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Biochemical networks are used in computational biology, to model mechanistic details
of systems involved in cell signaling, metabolism, and regulation of gene expression.
Parametric and structural uncertainty, as well as combinatorial explosion are strong
obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an
important property of these networks, can be used to get past some of these obstacles.
Networks with many well separated time scales, can be reduced to simpler models, in
a way that depends only on the orders of magnitude and not on the exact values of the
kinetic parameters. The main idea used for such robust simplifications of networks is the
concept of dominance among model elements, allowing hierarchical organization of these
elements according to their effects on the network dynamics. This concept finds a natural
formulation in tropical geometry. We revisit, in the light of these new ideas, the main
approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and
quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of
linear and non-linear networks. We also discuss the application of model reduction to the
problem of parameter identification, via backward pruning machine learning techniques.
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1. INTRODUCTION
During the last decades, biologists have identified a wealth of
molecular components and regulatory mechanisms underlying
the control of cell functions. Cells integrate external signals
through sophisticated signal transduction pathways, ultimately
affecting the regulation of gene expression, including that of
the signaling components. Metabolic functions are sustained and
controlled by complex machineries involving genes, enzymes,
and metabolites. The genetic regulations result from the coordi-
nate effect of many, mutually interacting genes. These regulations
involve many molecular actors, including proteins and regulatory
RNAs, which form large, intricate networks.

Current dynamical models of cellular molecular processes are
small size networks. These small scale models, that are subjective
simplifications of reality, can not take into account the specifici-
ties of regulatory mechanisms. New methods are needed, allowing
to reconcile small scale dynamical models and large scale, but
static, network architectures. The main obstacle to increasing the
size of dynamical networks is the incomplete information, on
the parameters and on the mechanistic details of the interac-
tions. In vivo values of the parameters depend on crowding and
heterogeneity of the intracellular medium, and can be orders of
magnitude different from what is measured in vitro. Furthermore,
learning models from data suffer for non-identifiability and over-
fitting problems. Thus, model reduction is an avoidable step in
the study of large networks, allowing to extract the essential

features of the model, that can then be identified from data.
Model reduction in computational biology should have several
features.

First of all, model reduction should cope with parametric
incompleteness and/or uncertainty.

A certain class of reduction methods are parameter inde-
pendent and automatically comply with this specificity. In bio-
chemical networks, the number of possible chemical species
grows combinatorially due to numerous possibilities of inter-
actions between molecules with multiple interaction sites. The
exact lumping methods (Borisov et al., 2005; Conzelmann et al.,
2006) reduce the number of microstates and avoid combinato-
rial explosion in the description and analysis of large models of
receptor and scaffold signaling. A similar technique (Feret et al.,
2009) is used to rationally organize supramolecular complexes
in rule-based modeling (Danos et al., 2007a) of biochemical
networks. Other, parameter independent, coarse-graining tech-
niques are graphical methods formalizing node deletion and
merging operations in biochemical networks (Gay et al., 2010),
pooling of metabolites in large scale metabolic networks (Papin
et al., 2004; Jamshidi and Palsson, 2008), or extensive searches
in the set of all possible lumps (Dokoumetzidis and Aarons,
2009). Finally, qualitative reduction methods were used to sim-
plify large logical regulatory graphs, adequately suppressing nodes
and defining sub-approximating dynamics (Naldi et al., 2009,
2011).
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Secondly, biochemical processes governing network dynamics
span over many timescales. For example, changing gene expres-
sion programs can take hours and even days while protein com-
plex formation goes on the second scale and post-translational
protein modifications take minutes to happen. Protein life half-
times can vary from minutes to days. Model reduction can
strongly benefit from the network multiscaleness. Asymptotic
dynamics of networks with slow and fast processes, can be
strongly simplified using various ideas such as inertial and invari-
ant manifolds (IM) and averaging approximations.

The iterative methods of IM aim to find a slow low dimen-
sional IM, containing the asymptotic dynamics (Gorban and
Karlin, 1994, 2003; Roussel and Fraser, 1991). The Computational
Singular Perturbation (CSP) (Lam and Goussis, 1994; Chiavazzo
et al., 2007) aims to find even more, the slow IM and, in addition,
the geometry of its fast foliation. IM can be calculated by various
other methods (Gorban and Karlin, 2005; Gorban et al., 2004;
Roussel and Fraser, 1991; Kazantzis and Good, 2002; Krauskopf
et al., 2005).

Very popular are the methods for computation of “first
approximations” to the slow IM. The classical quasi steady-state
approximation (QSS) was proposed by Bodenstein (1913) and
was elaborated into an important tool for analysis of chemical
reaction mechanism and kinetics (Semenoff, 1939; Christiansen,
1953; Helfferich, 1989). The classical QSS is based on the relative
smallness of concentrations of some of active reagents (radicals,
concentration of enzyme and substrate-enzyme complexes, or
amount of active centers on the catalyst surface) (Aris, 1965;
Segel and Slemrod, 1989; Yablonskii et al., 1991). The quasi-
equilibrium approximation (QE) has two basic formulations: the
thermodynamic approach, based on conditional entropy maxi-
mum (or free energy conditional minimum), or the kinetic for-
mulation, based on equilibration of fast reversible reactions. The
very first use of the entropy maximum dates back to Gibbs (Gibbs,
2010). Corrections to QE approximation with applications to
physical and chemical kinetics were developed by (Gorban et al.,
2001; Gorban and Karlin, 2005). An important, still unsolved,
problem of these two approximations is the detection of QSS
species and QE reactions without application of all machinery
of the IM or CSP methods. Indeed, not all reactions with large
constants are at QE, and there are no simple rules to find QSS
species if there is no such hints as a small amount of a conserved
quantity (like the total concentration of enzyme). The method of
Intrinsic Low Dimensional Manifolds (ILDM) (Maas and Pope,
1992; Bykov et al., 2006) provides an approximation of a low
dimensional IM and works as a first step of CSP (Kaper and
Kaper, 2002).

Another method allowing to simplify multiscale dynamics is
averaging. This idea can be tracked back to Poincaré’s perturba-
tive treatment of the many body problem in celestial mechanics
(Poincarè, 1899), further developed in classical mechanics by
other authors (Arnold, 1978; Lochack and Meunier, 1988), and
also known as adiabatic or Born-Oppenheimer approximation in
quantum mechanics (Messiah, 1962). Rather generally, averag-
ing can be applied when some fine scale variables of the system
are rapidly oscillating. Then, the dynamics of slow, coarse scale
variables, can be obtained by time averaging the system over a

timescale much larger than the period of the fast oscillations. The
way to perform averaging, depends on the structure of the system,
namely on the definition of the coarse grained and fine vari-
ables (Bogoliubov and Mitropolski, 1961; Artstein and Vigodner,
1996; Givon et al., 2004; Acharya and Sawant, 2006; Sawant and
Acharya, 2006; Acharya, 2010; Slemrod, 2011).

Some of these ideas have been implemented in computa-
tional biology tools. Systems biology markup language SBML
(Hucka et al., 2003) can allocate a “fast” attribute to reaction ele-
ments. Fast reaction specification can be taken into account by
computational biology softwares such as VirtualCell (Slepchenko
et al., 2003) that implements a QE approximation algorithm
(Slepchenko et al., 2000). Similarly, the simulation tool COPASI
(Hoops et al., 2006) implements the ILDM method (Surovtsova
et al., 2009).

Finally, multiscaleness does not uniquely apply to timescales,
but equivalently to abundances of various species in these net-
works. mRNA copy numbers can change from some units to tens
of thousands, and the dynamic concentration range of biological
proteins can reach up to five orders of magnitude. Furthermore,
the DNA molecule has only one or a few copies. Low copy num-
bers lead, directly or indirectly (a species can be stochastic even
if present in large copy numbers), to stochastic gene expression.
In computational biology, model reduction should thus cope not
only with deterministic, but also with stochastic and hybrid mod-
els. The need to reduce large scale stochastic models is acute.
Indeed, stochastic simulation algorithm (SSA, Gillespie, 1976,
1977) can be very expensive in computer time when applied to
large unreduced models, precluding model analysis and identi-
fication. For this reason, extensive effort has been dedicated to
adapting the main ideas used for model reduction of determinis-
tic models, namely exact lumping, IM, QSS, QE, and averaging,
to the case of stochastic models.

Reduction of stochastic rule-based models, based on a weak-
ened version of the exact lumpability criterion, has been proposed
by Feret et al. (2012) to define abstract species or stochastic-
fragments that can be further used in simplified calculations.
More generally, rule-based models alow to overcome combina-
torial complexity in stochastic simulations (Danos et al., 2007b).
The performance of rule-based stochastic simulators such as
NFsim (Sneddon et al., 2011) scales independently of the reaction
network size. Approximate reduction of the number of states of
the Markov chains describing stochastic networks were proposed
in Munsky and Khammash (2006).

Multiscaleness of stochastic networks is two-fold, it affects
both species and reaction rates. This has been exploited in hybrid
stochastic simulation schemes that are, for the most of them,
based on a partition of the biochemical reactions in fast and
slow reactions (Haseltine and Rawlings, 2002; Burrage et al.,
2004; Alfonsi et al., 2005; Haseltine and Rawlings, 2005; Alfonsi
et al., 2004; Salis and Kaznessis, 2005; Kaznessis, 2006; Harris and
Clancy, 2006; Surovtsova et al., 2006; Salis et al., 2006; Griffith
et al., 2006; Ball et al., 2006; Li et al., 2008; Gómez-Uribe et al.,
2008; Pahle, 2009). Conversely, mixed partitions, using both reac-
tions and species can exploit both types of multiscaleness and
more appropriately unravel a rich variety of stochastic function-
ing regimes such as piece-wise deterministic, switched diffusions,
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diffusions with jumps, as well as averaged processes (Radulescu
et al., 2007; Crudu et al., 2009, 2012) only partially covered by
some situations discussed in Mastny et al. (2007).

Machine learning approaches to parameter identification
(Golightly and Wilkinson, 2011) could profit from Fokker–
Planck approximations, also known as diffusion approximations
or Langevin approach, of the master equation describing dynam-
ics of stochastic networks. Traditional approaches such as central
limit theorem (Gillespie, 2000; Mélykúti et al., 2010), the � and
the Kramers–Moyal expansions (Radulescu et al., 2007; Crudu
et al., 2009) where used to derive diffusion approximations.
Alternatively, (Erban et al., 2006) propose diffusion approxima-
tions for slow/fast stochastic networks, in which the drift and
diffusion parameters were obtained numerically. More recently,
these parameters were derived directly from the master equation
of stochastic networks with species in small and large copy num-
bers (Radulescu et al., 2012). Furthermore, by the ergodic theo-
rem, time averaging of multiscale stochastic models boils down to
a QE assumption for the fast variables. This idea has been used in
Crudu et al. (2009) to reduce stochastic networks. A few compu-
tational biology tools implement stochastic approximations (Salis
et al., 2006).

With the exception of the parameter independent methods,
all the model reduction methods described above need a full
parametrization of the model. This is a stringent requirement,
and can not be easily bypassed. Indeed, the reduction has a local
validity. The elements defining a reduced model such as IM, QSS
species, QE species, depend on the model parameters and also
on the position in phase space and along trajectories. What one
can expect is that model reduction is robust, i.e., a given reduced
model provides an accurate approximation of the dynamics of
the initial model for a wide range of parameters and variables
values. One can show that this property is satisfied by biochem-
ical networks with separated constants, because in this case the
simplified networks depend on the order relations among model
parameters and not on the precise values of these parameters
(Gorban and Radulescu, 2008; Radulescu et al., 2008; Noel et al.,
2011).

The purpose of this review is not the exhaustive description of
all the reduction methods that we have delineated. We will revisit
the fundamental concepts of model reduction in the light of a new
framework, that should, in the long-term, lead to a new gener-
ation of reduction tools satisfying all the specific requirements
of computational biology. Due to space limitations, we restrict
ourselves to deterministic models.

2. DETERMINISTIC DYNAMICAL NETWORKS
To construct a dynamic reaction network we need the list of com-
ponents, A = {A1, . . . An} and the list of reactions (the reaction
mechanism):

∑
i

αjiAi �
∑

k

βjkAk, (1)

where j ∈ [1, r] is the reaction number.
Dynamics of non-linear networks in homogeneous isochoric

systems (fixed volume) is described by a system of differential

equations:

dc

dt
= P(c) =

r∑
j = 1

ν j(R+
j (c) − R−

j (c)) (2)

c ∈ R
n is the concentration vector, νj = βj − αj is the global sto-

ichiometric vector. The reaction rates R+/−
j (c) are non-linear

functions of the concentrations. For instance, the mass action law

reads R+
j (c) = k+

j

∏
i c

αji

i , R−
j (c) = k−

j

∏
i c

βji

i , in which case Pi(c)
is a multivariate polynomial on the concentrations cj.

3. MULTI-SCALE REDUCTION OF MONOMOLECULAR
REACTION NETWORKS

Monomolecular reaction networks are the simplest reaction net-
works. The structure of these networks is completely defined by
a digraph, in which vertices correspond to chemical species Ai,
edges correspond to reactions Ai → Aj with kinetic constants
kji > 0.

The kinetic equation is

dci

dt
=

∑
j

kijcj −
⎛
⎝∑

j

kji

⎞
⎠ ci, i ∈ [1, n], (3)

or in matrix form: ċ = Kc.
The solutions of (3) can be expressed in terms of left and right

eigenvectors of the kinetic matrix K :

c(t) = (l0, c(0)) +
n−1∑
k = 1

rk < lk, c(0) > exp(−λkt) (4)

where Krk = λkrk, and lkK = λklk.
Each eigenvalue λk is the inverse of a timescale of the network.

A reduced network having solutions of the type (4), with eigen-
vectors rk, lk, and eigenvalues λk approximating the eigenvectors
and the eigenvalues of the original network is called a multiscale
approximation.

We say that the network constants are totally separated if for
all (i, j) �= (i′, j′) one of the relations kji << kj′i′ , or kji >> kj′i′ is
satisfied.

It was shown in Gorban and Radulescu (2008); Radulescu et al.
(2008); Gorban et al. (2010) that the multiscale approximations
of arbitrary monomolecular reaction networks with totally sep-
arated constants are acyclic (have no cycles), and deterministic
(have no nodes from which leave more than one edge) digraphs.

In order to reduce a network with total separation, one needs
only qualitative information on the constants. More precisely,
each edge of the reaction digraph can be labeled by a positive inte-
ger representing the rank of the reaction parameter in the ordered
series of parameter values, the largest parameter (the quickest
reaction) having the lowest label. These integer labels also indicate
the timescales of the processes modeled by the network reactions.

The reduced network is not always a subgraph of the initial
graph. It is obtained from this integer labeled digraph by graph re-
writing operations, that can be generically described as pruning
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and pooling. Two types of pruning operations are of primary
importance (see also Figure 1):

Rule a) If one has one node from which leave more than one
edge, then all the edges are pruned with the exception of
the fastest one (lowest integer label). This operation corre-
sponds to keeping the dominant term among the terms cikij

consuming a species Ai, and reduces the node outdegree

to one. The same principle can not be applied to reduce
the indegree, because which production term is dominant
among kijcj, j ∈ [1, n], depends not only on kij but also on
the concentrations cj.

Rule b) Cycles with separated constants can be transformed into
chains, by elimination of the slowest step. This can be jus-
tified intuitively by topology, because any two nodes of
a cycle are connected by two paths, one containing the

FIGURE 1 | Reduction algorithm for linear networks. A monomolecular
network with total separation can be represented as a digraph with integer
labels (the quickest reaction has label 1). Two simple rules allow to eliminate
competition between reactions (rule a) and transform cycles into chains (rule
b). Rule b can not be applied to cycles with outgoing slow reactions, in which
case more complex, hierarchical rules should be applied (rule c). In the rule c,

first the cycle A2 → A3 → A4 → A2 is “glued” to a new node (pool
A2 + A3 + A4) and the constant of the slow outgoing reaction renormalized to
a monomial k5k4/k3. Rule b is applied to the resulting network, which is a
cycle with no outgoing reactions. The comparison of the constants k5k4/k3

and k6 dictates where this cycle is cut. Finally, the glued cycle is restored,
with its slowest step removed.
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slowest step and the other one not containing the slowest
step. The latter shortcuts the former.

However, a combination of rules a) and b) is not allowed to
prune slow reactions leaving a cycle and further transform the
cycle into a chain by eliminating the limiting step. Indeed, the
total mass of such cycles is slowly decaying because of outgoing
reactions. Pruning the slow reactions that leave a cycle would keep
the total cycle mass constant and produce the wrong long time
approximation. In this case, pooling operations are needed:

Rule c) Glue each cycle in the pruned system into a new vertex
and transform the network of all initial reactions into a new
one. The concentration of this new component is the sum
of the concentration of the glued vertices. Reactions to the
cycles transform into reactions to the correspondent new
vertices (with the same constants). To transform the reac-
tions from the cycles, we have to calculate the normalized
quasi-stationary distributions inside each cycle (with unit
sum of the concentrations in each cycle). Let for the vertex
Ai from a cycle this concentration be c◦i . Then the reaction
Ai → Aj with the constant kji transforms into the reaction
from the new (“cycle”) vertex with the constant kjic◦

i . The
destination vertex of this reaction is Aj if it does not belong
to a cycle of the pruned system, it is the correspondent
glued cycle if it includes Aj and does not include Ai and
the reaction vanishes if both Ai and Aj belong to the same
cycle of the pruned system.

After pooling we have to prune (Rule a) and so on, until we get
an acyclic pruned system. Then the way back follows: we have to
restore cycles and cut them (Rule b).

In more detail, the graph re-writing operations, are described
in the Appendix and illustrated in Figure 1. The dynamics of
reduced acyclic deterministic digraphs follows from their topol-
ogy and from the timescale labels. First of all, let us notice that the
network has as many timescales as remaining edges in the reduced
digraph. The computation of eigenvectors of acyclic determin-
istic digraphs is straightforward (Gorban and Radulescu, 2008;
Radulescu et al., 2008; Gorban et al., 2010). For networks with
total separation, these eigenvectors satisfy, in the first approxi-
mation, a 0−1 type property, the coordinates of lk, rk belong
to the sets {0, 1}, and {0, 1, −1}, respectively. The 0−1 property
of eigenvectors has a non-trivial consequence. On the timescale
tk = (λk)

−1, the reduced digraph behaves as an effective reaction
(single step approximation). The effective reaction receives (from
reactions acting on smaller timescales) the mass coming from the
species with coordinate 1 in lk (pool) and transfers it (during a
time tk) to the species with coordinate 1 in rk. The successive sin-
gle step approximations of an acyclic deterministic digraph are
illustrated in Figure 2.

Monomolecular networks with separation represent instruc-
tive examples where reduction and qualitative dynamics result
from the network topology and from the orders of magnitude of
the kinetic constants. This type of models can be used in com-
putational biology to reduce linear subnetworks or even binary
reactions for which one reactant is present in much larger quan-
tities than the other (pseudo-monomolecular approximation).

As argued by a few authors, total separation could be a generic
property of biochemical networks (Furusawa and Kaneko, 2003).
This property can be checked empirically by investigating the dis-
tribution of network timescales in logarithmic scale. Whenever
one finds distributions with large support in logarithmic scale a
log-uniform distribution is equivalent to the Zipf law, i.e., a power
law distribution with exponent −1, well known in critical sys-
tems (Furusawa and Kaneko, 2003) total separation is valid and
the above reduction method applies.

4. SEPARATION, DOMINANCE, AND TROPICAL GEOMETRY
The previously presented algorithm is based on the idea of dom-
inance, which occurs at many levels. For instance, when several
reactions compete for the same pool, all can be pruned, except-
ing the dominant one [Rule a]. This simple idea is widely spread,
and corresponds to max-plus algebra: the sum of positive, well
separated terms, can be replaced by the maximum term. Max-
plus algebra, that found many applications to dynamical systems
(Cohen et al., 1999; van den Boom and De Schutter, 2006; Aubin,
2010), belong to the new mathematical field of tropical geometry
(Pachter and Sturmfels, 2004). Tropical geometry offers conve-
nient solutions to finding approximate roots of simultaneous
polynomial equations, as well as to simplifying and hybridizing
systems of polynomial or rational ordinary differential equations
with separated monomials. Tropical geometry concepts can be
used to rationalize many model reduction operations and find
new ones.

The logarithmic transformation ui = log xi, 1 ≤ i ≤ n, well
known for drawing graphs on logarithmic paper, plays a central
role in tropical geometry (Viro, 2008).

Let us consider multivariate monomials M(x) = aαxα, where
xα = xα1

1 xα2
2 . . . xαn

n . Monomials with positive coefficients aα > 0,
become linear functions, log M = log aα+ < α, log(x) >, by this
transformation.

There is a straightforward way to use the logarithmic trans-
formation from tropical geometry in order to obtain approxi-
mations of dynamical networks of the type (2). Let us suppose
that reaction rates are polynomial functions of the concentra-
tions (this is satisfied by mass action law and obviously, also by
monomolecular networks), such that

∑r
j=1 νj(R+

j (c) − R−
j (c)) =∑

α∈A aαcα, A ⊂ N
n.

We call tropicalization of the smooth ODE system (2) the
following piecewise-smooth system:

dci

dt
= si exp[maxα∈Ai {log(|ai,α|)+ < log(c),α >}], (5)

where log(c) = (log c1, . . . , log cn), si = sign(ai,αmax) and ai,αmax ,

αmax ∈ Ai denotes the coefficient of a monomial for which the
maximum occurring in (5) is attained.

The tropicalization associates to a polynomial
∑

α∈A aαcα, the
max-plus polynomial

Pτ (c) = exp[maxα∈A{log(|aα|)+ < log(c),α >}].
In other words, a polynomial is replaced by a piecewise smooth

function, equal to the largest, in absolute value, of its monomi-
als. Thus, (5) is a piecewise smooth model (Naldi et al., 2011;

www.frontiersin.org July 2012 | Volume 3 | Article 131 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Radulescu et al. Model reduction in computational biology

FIGURE 2 | Relaxation modes of linear multiscale networks. For a given
timescale, monomolecular networks with total separation behave as a single
step: the concentrations of some species (white) are practically constant,
some species (yellow) are rapid, low concentration, intermediates, one
species (red) is gradually consumed and another (pink) is gradually produced.

We have represented the sequence of one step approximations of a
reduced, acyclic, deterministic digraph, from the quickest time-scale
t1 = λ−1

1 to the slowest one t4 = λ−1
4 . These one step approximations are

activated when mass is introduced at t = 0 via the “boundary nodes”
A1 and A6.

Noel et al., 2011, 2012) because the dominating monomials in the
max-plus polynomials can change from one domain to another
of the concentration space. The singular set where at least two
of the monomials are equal, and where the max-plus polynomial
Pτ (c) is not smooth is called tropical manifold (Mikhalkin, 2007).
On logarithmic paper, the tropical manifolds of various species
define polyhedral domains inside which the dynamics is defined
by monomial differential equations (Figure 3). Tropicalized sys-
tems remind of, but are not equivalent to, Savageau’s S-systems
(Savageau and Voit, 1987) that have been used for modeling
metabolic networks. S-systems are smooth systems such that the
production and consumption terms of each species are multivari-
ate monomials. Tropicalized systems are S-systems locally, within
the polyhedral domains defined by the tropical manifolds, and
also along some parts of the tropical manifold (that carry sliding
modes, see next section).

The tropicalization unravels an important property of mul-
tiscale systems, that is to have different behavior on different
timescales. We have seen that, on every timescale, monomolecular
networks with total separation behave like a single reaction step.

This is akin to considering only the dominant processes in the net-
work and implies that the tropicalization is a good approximation
for monomolecular networks with total separation.

The tropical geometry framework is particularly interesting
for non-linear networks. In this case, it is less straightforward
to define separation rigorously. Very roughly, one can say that
a system (2) with polynomial rates is separated, if the mono-
mials composing the rates are separated almost all the time on
a trajectory, or, equivalently, almost everywhere in phase space
(except on the tropical manifolds). Separation of non-linear
models results either from separated kinetic constants, or from
separated species concentrations, or both. In the next section, we
discuss some examples when the tropicalization provides useful
approximations of smooth non-linear networks.

5. QUASI-STEADY STATE AND QUASI-EQUILIBRIUM,
REVISITED

Two simple methods are principally useful for model reduc-
tion of non-linear models with multiple timescales: the
quasi-equilibrium (QE) and the quasi-steady state (QSS)
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FIGURE 3 | Tropical geometry and Michaelis–Menten mechanism.

(A) The tropical manifold of the polynomial ax + by + cxy on “logarithmic
paper” is a three lines tripod. (B) The tropical manifolds for the species
ES (in red) and S (in blue) for the Michaelis–Menten mechanism.

The tropicalized flow is also represented on both sides of the tropical
manifolds (with arrows, red on one side, blue on the other side).
Sliding modes correspond to blue and red arrows pointing in opposite
directions.

approximations. As discussed in Gorban et al. (2010); Gorban
and Shahzad (2011), these two approximations are physically
and dynamically distinct. In order to understand these differ-
ences let us refer to the simple example of the Michaelis–Menten
mechanism,

S + E
k1�

k−1

ES
k2→ P + E (6)

The QSS approximation, proposed for this system by Briggs
and Haldane, considers that the total concentration of enzyme,
Etot = [E] + [ES], is much lower than the total concentration of
substrate, therefore, the complex ES is a low concentration, fast
species. The complex concentration is slaved by the concentration
of S, meaning that the value of [ES] almost instantly relaxes to a
value depending on [S]. The simplified mechanism correspond to
pooling the two reactions of the mechanism into a unique irre-

versible reaction S
R([S],Etot)−→ P, which means that d[P]

dt = − d[S]
dt =

k2[ES]QSS. The QSS value of the complex concentration results
from the equation k1[S](Etot − [ES]QSS) = (k−1 + k2)[ES]QSS.
From this, it follows that R([S], Etot) = k2Etot[S]/(km + [S]),
where km = (k−1 + k2)/k1.

The QE approximation considers that the first reaction of the
mechanism is a fast, reversible reaction. The simplified mechanism
corresponds to a pooling of species. Two pools, Stot = [S] + [ES],
and Etot = [E] + [ES] are conserved by the fast reversible reac-
tion, but only one, Etot is conserved by the two reactions of the
mechanism. The pool Stot is slowly consumed by the second
reaction and represents the slow variable of the system. The

single step approximation reads Stot
R(Stot,Etot)−→ P, or equivalently

d[P]
dt = − dStot

dt = k2[ES]QE. The QE value of the complex concen-
tration is the unique positive solution of the quadratic equation
k1(Stot − [ES]QE)(Etot − [ES]QE) = k−1[ES]QE. From this it
follows that R(Stot, Etot) = 2k2EtotStot(Etot + Stot + k−1/k1)

−1

(1 + √
1 − 4EtotStot/(Etot + Stot + k−1/k1)2)−1. When the

concentration of enzyme is small, Etot << Stot, we obtain the
original equation of Michaelis and Menten, R(Stot, Etot) ≈
k2

EtotStot
k−1/k1+Stot

.
One of the main difficulties to applying QE or QSS reduc-

tion to computational biology models is that QE reactions and
QSS species should be specified a priori. For some models, bio-
logical information can be used to rank reactions according to
their rates. For instance, one knows that metabolic processes
and post-transcriptional modifications are more rapid than gene
expression. However, this information is rather vague. In detailed
gene expression models, some processes can be rapid, while others
are much slower. Furthermore, the relative order of these pro-
cesses can be inverted from one functioning regime to another,
for instance the binding and unbinding rates of a repressor to
DNA, can be slow or fast depending on various conditions. Even if
some numerical approaches such as iterative IM, CSP, and ILDM
propose criteria for detecting fast and slow processes, at present
there is no general direct method to identify QE reactions and
QSS species.

Here we present two methods, based, the first one on sin-
gular perturbations, and the second on tropical geometry ideas,
allowing to detect QE reactions and QSS species.

The first method uses simulation of the trajectories, therefore,
it can only be applied to a fully parametrized model. However,
in systems with separation, the sets of QE reactions and QSS
species are robust, i.e., remain the same for broad ranges of
the parameters. One can use imprecise parameters (resulting for
instance from crude estimates or fitting) to compute these sets.
The method starts by detecting slaved species. Given the trajecto-
ries c(t) of all species, the imposed trajectory of the i-th species is
a real, positive solution c∗i (t) of the polynomial equation

Pi(c1(t), . . . , ci−1(t), c∗
i (t), ci+1(t), . . . , cn(t)) = 0, (7)

where Pi is the i-th component of the rhs of (2). We say that
a species i is slaved if the distance between the trajectory ci(t)
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and some imposed trajectory c∗i (t) is small for some time interval
I, supt∈I | log(ci(t)) − log(c∗

i (t))| < δ, for some δ > 0 sufficiently
small. The remaining species, that are not slaved, are called slow
species.

Slaved species are rapid and are constrained by the slow
species. The minimum number of variables that we expect for a
reduced model is equal to the number of slow species. The slow
species can be obtained by direct comparison of the imposed and
actual trajectories. This method is illustrated for a model of NFκB
canonical pathway in Figure 4.

There are two types of slaved species. Low concentration,
slaved species satisfy QSS conditions. Large concentration, slaved
species are consumed and produced by fast QE reactions and sat-
isfy QE conditions. Because the reduction schemes are different
in the two situations, it is useful to have a method to separate
the two cases. Using the values of concentrations can work when
concentrations are well separated, but may fail for a continuum
of values. A better method is to identify which are the dominant
terms in the Equation (7). Using again the example of Michaelis–
Menten mechanism, the complex ES will be detected as slaved
in both QSS and QE conditions. Equation (7) reads k1[S][E] =
(k−1 + k2)[ES]. For QE condition, the term k2 will be dominated
by k−1. We call pruned version of Equation (7) the equation
obtained after removing all the dominated monomials, in this
case the equation k1[S][E] − k−1[ES] = 0. When the pruned ver-
sion is a combination of reversible reaction rates set to zero, then
the slaved species satisfy QE conditions. Again, the comparison of

monomials is possible for a fully parametrized model, however we
expect this comparison to be robust for models with separation.

The second method to identify QE and QSS conditions, fol-
lows from the calculation of the tropicalization (5). This can be
done formally and do not require simulation of trajectories and
numerical knowledge of the parameters. Indeed, is was shown
in Noel et al. that there is a relation between sliding modes of
the tropicalized system (5) and the QSS or QE conditions. The
system (5) belongs to the class of ordinary differential equations
with discontinuous vector fields (Filippov, 1988). In such sys-
tems, the dynamics can follow discontinuity hypersurfaces where
the vector field is not defined. This type of motion is called slid-
ing mode. When the discontinuity hypersurfaces are smooth and
n − 1 dimensional (n is the dimension of the vector field) then
the conditions for sliding modes read:

< n+(x), f +(x) >< 0, < n−(x), f −(x) >< 0, x ∈ �, (8)

where f +, f − are the vector fields on the two sides of � and n+ =
−n− are the interior normals.

In Noel et al. (2012) we have shown the following. If the
smooth dynamics obeys QE or QSS conditions and if the pruned
polynomial P̃ defining the fast dynamics is a 2-nomial, P̃i(c) =
a1cα1 + a2cα2 , then the QE or QSS equations define a hyperplane
of the tropical manifold of P̃, namely S = {< log(c), α1 − α2 >=
log(|a1|/|a2|)}. The stability of the QE or QSS manifold implies
the existence of a sliding mode of the tropicalization (5) along this

FIGURE 4 | Tropical geometry and cell cycle modeling. We considered the
five variables cell cycle model defined by the differential equations
y ′

1 = k9y2 − k8y1 + k6y3, y ′
2 = k8y1 − k9y2 − k3y2y5, y ′

3 = k ′
4y4 +

k4y4y2
3 /C2 − k6y3, y ′

4 = −k ′
4y4 − k4y4y2

3 /C2 + k3y2y5, y ′
5 = k1 − k3y2y5,

proposed in Tyson (1991). (A) Comparison of trajectories and imposed
trajectories show that variables y1, y2, y5 are always slaved, meaning that the
trajectories are close to the 2 dimensional hyperplane defined by the QE
condition k8y1 = k9y2, the QSS condition k1 = k3y2y5 and the conservation
law y1 + y2 + y3 + y4 = C. The variables y3, y4 are slaved and the
corresponding species are quasi-stationary on intervals. This means that the

dimensionality of the dynamics is further reduced to 1, on intervals.
(B) Tropicalization on logarithmic paper, in the plane of the variables y3,
y4. The tropical manifold consists of two tripods, represented in blue and red,
which divide the logarithmic paper into six polygonal sectors. Monomial
vector fields defining the tropicalized dynamics change from one polygonal
domain to another. The tropicalized (approximated) and the smooth (not
reduced) limit cycle dynamics stay within bounded distance one from
another. This distance is relatively small on intervals where the variables y3 or
y4 are quasi-stationary, which correspond to sliding modes of the
tropicalization.
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hyperplane. This result suggests that checking the sliding mode
condition (8) on the tropical manifold, provides a method of
detecting QE reactions and QSS species.

To illustrate this method, let us use again the Michaelis–
Menten example. In this case, two conservation laws allow elimi-
nation of two variables E and P and the dynamics can be described
by two ODEs:

d[S]
dt

= −k1Etot[S] + k1[S][ES] + k−1[ES]
d[ES]

dt
= k1Etot[S] − k1[S][ES] − (k−1 + k2)[ES] (9)

The tropical manifolds of the two species S and ES are tripods
with parallel arms like in Figure 3. Indeed, the slopes of the arms
of tropical manifold are only given by the powers of different vari-
ables of the monomials, and these are the same for the two species.
Investigation of the flow field close to the tripod arms identi-
fies sliding modes on an unbounded subset AOB of the tropical
manifold of the species ES. This subset is a global attractor of
the tropicalized dynamics and represents a tropicalized version of
the IM of the smooth system. If the initial data is not in this set,
the tropicalized trajectory converges quickly to it and continues
on it as a sliding mode. When k2 >> k−1, ES satisfies QSS condi-
tions leading to the Michaelis–Menten equation. The arm AO of
the tropical manifold of the species ES carry a sliding mode, has
the equation k1Etot[S] = (k−1 + k2)[ES] >> k1[S][ES], and cor-
responds to the linear regime of the Michaelis–Menten equation.
Similarly, the arm OB of the tropical manifold of ES has the equa-
tion k1Etot[S] = k1[S][ES] >> (k−1 + k2)[ES] and corresponds
to the saturated regime of the Michaelis–Menten equation. When
k2 << k−1, the tropical manifolds of the two species S and ES
practically coincide. Both species are rapid and satisfy QE condi-
tions, namely k1Etot[S] = k−1[ES] >> k1[S][ES] on the arm AO,
and k1Etot[S] = k1[S][ES] >> k−1[ES] on the arm OB.

The tropicalization can thus be used to obtain global reduc-
tions of models. Even when global reductions are not possible
(sliding modes leave the tropical manifold or simply do not
exist), the tropicalization can be used to hybridize smooth mod-
els, i.e., transform them into piecewise simpler models (modes)
that change from one time interval to another. These changes
occur when the piecewise smooth trajectory of the system meets
a hyperplane of the tropical manifold and continues as a sliding
mode along this hyperplane or leaves immediately the hyper-
plane. Hybridization is a particularly interesting approach to
modeling cell cycle. Indeed, progression of the cell cycle is a
succession of several different regimes (phases). This strategy is
illustrated in Figure 4 for a simple cell cycle model.

6. GRAPH REWRITING FOR LARGE NON-LINEAR,
DETERMINISTIC, DYNAMICAL NETWORKS

We have seen in section 3 that model reduction of monomolec-
ular networks with total separation is based on graph rewriting
operations.

Similarly, QSS and QE approximations can be used to
produce simpler networks from large non-linear networks.
The classical implementation of these approximations leads to

differential-algebraic equations. It is, however, possible to refor-
mulate the simplified model as a new, simpler, reaction net-
work. We showed in the previous section how to do this for
the Michaelis–Menten mechanism under different conditions. In
general, one has to solve the algebraic equations corresponding
to QE or QSS conditions, eliminate (prune) QSS species and QE
reactions, pool reactions (for QSS approximation) or species (for
QE approximation), and finally calculate the kinetic laws of the
new reactions.

By reaction pooling we understand here replacing a set of
reactions by a single reaction whose stoichiometry vector ν is
the sum of the stoichiometry vectors νi of the reactions in the
pool, ν = ∑

i γiνi. If the reactions are reversible then the coeffi-
cients γi can be arbitrary integers, otherwise they must be positive
integers. Reaction pools conserve certain species that where previ-
ously consumed or produced by individual reactions in the pools.
These species were called intermediates in Radulescu et al. (2008).
The species that are either produced or consumed by the pools
were called terminal in Radulescu et al. (2008). For example, an
irreversible chain of reactions A1 → A2 → A3 can be pooled onto
a single reaction A1 → A3, which in terms of stoichiometry vec-

tors reads

⎡
⎣

−1
0

1

⎤
⎦ =

⎡
⎣

−1
1

0

⎤
⎦ +

⎡
⎣

0
−1

1

⎤
⎦. In this example A1, A3 are

terminal species and A2 is an intermediate species. Reaction pool-
ing is used with QSS conditions, in which case the intermediates
are the QSS species.

By species pooling we understand replacing a set of species
concentrations {ci} by a linear combination with positive coeffi-
cients of species concentrations,

∑
i bici. Species pooling is used

with QE conditions.
In general, the reaction and species pools result from linear

algebra. Indeed, let us consider the matrix Sf that defines the sto-
ichiometry of the rapid subsystem. For the QSS approximation,
the matrix Sf has a number of lines equal to the number of QSS
species. The columns of this matrix are the stoichiometries of the
reactions in the model, restricted to the QSS species. We exclude
zero valued columns, i.e., reactions that do not act on QSS species.
For the QE approximation, the number of columns of the matrix
Sf is equal to the number of QE reactions, and the lines of Sf are
the stoichiometries of QE reactions. We exclude zero valued lines
corresponding to species that are not affected by QE reactions.

In QE conditions, species pools are defined by vectors in the
left kernel of Sf,

bT Sf = 0 (10)

The vectors b, that are conservation laws of the fast subsys-
tem, define linear combinations of species concentrations that are
the new slow variables of the system. Of course, one could elim-
inate from these combinations, the conservation laws of the full
reaction network, that will be constant (see Appendix).

In QSS conditions, reaction pools (also called routes) are
defined by vectors in the right kernel of Sf,

Sf γ = 0 (11)
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According to the definition (11), a reaction pool does not con-
sume or produce QSS species (these are intermediates). One can
impose, like in Radulescu et al. (2008), a minimality condition
for choosing the reaction pools. A reaction pool is minimal if
there is no other reaction pool with less non-zero stoichiome-
try coefficients. This is equivalent to choosing reaction pools as
elementary modes (Von Kamp and Schuster, 2006) of the fast
subsystem.

After pooling, QE and QSS algebraic conditions must be solved
and the rates of the new reactions calculated. The new rates
should be chosen such that the remaining species and pools of
species satisfy the simplified ODEs. The choice of the rates is
not always unique (some uniqueness conditions are discussed in
Radulescu et al. (2008), see also the Appendix). In order to com-
pute the new rates, one has to solve QE and QSS equations. For
network with polynomial or rational rates, this implies solving
large systems of polynomial equations. The complexity of this task
is double exponential on the size of the system (Noel et al., 2011),

therefore, one needs approximate solutions. Approximate solu-
tions of polynomial equations can be formally derived when the
monomials of these equations are well separated. Some simple
recipes were given in Radulescu et al. (2008) and could be
improved by the methods of tropical geometry.

These ideas were used in Radulescu et al. (2008) to reduce
several models of NF-κB signaling (Figures 5,6).

The NF-κB activation pathway is complex at many levels.
NF-κB is sequestered in the cytoplasm by inactivating proteins
named IκB. There are five known members of the NF-κB fam-
ily in mammals, Rel (c-rel), RelA (p65), RelB, NF-κB1 (p50 and
its precursor p105) and NF-κB2 (p52 and its precursor p100).
This generates a large combinatorial complexity of dimers, affini-
ties, and transcriptional capabilities. IκB family comprises seven
members in mammals (IκBα, IκBβ, IκBε, IκBγ, Bcl-3). All these
inhibitors display different affinities for NF-κB dimers, multi-
plying the combinatorial complexity. The activation of NF-κB
upon signaling, occurs by phosphorylation by a kinase complex,

FIGURE 5 | Detection of the slaved species for a NF-κB pathway model.

The modulus of the log-ratio, | log(ci (t)/c∗
i (t))|, between actual and imposed

trajectories has been calculated as a function of time for each species of the
model of NFκB canonical pathway (proposed in Lipniacki et al., 2004), model
M(14, 25, 28) from Radulescu et al. (2008). If the modulus is close to zero

(ratio close to one fold from above, or from below) the species is slaved,
otherwise the species is slow. Among the slaved species, some
have low concentrations and satisfy quasi-steady-state conditions,
whereas other have large concentrations and are involved in
quasi-equilibrium reactions.
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FIGURE 6 | Reduction of a NF-κB pathway model. We considered the
model of NF-κB signaling [BIOMD0000000227 in Biomodels database
(Le Novère et al., 2006)], proposing separate production of the subunits p50,
p65, the full combinatorics of their interactions as well as with the inhibitor
IκB, the positive self-regulation of p50, and in addition an A20 molecule
whose production is enhanced upon NF-κB stimulation, and which negatively
regulates the activity of the stimulus responding kinase IKK (Radulescu et al.,
2008). This model, denoted M(39, 65, 90) contains 39 species, 65
reactions, and 90 parameters. We have reduced it to various levels of

complexity. Among the reduced model we obtained one, M(14, 25, 33) that
has the same stoichiometry (but different rate functions) as a model
published elsewhere by another author (Lipniacki et al., 2004) and denoted
M(14, 25, 28) (BIOMD0000000226 in Biomodels database). Incidently, this
is also the simplest model in the hierarchy related to M(39, 65, 90).
Comparison (not shown) of the rate functions and of the trajectories of the
models M(14, 25, 33) and M(14, 25, 28) provided insight into the
consequences of various mechanistic modeling choices. The model graphical
representation is based on the SBGN standard (Le Novère et al., 2009).

then ubiquitination, and finally degradation of IκB molecules.
The activation signal is transmitted by several possible pathways
most of them activating the kinase IKK that modifies IκB. In the
canonical pathway, one important determinant of IKK dynamics
is the protein A20 that inhibits IKK activation. A20 expression
is controlled by NF-κB. In order to cope with this complexity a
model containing 39 species, 65 reactions, and 90 parameters was
proposed in Radulescu et al. (2008). Of course, not all reactions
and parameters of this complex model are important. In order to
determine, in a rational and systematic way, which of the model
features are critical, we have used model reduction.

Graph rewriting was performed in a modular way, by applying
the pruning and pooling rules to tightly connected submod-
els of the NF-κB network. The computation of the reaction
pools was performed using Matlab and METATOOL (Von Kamp
and Schuster, 2006). Using submodel decomposition reduces
the complexity of computing elementary modes and of solving
large systems of algebraic equations needed for recalculating the
reaction rates.

To give an example of modular reduction, let us consider
the set of reactions involving six cytoplasmic located inter-
mediates (IKK|active, IKK|inactive, IKK, IKK|active:IkBa,
IKK|active:IkBa:p50:p65, p50:p65@csl) and four terminal species

(A20, IkBa@csl, IkBa:p50:p65@csl, p50:p65@ncl). As can be
seen from Figure 5, the six intermediate species are slaved.
The reactions of this submodel form the cytoplasmic part of
the signaling mechanism, including 11 kinase transformation
reactions, a complex release reaction, a complex formation
reaction, and the NF-κB translocation reaction. The elementary
modes of the submodel [computed using METATOOL (Von
Kamp and Schuster, 2006)] are used to define the reactions
pools. For this submodel, we find two elementary modes,
that can be described as the modulated inhibitor degradation
(IkBa@csl → ∅), and a reaction summarizing the NF-κB
release and translocation (IkBa:p50:p65@csl → p50:p65@ncl),
respectively. In order to compute the reaction rates of the two
elementary modes as functions of the concentrations of the
terminal species, we find approximate solutions of the QSS equa-
tions for the intermediate species and equate, for the variation
rates of each terminal species, the contributions of elementary
modes to the total known variation rate in the unreduced
model (see Appendix). The two rates are k21p1[IkBa@csl][IkBa :
p50 : p65@csl]/((k21p2 + [IkBa@csl])(k21p3 + [A20])) for the
modulated inhibitor degradation, and k15p1[IkBa : p50 :
p65@csl]/((k15p2 + [IkBa@csl])(k15p3 + [A20])) for the release
and translocation reaction.
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FIGURE 7 | Backward pruning strategy. The model M(14, 25, 28) from
Radulescu et al. (2008) (first proposed in Lipniacki et al. (2004), see also
BIOMD0000000226 in Biomodels database) was used to generate a
hierarchy of simpler models, the simplest one being M(5, 8, 15). We show
the mapping between the parameters of the models M(14, 25, 28) and M(5,
8, 15). Parameters of the first model are gathered into monomials that are

parameters of the reduced model. The integers on the arrows
connecting parameters represent the corresponding powers of the
parameters in the monomial. The innermost circle represents a dynamical
property of the model that is influenced positively, negatively, or negligibly
by the effective parameters (parameters of the reduced model).
From Radulescu et al. (2008).

7. MODEL REDUCTION AND MODEL IDENTIFICATION
Computational biology models contain mechanistic details that
can not all be identified from available experimental data.
Determining the parameters of such complex models could lead
to overfitting, describing noise, rather than features of data, or
can be simply meaningless, when model behavior is not sensi-
tive to the parameters. Furthermore, many model identification
methods (Golightly and Wilkinson, 2011) suffer from the “curse
of dimensionality” as it becomes increasingly difficult to cover
the parameter space when the number of parameters increases.
A rather efficient strategy to bypass these problems is to use
model reduction. This method is known in machine learning as
backward pruning or post-pruning (Witten and Frank, 2005). It
consists in finding a complex model that fits data well and then
prune it back to a simpler one that also fits the data well. Far from
being redundant, backward pruning can be successfully used in
computational biology. Rather often, one starts with a complex
model coping with mechanistic details of the network regulation.
Then, over-fitting and problems of identifiability of the param-
eters are avoided by model reduction. By model reduction, the
mechanistic model is mapped onto a simpler, phenomenologi-
cal model. For instance, gene transcription and translation can
be represented as one step and one constant in a phenomeno-
logical model, but can consist of several steps such as initiation,

transcription of mRNA leading region, ribosome binding, trans-
lation, folding, maturation, etc., in a complex model. Not all
of these steps are important for the network functioning and
not all parameters are identifiable from the observed quanti-
ties. Following reduction, the inessential steps are pruned and
several sensitive parameters are compacted into a few effective
parameters that are identifiable.

As discussed in Radulescu et al. (2006, 2008); Radulescu and
Gorban (2009); Ferguson et al. (2012), model reduction unrav-
els the important features and the sensitive parameters of the
model.

Using model reduction for determining critical features of the
model has many advantages relative to numerical sensitivity stud-
ies (Rabitz et al., 1983; Ihekwaba, 2004; Gunawan et al., 2005).
This approach is less time consuming, brings more insight, and
is based on qualitative comparison of the order of the parame-
ters and therefore does not need exhaustive scans of parameter
values. In the applications described in Radulescu et al. (2006,
2008); Radulescu and Gorban (2009); Ferguson et al. (2012),
the sensitive parameters of the pruned model are combinations
(most often monomials) of the parameters of the complex mod-
els. As only the sensitive combinations can be fitted from data,
it is important to have estimates of some individual parameters,
allowing to determine the remaining ones.
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This methodology has been first proposed in Radulescu
et al. (2008). The model reduction of the NF-κB model in
Radulescu et al. (2008) leads to new, effective parameters that
are monomials of the parameters of the complex model. The
correspondence between the initial parameters and the effective
parameters is shown in Figure 7. Although not fully exploited
in the theoretical study (Radulescu et al., 2008), this map-
ping can be used for model parameter identification. Effective
parameters have increased observability and could be obtained
from experimental data. The values of the effective parame-
ters can be used to constrain the parameters of the full model.
Some of the parameters of the full model, that are not sensi-
tive or contribute to effective parameters together with other
parameters remain arbitrary and could be fixed to generic
values.

8. CONCLUSION
The mathematical techniques described in this paper define
strategies for the study of large dynamical network models in
computational biology. Large networks are needed in order to
understand context dependence, specialization, and individual-
ity of the cell behavior. Extensive pathway database accumulation
supports somehow the idea that biological cell is a puzzle of

networks and pathways, and that once these are put together in a
tightly bound, coherent map, the cell physiology should be unrav-
eled by a computer simulation. Actually, confronting biochemical
networks with real life is not an easy challenge. Model reduc-
tion techniques are needed to bring us one step closer to this
objective, as these methods can reveal critical features of complex
organizations.

We have proposed that the ideas of limitation and domi-
nance are fundamental for understanding computational biology
dynamical models. The essential, critical features of systems with
many separated time scales, can be resumed by a dominant,
reduced, subsystem. This dominant subsystem depends on the
order relations between model parameters or combinations of
model parameters. We have shown how to calculate such a dom-
inant subsystem for linear and non-linear networks. Geometrical
interpretation of these concepts in terms of tropicalization pro-
vides a powerful framework, allowing to identify IM, QSS species,
and QE reactions. We have also discussed how model reduc-
tion can be applied to backward pruning parameter learning
strategies.

Future efforts are needed to extend these mathematical ideas
and model reduction algorithms and implement them into com-
putational biology tools.
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APPENDIX: ALGORITHMS
ALGORITHM 1: REDUCTION OF MONOMOLECULAR NETWORKS
WITH SEPARATION
This algorithm consists of three procedures.

I. Constructing of an auxiliary reaction network: pruning
For each Ai branching node (substrate of several reactions) let us
define κi as the maximal kinetic constant for reactions Ai → Aj:
κi = maxj{kji}. For correspondent j we use the notation φ(i):
φ(i) = arg maxj{kji}.

An auxiliary reaction network V is the set of reactions obtained
by keeping only Ai → Aφ(i) with kinetic constants κi and dis-
carding the other, slower reactions. Auxiliary networks have no
branching, but they can have cycles and confluences. The corre-
spondent kinetic equation is

ċi = −κici +
∑

φ(j)=i

κjcj, (12)

If the auxiliary network contains no cycles, the algorithm stops
here.

II. Gluing cycles and restoring cycle exit reactions
In general, the auxiliary network V has several cycles C1, C2, . . .

with lengths τ1, τ2, . . . > 1.
These cycles will be “glued” into points and all nodes in the

cycle Ci, will be replaced by a single vertex Ai. Also, some of
the reactions that were pruned in the first part of the algorithm
are restored with renormalized rate constants. Indeed, reaction
exiting a cycle are needed to render the correct dynamics: with-
out them, the total mass accumulates in the cycle, with them the
mass can also slowly leave the cycle. Reactions A → B exiting
from cycles (A ∈ Ci, B /∈ Ci) are changed into Ai → B with the
rate constant renormalization: let the cycle Ci be the following
sequence of reactions A1 → A2 → . . . Aτi → A1, and the reac-
tion rate constant for Aj → Aj+1 is kj (kτi for Aτi → A1). The
quasi-stationary normalized distribution in the cycle is:

c◦
j = 1

kj

⎛
⎝

τi∑
j=1

1

kj

⎞
⎠

−1

, j = 1, . . . , τi.

The reaction Aj → B (A ∈ Ci, B /∈ Ci) with the rate constant k is

changed into Ai → B with the rate constant c◦j k.

Let the cycle Ci have the limiting steps that is much slower
than other reactions. For the limiting reaction of the cycle Ci

we use notation klim i. In this case, c◦
j = klim i/kj. If A = Aj and

k is the rate constant for A → B, then the new reaction Ai →
B has the rate constant kklim i/kj. This rate is obtained using
quasi-stationary distribution for the cycle.

The new auxiliary network V1 is computed for the network
with glued cycles. Then we prune it, extract cycles, glue them, iter-
ate until a acyclic network is obtained Vm, where m is the number
of iterations.

III. Restoring cycles
The previous procedure gives us the sequence of networks
V1, . . . ,Vm with the set of vertices A1, . . . ,Am and reaction rate

constants defined for each V i in the processes of pruning and
gluing.

The dynamics of species inside glued cycles is lost after their
gluing. A full multi-scale approximation (including relaxation
inside cycles) can be obtained by restoration of cycles. This is
done starting from the acyclic auxiliary network Vm back to V1

through the hierarchy of cycles. Each cycle is restored according
to the following procedure:

• We start the reverse process from the glued network Vm on
Am. On a step back, from the set Am to Am−1 and so on,
some of glued cycles should be restored and cut. On the qth
step we build an acyclic reaction network on the set of vertices
Am−q, the final network is defined on the initial vertex set and
approximates relaxation of the initial networks.

• To make one step back from Vm let us select the vertices
of Am that are glued cycles from Vm−1. Let these vertices
be Am

1 , Am
2 , . . .. Each Am

i corresponds to a glued cycle from

Vm−1, Am−1
i1 → Am−1

i2 → . . . Am−1
iτi

→ Am−1
i1 , of the length τi.

We assume that the limiting steps in these cycles are Am−1
iτi

→
Am−1

i1 . Let us substitute each vertex Am
i in Vm by τi ver-

tices Am−1
i1 , Am−1

i2 , . . . Am−1
iτi

, and add to Vm reactions Am−1
i1 →

Am−1
i2 → . . . Am−1

iτi
(that are the cycle reactions without the

limiting step) with corresponding constants from Vm−1.
• If there exists an outgoing reaction Am

i → B in Vm then we

substitute it by the reaction Am−1
iτi

→ B with the same constant,

i.e., outgoing reactions Am
i → . . . are reattached to the heads

of the limiting steps. Let us rearrange reactions from Vm of
the form B → Am

i . These reactions have prototypes in Vm−1

(before the last gluing). We simply restore these reactions. If
there exists a reaction Am

i → Am
j then we find the prototype in

Vm−1, A → B, and substitute the reaction by Am−1
iτi

→ B with
the same constant, as for Am

i → Am
j .

• After the previous step is performed, the vertices set is Am−1,
but the reaction set differs from the reactions of the network
Vm−1: the limiting steps of cycles are excluded and the out-
going reactions of glued cycles are included (reattached to the
heads of the limiting steps). To make the next step, we select
vertices of Am−1 that are glued cycles from Vm−2, substitute
these vertices by vertices of cycles, delete the limiting steps,
attach outgoing reactions to the heads of the limiting steps, and
for incoming reactions restore their prototypes from Vm−2,
and so on.

After all, we restore all the glued cycles, and construct an acyclic
reaction network on the set A. This acyclic network approximates
relaxation of the initial network. We call this system the dominant
system.

Note that the reduction algorithm does not need precise val-
ues of the constants. It is enough to have an initial ordering of
the constants. Then, the auxiliary network is obtained only from
this ordering. However, after a first iteration, and if the initial
network contains cycles, some of the exit constant are renor-
malized and the new rate constants become monomials of the
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old ones. In order to prune again, we need to compare these
monomials. Monomials of well separated constants are gener-
ically well separated (Gorban and Radulescu, 2008). However,
a freedom remains on ordering these new monomials, lead-
ing to several possible reduced acyclic digraphs, given an initial
digraph with ordering of the constants (Figure 1 of the main
text).

ALGORITHM 2: REDUCTION OF NON-LINEAR NETWORKS WITH
SEPARATION
This algorithm consists of the following procedures.

I. Identification of QSS species and QE reactions
There are two methods of identification, trajectory-based, and
tropicalization-based. Presently we are using the trajectory based
method.

Detect slaved species. After generating trajectories c(t) for t ∈ I,
for each species compute the distances δi = supt∈I | log(ci(t)) −
log(c∗

i (t))|. Use k-means clustering to separate species into two
groups, slaved (small values of δ) and slow (large values of δ)
species.

Prune. For each Pi (polynomial rate) corresponding to slaved
species, compute the pruned version P̃i by eliminating all mono-
mials that are dominated by other monomials of Pi.

Identify QE reactions and QSS species. Identify, in the structure
of P̃i the forward and reverse rates of QE reactions. This step can
be performed by recipes presented in Soliman and Heiner (2010).
The slaved species not involved in QE reactions are QSS.

II. Exploiting QSS conditions, pruning intermediate species, pooling
reactions
Define subsets and matrices. Given the set of QSS (intermedi-
ate) species I, one defines the set RI of reactions acting on them.
The terminal species T, are the other species, different from I,
on which act the reactions from RI . Define two stoichiomet-
ric matrices Sf and ST. Sf defines the fast subsystem and has
a number of lines equal to the number of QSS species, and a
number of columns equal to the number of reactions RI. ST

contains the stoichiometries of the terminal species for the same
reactions RI . Species I will be pruned, and reactions RI will be
pooled.

Compute elementary modes (EMs). Compute elementary
modes of non-zero terminal stoichiometry as minimal solutions

of Sf γ = 0, STγ �= 0, the minimality being defined with respect
to the number of non-zero coefficients. STγ �= 0 on the output of
elementary modes packages such as METATOOL. If the terminal
stoichiometries of the EMs are dependent, restrict to a subset of
independent terminal stoichiometries.

Solve QSS equations. Find approximate formal solutions for
systems of QSS algebraic equations. This step is not yet auto-
matic. It will be automatized in subsequent work by using tropical
geometry methods.

Find rates of EMs. To each elementary mode γi, associate a
kinetic law giving the rate of the EM as a function of the
terminal species concentrations R∗

i (cT). Let R(cT) be the vec-
tor of rates of reactions in RI . The dependence of these
rates on cT is direct, or indirect, via cI that can be now
expressed as function of cT . Then, the EM rates R∗

i (cT) must

satisfy ST R(cT) = ∑
R∗

i (cT)STγi. This equation has an unique

solution if the vectors STγi are independent (this justifies
the independence condition for the terminal stoichiometries
of EMs).

III. Exploiting QE conditions, pruning QE reactions, pooling species
Define subsets and matrices. Given the set of QE reactions Q,
one defines the set S of species that are affected by them. The
species S are also affected by other reactions that we call termi-
nal, QT . Define two stoichiometric matrices Sf and ST. Sf defines
the fast subsystem and has a number of lines equal to the cardi-
nal of E, and a number of columns equal to the cardinal of Q.
ST contains the stoichiometries of the reactions QT for the same
species S (it has the same number of lines as Sf ). Reactions Q will
be pruned and species E will be pooled.

Compute species pools. Species pools are computed as minimal
solutions of bSf = 0, bST �= 0 (the second condition stands for
looking for conservation laws of the fast subsystem that are not
conserved by the entire network; the minimality condition means
that we compute elementary modes of the transpose matrix Sf ).

Solve QE equations. Same methods as for QSS conditions. Solve
the QSS equations together with the conservation of pools and
express the concentrations of the species E as functions of the
pools c∗

i =< bi, c >.

Find new rates. Re-express (by substitution) the rate of each
reaction from QT in terms of pools c∗

i .
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