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The lattice Boltzmann method �LBM� and its variants have emerged as promising, computationally efficient
and increasingly popular numerical methods for modeling complex fluid flow. However, it is acknowledged
that the method can demonstrate numerical instabilities, e.g., in the vicinity of shocks. We propose a simple
technique to stabilize the LBM by monitoring the difference between microscopic and macroscopic entropy.
Populations are returned to their equilibrium states if a threshold value is exceeded. We coin the name
Ehrenfests’ steps for this procedure in homage to the vehicle that we use to introduce the procedure, namely,
the Ehrenfests’ coarse-graining idea.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� provides an alter-
native to the orthodox approach to computational fluid dy-
namics, in which the starting point is always a discretization
of the Navier-Stokes equations. The method, which is funda-
mentally based on Boltzmann’s kinetic transport equation,
instead describes a fluid by a number of interacting popula-
tions of particles moving and colliding on a fixed lattice.
With the advent of the introduction of a diagonal collision
integral with single-time relaxation to local equilibrium, the
method becomes tantalizingly simple and efficient.

In recent years, the LBM has enjoyed much applied suc-
cess modeling various flows of genuine engineering interest
�see e.g., �1� and the references therein�. However, when
populations are far from equilibrium, such as is the case in
the vicinity of shocks, the LBM exhibits numerical instabil-
ity. Often, numerical instability in the LBM is attributed to
the absence of a positivity constraint on the populations. Re-
cent development of the entropic LBM �ELBM� �2–4� are
attempts to improve stability properties through compliance
with a discrete entropy H-theorem. The H-theorem implies
stability of equilibrium in the entropic norm for isolated sys-
tems. However, strictly speaking, the H-theorem says noth-
ing about stability for nonisolated systems.

In this paper we suggest an alternative and versatile ap-
proach. The idea is simply stated: we propose a LBM in
which the difference between microscopic �current� and
macroscopic �equilibrium� entropy is monitored in the simu-
lation, and populations are returned to their equilibrium
states if a threshold value is exceeded. This technique is
appealing because dissipation is introduced in a controlled,
targeted and illiberal manner. Furthermore, we stress that
equilibration itself will leave macroscopic entropy com-
pletely unchanged.

We coin the name Ehrenfests’ steps for this procedure
because we feel that the technique is most clearly understood
if introduced using the Ehrenfests’ coarse-graining idea �5�.

This report is organized as follows. In Sec. II the LBM is
recalled. In Sec. III we recall the basic theory required to

discuss the Ehrenfests’ coarse-graining idea and introduce
Ehrenfests’ steps. The reader is directed to �6� for a more
comprehensive review of coarse-graining. Finally, we
present the results of a shock tube numerical experiment
which compares various LBMs �Sec. IV� and our conclu-
sions in Sec. V.

II. LATTICE BOLTZMANN METHOD

The Boltzmann kinetic transport equation is the following
time evolution equation for one-particle distribution func-
tions f = f�x ,v , t�:

�t f + v · �f = Q .

The collision integral, Q, describes the interactions of the
populations f . The lattice Boltzmann approach drastically
simplifies this model by stipulating that populations can only
move with a finite number of velocities �v1 , . . . ,vn�:

�t f i + vi · �f i = Qi, i = 1, . . . ,n , �1�

where f i is the one-particle distribution function associated
with motion in the ith direction. For example, in dimension
one �1D�, one might consider three velocities �−c ,0 ,c�, for
some c�0.

The model is further simplified by specifying the collision
integral as the Bhatnager-Gross-Krook �BGK� operator �7�:
Qi= �f i

eq− f i� /�. We make this assumption for the remainder
of the paper. Now, �1� describes free-flight dynamics together
with relaxation to the local equilibria, f i

eq, in time propor-
tional to �.

The discrete velocities and local equilibrium states can all
be mindfully chosen so that the Navier-Stokes equations are
recovered by the lattice Boltzmann equation �1�, subject to
certain conservation laws, in the large time-scale t limit via a
Chapman-Enskog procedure �1�. Here, the macroscopic fluid
density � and momentum �u are the zeroth- and first-order
hydrodynamic moments of the populations, respectively. The
rate of dissipation introduced by the model is proportional to
�.

The local equilibrium states can be found by maximizing
a local entropy functional,
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S�f� = − �
i=1

n

f iln� f i

Wi
	 , �2�

subject to the constraints of conservation of mass and mo-
mentum. The numbers Wi are given lattice-specific constants.

There are numerous ways to discretize �1� and obtain a
numerical method. We prefer the following, second-order ac-
curate in time, lattice-based LBGK scheme �1�:

f i�x + vi�t,t + �t� = �1 − ��f i�x,t� + � f̃ i�x,t� , �3�

with f̃ i=2f i
eq− f i. Here, the discrete velocities are associated

with an underlying spatial lattice L and x�L. Populations
live on this lattice, propagate to neighboring lattice sites with
their corresponding discrete velocities and are updated via
�3�. The parameter �� �0,1� controls the viscosity in the
model, with �=1 corresponding to the zero-viscosity limit.

III. THE EHRENFESTS’ COARSE-GRAINING

To introduce the Ehrenfests’ coarse-graining idea �5� we
use a formal kinetic equation

df

dt
= J�f� , �4�

together with a strictly concave entropy functional S. We
tacitly assume that entropy does not decrease with time:
dS�f� /dt�0. For our purposes, we are always interested in
the example of the lattice Boltzmann equation �1� with asso-
ciated entropy functional which defines the local equilibrium
states �2�.

The Ehrenfests’ idea was to supplement the mechanical
motion from �4� with periodic averaging in cells to produce
piecewise constant, or coarse-grained, densities. This opera-
tion necessitates entropy production.

We wish to allow a generalization of the Ehrenfests’
coarse-graining idea whereby averaging in cells is replaced
with some other partial equilibration procedure. Specifically,
we assume we have some linear operator m which transforms
a microscopic description of the system f into a macroscopic
description M =m�f�. For our example, the macroscopic de-
scription is that provided by the usual hydrodynamic mo-
ments. Now, given a macroscopic description, M, we con-
sider the solution fM

* of the optimization problem

arg max�S�f�:m�f� = M� .

Averaging in cells is a particular example of this entropy
maximization problem for the Boltzmann-Gibbs-Shannon
�BGS� entropy functional S�f�=−
f ln�f�, where the integra-
tion is taken over the whole of phase space.

We will refer to fM
* as the quasiequilibrium distribution.

The quasiequilibrium manifold Q is the set of quasiequilib-
rium distributions parametrized by the macroscopic variables
M. When we refer to micro- and macroscopic entropy we
mean the quantities S�f� and S�fM

* �, respectively.

A. The Ehrenfests’ chain and entropic involution

Entropy maximization leads naturally to an evolution
equation for the macroscopic description. The so-called qua-

siequilibrium approximation to �4� is an equation for the evo-
lution of M

dM

dt
= m„J�fM

* �… . �5�

For our example, the quasiequilibrium distributions are pre-
cisely the local equilibria f i

eq and �5� coincides with the com-
pressible Euler equations �8�.

Now, one can envisage constructing various coarse-
graining chains which provide stepwise approximation to the
macroscopic equation �5�.

Let �t be the phase flow for the kinetic equation �4�. Let
� be a fixed coarse-graining time and suppose we have an
initial quasiequilibrium distribution f0. The Ehrenfests’ chain
is the sequence of quasiequilibrium distributions f0 , f1 , . . .,
where f jª fm����f j−1��

* .
Entropy increases in the Ehrenfests’ chain. The entropy

gain in a link in the chain is made up from two parts: the
entropy gain from the mechanical motion �from f j to ���f j��
and the gain from the equilibration �from ���f j� to f j+1�.
Consequently, conservative systems become dissipative and
dissipative systems more so. The gain in macroscopic en-
tropy in a particular link is given by the expression
S�fm�f j+1�

* �−S�fm�f j�
* �. Note that there is zero gain in macro-

scopic entropy from the equilibration part.
The Ehrenfests’ chain provides a stepwise approximation

to a solution of some coarse-grained macroscopic equations
via Mjªm�f j�, j=1,2 , . . .. For our example, these equations
are the compressible Navier-Stokes equations �8�. However,
this chain is computationally prohibitive because the rate of
introduced dissipation is proportional to �. The Ehrenfests’
chain corresponds to the following LBM:

f i�x + vi�t,t + �t� = �1 − ��f i�x,t� + �f i
eq�x,t� ,

which we recognize as a forward Euler discretization of �1�.
Another possibility is to construct a chain as follows. As

already noted, the dissipative term introduced by the Ehren-
fests’ chain depends linearly on �. Therefore, there is sym-
metry between forward and backward motion in time starting
from any quasiequilibrium initial condition. It is precisely
this principle that enables one to construct chains with zero
macroscopic entropy production. Each subsequent link in the
chain is constructed using entropic involution.

To make such a chain useful, the user is at liberty to add
a required amount of dissipation by shifting the involuted
point in the direction of the quasiequilibrium state, with
some entropy increase. Of course, this shift leaves macro-
scopic entropy unchanged. This chain corresponds to the
ELBM that we have eluded to in the Introduction,

f i�x + vi�t,t + �t� = �1 − ��f i�x,t� + � f̃ i,��x,t� , �6�

with f̃ i,�= �1−��f i+�f i
eq. The number �=��f� is chosen so

that a constant entropy estimate condition is satisfied. This,
in itself, provides a positivity constraint on the populations.
If the approximation �=2 is used for the entropy estimate,
then the corresponding LBM is precisely LBGK �3�.
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B. Ehrenfests’ steps

We can now state the main idea of the paper. We propose
to create another chain. This chain begins and proceeds, for
the bulk of time, as either the entropic involution chain or its
linearized version, as described in the previous subsection.
However, the difference between microscopic and macro-
scopic entropy is monitored throughout the simulation, by
which we mean the quantities

�Sj ª S�fm�f j�
* � − S�f j� .

A threshold value is set and an alarm is triggered if exceeded.
The alarm simply signals that a link from the Ehrenfests’
chain—an Ehrenfests’ step—be used in place of a regular
link of the primary chain at this point. Links in the chain
which are intolerably far from their quasiequilibrium states
are merely returned to their equilibrium. The result is a chain
which provides additional dissipation only where it is antici-
pated to be required.

Coupling the entropic involution chain with Ehrenfests’
steps will, in general, no longer constitute a chain with zero
macroscopic entropy production. Indeed, in a chain of length
N+1 the total macroscopic entropy gain is given by the ex-
pression � j�J�S�fm�f j+1�

* �−S�fm�f j�
* ��, where J� �1, . . . ,N� is

the set of indices corresponding to the Ehrenfests’ steps.

IV. NUMERICAL EXPERIMENT

To conclude this Brief Report, we perform a 1D numeri-
cal experiment to demonstrate the performance of the pro-
posed LBM corresponding to a chain with Ehrenfests’ steps.
The implementation is as follows. If at a given node �S�f�
	
, for some given tolerance 
	0 then we accept an Ehren-
fests’ step. The resulting LBM is as follows:

f i�x + vi�t,t + �t� = ��1 − ��f i + �f i
eq, �S 	 
 ,

�1 − ��f i + � f̃ i, otherwise.
�7�

We have selected LBGK �3� as the primary chain and we

will henceforth refer to this LBM as LBGK-ES. Since f̃ i
=2f i

eq− f i, the two branches are identical apart from the oc-
currence of a factor of 2.

The method LBGK-ES, as described, is a second-order
accurate in time scheme with first-order degradation in re-
gions where Ehrenfests’ steps are employed. However, as is
often found, when the thickness of such regions is of the
order of the lattice spacing, the method remains second-order
everywhere.

For contrast we are interested in comparing LBGK-ES
with LBGK �1� and ELBM �6� �as described in �4��. In all of
our simulations we select the three-velocity model men-
tioned in the Introduction and a uniformly spaced lattice.
Further, we always choose c=1 and �t=1. The coefficient �,
which controls the viscosity in the model, is fixed at �=1
−10−9, which is close to the zero viscosity limit. In each case
the entropy is S=−H, with H= f1ln�f1 /4�+ f2ln�f2�+ f3ln�f3�
�9�, where f1, f2, and f3 denote the static, left-moving and
right-moving populations, respectively. For this entropy, the
local equilibria are available analytically for the three-
velocity model. They are given by the expressions

f1
eq = 2��2 − �1 + 3u2�/3,

f2
eq = ���3u − 1� + 2�1 + 3u2�/6,

f3
eq = ��− �3u + 1� + 2�1 + 3u2�/6.

For LBGK-ES we fix the tolerance 
 to either 
=10−3 or 

=10−5.

As already mentioned, for ELBM, there is a parameter �
which is chosen to satisfy a constant entropy condition. This
involves finding the nontrivial root of the equation

H�f + �Q� = H�f� . �8�

Inaccuracy in the solution of this equation can introduce ar-
tificial viscosity. To solve �8� numerically we employ a ro-
bust routine based on bisection. The root is solved to an

FIG. 1. �Color online� Density profile of the isothermal 1:2
shock tube simulation after 300 time steps using �a� LBGK �3�; �b�
ELBM �6�; �c� LBGK-ES �7� with 
=10−3; �d� LBGK-ES �7� with

=10−5. In this example, LBGK does not produce a negative popu-
lation so the regularization procedures are redundant. Similarly, for
ELBM, the entropy estimate equation always has a nontrivial root.
Sites where Ehrenfests’ steps are employed are indicated by crosses.
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accuracy of 10−15 and we always ensure that the returned
value of � does not lead to an entropy decrease. So that our
results can be faithfully reproduced, we stipulate that we will
consider two possibilities if no nontrivial root of �8� exists.
We either select �=1 or we select the positivity bound �
=�+, with �+ªminQi�0  f i /Qi. For fairness, since both of
these procedures introduce diffusivity, we consider analo-
gous procedures for LBGK too, i.e., we select either �=1 or
�=�+ if a population is predicted to become negative.

Shock tube results

The 1D shock tube for a compressible isothermal fluid is
a standard benchmark test for hydrodynamic codes. Our
computational domain will be the interval �0,800� and we
discretize this interval with 801 uniformly spaced lattice
sites. We choose the initial density ratio as 1:2. Initially, for
x�400 we set �=1.0, else we set �=0.5.

We observe that, of all the LBMs considered in the ex-
periment, only the method which includes Ehrenfests’ steps
is capable of suppressing spurious post-shock oscillations
�Fig. 1�.

The code used to produce the simulations in this section is
freely available by making contact with the corresponding
author.

V. CONCLUSION

Ehrenfests’ steps introduce additional dissipation locally,
on the base of point-wise analysis of nonequilibrium entropy.
Due to the point-wise nature, the technique does not intro-
duce any nonisotropic effects. They admit a huge variety of
generalizations: incomplete Ehrenfests’ steps, partial involu-
tion, etc. �6�. In order to preserve the second-order of LBM
accuracy, it is worthwhile to perform Ehrenfests’ steps on
only a small share of sites �the number of sites should be
O�Nh / � �, where � is the macroscopic characteristic length
and h is the lattice step� with highest �S	
. If only k sites
with �S	
 are required then this constitutes a computa-
tional cost of O�kN�. Numerical experiments show that even
small shares of such steps drastically improve stability. More
tests are presented in �10�.
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