  of l r e s t r i c t e d  to P wil l  r e a c h  a m a x i m u m .  By 
v i r t ue  of T h e o r e m  1, l is c o n s t a n t  on P.  But fo r  any two points  of the space  E t he r e  ex i s t s  a cont inuous  l i n e a r  
func t iona l  s e p a r a t i n g  these  po in t s ;  t h e r e f o r e  P canno t  con ta in  m o r e  than one poin t .  This  p roves  the f i n i t enes s  

of S. 

R e m a r k .  F o r  ana ly t i c  s e t s  in i n f i n i t e - d i m e n s i o n a l  s p a c e s ,  c o m p a c t n e s s  does not  in  g e n e r a l  imply  

f i n i t e n e s s .  

THEOREM 2 (Coun te rpa r t  of R e m m e r t - - S t e i n  T h e o r e m ) .  Let U be a bounded open se t  in  E and let  H 
be a ne ighborhood of the se t  ~ (the c l o s u r e  of U); le t  the o p e r a t o r  A: H ~ E be ana ly t ic  and comple te ly  con t i n -  

uous  in H, and suppose  that  the equat ion  

x--~Ax (2) 

does not  have so lu t ions  on the boundary  of U. Then the se t  S of so lu t ions  of this  equat ion in U wil l  be f in i te .  

P r o o f .  The se t  S i s  c losed .  Indeed,  i f x n E S ,  n = 1 , 2  . . . . .  a n d x n ~ b  , t h e n b  = A b a n d b ~ U ,  s ince  Eq. 
(2) does not  have so lu t ions  on U \ U .  Since S belongs  to the compac t  se t  AU, i t  follows that  S is a compac t  

se t .  By v i r t ue  of L e m m a  2, the se t  S is  f in i t e .  

J u s t  as in the f i n i t e - d i m e n s i o n a l  c a s e ,  we obta in  f r o m  T h e o r e m  2 the fol lowing 

COROLLARY (see [2]). Let  U be a bounded open se t  in E that  con ta ins  0, let  H be a ne ighborhood of 
the se t  ~ ,  and let  the o p e r a t o r  A: H ~ E be ana ly t i c  and comple te ly  cont inuous  in  H, A0 = 0. Let f l ,  �9 �9 �9 , f ro  
be con t inuous  l i n e a r  func t iona l s  such  that  0 is  an i so la ted  so lu t ion  of the s y s t e m  

( x ~ A x ,  
/j(z) = 0 ,  i=I . . . . .  m 

Then t h e r e  ex i s t  ne ighborhoods  Wj of e l e m e n t s  f j  in the conjugate  space  E* such  that  for  any s y s t e m  

/x -- Ax, 

[I5 (*) = o ,  / = ~ . . . . .  ,n ,  

where  fJ  ~Wj,  the point  0 is  an i so l a t ed  so lu t ion .  
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Proof. It can be assumed that m = 1 (otherwise we go over from the space E to the subspace L = {xEEi 

f~(x) = ... fro(x) = 0 }). Let us assume that fi(x) ~ 0 (otherwise the assertion is obvious), and consider the subspaee 

E I = {x~E If1(x ) = 0}. Let us denote by Pr a sphere in E I that is centered at the origin and has a sufficiently 

small radius r, and on which the equation x = Ax does not have solutions. From the complete continuity of the 

operator A it evidently follows that there exists a positive number fl such that for x~Pr we have 

f!x-- Axil >15 (3) 

Let W I = {f i' EE~I ljf 1'-f1[IE, < ~},where ~ is a positive number. For f1' EWl let us denote by Pr' a 

sphere centered at 9 that has a radius r which lies in the subspace E~' = {xEE ~:'(x) = 0}. If XEPr', then 

With the aid of this inequality it is easy to show that p(x,Pr) is smaller than a preassigned positive 6 for a 

sufficiently small e. It hence follows by virtue of (3) that the equation x = Ax does not have solutions on Pr" 

for a sufficiently small a. By virtue of Theorem 2, the interior of the sphere Pr' contains only finitely many 

solutions of the equation x = Ax, which completes the proof. 

2. For a completely continuous vector field ~(x) = x-- Ax that does not vanish on the boundary D of a 

bounded open connected region U of the space E, a rotation on D has been defined in [5]. In the case that the 

field 4)(x) has finitely many fixed points in U, a rotation of ~(x) on D is equal to the sum of the indices of these 

fixed points. If the operator A is not only completely continuous, but also analytic in U, and E is a complex 

Banach space, then the index of a fixed point of the field <D(x) = x-- Ax will be larger than zero. This has 

been proved in fact by Cronin in [6,7] (see [6, Theorem 5.1, pp. 228-230], and [7, Theorem 3, pp. 177-!80]). 

From this result of Cronin and Theorem 2 we directly obtain 

THEOREM 3. Suppose that the conditions of Theorem 2 are satisfied. Then the rotation 7 of the field 

~-(x) = x-- Ax on the boundary of U will be nonnegative. 

Remark. If T = I, then Eq. (2) will have a unique solution in U. 

3. Under the conditions of Theorem 2, Eq. (2) has finitely many solutions in U. Let us consider the 
"perturbed" equation 

x=Ax+Q(x ,  ~.), (4) 

where ~ is a complex parameter that varies in a circle M of the complex plane centered at the origin, and Q: 

H • M ~ E is an analytic mapping, Q(x, 0) = 0. Under certain general conditions, a finite number of solutions 
of Eq. (4) branch off from each solution of Eq. (2).). 

THEOREM 4. Suppose that the conditions of Theorem 2 are satisfied. Let II Q(x,,~) II ~ 0 for X -~ 0 

uniformly in x _< U. Then there exists a positive ~ such that for I~[ < ~ the equation (4) has finitely many solu- 
tions in U. 

Proof. At first let us impose on the operator Q(x, X) the additional condition of complete continuity in 

for any AEM. As we noted in obtaining the corollar~7 of Theorem 2, from the complete continuity of the oper- 

ator A there follows the existence of a positive number fi such that for xE~ ~U we have 

iix--Axit > ~. 

On the  o t h e r  hand,  t h e r e  e x i s t s  a p o s i t i v e  oz such  tha t  fo r  x E ~  and 1XI < ~ ,  

iIO(z, ~.) 1I<~. 

It follows from these two inequalities that for I X I < ~ Eq. (4) does not have solutions on the boundary of U. 

But in this case it follows from Theorem 2 that for [~I < a Eq. (4) has finitely many solutions in U. 

Now let us consider the general case. Suppose that the set S of solutions of Eq. (2) in U consists of the 

points h I .... ,h n (the case of S empty can be considered in exactly the same way). In a small neighborhood 

of the point h k (k = I, .... n), Eq. (2) is equivalent to the Lyapunov~Schmidt branching equation in finite-dimen- 

sional space. Since the branching equation is an equation with completely continuous operators, it is possible 

to apply to it the above analysis. Thus there exists a positive e~ and open neighborhoods V] of the points hj 

(j = I,. ~ n) such that for I X I < o/ Eq. (4) has finitely many solutions in V-- Let W = ~ \ ,;'. v. Let us ~how 

t ha t  f o r  s u f f i c i e n t l y  s m a l l  ~ Eq .  (4) does  not  have  s o l u t i o n s  in W. Le t  us  a s s u m e  the  e o n t ~ a ~ .  Then t h e r e  
e x i s t s  a s e q u e n c e  {~i}~ tha t  c o n v e r g e s  to z e r o ,  and a s e q u e n c e  {xi} ~ of po in t s  in W such  tha t  
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The sequence  {Q(xi,Xi)}~ c o n v e r g e s  to O, and f r o m  the  sequence  {Axi} ~ it is  poss ib le  to s e l ec t  a conve rgen t  
subsequence .  By going o v e r  to the l imi t  with r e s p e c t  to this sequence ,  we obtain the equat ion h = Ah fo r  an 
hEW, which is i m p o s s i b l e .  

i. 

2. 
3. 

4. 

5. 

6. 

7. 
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A B O U N D A R Y - V A L U E  P R O B L E M  F O R  A N  

E L L I P T I C -  P A R A B ' O L I  C E Q U A T I O N  

I. E. Egorov UDC 517.946 

Let  ~2 be a bounded domain  of an n - d i m e n s i o n a l  Euc l idean  space  such  that  ~ is the s a m e  s u m  of two 
domains  ~2 t and ~22, where  ~ is a s t r i c t l y  i n t e r io r  subdomain  of the domain  ~ .  Let S be the boundary  of ~2 

the boundary  o f ~ k ,  k = 1 , 2 .  In what fo l lows,  we put F = S t ,  F T = F •  [0 ,T] ,  ST = S  • [0 ,TI ,  Q~)'" = and Sk 
~k  • [0 ,T] ,  k = 1 ,2 .  

Let  the  funct ion K(x,t)  _> 0; f u r t h e r ,  we in t roduce  the notat ion 

F+={(x ,  0) :x~-Q2, K(x, O) >0} ,  Fl-~l~+. 

Our  c o n c e r n  h e r e  is the fol lowing b o u n d a r y - v a l u e  p r o b l e m .  

P r o b l e m .  D e t e r m i n e  a funct ion u(x,t)  s a t i s fy ing  in the domain  Q~) an ell iptic equation of the f o r m  

~z~u=l~(z, t), (1) 

and in the domain  Q(~ a pa rabo l i c  equat ion of the f o r m  
I 

or t) z z ,+~=/2(z ,  t), (2) 

a ]  b,,)(x,t) 0 c (~~ k = l  2; a r t  = 0 t h e f u n c t i o n u ( x , t )  is to sa t i s fy  the where ~i~ =-- ~[ ~ ,~ ~- , , 

in i t ia l  condi t ion 

ulr ~ = O, (3) 

on the boundary  ST, one of the c l a s s i c a l  boundary  condi t ions ,  e . g . ,  the  f i r s t  boundary  condi t ion 

ulST = O, (4) 

T r a n s l a t e d  f r o m  Sib i r sk i i  Matemat i ches ld i  Zhurna l ,  Vol. 17, No. 3, pp .686 -691 ,  May-Jm3e,  1976. 
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