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Abstract

The paper gives a systematic analysis of singularities of transition processes in
dynamical systems. General dynamical systems with dependence on parameter are
studied. A system of relaxation times is constructed. Each relaxation time depends
on three variables: initial conditions, parameters k of the system and accuracy ε of
the relaxation. The singularities of relaxation times as functions of (x0, k) under
fixed ε are studied. The classification of different bifurcations (explosions) of limit
sets is performed. The relations between the singularities of relaxation times and
bifurcations of limit sets are studied. The peculiarities of dynamics which entail
singularities of transition processes without bifurcations are described as well. The
analogue of the Smale order for general dynamical systems under perturbations
is constructed. It is shown that the perturbations simplify the situation: the in-
terrelations between the singularities of relaxation times and other peculiarities of
dynamics for general dynamical system under small perturbations are the same as
for the Morse-Smale systems.
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Introduction

Are there “white spots” in topological dynamics? Undoubtedly, they exist: transition
processes in dynamical systems are still not very well studied. A a consequence, it is diffi-
cult to interpret the experiments which reveal singularities of transition processes, and in
particular, anomalously slow relaxation. “Anomalously slow” means here “unexpectedly
slow”; but what can one expect from a dynamical system in a general case?

In this paper, the transition processes in general dynamical systems are studied. The
approach based on the topological dynamics is quite general, but one pays for these
generality by the loss of constructivity. Nevertheless, this stage of a general consideration
is needed.

The limiting behaviour (as t → ∞) of dynamical systems have been studied very
intensively in the XX century [16, 37, 36, 68, 12, 56]. New types of limit sets (“strange
attractors”) were discovered [50, 1]. Fundamental results concerning the structure of
limit sets were obtained, such as the Kolmogorov-Arnold-Moser theory [11, 55], the Pugh
lemma [61], the qualitative [66, 47, 68] and quantitative [38, 79, 40] Kupka–Smale theo-
rem, etc. The theory of limit behaviour “on the average”, the ergodic theory [45], was
considerably developed. Theoretical and applied achievements of the bifurcation theory
have become obvious [3, 13, 60]. The fundamental textbook on dynamical systems [39]
and the introductory review [42] are now available.

The achievements regarding transition processes have been not so impressive, and
only relaxations in linear and linearized systems are well studied. The applications of this
elementary theory received the name the “relaxation spectroscopy”. Development of this
discipline with applications in chemistry and physics was distinguished by Nobel Prize
(M. Eigen [24]).

A general theory of transition processes of essentially non-linear systems does not exist.
We encountered this problem while studying transition processes in catalytic reactions. It
was necessary to give an interpretation on anomalously long transition processes observed
in experiments. To this point, a discussion arose and even some papers were published.
The focus of the discussion was: do the slow relaxations arise from slow “strange pro-
cesses” (diffusion, phase transitions, and so on), or could they have a purely kinetic (that
is dynamic) nature?

Since a general theory of relaxation times and their singularities was not available at
that time, we constructed it by ourselves from the very beginning [35, 34, 32, 33, 25,
30]. In the present paper the first, topological part of this theory is presented. It is
quite elementary theory, though rather lengthy ε − δ reasonings may require some time
and effort. Some examples of slow relaxation in chemical systems, their theoretical and
numerical analysis, and also an elementary introduction into the theory can be found in
the monograph [78].

Two simplest mechanisms of slow relaxations can be readily mentioned: the delay of
motion near an unstable fixed point, and the delay of motion in a domain where a fixed
point appears under a small change of parameters. Let us give some simple examples of
motion in the segment [−1, 1].

The delay near an unstable fixed point exists in the system ẋ = x2 − 1. There are two
fixed points x = ±1 on the segment [−1, 1], the point x = 1 is unstable and the point
x = −1 is stable. The equation is integrable explicitly:

x = [(1 + x0)e
−t − (1 − x0)e

t]/[(1 + x0)e
−t + (1 − x0)e

t],
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where x0 = x(0) is initial condition at t = 0. If x0 6= 1 then, after some time, the motion
will come into the ε-neighborhood of the point x = −1, for whatever ε > 0. This process
requires the time

τ(ε, x0) = −1

2
ln

ε

2 − ε
− 1

2
ln

1 − x0

1 + x0
.

It is assumed that 1 > x0 > ε − 1. If ε is fixed then τ tends to +∞ as x0 → 1 like
−1

2
ln(1− x0). The motion that begins near the point x = 1 remains near this point for a

long time ( ∼ −1
2
ln(1−x0)), and then goes to the point x = −1. In order to show it more

clear, let us compute the time τ ′ of residing in the segment [−1 + ε, 1− ε] of the motion,
beginning near the point x = 1, i.e. the time of its stay outside the ε-neighborhoods of
fixed points x = ±1. Assuming 1 − x0 < ε, we obtain

τ ′(ε, x0) = τ(ε, x0) − τ(2 − ε, x0) = − ln
ε

2 − ε
.

One can see that if 1− x0 < ε then τ ′(ε, x0) does not depend on x0. This is obvious: the
time τ ′ is the time of travel from point 1 − ε to point −1 + ε.

Let us consider the system ẋ = (k + x2)(x2 − 1) on [−1, 1] in order to obtain the
example of delay of motion in a domain where a fixed point appears under small change
of parameter. If k > 0, there are again only two fixed points x = ±1, x = −1 is a stable
point and x = 1 is an unstable one. If k = 0 there appears the third point x = 0. It is
not stable, but “semistable” in the following sense: If the initial position is x0 > 0 then
the motion goes from x0 to x = 0. If x0 < 0 then the motion goes from x0 to x = −1. If
k < 0 then apart from x = ±1, there are two other fixed points x = ±

√

|k|. The positive
point is stable, and the negative one is unstable. Let us consider the case k > 0. The
time of motion from the point x0 to the point x1 can be found explicitly (x0,1 6= ±1):

t =
1

2
ln

1 − x1

1 + x1

− 1

2
ln

1 − x0

1 + x0

− 1√
k

(

arctan
x1√
k
− arctan

x0√
k

)

.

If x0 > 0, x1 < 0, k > 0, k → 0, then t→ ∞ like π/
√
k.

The examples presented do not exhaust all the possibilities: they rather illustrate two
common mechanisms of slow relaxations appearance.

Below we study parameter-dependent dynamical systems. The point of view of topo-
logical dynamics is adopted (see [16, 37, 36, 56, 65, 80]). In the first place this means
that, as a rule, the properties associated with the smoothness, analyticy and so on will
be of no importance. The phase space X and the parameter space K are compact metric
spaces: for any points x1, x2 from X (k1, k2 from K) the distance ρ(x1, x2) (ρK(k1, k2)) is
defined with the following properties:

ρ(x1, x2) = ρ(x2, x1), ρ(x1, x2) + ρ(x2, x3) ≥ ρ(x1, x3),

ρ(x1, x2) = 0 if and only if x1 = x2 (similarly for ρK).

The sequence xi converges to x∗ (xi → x∗) if ρ(xi, x
∗) → 0. The compactness means

that from any sequence a convergent subsequence can be chosen.
The states of the system are represented by the points of the phase space X. The

reader can think of X and K as closed, bounded subsets of finite-dimensional Euclidean
spaces, for example polyhedrons, and ρ and ρK are the standart Euclidean distances.
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Let us define the phase flow (the transformation “shift over the time t”). It is a
function f of three arguments: x ∈ X (of the initial condition), k ∈ K (the parameter
value) and t ≥ 0, with values in X: f(t, x, k) ∈ X. This function is assumed continuous
on [0,∞) ×X ×K and satisfying the following conditions:

• f(0, x, k) = x (shift over zero time leaves any point in its place);

• f(t, f(t′, x, k), k) = f(t + t′, x, k) (the result of sequentially executed shifts over t
and t′ is the shift over t+ t′);

• if x 6= x′, then f(t, x, k) 6= f(t, x′, k) (for any t distinct initial points are shifted in
time t into distinct points for.

For given value of parameter k ∈ K and initial state x ∈ X the ω-limit set ω(x, k) is
the set of all limit points of f(t, x, k) for t→ ∞:

y ∈ ω(x, k) if and only if there exists such a sequence ti ≥ 0

that ti → ∞ and f(ti, x, k) → y.

Examples of ω-limit points are stationary (fixed) points, points of limit cycles and so on.
The relaxation of a system can be understood as its motion to the ω-limit set corre-

sponding to given initial state and value of parameter. The relaxation time can be defined
as the time of this motion. However, there are several possibilities to make this definition
precise.

Let ε > 0. For given value of parameter k we denote by τ1(x, k, ε) the time during which
the system will come from the initial state x into the ε-neighbourhood of ω(x, k) (for the
first time). The (x, k)-motion can enter the ε-neighborhood of the ω-limit set, then this
motion can leave it, then reenter it, and so on it can enter and leave the ε-neighbourhood
of ω(x, k) several times. After all, the motion will enter this neighbourhood finally, but
this may take more time than the first entry. Therefore, let us introduce for the (x, k)-
motion the time of being outside the ε-neighborhood of ω(x, k) (τ2) and the time of final
entry into it (τ3). Thus, we have a system of relaxation times that describes the relaxation
of the (x, k)-motion to its ω-limit set ω(x, k):

τ1(x, k, ε) = inf{t > 0 | ρ∗(f(t, x, k), ω(x, k)) < ε};
τ2(x, k, ε) = mes{t > 0 | ρ∗(f(t, x, k), ω(x, k)) ≥ ε};
τ3(x, k, ε) = inf{t > 0 | ρ∗(f(t′, x, k), ω(x, k)) < ε for t′ > t}.

Here mes is the Lebesgue measure (on the real line it is length), ρ∗ is the distance from
the point to the set: ρ∗(x, P ) = infy∈P ρ(x, y).

The ω-limit set depends on an initial state (even under the fixed value of k). The limit
behavior of the system can be characterized also by the total limit set

ω(k) =
⋃

x∈X

ω(x, k).

The set ω(k) is the union of all ω(x, k) under given k. Whatever initial state would be, the
system after some time will be in the ε-neighborhood of ω(k). The relaxation can be also
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considered as a motion towards ω(k). Introduce the corresponding system of relaxation
times:

η1(x, k, ε) = inf{t > 0 | ρ∗(f(t, x, k), ω(k)) < ε};
η2(x, k, ε) = mes{t > 0 | ρ∗(f(t, x, k), ω(k)) ≥ ε};
η3(x, k, ε) = inf{t > 0 | ρ∗(f(t′, x, k), ω(k)) < ε for t′ > t}.

Now we are able to define a slow transition process. There is no distinguished scale
of time, which could be compared with relaxation times. Moreover, by decrease of the
relaxation accuracy ε the relaxation times can become of any large amount even in the
simplest situations of motion to unique stable fixed point. For every initial state x and
given k and ε all relaxation times are finite. But the set of relaxation time values for
various x and k and given ε > 0 can be unbounded. Just in this case we speak about the
slow relaxations.

Let us consider the simplest example. Let us consider the differential equation ẋ = x2−
1 on the segment [−1, 1] . The point x = −1 is stable, the point x = 1 is unstable. For any
fixed ε > 0, ε < 1

2
the relaxation times τ1,2,3, η3 have the singularity: τ1,2,3, η3(x, k, ε) → ∞

as x→ 1, x < 1. The times η1, η2 remain bounded in this case.
Let us say that the system has τi- (ηi)-slow relaxations, if for some ε > 0 the function

τi(x, k, ε) (ηi(x, k, ε)) is unbounded from above in X×K, i.e. for any t > 0 there are such
x ∈ X, k ∈ K, that τi(x, k, ε) > t (ηi(x, k, ε) > t).

One of the possible reasons of slow relaxations is a sudden jump in dependence of
the ω-limit set ω(x, k) of x, k (as well as a jump in dependence of ω(k) of k). These
“explosions” (or bifurcations) of ω-limit sets are studied in Sec. 1. In the next Sec. 2 we
give the theorems, providing necessary and sufficient conditions of slow relaxations. Let
us mention two of them.

Theorem 2.1′ The system has τ1-slow relaxations if and only if there is a singularity
of the dependence ω(x, k) of the following kind: there are such points x∗ ∈ X, k∗ ∈ K,
sequences xi → x∗, ki → k∗, and number δ > 0, that for any i, y ∈ ω(x∗, k∗), z ∈ ω(xi, ki)
the distance ρ(y, z) > δ.

The singularity of ω(x, k) described in the statement of the theorem indicates that the
ω-limit set ω(x, k) makes a jump: the distance from any point of ω(xi, ki) to any point of
ω(x∗, k∗) is greater than δ.

By the next theorem, necessary and sufficient conditions of τ3-slow relaxations are
given. Since τ3 ≥ τ1, the conditions of τ3-slow relaxations are weaker than the conditions
of Theorem 2.1′, and τ3-slow relaxations are “more often” than τ1-slow relaxation (the
relations between different kinds of slow relaxations with corresponding examples are
given below in Subsec. 3.2). That is why the discontinuities of ω-limit sets in the following
theorem are weaker.

Theorem 2.7 τ3-slow relaxations exist if and only if at least one of the following condi-
tions is satisfied:

1. There are points x∗ ∈ X, k∗ ∈ K, y∗ ∈ ω(x∗, k∗), sequences xi → x∗, ki → k∗ and
number δ > 0 such that for any i and z ∈ ω(xi, ki) the inequality ρ(y∗, z) > δ is
valid1

1The existence of one such y is sufficient, compare it with Theorem 2.1′.
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2. There are x ∈ X, k ∈ K such that x 6∈ ω(x, k), for any t > 0 can be found y(t) ∈ X,
for which f(t, y(t), k) = x (y(t) is a shift of x over −t), and for some z ∈ ω(x, k)
can be found such a sequence ti → ∞ that y(ti) → z. 2

An example of the point satisfying the condition 2 is provided by any point lying on
the loop, that is the trajectory starting from the fixed point and returning to the same
point.

Other theorems of Sec. 2 also establish connections between slow relaxations and pe-
culiarities of the limit behaviour under different initial conditions and parameter values.
In general, in topological and differential dynamics the main attention is paid to the limit
behavior of dynamical systems [16, 37, 36, 68, 12, 56, 65, 80, 57, 41, 18, 39, 42]. In appli-
cations, however, it is often of importance how rapidly the motion approaches the limit
regime. In chemistry, long-time delay of reactions far from equilibrium (induction peri-
ods) have been studied since Van’t-Hoff [73] (the first Nobel Prize laureate in Chemistry).
It is necessary to mention the classical monograph of N.N. Semjonov [30] (also the Nobel
Prize laureate in Chemistry), where induction periods in combustion are studied. From
the latest works let us note [69]. When minimizing functions by relaxation methods, the
similar delays can cause some problems. The paper [29], for example, deals with their
elimination. In the simplest cases, the slow relaxations are bound with delays near un-
stable fixed points. In the general case, there is a complicated system of interrelations
between different types of slow relaxations and other dynamical peculiarities, as well as
of different types of slow relaxations between themselves. These relations are the subject
of Sects. 2, 3. The investigation is performed generally in the way of classic topological
dynamics [16, 37, 36]. There are, however, some distinctions:

• From the very beginning not only one system is considered, but also practically
more important case of parameter dependent systems;

• The motion in these systems is defined, generally speaking, only for positive times.

The last circumstance is bound with the fact that for applications (in particular, for
chemical ones) the motion is defined only in a positive invariant set (in balance polyhedron,
for example). Some results can be accepted for the case of general semidynamical systems
[72, 14, 54, 70, 20], however, for the majority of applications, the considered degree of
generality is more than sufficient.

For a separate semiflow f (without parameter) η1-slow relaxations are impossible, but
η2-slow relaxations can appear in a separate system too (Example 2.1). Theorem 3.1 gives
the necessary conditions for η2-slow relaxations in systems without parameter.

Let us recall the definition of non-wandering points. A point x∗ ∈ X is the non-
wandering point for the semiflow f , if for any neighbourhood U of x∗ and for any T > 0
there is such t > T that f(t, U)

⋂

U 6= ∅. Let us denote by ωf the complete ω-limit set
of one semiflow f (instead of ω(k)).

Theorem 3.1 Let a semiflow f possess η2-slow relaxations. Then there exists a non-
wandering point x∗ ∈ X which does not belong to ωf .

2That is, the (x, k)-trajectory is a generalized loop: the intersection of its ω-limit set and α-limit set
(i.e., the limit set for t → −∞) is non-empty, and x is not a limit point for the (x, k)-motion
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For smooth systems it is possible to obtain results that have no analogy in topological
dynamics. Thus, it is shown in Sec. 2 that “almost always” η2-slow relaxations are ab-
sent in one separately taken C1-smooth dynamical system (system, given by differential
equations with C1-smooth right parts). Let us explain what “almost always” means in
this case. A set Q of C1-smooth dynamical systems with common phase space is called
nowhere-dense in C1-topology, if for any system from Q an infinitesimal perturbation of
right hand parts can be chosen (perturbation of right hand parts and its first derivatives
should be smaller than an arbitrary given ε > 0) such that the perturbed system should
not belong to Q and should exist ε1 > 0 (ε1 < ε) such that under ε1-small variations of
right parts (and of first derivatives) the perturbed system could not return in Q. The
union of finite number of nowhere-dense sets is also nowhere-dense. It is not the case for
countable union: for example, a point on a line forms nowhere-dense set, but the count-
able set of rational numbers is dense on the real line: a rational number is on any segment.
However, both on line and in many other cases countable union of nowhere-dense sets can
be considered as very “meagre”. Its complement is so-called “residual set”. In particular,
for C1-smooth dynamical systems on compact phase space the union of countable number
of nowhere-dense sets has the following property: any system, belonging to this union,
can be eliminated from it by infinitesimal perturbation. The above words “almost always”
meant: except for union of countable number of nowhere-dense sets.

In two-dimensional case (two variables), “almost any” C1-smooth dynamical system
is rough, i.e. its phase portrait under small perturbations is only slightly deformed,
qualitatively remaining the same. For rough two-dimensional systems ω-limit sets consist
of fixed points and limit cycles, and the stability of these points and cycles can be verified
by linear approximation. The correlation of six different kinds of slow relaxations between
themselves for rough two-dimensional systems becomes considerably more simple.

Theorem 3.5 Let M be C∞-smooth compact manifold, dimM = 2, F be a structural
stable smooth dynamical system over M , F |X be an associated with M semiflow over
connected compact positive-invariant subset X ⊂M . Then:

1. For F |X the existence of τ3-slow relaxations is equivalent to the existence of τ1,2-
and η3-slow relaxations;

2. F |X does not possess τ3-slow relaxations if and only if ωF

⋂

X consists of one fixed
point or of points of one limit cycle;

3. η1,2-slow relaxations are impossible for F |X.

For smooth rough two-dimensional systems it is easy to estimate the measure (area)
of the region of durable delays µi(t) = mes{x ∈ X | τi(x, ε) > t} under fixed sufficiently
small ε and large t (the parameter k is absent because a separate system is studied).
Asymptotical behaviour of µi(t) as t→ ∞ does not depend on i and

lim
t→∞

lnµi(t)

t
= −min{κ1, . . . ,κn},

where n is a number of unstable limit motions (of fixed points and cycles) in X, and the
numbers are determined as follows. We denote by Bi, . . . , Bn the unstable limit motions
lying in X.
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1. Let Bi be an unstable node or focus. Then κ1 is the trace of matrix of linear
approximation in the point bi.

2. Let bi be a saddle. Then κ1 is positive eigenvalue of the matrix of linear approxi-
mation in this point.

3. Let bi be an unstable limit cycle. Then κi is characteristic indicator of the cycle
(see [15], p. 111).

Thus, the area of the region of initial conditions, which result in durable delay of the
motion, in the case of smooth rough two-dimensional systems behaves at large delay
times as exp(−κt), where t is a time of delay, κ is the smallest number of κi, . . . ,κn. If
κ is close to zero (the system is close to bifurcation [12, 15]), then this area decreases
slowly enough at large t. One can find here analogy with linear time of relaxation to a
stable fixed point

τl = −1/maxReλ

where λ runs through all the eigenvalues of the matrix of linear approximation of right
parts in this point, max Reλ is the largest (the smallest by value) real part of eigenvalue,
τl → ∞ as Reλ→ 0.

However, there are essential differences. In particular, τl comprises the eigenvalues
(with negative real part) of linear approximation matrix in that (stable) point, to which
the motion is going, and the asymptotical estimate µi comprises the eigenvalues (with
positive real part) of the matrix in that (unstable) point or cycle, near which the motion
is retarded.

In typical situations for two-dimensional parameter depending systems the singularity
of τl entails existence of singularities of relaxation times τi (to this statement can be given
an exact meaning and it can be proved as a theorem). The inverse is not true. As an
example should be noted the delays of motions near unstable fixed points. Besides, for
systems of higher dimensions the situation becomes more complicated, the rough systems
cease to be “typical” (this was shown by S. Smale [67], the discussion see in [12]), and the
limit behaviour even of rough systems does not come to tending of motion to fixed point
or limit cycle. Therefore the area of reasonable application the linear relaxation time τl
to analysis of transitional processes becomes in this case even more restricted.

Any real system exists under the permanent perturbing influence of the external world.
It is hardly possible to construct a model taking into account all such perturbations. Be-
sides that, the model describes the internal properties of the system only approximately.
The discrepancy between the real system and the model arising from these two circum-
stances is different for different models. So, for the systems of celestial mechanics it can
be done very small. Quite the contrary, for chemical kinetics, especially for kinetics of
heterogeneous catalysis, this discrepancy can be if not too large but, however, not such
small to be neglected. Strange as it may seem, the presence of such an unpredictable di-
vergence of the model and reality can simplify the situation: The perturbations “conceal”
some fine details of dynamics, therefore these details become irrelevant to analysis of real
systems.

Sec. 4 is devoted to the problems of slow relaxations in presence of small perturbations.
As a model of perturbed motion here are taken ε-motions: the function of time ϕ(t) with
values in X, defined at t ≥ 0, is called ε-motion (ε > 0) under given value of k ∈ K, if for
any t ≥ 0, τ ∈ [0, T ] the inequality ρ(ϕ(t+ τ), f(τ, ϕ(t), k)) < ε holds. In other words,
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if for an arbitrary point ϕ(t) one considers its motion on the force of dynamical system,
this motion will diverge ϕ(t + τ) from no more than at ε for τ ∈ [0, T ]. Here [0, T ] is
a certain interval of time, its length T is not very important (it is important that it is
fixed), because later we shall consider the case ε → 0.

There are two traditional approaches to the consideration of perturbed motions. One of
them is to investigate the motion in the presence of small constantly acting perturbations
[22, 51, 28, 46, 52, 71, 53], the other is the study of fluctuations under the influence of
small stochastic perturbations [59, 74, 75, 43, 44, 76]. The stated results join the first
direction, there to are used some ideas bound with the second one. The ε-motions were
studied earlier in differential dynamics, in general in connection with the theory of Anosov
about ε-trajectories and its applications [41, 6, 77, 26, 27], see also [23].

When studying perturbed motions, we correspond to each point “a bundle” of ε-
motions, {ϕ(t)}, t ≥ 0 going out from this point (ϕ(0) = x) under given value of parameter
k. The totality of all ω-limit points of these ε-motions (of limit points of all ϕ(t) as t→ ∞)
is denoted by ωε(x, k). Firstly, it is necessary to notice that ωε(x, k) does not always tend
to ω(x, k) as ε → 0: the set ω0(x, k) =

⋂

ε>0 ω
ε(x, k) may not coincide with ω(x, k). In

Sec. 4 there are studied relaxation times of ε-motions and corresponding slow relaxations.
In contrast to the case of nonperturbed motion, all natural kinds of slow relaxations are
not considered because they are too numerous (eighteen), and the principal attention is
paid to two of them, which are analyzed in more details than in Sec. 2.

The structure of limit sets of one perturbed system is studied. The analogy of general
perturbed systems and Morse-Smale systems as well as smooth rough two-dimensional sys-
tems is revealed. Let us quote in this connection the review by Professor A.M.Molchanow
of the thesis [31] of A.N.Gorban3 (1981): “After classic works of Andronov, devoted to
the rough systems on the plane, for a long time it seemed that division of plane into finite
number of cells with source and drain is an example of structure of multidimensional sys-
tems too... The most interesting (in the opinion of opponent) is the fourth chapter “Slow
relaxations of the perturbed systems”. Its principal result is approximately as follows. If
a complicated dynamical system is made rough (by means of ε-motions), then some its
important properties are similar to the properties of rough systems on the plane. This is
quite positive result, showing in what sense the approach of Andronov can be generalized
for arbitrary systems”.

To study limit sets of perturbed system, two relations are introduced in [30] for general
dynamical systems: of preorder % and of equivalence ∼:

• x1 % x2 if for any ε > 0 there is such a ε-motion ϕ(t) that ϕ(0) = x1 and ϕ(τ) = x2

for some τ > 0;

• x1 ∼ x2 if x1 % x2 and x2 % x1.

For smooth dynamical systems with finite number of “basic attractors” similar relation
of equivalence had been introduced with the help of action functionals in studies on
stochastic perturbations of dynamical systems ([76] p. 222 and further). The concepts
of ε-motions and related topics can be found in [23]. For the Morse-Smale systems this
relation is the Smale order [68].

Let ω0 =
⋃

x∈X ω
0(x) (k is omitted, because only one system is studied). Let us identify

equivalent points in ω0. The obtained factor-space is totally disconnected (each point

3This paper is the first complete publication of that thesis.
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possessing a fundamental system of neighborhoods open and closed simultaneously). Just
this space ω0/ ∼ with the order over it can be considered as a system of sources and drains
analogous to the system of limit cycles and fixed points of smooth rough two-dimensional
dynamical system. The sets ω0(x) can change by jump only on the boundaries of the
region of attraction of corresponding “drains” (Theorem 4.4). This totally disconnected
factor-space ω0/ ∼ is the generalization of the Smale diagrams [68] defined for the Morse-
Smale systems onto the whole class of general dynamical systems. The interrelation of six
principal kinds of slow relaxations in perturbed system is analogous to their interrelation
in smooth rough two-dimensional system described in Theorem 3.5.

Let us enumerate the most important results of the investigations being stated.

1. It is not always necessary to search for “foreign” reasons of slow relaxations, in the
first place one should investigate if there are slow relaxations of dynamical origin in
the system.

2. One of possible reasons of slow relaxations is the existence of bifurcations (explo-
sions) of ω-limit sets. Here, it is necessary to study the dependence ω(x, k) of limit
set both on parameters and initial data. It is violation of the continuity with respect
to (x, k) ∈ X ×K that leads to slow relaxations.

3. The complicated dynamics can be made “rough” by perturbations. The useful
model of perturbations in topological dynamics provide the ε-motions. For ε → 0
we obtain the rough structure of sources and drains similar to the Morse-Smale
systems (with totally disconnected compact instead of finite set of attractors).

4. The interrelations between the singularities of relaxation times and other peculiar-
ities of dynamics for general dynamical system under small perturbations are the
same as for the Morse-Smale systems, and, in particular, the same as for rough
two-dimensional systems.

5. There is a large quantity of different slow relaxations, unreducible to each other,
therefore for interpretation of experiment it is important to understand which namely
of relaxation times is large.

6. Slow relaxations in real systems often are “bounded slow”, the relaxation time is
large (essentially greater than could be expected proceeding from the coefficients
of equations and notions about the characteristic times), but nevertheless bounded.
When studying such singularities, appears to be useful the following method, as-
cending to the works of A.A. Andronov: the considered system is included in ap-
propriate family for which slow relaxations are to be studied in the sense accepted
in the present work. This study together with the mention of degree of proximity
of particular systems to the initial one can give an important information.

1 Bifurcations (Explosions) of ω-limit Sets

Let X be a compact metric space with the metrics ρ, and K be a compact metric space
(the space of parameters) with the metrics ρK ,

f : [0,∞) ×X ×K → X (1)
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be a continuous mapping for any t ≥ 0, k ∈ K; let mapping f(t, ·, k) : X → X be
homeomorphism of X into subset of X and under every k ∈ K let these homeomorphisms
form monoparametric semigroup:

f(0, ·, k) = id, f(t, f(t′, x, k), k) = f(t+ t′, x, k) (2)

for any t, t′ ≥ 0, x ∈ X.
Below we call the semigroup of mappings f(t, ·, k) under fixed k a semiflow of homeo-

morphisms (or, for short, semiflow), and the mapping (1) a family of semiflows or simply
a system (1). It is obvious that all results, concerning the system (1), are valid also in
the case when X is a phase space of dynamical system, i.e. when every semiflow can be
prolonged along t to the left onto the whole axis (−∞,∞) up to flow (to monoparametric
group of homeomorphisms of X onto X).

1.1 Extension of Semiflows to the Left

It is clear that under fixed x and k the mapping f(·, x, k): t→ f(t, x, k) can be, generally
speaking, defined also for certain negative t, preserving semigroup property (2). Really,
consider under fixed x and k the set of all non-negative t for which there is point qi ∈ X
such that f(t, qi, k) = x. Let us denote the upper bound of this set by T (x, k):

T (x, k) = sup{t | ∃qt ∈ X, f(t, qt, k) = x}. (3)

Under given t, x, k the point qt, if it exists, has a single value, since the mapping
f(t, ·, k) : X → X is homeomorphism. Introduce the denotation f(−t, x, k) = qt. If
f(−t, x, k) is determined, then for any τ within 0 ≤ τ ≤ t the point f(−τ, x, k) is deter-
mined: f(−τ, x, k) = f(t− τ, f(−t, x, k), k). Let T (x, k) < ∞, T (x, k) > tn > 0 (n =
1, 2, . . .), tn → T . Let us choose from the sequence f(−tn, x, k) a subsequence converging
to some q∗ ∈ X and denote it by {qj}, and the corresponding times denote by −tj (qj =
f(−tj , x, k)). Owing to the continuity of f we obtain: f(tj , qj, k) → f(T (x, k), q∗, k),
therefore f(T (x, k), q∗, k) = x. Thus, f(−T (x, k), x, k) = q∗.

So, under fixed x, k the mapping f was determined by us in interval [−T (x, k),∞), if
T (x, k) is finite, and in (−∞,∞) in the opposite case. Let us denote by S the set of all
triplets (t, x, k), in which f is now determined. For enlarged mapping f the semigroup
property in following form is valid:

Proposition 1.1 (Enlarged semigroup property).
A) If (τ, x, k) and (t, f(τ, x, k), k) ∈ S, then (t+ τ, x, k) ∈ S and the equality

f(t, f(t, x, k), k) = f(t+ τ, x, k) (4)

is true.
B) Inversely, if (t+ τ, x, k) and (τ, x, k) ∈ S, then (t, f(τ, x, k), k) ∈ S and (4) is true.
Thus, if the left part of the equality (4) makes sense, then its right part is determined

too and the equation is valid. If there are determined both the right part and f(τ, x, k) in
the left part, then the whole left part makes sense and (4) is true.

Proof. The proof consists in consideration of several variants. Since the parameter k
is assumed to be fixed, for the purpose of shortening the record it is absent in following
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formulas.
1. f(t, f(−τ, x)) = f(t− τ, x) (t, τ > 0) a) t > τ > 0.
Let the left part make sense: f(−τ, x) is determined. Then, taking into account that
t − τ > 0, we have f(t, f(−τ, x)) = f(t − τ + τ, f(−τ, x)) = f(t − τ, f(τ, f(−τ, x))) =
f(t− τ, x), since f(τ, f(−τ, x)) = x by definition.

Therefore the equality 1 is true (the right part makes sense since t > τ)- the part for
the case 1a is proved. Inversely, if f(−τ, x) is determined, then the whole left part of 1
(t > 0) makes sense, and then according to the proved the equality is true.

The other variants are considered in analogous way.

Proposition 1.2 The set S is closed in (−∞,∞)×X ×K and the mapping f : S → X
is continuous.

Proof. Denote by 〈−T (x, k),∞) the interval [−T (x, k),∞), if T (x, k) is finite, and
the whole axis (−∞,∞) in opposite case. Let tn → t∗, xn → x∗, kn → k∗, and
tn ∈ 〈−T (xn, kn),∞). To prove the proposition, it should be made certain that t∗ ∈
〈−T (x∗, k∗),∞) and f(tn, xn, kn) → f(t∗, x∗, k∗). If t∗ > 0, this follows from the conti-
nuity of f in [0,∞) × X × K. Let t∗ ≤ 0. Then it can be supposed that tn < 0. Let
us redenote with changing the signs tn by −tn and t∗ by −t∗. Let us choose from the
sequence f(−tn, xn, kn) using the compactness of X a subsequence converging to some
q∗ ∈ X. let us denote it by qj , and the sequences of corresponding tn, xn and kn denote
by tj , xj and kj. The sequence f(tj, qj , kj) converges to f(t∗, q∗, k∗) (tj > 0, t∗ > 0).
But f(tj, qj, kj) = xj → x∗. That is why f(t∗, q∗, k∗) = x∗ and f(−t∗, x∗, k∗) = q∗ is
determined. Since q∗ is an arbitrary limit point of {qn}, and the point f(−t∗, x∗, k∗), if it
exists, is determined by given t∗, x∗, k∗ and has a single value, the sequence qn converges
to q∗. The proposition is proved.

Later on we shall denominate the mapping f(·, x, k) : 〈−T (x, k), ω) → X k-motion
of the point x ((k, x)-motion), the image of (k, x)-motion – k-trajectory of the point x
((k, x)-trajectory), the image of the interval 〈−T (x, k), 0) a negative, and the image of
0,∞) a positive k-semitrajectory of the point x ((k, x)-semitrajectory). If T (x, k) = ∞,
then let us call the k-motion of the point x the whole k-motion, and the corresponding
k-trajectory the whole k-trajectory.

Let (xn, kn) → (x∗, k∗), tn → t∗, tn, t
∗ > 0 and for any n the (kn, xn)-motion be

determined in the interval [−tn,∞), i.e. [−tn,∞) ⊂ 〈−T (xn, kn),∞). Then (k∗, x∗)-
motion is determined in [−t∗,∞]. In particular, if all (kn, xn)-motions are determined
in [−t̄,∞) (t̄ > 0), then (k∗, x∗)-motion is determined in too. If tn → ∞ and (kn, xn)-
motion is determined in [−tn,∞), then (k∗, x∗)-motion is determined in (−∞,∞) and is
a whole motion. In particular, if all the (kn, xn)-motions are whole, then (k∗, x∗)-motion
is whole too. All this is a direct consequence of the closure of the set S, i.e. of the domain
of definition of extended mapping f . It should be noted that from (xn, kn) → (x∗, k∗)
and [−t∗,∞) ⊂ 〈−T (x∗, k∗),∞) does not follow that for any ε > 0 [−t∗ + ε,∞) ⊂
〈−T (xn, kn),∞) for n large enough.

Let us note an important property of uniform convergence in compact intervals. Let
(xn, kn) → (x∗, k∗) and all (kn, xn)-motions and correspondingly (k∗, x∗)-motion be de-
termined in compact interval [a, b]. Then (kn, xn)-motions converge uniformly in [a, b] to
(k∗, x∗)-motion: f(t, xn, kn) ⇉ f(t, x∗, k∗). This is a direct consequence of continuity of
the mapping f : S → X
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1.2 Limit Sets

Definition 1.1 Point p ∈ X is called ω- (α-)-limit point of the (k, x)-motion (corre-
spondingly of the whole (k, x)-motion), if there is such sequence tn → ∞ (tn → −∞) that
f(tn, x, k) → p as n → ∞. The totality of all ω- (α-)-limit points of (k, x)-motion is
called its ω- (α-)-limit set and is denoted by ω(x, k) (α(x, k)).

Definition 1.2 A set W ⊂ X is called k-invariant set, if for any x ∈W the (k, x)-motion
is whole and the whole (k, x)-trajectory belongs W . In similar way, let us call a set V ⊂ X
(k,+)-invariant ((k,positive)-invariant), if for any x ∈ V, t > 0 f(t, x, k) ∈ V .

Proposition 1.3 The sets ω(x, k) and α(x, k) are k-invariant.

Proof. Let p ∈ ω(x, k), tn → ∞, xn = f(tn, x, k) → p. Note that (k, xn)-motion is deter-
mined at least in [−tn,∞). Therefore, as it was noted above, (k, p)-motion is determined
in (−∞,∞), i.e. it is whole. Let us show that the whole (k, p)-trajectory consists of ω-
limit points of (k, x)-motion. Let f(t̄, p, k) be an arbitrary point of (k, p)-trajectory. Since
t → ∞, from some nis determined a sequence f(t̄ + tn, x, k)). It converges to f(t̄, p, k),
since f(t̄ + tn, x, k) = f(t̄, f(tn, x, k), k) (according to Proposition 1.1), f(tn, x, k) → p
and f : S → X is continuous (Proposition 1.2).

Now, let q ∈ α(x, k), tn → −∞ and xn = f(tn, x, k) → q. Since (according to the
definition of α-limit points) (k, x)-motion is whole, then all (k, xn)-motions are whole too.
Therefore, as it was noted, (k, q)-motion is whole. Let us show that every point f(t̄, q, k)
of (k, q)-trajectory is α-limit for (k, x)-motion. Since (k, x)-motion is whole, then the
semigroup property and continuity of f in S give

f(t̄+ tn, x, k) = f(t̄, f(tn, x, k), k) → f(t̄, q, k),

and since t̄ + tn → −∞, then f(t̄, q, k) is α-limit point of (k, x)-motion. Proposition 1.3
is proved.

Further we need also the complete ω-limit set ω(k) : ω(k) =
⋃

x∈X ω(x, k). The set
ω(k) is k-invariant, since it is the union of k-invariant sets.

Proposition 1.4 The sets ω(x, k), α(x, k) (the last in the case when (k, x)-motion is
whole) are nonempty, closed and connected.

The proof practically literally coincides with the proof of similar statements for usual
dynamical systems ([56], p.356-362). The set ω(k) might be unclosed.

Example 1.1 (The set ω(k) might be unclosed). Let us consider the system given by the
equations ẋ = y(x− 1), ẏ = −x(x− 1) in the circle x2 + y2 ≤ 1 on the plane.

The complete ω-limit set is ω = {(1, 0)}
⋃

{(x, y) | x2 + y2 < 1}. It is unclosed. The
closure of ω coincides with the whole circle (x2+y2 ≤ 1), the boundary of ω consists of two
trajectories: of the fixed point (1, 0) ∈ ω and of the loop {(x, y) | x2 + y2 = 1, x 6= 1} * ω

Proposition 1.5 The sets ∂ω(k), ∂ω(k) \ ω(k) and ∂ω(k)
⋂

ω(k) are (k,+)-invariant.
Furthermore, if ∂ω(k) \ω(k) 6= ∅, then ∂ω(k)

⋂

ω(k) 6= ∅ (∂ω(k) = ω(k) \ intω(k) is the
boundary of the set ω(k)).
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Let us note that for the propositions 1.4 and 1.5 to be true, the compactness of X is
important, because for non-compact spaces analogous propositions are incorrect, generally
speaking.

To study slow relaxations, we need also sets that consist of ω-limit sets ω(x, k) as of
elements (the sets of ω-limit sets):

Ω(x, k) = {ω(x′, k) | ω(x′, k) ⊂ ω(x, k), x′ ∈ X};
Ω(k) = {ω(x, k) | x ∈ X}, (5)

Ω(x, k) is the set of all ω-limit sets, lying in ω(x, k), Ω(k) is the set of ω-limit sets of all
k-motions.

1.3 Convergences in the Spaces of Sets

Further we consider the connection between slow relaxations and violations of continu-
ity of the dependencies ω(x, k), ω(k), Ω(x, k), Ω(k). Let us introduce convergences in
spaces of sets and investigate the mappings continuous with respect to them. One notion
of continuity, used by us, is well known (see [48] Sec. 18 and [49] Sec. 43, lower semi-
continuity). Two other ones are some more “exotic”. In order to reveal the resemblance
and distinctions between these convergences, let us consider them simultaneously (all the
statements, concerning lower semicontinuity, are variations of known ones, see [48, 49]).

Let us denote the set of all nonempty subsets of X by B(X), and the set of all
nonempty subsets of B(X) by B(B(X)).

Let us introduce in B(X) the following proximity measures: let p, q ∈ B(X), then

d(p, q) = sup
x∈p

inf
y∈q

ρ(x, y); (6)

r(p, q) = inf
x∈p,y∈q

ρ(x, y). (7)

The “distance” d(p, q) represents “a half” of known Hausdorff metrics ([49], p.223):

dist(p, q) = max{d(p, q), d(q, p)}. (8)

It should be noted that, in general, d(p, q) 6= d(q, p). Let us determine in B(X) converges
using the introduced proximity measures. Let qn be a sequence of points of B(X). We
say that qn d-converges to p ∈ B(X), if d(p, qn) → 0. Analogously, qn r-converges to
p ∈ B(X), if r(p, qn) → 0. Let us notice that d-convergence defines topology in B(X)
with a countable base in every point and the continuity with respect to this topology
is equivalent to d-continuity (λ-topology [48], p.183). As a basis of neighborhoods of
the point p ∈ B(X) in this topology can be taken, for example, the family of sets {q ∈
B(X) | d(p, q) < 1/n (n = 1, 2, . . .)}. The topology conditions can be easily verified, since
the triangle inequality

d(p, s) ≤ d(p, q) + d(q, s) (9)

is true (in regard to these conditions see, for example, [19], p.19-20), r-convergence does
not determine topology in B(X). To prove this, let us use the following obvious property
of convergence in topological spaces: if pi ≡ p, qi ≡ q and si ≡ s are constant sequences
of the points of topological space and pi → q, qi → s, then pi → s. This property is not
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valid for r-convergence. To construct an example, it is enough to take two points x, y ∈ X
(x 6= y) and to make p = {x}, q = {x, y}, s = {y}. Then r(p, q) = r(q, s) = 0, r(p, s) =
ρ(x, y) > 0. Therefore pi → q, qi → s, pi 6→ s, and r-convergence does not determine
topology for any metric space X 6= {x}.

Introduce also a proximity measure in B(B(X)) (that is the set of nonempty subsets
of B(X)): let P,Q ∈ B(B(X)), then

D(P,Q) = sup
p∈P

inf
q∈Q

r(p, q). (10)

Note that the formula (10) is similar to the formula (6), but in (10) appears r(p, q) instead
of ρ(x, y). The expression (10) can be somewhat simplified by introducing the following
denotations. Let Q ∈ B(B(X)). Let us define SQ =

⋃

q∈Q q, SQ ∈ B(X); then

D(P,Q) = sup
p∈P

r(p, SQ). (11)

Let us introduce convergence in B(B(X)) (D-convergence):

Qn → P, ifD(P,Qn) → 0.

D-convergence, as well as r-convergence, does not determine topology. This can be il-
lustrated in the way similar to that used for r-convergence. Let x, y ∈ x, x 6= y, P =
{{x}}, Q = {{x, y}}, R = {{y}}, Pi = P,Qi = Q. Then D(Q,P ) = D(R,Q) = 0, Pi →
Q, Qi → R, D(R,P ) = ρ(x, y) > 0, Pi 6→ R.

Later we need the following criteria of convergence of sequences in B(X) and in
B(B(X)).

Proposition 1.6 (see [48]). The sequence of sets qn ∈ B(X) d-converges to p ∈ B(X)
if and only if infy∈qn

ρ(x, y) → 0 as n→ ∞ for any x ∈ p.

Proposition 1.7 The sequence of sets qn ∈ B(X) r-converges to p ∈ B(X) if and only
if there are such xn ∈ p and yn ∈ qn that ρ(xn, yn) → 0 as n→ ∞.

This follows immediately from the definition of r-proximity.
Before treating the criterion of D-convergence, let us prove the following topological

lemma.

Lemma 1.1 Let pn, qn (n = 1, 2, . . .) be subsets of compact metric spaceX and r(pn, qn) >
ε > 0 for any n. Then there are such γ > 0 and an infinite set of indices J that
r(pN , qn) > γ for n ∈ J and for some number N .

Proof. Choose in X ε/5-network M ; let to each q ⊂ X correspond qM ⊂ M :

qM =

{

m ∈M | inf
x∈q

ρ(x,m) ≤ ε/5

}

. (12)

For any two sets p, q ⊂ X r(pM , qM) + 2
5
ε ≥ r(p, q). Therefore r(pM

n , q
M
n ) > 3ε/5. Since

the number of different pairs pM , qM is finite (M is finite), there exists an infinite set J
of indices n, for which the pairs pM

n , q
M
n coincide: pM

n = pM , qM
n = qM as n ∈ J . For any

two indices n, l ∈ J r(pM
n , q

M
l ) = r(pM , qM) > 3ε/5, therefore r(pn, ql) > ε/5, and this

fact completes the proof of the lemma. It was proved more important statement really:
there exists such infinite set J of indices that for any n, l ∈ J r(pn, ql) > γ (and not only
for one N).
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Proposition 1.8 The sequence of sets Qn ∈ B(B(X)) D-converges to p ∈ B(X)) if and
only if infq∈Q r(p, q) → 0 for any p ∈ P .

Proof. In one direction this is obvious: if Qn → P , then according to definition
D(P,Qn) → 0, i.e. the upper bound by p ∈ P of the value infq∈Qn

r(p, q) tends to
zero and all the more for any p ∈ P infq∈Q r(p, q) → 0. Now, suppose that for any
p ∈ P infq∈Qn

r(p, q) → 0. If D(P,Qn) 6→ 0, then one can consider that D(P,Qn) >
ε > 0. Therefore (because of (11)) there are such pn ∈ P for which r(pn, SQn) >

ε
(

SQn =
⋃

q∈Qn
q
)

. Using Lemma 1.1, we conclude that for someN r(pN , SQn) > γ > 0,

i.e. infq∈Qn
r(pN , q) 6→ 0. The obtained contradiction proves the second part of Proposi-

tion 1.8.
Everywhere further, if there are no another mentions, the convergence in B(X) implies

d-convergence, and the convergence in B(B(X)) impliesD-convergence, and as continuous
are considered the functions with respect to these convergences.

1.4 Bifurcations of ω-limit Sets

Definition 1.3 . Let us say that the system (1) possesses:
A) ω(x, k)-bifurcations, if ω(x, k) is not continuous function in X ×K;
B) ω(k)-bifurcations, if ω(k) is not continuous function in K;
C) Ω(x, k)-bifurcations, if Ω(x, k) is not continuous function in X ×K;
D) Ω(k)-bifurcations, if Ω(k) is not continuous function in K.

The points of X×K or K, in which the functions ω(x, k), ω(k), Ω(x, k), Ω(k) are not
d- or not D-continuous, we call the points of bifurcation. The considered discontinuities
in the dependencies ω(x, k), ω(k), Ω(x, k), Ω(k) could be also called “explosions” of ω-
limit sets (compare with the explosion of the set of non-wandering points in differential
dynamics ([57], Sec. 6.3., p.185-192, which, however, is a violation of semidiscontinuity
from above).

Proposition 1.9 A) If the system (1) possesses Ω(k)-bifurcations, then it possesses Ω(x, k)-
, ω(x, k)- and ω(x, k)-bifurcations.
B) If the system (1) possesses Ω(x, k)-bifurcations, then it possesses ω(x, k)-bifurcations
too.
C) If the system (1) possesses ω(k)-bifurcations, then it possesses ω(x, k)-bifurcations.

It is convenient to illustrate Proposition 1.9 by the scheme (the word “bifurcation” is
omitted on the scheme):

?
Ω(k)

?

Ω(x, k) ω(k)
- ω(x, k) �

(13)

Proof. Let us begin from the item C. Let the system (1) (family of semiflows)
possess ω(k)-bifurcations. This means that there are such k∗ ∈ K (point of bifurcation),
ε > 0, x∗ ∈ ω(k∗) and sequence kn ∈ K, kn → k∗, for which infy∈ω(x0,kn) ρ(x

∗, y) > ε for
any n (according to Proposition 1.6). The point x∗ belongs to some ω(x0, k

∗) (x0 ∈ X).
Note that ω(x0, kn) ⊂ ω(kn), consequently, infy∈ω(kn) ρ(x

∗, y) > ε, therefore the sequence
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ω(x0, kn) does not converge to ω(x0, k
∗): there exist ω(x, k)-bifurcations, and the point of

bifurcation is (x0, k
∗).

Prove the statement of the item B. Let the system (1) possess Ω(x, k)-bifurcations.
Then, (according to Proposition 1.8) there are such (x∗, k∗) ∈ X × K (the point of
bifurcation), ω(x0, k

∗) ⊂ ω(x∗, k∗) and sequence (xn, kn) → (x∗, k∗) that

r(ω(x0, k
∗), S Ω(xn, kn)) > ε > 0 for any n.

But the last means that r(ω(s0, k
∗), ω(xn, kn)) > ε > 0 and, consequently,

inf
y∈ω(xn,kn)

ρ(ξ, y) > ε for any ξ ∈ ω(x0, k∗).

Since ξ ∈ ω(x∗, k∗), the existence of ω(x, k)-bifurcations follows and (x∗, k∗) is the point
of bifurcation.

Prove the statement of the item A. Let the system (1) possess Ω(k)-bifurcations. Then
there are k∗ ∈ K (the point of bifurcation), ε > 0 and sequence of points kn, kn → k∗,
for which D(Ω(k∗),Ω(kn)) > ε for any n, that is for any n there is such xn ∈ X that
r(ω(xn, k

∗), ω(kn)) > ε (according to (11)). But by Lemma 1.1 there are such γ > 0 and
natural N that for infinite set J of indices r(ω(xN , k

∗), ω(kn)) > γ for n ∈ J . All the
more r(ω(xN , k

∗), ω(xN , kn)) > γ (n ∈ J), consequently, there are Ω(x, k)-bifurcations:

(xN , kn) → (xN , k
∗) as n→ ∞, n ∈ J ;

D(Ω(xN , k
∗), Ω(xN , kn)) = supω(x,k∗)⊂Ω(xN ,k∗) r(ω(x, k∗), ω(xN , kn)) ≥

≥ r(ω(xN , k
∗), ω(xN , kn)) > γ.

The point of bifurcation is (xN , k
∗).

We are only to show that if there are Ω(k)-bifurcations, then ω(k)-bifurcations exist.
Let us prove this. Let the system (1) possess Ω(k)-bifurcations. Then, as it was shown
just above, there are such k∗ ∈ K, x∗ ∈ X, γ > 0 (x∗ = xN) and a sequence of points
kn ∈ K that kn → k∗ and r(ω(x∗, k∗), ω(kn)) > γ. All the more, for any ξ ∈ ω(x∗, k∗)
infy∈ω(kn) ρ(ξ, y) > γ, therefore d(ω(k∗), ω(kn)) > γ and there are ω(k)-bifurcations (k∗ is
the point of bifurcation). Proposition 1.9 is proved.

Proposition 1.10 The system (1) possesses Ω(x, k)-bifurcations if and only if ω(x, k) is
not r-continuous function in X ×K.

Proof. Let the system (1) possess Ω(x, k)-bifurcations, then there are (x∗, k∗) ∈ X ×K,
the sequence (xn, kn) ∈ X ×K, (xn, kn) → (x∗, k∗) for which for any n

D(Ω(x∗, k∗),Ω(xn, kn)) > ε > 0.

The last means that for any n there is x∗n ∈ X for which ω(x∗n, k
∗) ⊂ ω(x∗, k∗), and

r(ω(x∗n, k
∗), ω(xn, kn)) > ε. From Lemma 1.1 follows the existence of such γ > 0 and

natural N that for infinite set J of indices r(ω(x∗N , k
∗), ω(xn, kn)) > γ as n ∈ J . Let

x∗0 be an arbitrary point of ω(x∗N , k
∗). As it was noted already, (k∗, x∗0)-trajectory lies

in ω(x∗N < k∗) and because of the closure of the last ω(x∗0, k
∗) ⊂ ω(x∗N , k

∗). Therefore
r(ω(xn, kn)) > γ as n ∈ J . As x∗0 ∈ ω(x∗, k∗), there is such sequence ti → ∞, ti > 0, that
f(ti, x

∗, k∗) → x∗0 as i → ∞. Using the continuity of f , choose for every i such n(i) ∈ J
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Figure 1: ω(x, k)-, but not Ω(x, k)-bifurcations: a - phase portrait of the system (14); b
- the same portrait after gluing all fixed points.

that ρ(f(ti, x
∗, k∗), f(ti, xn(i), kn(i))) < 1/i. Denote f(ti, xn(i), kn(i)) = x′i, kn(i) = k′i. Note

that ω(x′i, k
′
i) = ω(xn(i), kn(i)). Therefore for any i r(ω(x∗0, k

∗), ω(x′i, k
′
i)) > γ. Since

(x′i, k
′
i) → (x∗0, k

∗), we conclude that ω(x, k) is not r-continuous function in X ×K.
Let us emphasize that the point of Ω(x, k)-bifurcations can be not the point of r-

discontinuity.
Now, suppose that ω(x, k) is not r-continuous in X ×K. Then there exist (x∗, k∗) ∈

X ×K, sequence of points (xn, kn) ∈ X ×K, (xn, kn) → (x∗, k∗), and ε > 0, for which
r(ω(x∗, k∗), ω(xn, kn)) > ε for any n. But, according to (11), from this it follows that
D(Ω(x∗, k∗),Ω(xn, kn)) > ε for any n. Therefore (x∗, k∗) is the point of Ω(x, k)-bifurcation.
Proposition 1.10 is proved.

The ω(k)- and ω(x, k)-bifurcations can be called bifurcations with appearance of new
ω-limit points, and Ω(k)- and Ω(x, k)-bifurcations with appearance of ω-limit sets. In
the first case there is such sequence of points kn (or (xn, kn)), converging to the point
of bifurcation k∗ (or (x∗, k∗)) that there is such point x0 ∈ ω(k∗) (or x0 ∈ ω(x∗, k∗))
which is removed away from all ω(kn) (ω(xn, kn)) more than at some ε > 0. It could
be called the “new” ω-limit point. In the second case, as it was shown, the existence of
bifurcations is equivalent to existence of a sequence of the points kn (or (xn, kn) ∈ X×K),
converging to the point of bifurcation k∗ (or (x∗, k∗)), together with existence of some set
ω(x0, k

∗) ⊂ ω(k∗) (ω(x0, k
∗) ⊂ ω(x∗, k∗)), being r-removed from all ω(kn) (ω(xn, kn))

more than at γ > 0: ρ(x, y) > γ for any x ∈ ω(x0, k
∗) and y ∈ ω(kn). It is natural

to call the set ω(x0, k
∗) the “new” ω-limit set. A question arises: are there bifurcations

with appearance of new ω-limit points, but without appearance of new ω-limit sets? The
following example gives positive answer to this question.

Example 1.2 (ω(x, k)-, but not Ω(x, k)-bifurcations). Consider at first the system, given
in the cone x2 + y2 ≤ z2, 0 ≤ z ≤ 1 by differential equations (in cylindrical coordinates)

ṙ = r(2z − r − 1)2 − 2r(1 − r)(1 − z);

ϕ̇ = r cosϕ+ 1; (14)

ż = −z(1 − z)2.

The solutions of (14) under initial conditions 0 ≤ z(0) ≤ 1, 0 ≤ r(0) ≤ z(0) and arbitrary
ϕ tend as t → ∞ to their unique ω-limit point (this point is the equilibrium z = r = 0).
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If 0 < r(0) < 1, then as t → ∞ the solution tends to the circumference z = r = 1. If
z(0) = 1, r(0) = 0, then the ω-limit point is unique: z = 1, r = 0. If z(0) = r(0) = 1,
then the ω-limit point is also unique: z = r = 1, ϕ = π (Fig. 1). Thus,

ω(r0, ϕ0, z0) =















(z = r = 0), if z0 < 1;
{(r, ϕ, z) | r = z = 1}, if z0 = 1, r0 6= 0, 1;
(z = r = 1), ϕ = π, if z0 = r0 = 1;
(r = 0, z = 1), if z0 = 1, r0 = 0.

Consider the sequence of points of the cone (rn, ϕn, zn) → (r∗, ϕ∗, 1), r∗ 6= 0, 1 and zn < 1
for all n. For any point of the sequence the ω-limit set includes one point, and for (r∗, ϕ, 1)
the set includes the circumference. If all the positions of equilibrium were identified, then
there would be ω(x, k)-, but not ω(x, k)-bifurcations.

The correctness of the identification procedure should be grounded. Let the studied
semiflow f have fixed points xi, . . . , xn. Define a new semiflow f̃ as follows:

X̃ = X \ {xi, . . . , xn}
⋃

{x∗}

is a space obtained from X when the points xi, . . . , xn are deleted and a new point x∗ is
added. Let us give metrics over X̃ as follows: let x, y ∈ X̃, x 6= x∗,

ρ̃(x, y) =

{

min {ρ(x, y),min1≤j≤n ρ(x, xj) + min1≤j≤n ρ(y, xj)} , if y 6= x∗;
min1≤j≤n ρ(x, xj), if y = x∗.

Let f̃(t, x) = f(t, x) if x ∈ X
⋂

X̃, f̃(t, x∗) = x∗.

Lemma 1.2 The mapping f̃ determines semiflow in X̃.

Proof. Injectivity and semigroup property are obvious from the corresponding properties
of f . If x ∈ X

⋂

X̃, t ≥ 0 then the continuity of f̃ in the point (t, x) follows from the fact
that f̃ coincides with f in some neighbourhood of this point. The continuity of f̃ in the
point (t, x∗) follows from the continuity of f and the fact that any sequence converging in
X̃ to x∗ can be divided into finite number of sequences, each of them being either (a) a
sequence of points X

⋂

X̃, converging to one of xj or (b) a constant sequence, all elements
of which are x∗ and some more, maybe, a finite set. Mapping f̃ is a homeomorphism,
since it is continuous and injective, and X̃ is compact.

Proposition 1.11 Let each trajectory lying in ω(k) be recurrent for any k. Then the
existence of ω(x, k)- (ω(k)-)-bifurcations is equivalent to the existence of Ω(x, k)- (Ω(k)-
)-bifurcations. More exact,
A) if (xn, kn) → (x∗, k∗) and ω(xn, kn) 6→ ω(x∗, k∗), then Ω(xn, kn) 6→ Ω(x∗, k∗)4,
B) if kn → k∗ and ω(kn) 6→ ω(k∗), then Ω(kn) 6→ Ω(k∗).

4Let us recall that below the convergence in B(X) implies d-convergence, and the convergence in
B(B(X)) implies D-convergence, and continuity is considered as continuity with respect to these conver-
gences, if there are no other mentions.
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Proof. A) Let (xn, kn) → (x∗, k∗), ω(xn, kn) 6→ ω(x∗, k∗). Then, according to Proposition
1.6, there is such x̃ ∈ (x∗, k∗) that infy∈ω(xn,kn) ρ(x̃, y) 6→ 0. Therefore from {(xn, kn)} we
can choose a subsequence (denote it as {(xm, km)}) for which there exists such ε > 0
that infy∈ω(xm,km) ρ(x̃, y) > ε for any m = 1, 2 < . . .. Denote by L the set of all limit
points of sequences of the kind {ym}, ym ∈ ω(xm, km). The set L is closed and k∗-
invariant. Note that ρ∗(x̃, L) ≥ ε. Therefore ω(x̃, k∗)

⋂

L = ∅ as ω(x̃, k∗) is a minimal
set (Birkhoff’s theorem, see [56], p.404). From this follows the existence of such δ > 0
that r(ω(x̃, k∗), L) > δ and from some M r(ω(x̃, k∗), (xm, km)) > δ/2 (when m > M).
Therefore (Proposition 1.8) Ω(xm, km) 6→ Ω(x∗, k∗).

B) The proof practically literally coincides with that for the part A (it should be
substituted ω(k) for ω(x, k)).

Corollary 1.1 Let for every pair (x, k) ∈ X ×K the ω-limit set be minimal: Ω(x, k) =
{ω(x, k)}. Then the statements A, B of Proposition 1.11 are true.

Proof. According to one of Birkhoff’s theorems (see [56], p.402), each trajectory lying in
minimal set is recurrent. Therefore, Proposition 1.11 is applicable.

2 Slow Relaxations

2.1 Relaxation Times

The principal object of our consideration is the relaxation time.

Proposition 2.1 For any x ∈ X, k ∈ K and ε > 0 the numbers τi(x, k, ε) and ηi(x, k, ε)
(i = 1, 2, 3) are defined. The inequalities τi ≥ ηi, τ1 ≤ τ2 ≤ τ3, η1 ≤ η2 ≤ η3 are true.

Proof. If τi, ηi are defined, then the validity of inequalities is obvious (ω(x, k) ⊂ ω(k),
the time of the first entry in the ε-neighbourhood of the set of limit points is included
into the time of being outside of this neighbourhood, and the last is not larger than
the time of final entry in it). The numbers τi, ηi are definite (bounded): there are
tn ∈ [0,∞), tn → ∞ and y ∈ ω(x, k), for which f(tn, x, k) → y and from some n
ρ(f(tn, x, k), y) < ε, therefore the sets {t > 0 | ρ∗(f(t, x, k), ω(x, k)) < ε} and {t >
0 | ρ∗(f(t, x, k), ω(k)) < ε} are nonempty. Since X is compact, there is such t(ε) > 0 that
for t > t(ε) ρ∗(f(t, x, k), ω(x, k)) < ε. Really, let us suppose the contrary: there are such
tn > 0 that tn → ∞ and ρ∗(f(tn, x, k), ω(x, k)) > ε. Let us choose from the sequence
f(tn, x, k) a convergent subsequence and denote its limit x∗; x∗ satisfies the definition of
ω-limit point of (k, x)-motion, but it lies outside of ω(x, k). The obtained contradiction
proves the required, consequently, τ3 and η3 are defined. According to the proved, the
sets

{t > 0 | ρ∗(f(t, x, k), ω(x, k)) ≥ ε},
{t > 0 | ρ∗(f(t, x, k), ω(k)) ≥ ε}

are bounded. They are measurable because of the continuity with respect to t of the
functions ρ∗(f(t, x, k), ω(x, k)) and ρ∗(f(t, x, k), ω(k)). The proposition is proved. Note
that the existence (finiteness) of τ2,3 and η2,3 is associated with the compactness of X.
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Definition 2.1 We say that the system (1) possesses τi- (ηi-)-slow relaxations, if for
some ε > 0 the function τi(x, k, ε) (correspondingly ηi(x, k, ε)) is not bounded above in
X ×K.

Proposition 2.2 For any semiflow (k is fixed) the function η1(x, ε) is bounded in X for
every ε > 0.

Proof. Suppose the contrary. Then there is such sequence of points xn ∈ X that for
some ε > 0 η1(xn, ε) → ∞. Using the compactness of X and, if it is needed, choosing a
subsequence, assume that xn → x∗. Let us show that for any t > 0 ρ∗(f(t, x∗), ω(k)) >
ε/2. Because of the property of uniform continuity on limited segments there is such
δ = δ(τ) > 0 that ρ(f(t, x∗), f(t, x)) < ε/2 if 0 ≤ t ≤ τ and ρ(x, x∗) < δ. Since
η1(xn, ε) → ∞ and xn → x∗, there is such N that ρ(xN , x

∗) < δ and η1(xN , ε) > τ , i.e.
ρ∗(f(t, xN), ω(k)) ≥ ε under 0 ≤ t ≤ τ . From this we obtain the required: for 0 ≤ t ≤ τ
ρ∗(f(t, x∗), ω(k)) > ε/2 or ρ∗(f(t, x∗), ω(k)) > ε/2 for any t > 0, since τ was chosen
arbitrarily. This contradicts to the finiteness of η1(x

∗, ε/2) (Proposition 2.1). Proposition
2.2 is proved. For η2,3 and τ1,2,3 does not exist proposition analogous to Proposition 2.2,
and slow relaxations are possible for one semiflow too.

Example 2.1 ( η2-slow relaxations for one semiflow). Let us consider a system on the
plane in the circle x2 + y2 ≤ 1 given by the equations in the polar coordinates

ṙ = −r(1 − r)(r cosϕ+ 1);

ϕ̇ = r cosϕ+ 1. (15)

The complete ω-limit set consists of two fixed points r = 0 and r = 1, ϕ = π (Fig. 2,a),
η2((r, ϕ), 1/2) → ∞ as r → 1, r < 1.

The following series of simple examples is given to demonstrate the existence of slow
relaxations of some kinds without some other kinds.

Example 2.2 (η3- but not η2-slow relaxations). Let us rather modify the previous exam-
ple, substituting unstable limit cycle for the boundary loop:

ṙ = −r(1 − r);

ϕ̇ = 1. (16)

Now the complete ω-limit set includes the whole boundary circumference and the point
r = 0 (Fig. 2,b), the time of the system being outside of its ε-neighborhood is limited for
any ε > 0. Nevertheless, η3((r, ϕ), 1/2) → ∞ as r → 1, r 6= 1

Example 2.3 (τ1, but not η2,3-slow relaxations). Let us analyze in the ring
1
2
≤ x2 + y2 ≤ 1 a system given by differential equations in polar coordinates

ṙ = (1 − r)(r cosϕ+ 1)(1 − r cosϕ);

ϕ̇ = (r cosϕ+ 1)(1 − r cosϕ). (17)

In this case the complete ω-limit set is the whole boundary circumference r = 1 (Fig. 2,c).
Under r = 1, ϕ → π, ϕ > π τ1(r, ϕ, 1/2) → ∞ since for these points ω(r, ϕ) = {(r =
1, ϕ = 0)}.
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Figure 2: Phase portraits of the systems: a - (15); b - (16); c - (17); d - (18)

Example 2.4 (τ3, but not τ1,2 and not η3-slow relaxations). Let us modify the preceding
example of the system in the ring, leaving only one equilibrium point on the boundary
circumference r = 1:

ṙ = (1 − r)(r cosϕ+ 1);

ϕ̇ = r cosϕ + 1. (18)

In this case under r = 1, ϕ→ π, ϕ → π τ3((r, ϕ), 1/2) → ∞ and τ1,2 remain limited for
any fixed ε > 0, because for these points ω(r, ϕ) = {(r = 1, ϕ = π)} (Fig. 2,d). η2,3 are
limited, since the complete ω-limit set is the circumference r = 1.

Example 2.5 (τ2, but not τ1 and not η2-slow relaxations). We could not find a simple
example on the plane without using Lemma 1.2. Consider at first a semiflow in the circle
x2 + y2 ≤ 2 given by the equations

ṙ = −r(1 − r)2[(r cosϕ+ 1)2 + r2 sinϕ];

ϕ̇ = (r cosϕ+ 1)2 + r2 sin2 ϕ. (19)
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Figure 3: Phase portrait of the system (19):
a - without gluing the fixed points; b - after gluing.

the ω-limit sets of this system are as follows (Fig. 3,a):

ω(r0, ϕ0) =







circumference r = 1, if r0 > 1;
point (r = 1, ϕ = π), if r0 = 1;
point (r = 0), if r0 < 1.

Let us identify the fixed points (r = 1, ϕ = π) and (r = 0) (Fig. 3,b). We obtain that
under r → 1, r < 1 τ2(r, ϕ, 1/2) → ∞, although τ1 remains bounded as well as η2.
However, η3 is unbounded.

The majority of the above examples is represented by nonrough systems, and there
are serious reasons for this nonroughness. In rough systems on a plane τ1,2,3- and η3-slow
relaxations can occur only simultaneously (see Subsection 3.3).

2.2 Slow Relaxations and Bifurcations of ω-limit Sets

In the simplest situations the connection between slow relaxations and bifurcations of ω-
limit sets is obvious. We should mention the case when the motion tending to its ω-limit
set is retarded near unstable equilibrium position. In general case the situation becomes
more complicated at least because there are several relaxation times (and consequently
several corresponding kinds of slow relaxations). Except that, as it will be shown below,
bifurcations are not a single possible reason of slow relaxation appearance. Nevertheless,
for the time of the first entering (both for the proper time τ1 and for the non-proper one
η1) the connection between bifurcations and slow relaxations is manifest.

Theorem 2.1 The system (1) possesses τ1-slow relaxations if and only if it possesses
Ω(x, k)-bifurcations.

Proof. Let the system possess Ω(x, k)-bifurcations, (x∗, k∗) be the point of bifurcation.
This means that there are such x′ ∈ X, ε > 0 and sequence of points (xn, kn) ∈ X ×K,
for which ω(x′, k∗) ⊂ ω(x∗, k∗), (xn, kn) → (x∗, k∗), and r(ω(x′, k∗), ω(xn, kn)) > ε for
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any n. Let x0 ∈ ω(x′, k∗). Then ω(x0, k
∗) ⊂ ω(x′, k∗) and r(ω(x0, k

∗), ω(xn, kn)) > ε
for any n. Since x0 ∈ ω(x∗, k∗), there is such sequence ti > 0, t → ∞, for which
f(ti, x

∗, k∗) → x0. As for every i f(ti, xn, kn) → f(ti, x
∗, k∗), then there is such sequence

n(i) that f(ti, xn(i), kn(i)) → x0 as i→ ∞. Denote kn(i) as k′i and f(ti, xn(i), kn(i)) as yi. It
is obvious that ω(y, k′i) = ω(xn(i), kn(i)). Therefore r(ω(x′, k∗), ω(yi, k

′
i)) > ε.

Let us show that for any τ > 0 there is such i that τ1(yi, k
′
i, ε/2) > τ . To do that,

let us use the property of uniform continuity of f on compact segments and choose such
δ > 0 that ρ(f(t, x0, k

∗), f(t, yi, k
′
i)) < ε/2 if 0 ≤ t ≤ τ, ρ(x0, yi) + ρK(k∗, k′i) < δ.

The last inequality is true from some i0 (when i > i0), since yi → x0, k
′
i → k∗. For

any t ∈ (−∞,∞) f(t, x0, k
∗) ∈ ω(x′, k∗), consequently, ρ∗(f(t, yi, k

′
i), ω(yi, k

′
i)) > ε/2 for

i > i0, 0 ≤ t ≤ τ , therefore for these i τ1(yi, k
′
i, ε/2) > τ . The existence of τ1-slow

relaxations is proved.
Now, let us suppose that there are τ1-slow relaxations: there can be found such a

sequence (xn, kn) ∈ X × K that for some ε > 0 τ1(xn, kn, ε) → ∞. Using the com-
pactness of X × K, let us choose from this sequence a convergent one, preserving the
denotations: (xn, kn) → (x∗, k∗). For any y ∈ ω(x∗, k∗) there is such n = n(y) that
when n > n(y) ρ∗(y, ω(xn, kn)) > ε/2. Really, as y ∈ ω(x∗, k∗), there is such t > 0 that
ρ(f(t, x∗, k∗), y) < ε/4. Since (xn, kn) → (x∗, k∗), τ1(xn, kn, ε) → ∞, there is such n (we
denote it by n(y)) that for n > n(y) ρ∗(t̄, xn, kn)) < ε/4, τ1(xn, kn, ε) > t. Thereby, since
ρ∗(f(t̄, xn, kn), ω(xn, kn)) > ε, then ρ∗(f(t̄, x∗, k∗), ω(xn, kn)) > 3ε/4, and, consequently,
ρ∗(y, ω(xn, kn)) > ε/2. Let yi, . . . , ym be ε/4-network in ω(x∗, k∗). Let N = max n(yi).
Then for n > N and for any i (1 ≤ i ≤ m) ρ∗(yi, ω(xn, kn)) > ε/2. Consequently for any
y ∈ ω(x∗, k∗) for n > N ρ∗(y, ω(xn, kn) > ε/4, i.e. for n > N r(ω(x∗, k∗), ω(xn, kn)) > ε/4.
The existence of Ω(x, k)-bifurcations is proved (according to Proposition 1.8). Using The-
orem 2.1 and Proposition 1.10 we obtain the following theorem.

Theorem 2.1′ The system (1) possesses τ1-slow relaxations if and only if ω(x, k) is not
r-continuous function in X ×K.

Theorem 2.2 The system (1) possesses η1-slow relaxations if and only if it possesses
Ω(k)-bifurcations.

Proof. Let the system possess Ω(k)-bifurcations. Then (according to Proposition 1.8)
there is such sequence of parameters kn → k∗ that for some ω(x∗, k∗) ∈ Ω(k∗) and
ε > 0 for any n r(ω(x∗, k∗), ω(kn)) > ε. Let x0 ∈ ω(x∗, k∗). Then for any n and
t ∈ (−∞,∞) ρ∗(f(t, x0, k

∗), ω(kn)) > ε because f(t, x0, k
∗) ∈ ω(x∗, k∗). Let us prove that

η1(x0, kn, ε/2) → ∞ as n → ∞. To do this, use the uniform continuity of f on compact
segments and for any τ > 0 find such δ = δ(τ) > 0 that ρ(f(t, x0, k

∗), f(t, x0, kn)) < ε/2
if 0 ≤ t ≤ τ and ρK(k∗, kn) < δ. Since kn → k∗, there is such N = N(τ) that for
n > N ρK(kn, k) < δ. Therefore for n > N, 0 ≤ t ≤ τ ρ∗(f(t, x0, kn), ω(kn)) > ε/2. The
existence of η1-slow relaxations is proved.

Now, suppose that there exist η1-slow relaxations: there are such ε > 0 and sequence
(xn, kn) ∈ X × K that η1(xn, kn, ε) → ∞. Use the compactness of X × K and turn
to converging subsequence (retaining the same denotations): (xn, kn) → (x∗, k∗). Using
the way similar to the proof of Theorem 2.1, let us show that for any y ∈ ω(x∗, k∗)
there is such n = n(y) that if n > n(y), then ρ∗(y, ω(kn)) > ε/2. Really, there is such
t̃ > 0 that ρ(f(t̃, x∗, k∗), y) < ε/4. As η1(xn, kn, ε) → ∞ and (xn, kn) → (x∗, k∗), there
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is such n = n(y) that for n > n(y) ρ(f(t̃, x∗, k∗), f(t̃, xn, kn)) < ε/4 and η1(xn, kn, ε) > t̃.
Thereafter we obtain

ρ∗(y, ω(kn)) ≥
≥ ρ∗(f(t, xn, kn), ω(kn)) − ρ(y, f(t̃, x∗, k∗)) − ρ(f(t̃, x∗, k∗), f(t̃, xn, kn)) > ε/2.

Further the reasonings about ε/4-network of the set ω(x∗, k∗) (as in the proof of Theorem
2.1) lead to the inequality r(ω(x∗, k∗), ω(kn)) > ε/4 for n large enough. On account of
Proposition 1.8 the existence of Ω(k)-bifurcations is proved, therefore is proved Theorem
2.2.

Theorem 2.3 If the system (1) possesses ω(x, k)-bifurcations then it possesses τ2-slow
relaxations.

Proof. Let the system (1) possess ω(x, k)-bifurcations: there is such sequence (xn, kn) ∈
X ×K and such ε > 0 that (xn, kn) → (x∗, k∗) and

ρ∗(x′, ω(xn, kn)) > ε for any n and some x′ ∈ ω(x∗, k∗).

Let t > 0. Define the following auxiliary function:

Θ(x∗, x′, t, ε) = mes{t′ ≥ 0 | t′ ≤ t, ρ(f(t′, x∗, k∗), x′) < ε/4}, (20)

Θ(x∗, x′, t, ε) is “the time of residence” of (k∗, x∗)-motion in ε/4-neighbourhood of x over
the time segment [0, t]. Let us prove that Θ(x∗, x′, t, ε) → ∞ as t → ∞. We need the
following corollary of continuity of f and compactness of X

Lemma 2.1 Let x0 ∈ X, k ∈ K, δ > ε > 0. Then there is such t0 > 0 that for any
x ∈ X the inequalities ρ(x, x0) < ε and 0 ≤ t′ < t0 lead to ρ(x0, f(t′, x, k)) < δ.

Proof. Let us suppose the contrary: there are such sequences xn and tn that ρ(x0, xn) <
ε, t′n → 0, and ρ(x0, f(t′n, xn, k)) ≥ δ. Due to the compactness of X one can choose from
the sequence xn a convergent one. Let it converge to x̄. The function ρ(x0, f(t, x, k)) is
continuous. Therefore ρ(x0, f(t′n, xn, k)) → ρ(x0, f(0, x, k)) = ρ(x0, x̄). Since ρ(x0, xn) <
ε, then ρ(x0, x̄) ≤ ε. This contradicts to the initial supposition (ρ(x0, f(t′n, xn, k)) ≥ δ ≥
ε).

Let us return to the proof of Theorem 2.3. Since x′ ∈ ω(x∗, k∗), then there is such
monotonic sequence tj → ∞ that for any j ρ(f(tj , x

∗, k∗), x′) < ε/8. According to Lemma
2.1 there is t0 > 0 for which ρ(f(tj + τ, x∗, k∗), x′) < ε/4 as 0 ≤ τ ≤ t0. Suppose (turning
to subsequence, if it is necessary) that tj+1 − tj > t0. Θ(x∗, x′, t, ε) > jt0 if t > tj + t0.
For any j = 1, 2, . . . there is such N(j) that ρ(f(t, xn, kn), f(t, x∗, k∗)) < ε/4 under the
conditions n > N(j), 0 ≤ t ≤ tj + t0. If n > N(j), then ρ(f(t, xn, kn), x

′) < ε/2 for
tj ≤ t ≤ tj + t0 (i ≤ j). Consequently, τ2(xn, kn, ε/2) > jt0 if n > N(j). The existence of
τ2 slow relaxations is proved.

Theorem 2.4 If the system (1) possesses ω(k)-bifurcations, then it possesses η2-slow
relaxations too.
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Proof. Let the system (1) possess ω(k)-bifurcations: there are such sequence kn ∈ K
and such ε > 0 that kn > k∗ and ρ∗(x′, ω(kn)) > ε for some x′ ∈ ω(k∗) and any n.
The point x′ belongs to the ω-limit set of some motion: x′ ∈ ω(x∗, k∗). Let τ > 0
and t∗ be such that Θ(x∗, x′, t∗, ε) > τ (the existence of such t∗ is shown when proving
Theorem 2.3). Due to the uniform continuity of f on compact intervals there is such N
that ρ(f(x∗, k∗), f(t, x∗, kn)) < ε/4 for 0 ≤ t ≤ t∗, n > N . But from this fact it follows
that η2(x

∗, kn, ε/2) ≥ Θ(x∗, x′, t∗, ε) > τ (n > N). Because of the arbitrary choice of τ
Theorem 2.4 is proved.

The two following theorems provide supplementary sufficient conditions of τ2 - and η2

-slow relaxations.

Theorem 2.5 If for the system (1) there are such x ∈ X, k ∈ K that (k, x)-motion is
whole and α(x, k) 6⊂ ω(x, k), then the system (1.1) possesses τ2-slow relaxations.

Proof. Let be such x and k that (k, x)-motion is whole and α(x, k) 6⊂ ω(x, k). Let us
denote by x∗ an arbitrary α-, but not ω-limit point of (k, x)-motion. Since ω(x, k) is
closed, ρ∗(x∗, ω(x, k)) > ε > 0. Define an auxiliary function

ϕ(x, x∗, t, ε) = mes{t′ | − t ≤ t′ ≤ 0, ρ(f(t′, x, k), x∗) < ε/2}.

Let us prove that ϕ(x, x∗, ε) → ∞ as t → ∞. According to Lemma 2.1 there is such
t0 > 0 that ρ(f(t, y, k), x∗) < ε/2 if 0 ≤ t ≤ t0 and ρ(x∗, y) < ε/4. Since x∗ is α-
limit point of (k, x)-motion, there is such sequence tj < 0, tj+1 − tj < −t0, for which
ρ(f(tj , x, k), x

∗) < ε/4. Therefore, by the way used in the proof of Theorem 2.3 we
obtain: ϕ(x, x∗, tj, ε) > jt0. This proves Theorem 2.5, because τ2(f(−t, x, k), k, ε/2) ≥
ϕ(x, x∗, t, ε).

Theorem 2.6 If for the system (1) exist such x ∈ X, k ∈ K that (k, x)-motion is whole
and α(x, k) 6⊂ ω(k), then the system (1.1) possesses η2-slow relaxations.

Proof. Let (k, x)-motion be whole and

α(x, k) 6⊂ ω(k), x∗ ∈ α(x, k) \ ω(k), ρ∗(x∗, ω(k)) = ε > 0.

As in the proof of the previous theorem, let us define the function ϕ(x, x∗, t, ε). Since
ϕ(x, x∗, t, ε) → ∞ as t→ ∞ (proved above) and η2(f(−t, x, k), k, ε/2) ≥ ϕ(x, x∗, t, ε), the
theorem is proved.

Note that the conditions of the theorems 2.5, 2.6 do not imply bifurcations.

Example 2.6 (τ2-, η2-slow relaxations without bifurcations). Examine the system given
by the set of equations (15) in the circle x2 + y2 ≤ 1 (see Fig. 2,a, Example 2.1). Identify
the fixed points r = 0 and r = 1, ϕ = π (Fig. 4). The complete ω-limit set of the system
obtained consists of one fixed point. For initial data r0 → 1, r0 < 1 (ϕ0 is arbitrary) the
relaxation time η2(r0, ϕ0, 1/2) → ∞ (hence, τ2(r0, ϕ0, 1/2) → ∞).

Before analyzing τ3, η3-slow relaxations, let us define Poisson’s stability according to
[56], p.363: (k, x)-motion is it Poisson’s positively stable (P+-stable), if x ∈ ω(x, k).

Note that any P+-stable motion is whole.
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Figure 4: Phase portrait of the system (15) after gluing the fixed points.

Lemma 2.2 If for the system (1) exist such x ∈ X, k ∈ K that (k, x)-motion is whole
but not P+-stable, then the system (1) possesses τ3-slow relaxations.

Proof. Let ρ∗(x, ω(x, k)) = ε > 0 and (k, x)-motion be whole. Then

τ3(f(−t, x, k), k, ε) ≥ t,

since f(t, f(−t, x, k), k) = x and ρ∗(x, ω(f(−t, x, k), k)) = ε

(because ω(f(−t, x, k), k) = ω(x, k)). Therefore τ3-slow relaxations exist.

Lemma 2.3 If for the system (1) exist such x ∈ X, k ∈ K that (k, x)-motion is whole
and x 6∈ ω(k), then this system possesses η3 -slow relaxations.

Proof. Let ρ∗(x, ω(k)) = ε > 0 and (k, x)-motion be whole. Then

η3(f(−t, x, k), k, ε)) ≥ t,

since f(t, f(−t, x, k), k) = x and ρ∗(x, ω(k)) = ρ∗(x, ω(k)) = ε.

Consequently, η3-slow relaxations exist.

Lemma 2.4 Let for the system (1) be such x0 ∈ X, k ∈ K that (k0, x0)-motion is whole.
If ω(x, k) is d-continuous function in X ×K (there are no ω(x, k)-bifurcations), then:

1. ω(x∗, k0) ⊂ ω(x0, k0) for any x∗ ∈ α(x0, k0), that is ω(α(x0, k0), k0) ⊂ ω(x0, k0);

2. In particular, ω(x0, k0)
⋂

α(x0, k0) 6= ∅.

Proof. Let x∗ ∈ α(x0, k0). Then there are such tn > 0 that tn → ∞ and xn =
f(−tn, x0, k0) → x∗. Note that ω(xn, k0) = ω(x0, k0). If ω(x∗, k0) 6⊂ ω(x0, k0), then, taking
into account closure of ω(x0, k0), we would obtain inequality d(ω(x∗, k0), ω(x0, k0)) > 0.
In this case xn → x∗, but ω(xn, k0) − / → ω(x∗, k0), i.e. there is ω(x, k)-bifurcation.
But according to the assumption there are no ω(x, k)-bifurcations. The obtained contra-
diction proves the first statement of the lemma. The second statement follows from the
facts that α(x0, k0) is closed, k0-invariant and nonempty. Really, let x∗ ∈ α(x0, k0). Then
f((−∞,∞), x∗, ko) ⊂ α(x0, k0) and, in particular, ω(x∗, k0) ⊂ α(x0, k0). But it has been
proved that ω(x∗, k0) ⊂ ω(x0, k0). Therefore ω(x0, k0)

⋂

α(x0, k0) ⊃ ω(x∗, k0) 6= ∅.
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Theorem 2.7 The system (1) possesses τ3-slow relaxations if and only if at least one of
the following conditions is satisfied:

1. There are ω(x, k)-bifurcations;

2. There are such x ∈ X, k ∈ K that (k, x)-motion is whole but not P+-stable.

Proof. If there exist ω(x, k)-bifurcations, then the existence of τ3-slow relaxations follows
from Theorem 2.3 and the inequality τ2(x, k, ε) ≤ τ3(x, k, ε). If the condition 2 is satisfied,
then the existence of τ3-slow relaxations follows from Lemma 2.2. To finish the proof,
it must be ascertained that if the system (1) possesses τ3-slow relaxations and does not
possess ω(x, k)-bifurcations, then there exist such x ∈ X, k ∈ K that (k, x)-motion
is whole and not P+-stable. Let there be τ3-slow relaxations and ω(x, k)-bifurcations
be absent. There can be chosen such convergent (because of the compactness of X ×K)
sequence (xn, kn) → (x∗, k∗) that τ3(xn, kn, ε) → ∞ for some ε > 0. Consider the sequence
yn = f(τ3(xn, kn, ε), xn, kn). Note that ρ∗(yn, ω(xn, kn)) = ε. This follows from the
definition of relaxation time and continuity of the function ρ∗(f(t, x, k), s) of t at any
(x, k) ∈ X ×K, s ⊂ X. Let us choose from the sequence yn a convergent one (preserving
the denotations yn, xn, kn). Let us denote its limit: yn → x0. It is clear that (k∗, x0)-
motion is whole. This follows from the results of Subection 1.1 and the fact that (kn, yn)-
motion is defined in the time interval [−τ3(xn, kn, ε),∞), and τ3(xn, kn, ε) → ∞ as n→ ∞.
Let us prove that (k∗, x0)-motion is not P+-stable, i.e. x0 6∈ ω(x0, k

∗). Suppose the
contrary: x0 ∈ ω(x0, k

∗). Since yn → x0, then there is such N that ρ(x0, yn) < ε/2
for any n ≥ N . For the same n ≥ N ρ∗(x0, ω(yn, kn)) > ε/2, since ρ∗(yn, ω(yn, kn)) =
ε. But from this fact and from the assumption x0 ∈ ω(x0, k

∗) it follows that for n ≥
N d(ω(x0, k

∗), ω(yn, kn)) > ε/2, and that means that there are ω(x, k)-bifurcations. So
far as it was supposed d-continuity of ω(x, k), it was proved that (k∗, x0)-motion is not
P+-stable, and this completes the proof of the theorem.

Using Lemma 2.4, Theorem 2.7 can be formulated as follows.

Theorem 2.7′ The system (1) possesses τ3-slow relaxations if and only if at least one of
the following conditions is satisfied:

1. There are ω(x, k)-bifurcations;

2. There are such x ∈ X, k ∈ K that (k, x)-motion is whole but not P+-stable and
possesses the following property: ω(α(x, k), k) ⊂ ω(x, k).

As an example of motion satisfying the condition 2 can be considered a trajectory
going from a fixed point to the same point (for example, the loop of a separatrice), or a
homoclinical trajectory of a periodical motion.

Theorem 2.8 The system (1) possesses η3-slow relaxations if and only if at least one of
the following conditions is satisfied:

1. There are ω(k)-bifurcations;

2. There are such x ∈ X, k ∈ K that (k, x)-motion is whole and x 6∈ ω(k).
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Proof. If there are ω(k)-bifurcations, then, according to Theorem 2.4, there are η2- and
all the more η3-slow relaxations. If the condition 2 holds, then the existence of η3-slow
relaxations follows from Lemma 2.3. To complete the proof, it must be established that if
the system (1) possesses η3-slow relaxations and does not possess ω(k)-bifurcations then
the condition 2 of the theorem holds: there are such x ∈ X, k ∈ K (k, x)-motion is
whole and x 6∈ ω(k). Let there be η3 -slow relaxation and ω(k)-bifurcations be absent.
Then we can choose such convergent (because of the compactness of X × K) sequence
(xn, kn) → (x∗, k∗) that η3(xn, kn, ε) → ∞ for some ε > 0. Consider the sequence yn =
f(η3(xn, kn, ε), xn, kn). Note that ρ∗(yn, ω(kn)) = ε. Choose from the sequence yn a
convergent one (preserving the denotations yn, xn, kn). Let us denote its limit by x0 :
yn → x0. From the results of Subection 1.1 and the fact that (kn, yn)-motion is defined
at least on the segment [−η3(xn, kn, ε),∞) and η3(xn, kn, ε) → ∞ we obtain that (k∗, x0)-
motion is whole. Let us prove that x0 6∈ ω(k). Really, yn → x0, hence there is such
N that for any n ≥ N the inequality ρ(x0, yn) < ε/2 is true. But ρ∗(yn, ω(kn)) = ε,
consequently for n > N ρ∗(x0, ω(kn)) > ε/2. If x0 belonged to ω(k∗), then for n > N the
inequality d(ω(k∗), ω(k)n)) > ε/2 would be true and there would exist ω(k)-bifurcations.
But according to the assumption they do not exist. Therefore is proved that x0 6∈ ω(k∗).

Formulate now some corollaries from ω(k) the proved theorems.

Corollary 2.1 Let any trajectory from ω(k) be recurrent for any k ∈ K and there be not
such (x, k) ∈ X×K that (k, x)-motion is whole, not P+-stable and ω(α(x, k), k) ⊂ ω(x, k)
(or weaker, ω(x, k)

⋂

α(x, k) 6= ∅). Then the existence of τ3-slow relaxations is equivalent
to the existence of τ1,2-slow relaxations.

Obviously, this follows from Theorem 2.7 and Proposition 1.11.

Corollary 2.2 Let the set ω(x, k) be minimal (Ω(x, k) = {ω(x, k)}) for any (x, k) ∈
X ×K and there be not such (x, k) ∈ X ×K that (k, x)-motion is whole, not P+-stable
and ω(α(x, k), k) ⊂ ω(x, k) (or weaker, α(x, k)

⋂

ω(x, k) 6= ∅). Then the existence of
τ3-slow relaxations is equivalent to the existence of τ1,2 -slow relaxations.

This follows from Theorem 2.7 and Corollary 1.1 of Proposition 1.11.

3 Slow Relaxations of One Semiflow

In this section we study one semiflow f . Here and further we denote by ωf and Ωf the
complete ω-limit sets of one semiflow f (instead of ω(k) and Ω(k)).

3.1 η2-slow Relaxations

As it was shown (Proposition 2.2), η1-slow relaxations of one semiflow are impossible.
Also was given an example of η2-slow relaxations in one system (Example 2.1). It is be
proved below that a set of smooth systems possessing η2-slow relaxations on a compact
variety is a set of first category in C1-topology. As for general dynamical systems, for
them is true the following theorem.

Let us recall the definition of non-wandering points.
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Definition 3.1 A point x∗ ∈ X is the non-wandering point for the semiflow f , if for any
neighbourhood U of x∗ and for any T > 0 there is such t > T that f(t, U)

⋂

U 6= ∅.

Theorem 3.1 Let a semiflow f possess η2-slow relaxations. Then there exists a non-
wandering point x∗ ∈ X which does not belong to ωf .

Proof. Let for some ε > 0 the function η2(x, ε) be unlimited in X. Consider a sequence
xn ∈ X for which η2(xn, ε) → ∞. Let V be a closed subset of the set {x ∈ X | ρ∗ (x, ωf) ≥
ε}. Define an auxiliary function: the residence time of x-motion in the intersection of the
closed δ-neighbourhood of the point y ∈ V with V :

ψ(x, y, δ, V ) = mes{t > 0 | ρ(f(t, x), y) ≤ δ, f(t, x) ∈ V }. (21)

From the inequality ψ(x, y, δ, V ) ≤ η2(x, ε) and the fact that finite η2(x, ε) exists for each
x ∈ X (see Proposition 2.1) it follows that the function ψ is defined for any x, y, δ > 0
and V with indicated properties (V is closed, r(V, f) ≥ ε).

Let us fix some δ > 0. Suppose that V0 = {x ∈ X | ρ∗(x, ωf) ≥ ε}.
Let Ūδ(yj) be a closed sphere of radius δ centered in yj ∈ V0). Consider a finite

covering of V0 with closed spheres centered in some points from V0: V0 ⊂
⋃k

j=1 Ūδ(yi).
The inequality

k
∑

j=1

ψ(x, yi, δ, V0) ≥ η2(x, ε) (22)

is true (it is obvious: being in V0, x-motion is always in some of Ūδ(yi)). From (22) it
follows that

∑k
j=1 ψ(x, yi, δ, V0) → ∞ as n → ∞. Therefore there is j0 (1 ≤ j0 ≤ k)

for which there is such subsequence {xm(i)} ⊂ {xn} that ψ(xm(i), yj0, δ, V0) → ∞. Let
y∗0 = yj0.

Note that if ρ(x, y∗0) < δ then for any I > 0 there is t > T for which

f(t, Ū2δ(x))
⋂

Ū2δ(x) 6= ∅.

Let us denote V1 = Ūδ(y
∗
0)

⋂

V0. Consider the finite covering of V1 with closed spheres
of radius δ/2 centered in some points from V1: V1 =

⋃k1

j=1 Ūδ/2(y
1
j ); y

1
j ∈ V1. The following

inequality is true:
k1

∑

j=1

ψ(x, y1
j , δ/2, V1) ≥ ψ(x, y∗0, δ, V0). (23)

Therefore exists j′0 (1 ≥ j′0 ≥ k1) for which there is such sequence {xl(i)} ⊂ {xm(i)} ⊂ {xn}
that ψ(xl(i), y

1
j′
0

, δ/2, V1) → ∞ as i→ ∞. We denote y∗1 = y1
j′
0

.

Note that if ρ(x, y∗1) ≤ δ/2 then for any T > 0 there is such t > T that

f(t, Ūδ(x))
⋂

Ūδ(x) 6= ∅.

Let us denote V2 = Ūδ/2(y
∗
1)

⋂

V1 and repeat the construction, substituting δ/2 for
δ, δ/4 for δ/2, V1,2 for V0,1.

Repeating this constructing further, we obtain the fundamental sequence y∗0, y
∗
1, . . ..

We denote its limit x∗, ρ∗(x∗, ωf) ≥ ε because x∗ ∈ V0 . The point x∗ is non-wandering:
for any its neighbourhood U and for any T > 0 there is such t > T that f(t, U)

⋂

U 6= ∅.
Theorem 3.1 is proved.

The inverse is not true in general case.
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Figure 5: Phase space of the system (Example 3.1). All the points of the axis are
non-wandering; © is the place of delay near fixed points.

Example 3.1 (The existence of non-wandering point x∗ 6∈ ωf without η2-slow relax-
ations). Consider a cylinder in R3 : x2 + y2 ≤ 1, −1 ≤ z ≤ 1. Define in it a motion
by the equations ẋ = ẏ = 0, ż = (x, y, z), where is a smooth function, ≥ 0, and it is
equal to zero only at (all) points of the sets (z = −1, x ≤ 0) and (z = 1, x ≥ 0). Since the
sets are closed, such function exists (even infinitely smooth). Identify the opposite bases
of the cylinder, preliminary turning them at angle π. In the obtained dynamical system
the closures of trajectories, consisting of more than one point, form up Zeifert foliation
(Fig. 5) (see, for example, [12], p.158).

Trajectory of the point (0, 0, 0) is a loop, tending at t→ ±∞ to one point which is the
identified centers of cylinder bases. The trajectories of all other nonfixed points are also
loops, but before to close they make two turns near the trajectory (0, 0, 0) The nearer is
the initial point of motion to (0, 0, 0), the larger is the time interval between it and the
point of following entering of this motion in small neighborhood of (0, 0, 0) (see Fig. 5).

3.2 Slow Relaxations and Stability

Let us recall the definition of Lyapunov stability of closed invariant set given by Lyapunov
(see [80], p.31-32), more general approach is given in [7].

Definition 3.2 A closed invariant set W ⊂ X is Lyapunov stable if and only if for any
ε > 0 there is such δ = δ(ε) > 0 that if ρ∗(x,W ) < δ then the inequality ρ∗(f(t, x),W ) < ε
is true for all t ≥ 0.

The following lemma follows directly from the definition.

Lemma 3.1 A closed invariant set W is Lyapunov stable if and only if it has a funda-
mental system of positive-invariant closed neighborhoods: for any ε there are such δ > 0
and closed positive-invariant set V ⊂ X that

{x ∈ X | ρ∗(x,W ) < δ} ⊂ V ⊂ {x ∈ X | ρ∗(x,W ) < ε}. (24)
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To get the set V , one can take for example the closure of following (it is obviously positive-
invariant) set: {f(t, x) | ρ∗(x,W ) ≤ δ = δ(ε/2), t ∈ [0,∞)}, i.e. of the complete image
(for all t ≤ 0) of δ-neighbourhood of W , where δ(ε) is that spoken about in Definition
3.2.

The following lemma can be deduced from the description of Lyapunov stable sets
([80], Sec. 11, p.40-49).

Lemma 3.2 Let a closed invariant set W ⊂ X be not Lyapunov stable. Then for any
λ > 0 there is such y0 ∈ X that the y0-motion is whole, ρ∗(y0,W ) < λ, d(α(y0),W ) < λ
(i.e. the α-limit set of the y0-motion lies in λ-neighbourhood of W ), and y0 6∈W .

Definition 3.3 An f -invariant set W ⊂ X for the semiflow f is called isolated, if there
is such λ > 0 that for any y ∈ ωf from the condition ρ∗(y,W ) < λ it follows that y ∈W ,
that is, any ω-limit point y ∈ ωf from the λ-neighbourhood of W belongs to W .

Theorem 3.2 If for semiflow f there exists closed isolated and not Lyapunov stable in-
variant set W ⊂ X then this semiflow possesses η3-slow relaxations.

Proof. Let W be a closed invariant isolated Lyapunov unstable set. Let λ > 0 be the
value from the definition of isolation. Then Lemma 3.2 guarantees the existence of such
y0 ∈ X that y0-motion is whole, ρ∗(y0,W ) < λ and y0 6∈W . It gives (due to closure of W )
ρ∗(y0,W ) = d > 0. Let δ = min{d/2, (λ− d)/2}. Then δ-neighbourhood of the point y0

lies outside of the set W , but in its λ-neighbourhood, and the last is free from the points
of the set ωf \W (isolation of W ). Thus, δ-neighbourhood of the point y0 is free from
the points of the set ωf ⊆W

⋃

(ωf \W ), consequently y0 6∈ ωf . Since y0-motion is whole,
Theorem 2.8 guarantees the presence of η3-slow relaxations. Theorem 3.2 is proved.

Lemma 3.3 Let X be connected and ωf be disconnected, then ωf is not Lyapunov stable.

Proof. Since ωf is disconnected, there are such nonempty closed W1,W2 that ωf =
W1

⋃

W2 and W1

⋂

W2 = ∅. Since any x-trajectory is connected and ωf is invariant,
then and W1 and W2 are invariant too. The sets ω(x) are connected (see Proposition
1.4), therefore for any x ∈ X ω(x) ⊂W1 or ω(x) ⊂W2. Let us prove that at least one of
the sets Wi (i = 1, 2) is not stable. Suppose the contrary: W1 and W2 are stable. Define
for each of them attraction domain:

At(Wi) = {x ∈ X | ω(x) ⊂ Wi}. (25)

It is obvious that Wi ⊂ At(Wi) owing to closure and invariance of Wi. The sets At(Wi)
are open due to the stability of Wi. Really, there are non-intersecting closed positive-
invariant neighborhoods Vi of the sets Wi, since the last do not intersect and are closed
and stable (see Lemma 3.1). Let x ∈ At(Wi). Then there is such t ≥ that f(t, x) ∈ intVi.
But because of the continuity of f there is such neighbourhood of x in X that for each its
point x′ f(t, x) ∈ intVi. Now positive-invariance and closure of Vi ensure ω(x′) ⊂ Wi, i.e.
x′ ∈ At(Wi). Consequently, x lies in At(Wi) together with its neighbourhood and the sets
At(Wi) are open in X. Since At(Wi)

⋃

At(W2) = X, At(W1)
⋂

At(W2) = ∅, the obtained
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result contradicts to the connectivity ofX. Therefore at least one of the sets W is not Lya-
punov stable. Prove that from this follows unstability of ωf . Note that if a closed positive-
invariant set V is union of two non-intersecting closed sets, V = V1

⋃

V2, V1

⋂

V2 = ∅,
then V1 and V2 are also positive-invariant because of the connectivity of positive semitra-
jectories. If ωf is stable, then it possess fundamental system of closed positive-invariant
neighborhoods V1 ⊃ V2 ⊃ . . . Vn ⊃ . . .. Since ωf = W1

⋃

W2, W1

⋂

W2 = ∅ and Wi are
nonempty and closed, then from some N Vn = V ′

n

⋃

V ′′
n = ∅ for n ≥ N , and the families

of the sets V ′
n ⊃ V ′

n+1 ⊃ . . . , V ′′
n ⊃ V ′′

n+1 . . . form fundamental systems of neighborhoods
of W1 and W2 correspondingly. So long as V ′

n, V
′′
n are closed positive-invariant neighbor-

hoods, from this follows stability of both W1 and W2, but it was already proved that it is
impossible. This contradiction shows that ωf is not Lyapunov stable and completes the
proof of the lemma.

Theorem 3.3 Let X be connected and ωf be disconnected. Then the semiflow f possesses
η3- and τ1,2,3-slow relaxations.

Proof. The first part (the existence of η3-slow relaxations) follows from Lemma 3.3 and
Theorem 3.2 (in the last as a closed invariant set one should take ωf). Let us prove the
existence of τ1-slow relaxations. Let ωf be disconnected: ωf = W1

⋃

W2, W1

⋂

W2 =
∅, Wi (i = 1, 2) are closed and, consequently, invariant due to the connectivity of trajec-
tories. Consider the sets At(Wi) (25). Note that at least one of these sets At(Wi) does not
include any neighbourhood ofWi. Really, suppose the contrary: At(Wi) (i = 1, 2) includes
a ε-neighbourhood of Wi. Let x ∈ At(Wi), τ = τ1(x, ε/3) be the time of the first entering
of the x-motion into ε/3-neighbourhood of the set ω(x) ⊂Wi. The point x possesses such
neighbourhood U ⊂ X that for any y ∈ U ρ(f(t, x), f(t, y)) < ε/3 as y ∈ U, 0 ≤ t ≤ τ .
Therefore d(f(τ, U),Wi) ≤ 2ε/3, U ⊂ At(Wi). Thus, x lies in At(Wi) together with its
neighbourhood: the sets At(Wi) are open. This contradicts to the connectivity ofX, since
X = At(W1)

⋃

At(W2) and At(W1)
⋂

At(W2) = ∅. To be certain, let At(W1) contain
none neighbourhood of W1. Then (owing to the compactness of X and the closure of W1)
there is a sequence xi ∈ At(W2), xi → y ∈ W1, ω(xi) ⊂ W2, ω(y) ⊂ W1. Note that
r((xi), ω(y)) ≥ r(W1,W2) > 0, therefore there are Ω(x)-bifurcations (y is the bifurcation
point) and, consequently, (Theorem 2.1) there are τ1-slow relaxations. This yields the
existence of τ2,3-slow relaxations (τ1 ≤ τ2 ≤ τ3).

3.3 Slow Relaxations in Smooth Systems

In this subsection we consider the application of the approach to the semiflows associated
with smooth dynamical systems developed above. Let M be a smooth (of class C∞)
finite-dimensional manifold, F : (−∞,∞) ×M → M be a smooth dynamical system
over M , generated by vector field of class C1, X be a compact set positive-invariant with
respect to the system F (in particular, X = M if M is compact). The restriction of F to
the set we call the semiflow over X, associated with F , and denote it by F |X .

We shall often use the following condition: the semiflow F |X has not non-wandering
points at the boundary of X (∂X); if X is positive-invariant submanifold of M with
smooth boundary, intX 6= ∅, then this follows, for example, from the requirement of
transversality of the vector field corresponding to the system F and the boundary of X.
All the below results are valid, in particular, in the case when X is the whole manifold
M and M is compact (the boundary is empty).
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Theorem 3.4 The complement of the set of smooth dynamical systems on compact man-
ifold M possessing the following attribute 1, is the set of first category (in C1-topology in
the space of smooth vector fields).
Attribute 1. Every semiflow F |X associated with a system F on any compact positive-
invariant set X ⊂M without non-wandering points on ∂X has not η2-slow relaxations.

This theorem is a direct consequence of the Pugh closing lemma, the density theorem
[61, 57], and Theorem 3.1 of the present work.

Note that if X is positive-invariant submanifold in M with smooth boundary, intX 6=
∅, then by infinitesimal (in C1-topology) perturbation of F preserving positive-invariance
of X one can obtain that semiflow over X, associated with the perturbed system, would
not have non-wandering points on ∂X. This can be easily proved by standard in differ-
ential topology reasonings about transversality. In the present case the transversality of
vector field of “velocities” F to the boundary of X is meant.

The structural stable systems over compact two-dimensional manifolds are studied
much better than in general case [8, 58]. They possess a number of characteristics which do
not remain in higher dimensions. In particular, for them the set of non-wandering points
consists of a finite number of limit cycles and fixed points, and the “loops” (trajectories
whose α- and ω-limit sets intersect, but do not contain points of the trajectory itself) are
absent. Slow relaxations in these systems also are different from the relaxations in the
case of higher dimensions.

Theorem 3.5 Let M be C∞-smooth compact manifold, dimM = 2, F be a structural
stable smooth dynamical system over M , F |X be an associated with M semiflow over
connected compact positive-invariant subset X ⊂M . Then:

1. For F |X the existence of τ3-slow relaxations is equivalent to the existence of τ1,2-
and η3-slow relaxations;

2. F |X does not possess τ3-slow relaxations if and only if ωF

⋂

X consists of one fixed
point or of points of one limit cycle;

3. η1,2-slow relaxations are impossible for F |X.

Proof. To prove the part 3, it is sufficient to refer to Theorem 3.1 and Proposition 2.2.
Let us prove the first and the second parts. Note that ωF |X = ωF

⋂

X. Let ωF

⋂

X
consist of one fixed point or of points of one limit cycle. Then ω(x) = X

⋂

ωF for any
x ∈ X. Also there are not such x ∈ X that x-motion would be whole but not P+-stable
and α(x)

⋂

ω(x) 6= ∅ (owing to the structural stability). Therefore (Theorem 2.7) τ3-slow
relaxations are impossible. Suppose now that ωF

⋂

X includes at least two limit cycles
or a cycle and a fixed point or two fixed points. Then ωF |X is disconnected, and using
Theorem 3.3 we obtain that F |X possesses η3-slow relaxations. Consequently, exist τ3-
slow relaxations. From Corollary 2.1, i.e. the fact that every trajectory from ωF is a fixed
point or a limit cycle and also from the fact that rough two-dimensional systems have no
loops we conclude that τ1-slow relaxations do exist. Thus, if ωF

⋂

X is connected, then
F |X has not even τ3-slow relaxations, and if ωF

⋂

X is disconnected, then there are η3

and τ1,2,3-slow relaxations. Theorem 3.5 is proved.
In general case (for structural stable systems with dim M > 2) the statement 1 of

Theorem 3.5 is not always true. Really, let us consider topologically transitive U -flow
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F over the manifold M [5]; ωF = M , therefore η3(x, ε) = 0 for any X ∈ M, ε > 0.
The set of limit cycles is dense in M . Let us choose two different cycles P1 and P2,
whose stable (P1) and unstable (P2) manifolds intersect (such cycles exist, see for example
[68, 18]). For the point x of their intersection ω(x) = P1, α(x) = P2, therefore x-
motion is whole and not Poisson’s positive stable, and (Lemma 2.2) τ3-slow relaxations
exist. And what is more, there exist τ1-slow relaxations too. These appears because the
motion beginning at point near P2 of x-trajectory delays near P2 before to enter small
neighbourhood of P1. It is easy to prove the existence of Ω(x)-bifurcations too. Really,
consider a sequence t1 → ∞, from the corresponding sequence F (ti, x) choose convergent
subsequence: F (tj, x) → y ∈ P2, ω(y) = P2, ω(F (tj, x)) = P1, i.e. there are both τ1-slow
relaxations and Ω(x)-bifurcations. For A-flows a weaker version of the statement 1 of
Theorem 3.5 is valid (A-flow is called a flow satisfying S.Smale A-axiom [68], in regard to
A-flows see also [18], p.106-143).

Theorem 3.6 Let F be an A-flow over compact manifold M . Then for any compact
connected positive-invariant X ⊂ M which does not possess non-wandering points of F |X
on the boundary the existence of τ3-slow relaxations involves the existence of τ1,2-slow
relaxations for F |X.

Proof. Note that ωF |X = ωf

⋂

intX. If ωF

⋂

intX is disconnected, then, according to
Theorem 3.3, F |X possesses η3- and τ1,2,3-slow relaxations. Let ωF

⋂

intX be connected.
The case when it consists of one fixed point or of points of one limit cycle is trivial:
there are no any slow relaxations. Let ωF

⋂

intX consist of one non-trivial (being neither
point nor cycle) basic set (in regard to these basic sets see [68, 18]): ωF

⋂

intX = Ω0.
Since there are no non-wandering points over ∂X, then every cycle which has point in
X lies entirely in intX. And due to positive-invariance of X, unstable manifold of such
cycle lies in X. Let P1 be some limit cycle from X. Its unstable manifold intersects
with stable manifold of some other cycle P2 ⊂ X [68]. This follows from the existence
of hyperbolic structure on Ω0 (see also [18], p.110). Therefore there is such x ∈ X that
ω(x) = P2, α(x) = P1. From this follows the existence of τ1- (and τ2,3-)-slow relaxations.
The theorem is proved.

Remark. We have used only very weak consequence of the hyperbolicity of the set
of non-wandering points: the existence in any non-trivial (being neither point nor limit
cycle) isolated connected invariant set of two closed trajectories, stable manifold of one
of which intersects with unstable manifold of another one. It seems very likely that the
systems for which the statement of Theorem 3.6 is true are typical, i.e. the complement
of their set in the space of flows is a set of first category (in C1- topology).

4 Slow Relaxation of Perturbed Systems

4.1 Limit Sets of ε-motions

As models of perturbed motions let us take ε-motions. These motions are mappings
f ε : [0,∞) → X, which during some fixed time T depart from the real motions at most
at ε.
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Definition 4.1 Let x ∈ X, k ∈ K, ε > 0, T > 0. The mapping f ε : [0,∞) → X
is called (k, ε, T )-motion of the point x for the system (1) if f ε(0) = x and for any
t ≥ 0, τ ∈ [0, T ]

ρ(f ε(t+ τ), f(τ, f ε(t), k)) < ε. (26)

We call (k, ε, T )-motion of the point x (k, x, ε, T )-motion and use the denotation
f ε(t|x, k, T ). It is obvious that if y = f ε(τ |x, k, T ) then the function f ∗(t) = f ε(t +
τ |x, k, T ) is (k, y, ε)-motion.

The condition (26) is fundamental in study of motion with constantly functioning
perturbations. Different restrictions on the value of perturbations of the right parts of
differential equations (uniform restriction, restriction at the average etc., see [9], p.184
and further) are used as a rule in order to obtain estimations analogous to (26). On the
base of these estimations the further study is performed.

Let us introduce two auxiliary functions:

ε(δ, t0) = sup{ρ(f(t, x, k), f(t, x′, k′)) | 0 ≤ t ≤ t0, ρ(x, x
′) < δ, ρK(k, k′) < δ}; (27)

δ(ε, t0) = sup{δ ≥ 0 | ε(δ, t0) ≤ ε}. (28)

Due to the compactness of X and K the following statement is true.

Proposition 4.1 A) For any δ > 0 and t0 > 0 the function ε(δ, t0) is defined; ε(δ, t0) → 0
as δ → 0 uniformly over any compact segment t0 ∈ [t1, t2].
B) For any ε > 0 and t0 > 0 the function δ(ε, t0) > 0 is defined (is finite).

Proof. A) Let δ > 0, t0 > 0. Finiteness of ε(δ, t0) follows immediately from the com-
pactness of x. Let δi > 0, δi → 0. Let us prove that ε(δi, t0) → 0. Suppose the
contrary. In this case one can choose in {δi} such subsequence that corresponding ε(δi, t0)
are separated from zero by common constant: ε(δi, t0) > α > 0. Let us turn to this
subsequence, preserving the same denotations. For every i there are such ti, xi, x

′
i, ki, k

′
i

that 0 ≤ ti ≤ t0, ρ(xi, x
′
i) < δi, ρK(ki, k

′
i) < δi and ρ(f(ti, xi, ki), f(ti, x

′
i, k

′
i)) >

α > 0. The product [0, t0] × X × X × K × K is compact. Therefore from the
sequence (ti, xi, x

′
i, ki, k

′
i) one can choose a convergent subsequence. Let us turn to

it preserving the denotations: (ti, xi, x
′
i, ki, k

′
i) → (t̃, x0, x

′
0, k0, k

′
0). It is obvious that

ρ(x0, x
′
0) = ρK(k0, k

′
0) = ρK(k0, k

′
0) = 0, therefore x0 = x′0, k0 = k′0. Consequently,

f(t̃, x0, k0) = f(t, x′0, k
′
0). On the other hand, ρ(f(ti, xi, ki), f(ti, x

′
i, k

′
i)) > α > 0, there-

fore ρ(f(t̃, x0, k0), f(t̃, x′0, k
′
0)) ≥ α > 0 and f(t̃, x0, k0) 6= f(t̃, x′0, k

′
0). The obtained

contradiction proves that ε(δi, t0) → 0.
The uniformity of tending to 0 follows from the fact that for any t1, t2 > 0, t1 < t2

the inequality ε(δ, t1) ≤ ε(δ, t2) is true, ε(δ, t) is a monotone function.
The statement of the point B) follows from the point A).
The following estimations of divergence of the trajectories are true. Let f ε(t|x, k, T )

be (k, x, ε, T )-motion. Then5

ρ(f ε(t|x, k, T ), f(t, x, k)) ≤ χ(ε, t, T ), (29)

where χ(ε, t, T ) =
∑[t/T ]

i=0 κi, κ0 = ε,κi = ε(κi−1, T ) + ε.

5Here and further trivial verifications that follow directly from the triangle inequality are omitted.
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Let f ε1(t|x1, k1, T ), f ε2(t|x2, k2, T ) be correspondingly (k1, x1, ε1, T )- and
(k2, x2, ε2, T )-motion. Then

ρ(f ε1(t|x1, k1, T ), f ε2(t|x2, k2, T )) ≤
≤ ε(max{ρ(x1, x2, , ρK(k1, k2)}, T ) + χ(ε1, t, T ) + χ(ε2, t, T ). (30)

From Proposition 4.1 it follows that χ(ε, t, T ) → 0 as ε → 0 uniformly over any compact
segment t ∈ [t1, t2].

Let T2 > T1 > 0, ε > 0. Then any (k, x, ε, T2)-motion is (k, x, ε, T1)-motion, and any
(k, x, ε, T1)-motion is (k, x, χ(ε, T2, T1), T2)-motion. Since we are interested in perturbed
motions behavior at ε → 0, and χ(ε, T2, T1) → 0 as ε → 0, then the choice of T is
unimportant. Therefore let us fix some T > 0 and omit references to it in formulas
((k, x, ε)-motion instead of (k, x, ε, T )-motion and f ε(t|x, k) instead of f ε(t|x, k, T )).

The following propositions allows us “to glue together” ε-motions.

Proposition 4.2 Let ε1, ε2 > 0, f ε1(t|x, k) be ε1-motion, τ > 0, f ε2(t|f ε1(τ |x, k), k) be
ε2-motion. Then the mapping

f ∗(t) =

{

f ε1(t|x, k), if 0 ≤ t ≤ τ ;
f ε2(t− τ |f ε1(τ |x, k), k), if t ≥ τ,

is (k, x, 2ε1 + ε2)-motion.

Proposition 4.3 Let δ, ε1, ε2 > 0, f ε1(t|x, k) be ε1-motion, τ > 0, f ε2(t|y, k′) be ε2-
motion, ρK(k, k′) < δ, ρ(y, f ε1(τ |x, k)) < δ. Then the mapping

f ∗(t) =

{

f ε1(t|x, k), if 0 ≤ t < τ ;
f ε2(t− τ |y, k), if t ≥ τ,

is (k, x, 2ε1 + ε2 + ε(δ, T ))-motion.

Proposition 4.4 Let δj , εj > 0, the numbers εj, δj are bounded above, xj ∈ X, kj ∈ K,
k∗ ∈ K, τ0 > T , j = 0, 1, 2, . . . , i = 1, 2, . . ., f εj(t|xj , kj) be the εj-motions,
ρ(f εj(τj |xj , kj), xj+1) < δj, ρK(kj, k

∗) < δj/2. Then the mapping

f ∗(t) =

{

f ε0(t|x0, k0), if 0 ≤ t < τ0;

f εj

(

t−
∑i−1

j=0 τj |xj, kj

)

, if
∑i−1

j=0 τj ≤ t <
∑i

j=0 τj ,

is (k∗, x0, β)-motion, where

β = sup
0≤j<∞

{εj+1 + ε(εj + δj + δj+1 + ε(δj , T ), T )}.

The proof of the propositions 4.2-4.4 follows directly from the definitions.

Proposition 4.5 Let xi ∈ X, ki ∈ K, ki → k∗, εi > 0, εi → 0, f εi(t|xi, ki) be (ki, xi, εi)-
motions, ti > 0, ti > t0, f

εi(ti|xi, ki) → x∗. Then (k∗, x∗)-motion is defined over the
segment [−t0,∞) and f εi(t0 + t|xi, ki) tends to f(t, x∗, k∗) uniformly over any compact
segment from [−t0,∞).
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Proof. Let us choose from the sequence {xi} a convergent subsequence (preserving the
denotations): xi → x0. Note that f εi(t|xi, ki) → f(t, x0, k

∗) uniformly over any compact
segment t ∈ [t1, t2] ⊂ [0,∞); this follows from the estimations (30) and Proposition
4.1. Particularly, f(t0, x0, k

∗) = x∗. Using the injectivity of f , we obtain that x0 is a
unique limit point of the sequence {xi}, therefore f εi(t0 + t|yi, ki) tends to f(t, x∗, k∗) =
f(t0 + t, x0, k

∗) uniformly over any compact segment t ∈ [t1, t2] ⊂ [−t0,∞).

Proposition 4.6 Let xi ∈ X, ki ∈ K, ki → K∗, εi > 0, f εi(t|xi, ki) be (ki, xi, εi)-
motions, ti > 0, ti → ∞, f εi(ti|xi, ki) → x∗. Then (k∗, x∗)-motion is whole and the
sequence f εi(t+ ti|xi, ki) defined for t > t0 for any t0, from some i(t0) (for i ≥ i(t0)) tends
to f(t, x∗, k∗) uniformly over any compact segment.

Proof. Let t0 ∈ (−∞,∞). From some i0 ti > −t0. Let us consider the sequence of

(ki, f
εi(ti + t0|xi, ki), εi)-motions: f εi(t|f εi(ti + t0|xi, ki), ki)

def
= f εi(t+ ti + t0|xi, ki).

Applying to the sequence the precedent proposition, we obtain the required statement
(due to the arbitrariness of t0).

Definition 4.2 Let x ∈ X, k ∈ K, ε > 0, f ε(t|x, k) be (k, x, ε)-motion. Let us call y ∈
X ω-limit point of this ε-motion, if there is such a sequence ti → ∞ that f ε(ti|x, k) → y.
We denote the set of all ω-limit points of f ε(t|x, k) by ω(f ε(t|x, k)), the set of all ω-limit
points of all (k, x, ε)-motions under fixed k, x, ε by ωε(x, k), and

ω0(x, k)
def
=

⋂

ε>0

ωε(x, k).

Proposition 4.7 For any ε > 0, γ > 0, x ∈ X, k ∈ K

ωε(x, k) ⊂ ωε+γ(x, k).

Proof. Let y ∈ ωε(x, k). For any δ > 0 there are (k, x, ε)-motion f ε(t|x, k) and subse-
quence ti → ∞, for which ρ(f ε(ti|x, k), y) < δ. Let δ = 1

2
δ(γ, T ). As (k, x, ε+ γ)-motion

let us choose

f ∗(t) =

{

f ∗(t|x, k), if t 6= ti;
y, if t = ti(i = 1, 2, . . . , ti+1 − ti > T ).

y is the ω-limit point of f ∗(t), therefore, y ∈ ωε+γ(x, k).

Proposition 4.8 For any x ∈ X, k ∈ K the set ω0(x, k) is closed and k-invariant.

Proof. From Proposition 4.7 it follows

ω0(x, k) =
⋂

ε>0

ωε(x, k). (31)

Therefore ω0(x, k) is closed. Let us prove that it is k-invariant. Let y ∈ ω0(x, k). Then
there are such sequences εj > 0, εj → 0, tji → ∞ as i→ ∞ (j = 1, 2, . . .) and such family
of (k, x, εj)-motions f εj(t|x, k) that f εj(tji |x, k) → y as i → ∞ for any j = 1, 2, . . .. From
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Proposition 4.6 it follows that (k, y)-motion is whole. Let z = f(t0, y, k). Let us show
that z ∈ ω0(x, k). Let γ > 0. Construct (k, x, γ)-motion which has z as its ω-limit point.

Let t0 > 0. Find such δ0 > 0, ε0 > 0 that χ(ε0, t0 +T, T )+ ε(δ0, t0 +T ) < γ/2 (this is
possible according to Proposition 4.1). Let us take εj < ε0 and choose from the sequence
tji (i = 1, 2, . . .) such monotone subsequence tl (l = 1, 2, . . .) for which tl+1 − tl > t0 + T
and ρ(f εj(tl|x, k), y) < δ0. Let

f ∗(t) =

{

f εj(t|x, k), if t 6∈ [tl, tl + t0] for any l = 1, 2, . . . ;
f(t− tl, y, k), if t ∈ [tl, tl + t0] (l = 1, 2, . . .).

z is the ω-limit point of this (k, x, γ)-motion.
If t0 < 0, then at first it is necessary to estimate the divergence of the trajectories for

“backward motion”. Let δ > 0. Let us denote

ε̃(δ, t0, k) = sup

{

ρ(x, x′)

∣

∣

∣

∣

inf
0≤t≤−t0

{ρ(f(t, x, k), f(t, x′, k)} ≤ δ

}

. (32)

Lemma 4.1 For any δ > 0, t0 < 0 and k ∈ K ε̃(δ, t0, k) is defined (finite). ε̃(δ, t0, k) → 0
as δ → 0 uniformly by k ∈ K and by t0 from any compact segment [t1, t2] ⊂ (−∞, 0].

The proof can be easily obtained from the injectivity of f(t, ·, k) and compactness of X,K
(similarly to Proposition 4.1).

Let us return to the proof of Proposition 4.8. Let t0 < 0. Find such ε0 > 0 and δ0 > 0
that ε̃(χ(ε0, T − t0, T ), t0, K) + ε̃(δ0, t0 − T, k) < γ/2. According to Proposition 4.1 and
Lemma 4.1 this is possible. Let us take εj < ε0 and choose from the sequence tji (i =
1, 2, . . .) such monotone subsequence tl (l = 1, 2, . . .) that tl > −t0, ρ(f εi(tl|x, k), y) < δ0
and tl+1 − tl > T − t0. Suppose

f ∗(t) =

{

f εj(t|x, k), if t 6∈ [tl + t0, tl] for any l = 1, 2, . . . ;
f(t− tl, y, k), if t ∈ [tl + t0, tl] (l = 1, 2, . . .).

where f ∗(t) is (k, x, γ)-motion, and z is the ω-limit point of this motion.
Thus, z ∈ ωγ(x, k) for any γ > 0. The proposition is proved.

Proposition 4.9 Let x ∈ ω0(x, k). Then for any ε > 0 there exists periodical (k, x, ε)-
motion.6

Proof. Let x ∈ ω0(x, k), ε > 0, δ = 1
2
δ( ε

2
, T ). There is (x, k, δ)-motion, and x is its

ω-limit point: x ∈ (f δ(t), x, k). There is such t0 > T that ρ(f δ(t0|x, k), x) < δ. Suppose

f ∗(t) =

{

x, if t = nt0, n = 0, 1, 2, . . . ;
f δ(t− nt0|x, k), if nt < t < (n+ 1)t0.

Here f ∗(t) is a periodical (k, x, ε)-motion with the period t0.
Thus, if x ∈ ω0(x, k), then (k, x)-motion possesses the property of chain recurrence

[23]. The inverse statement is also true: if for any ε > 0 there is a periodical (k, x, ε)-
motion, then x ∈ ω0(x, k) (this is obvious).

6It is a version of C0-closing lemma.
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Proposition 4.10 Let xi ∈ X, ki ∈ K, ki → k∗, εi > 0, εi → 0, f εi(t|xi, ki) be
(ki, xi, εi)-motion, yi ∈ ω(f εi(t|xi, ki)), yi → y∗. Then y∗ ∈ ω0(y, k). If in addition
xi → x∗ then y∗ ∈ ω0(x, k).

Proof. Let ε > 0 and δ = 1
2
δ( ε

2
, T ). It is possible to find such i that εi < δ/2, ρK(ki, k

∗) <
δ, and ρ(f εi(tj|xi, ki), y

∗) < δ for some monotone sequence tj → ∞, tj+1−tj > T . Suppose

f ∗(t) =

{

y∗, if t = tj − t1 (j = 1, 2, . . .);
f εi(t+ t1|xi, ki), otherwise,

where f ∗(t) is (k∗, y∗, ε)-motion, y∗ ∈ ω(f ∗). Since ε > 0 was chosen arbitrarily, y∗ ∈
ω0(y∗, k∗). Suppose now that xi → x∗ and let us show that y∗ ∈ ω0(x∗, k∗). Let ε >
0, δ = 1

2
δ( ε

2
, T ). Find such i for which ετ < δ/2, ρ(xi, x

∗) < δ, ρK(ki, k
∗) < δ and there is

such monotone subsequence tj → ∞ that t1 > T, tj+1 − tj > T ; ρ(f εi(tj|xi, ki), y
∗) < δ.

Suppose

f ∗(t) =







x∗, if t = 0;
y∗, if t = tj(j = 1, 2, . . .);
f εi(t|xi, ki), otherwise,

where f ∗(t) is (k∗, x∗, ε)-motion and y∗ ∈ ω(f ∗). Consequently, y ∈ ω0(x∗, k∗).

Corollary 4.1 If x ∈ X, k ∈ K, y∗ ∈ ω0(x, k) then y∗ ∈ ω0(y∗, k).

Corollary 4.2 Function ω0(x, k) is upper semicontinuous in X ×K.

Corollary 4.3 For any k ∈ K

ω0(k)
def
=

⋃

x∈X

ω0(x, k) =
⋃

x∈X

⋂

ε>0

ωε(x, k) =
⋂

ε>0

⋃

x∈X

ωε(x, k). (33)

Proof. Inclusion
⋃

x∈X

⋂

ε>0 ω
ε(x, k) ⊂ ⋂

ε>0

⋃

x∈X ω
ε(x, k) is obvious. To prove the

equality, let us take arbitrary element y of the right part of this inclusion. For any
natural n there is such xn ∈ X that y ∈ ω1/n(xn, k). Using Proposition 4.10, we obtain
y ∈ ω0(y, k) ⊂ ⋃

x∈X

⋂

ε>0 ω
ε(x, k), and this proves the corollary.

Corollary 4.4 For any k ∈ K the set ω0(k) is closed and k-invariant, and the function
ω0(k) is upper semicontinuous in K.

Proof. k-invariance of ω0(k) follows from the k-invariance of ω0(x, k) for any x ∈ X, k ∈
K (Proposition 4.8), closure and semicontinuity follow from Proposition 4.10.

Note that the statements analogous to the corollaries 4.2. and 4.4 are incorrect for
the true limit sets ω(x, k) and ω(k).

Proposition 4.11 Let k ∈ K, Q ⊂ ω0(k) and Q be connected. Then Q ⊂ ω0(y, k) for
any y ∈ Q.

41



Proof. Let y1, y2 ∈ Q, ε > 0. Construct a periodical ε-motion which passes through
the points y1, y2. Suppose δ = 1

2
δ( ε

2
, T ). With Q being connected, there is such finite set

{x1, . . . , xn} ⊂ Q that x1 = y1, xn = y2 and ρ(xi, xi+1) <
1
2
δ (i = 1, . . . , n − 1) and for

every i = 1, . . . , n there is a periodical (k, xi, δ/2)-motion f δ/2(t|xi, k) (see Proposition 4.9
and Corollary 4.1). Let us choose for every i = 1, . . . , n such Ti > T that f δ/2(Ti|xi, k) =
xi. Construct a periodical (k, y1, ε)-motion passing through the points x1, . . . , xn with the
period T0 = 2

∑n
t=1 Ti − T1 − Tn: let 0 ≤ t ≤ T0, suppose

f ∗(t) =























f δ/2(tx1, k), if 0 ≤ t < T ;

f δ/2
(

t−
∑j−1

i=1 Ti|xi, k
)

, if
∑j−1

i=1 Ti ≤ t <
∑j

i=1 Ti (j = 2, . . . , n);

f δ/2
(

t−
∑n−1

i=1 Ti +
∑n

i=j+1 Ti|xj , k
)

, if
∑n−1

i=1 Ti +
∑n

i=j+1 Ti ≤ t <

<
∑n−1

i=1 Ti +
∑n

i=j Ti.

If mT0 ≤ t < (m + 1)T0, then f ∗(t) = f ∗(t −mT0). f
∗(t) is periodical (k, y1, ε)-motion

passing through y2. Consequently (due to the arbitrary choice of ε > 0), y2 ∈ ω0(y, k)
and (due to the arbitrary choice of y2 ∈ Q) Q ⊂ ω0(y1, k). The proposition is proved.

Definition 4.3 Let us say that the system (1) possesses ω0(x, k)- (ω0(k)-)-bifurcations,
if the function ω0(x, k) (ω0(k)) is not lower semicontinuous (i.e. d-continuous) in X×K.
The point in which the lower semicontinuity gets broken is called the point of (correspond-
ing) bifurcation.

Proposition 4.12 If the system (1) possesses ω0-bifurcations, then it possesses ω0(x, k)-
bifurcations.

Proof. Assume that ω0(k)-bifurcations exist. Then there are such k∗ ∈ K (the point of
bifurcation), x∗ ∈ ω0(k∗), ε > 0, and sequence ki → k, that ρ∗(x∗, ω0(ki)) > ε for any
i = 1, 2, . . .. Note that ω0(x∗, ki) ⊂ ω0(ki), consequently, ρ∗(x∗, ω0(x∗, ki)) > ε for any i.
However x∗ ∈ ω0(x∗, k∗) (Corollary 4.1). Therefore d(ω0(x∗, k∗), ω0(x∗, ki)) > ε, (x∗, k∗)
is the point of ω0(x, k)-bifurcation.

Proposition 4.13 The sets of all points of discontinuity of the functions ω0(x, k) and
ω0(k) are subsets of first category in X ×K and K correspondingly. For each k ∈ K the
set of such x ∈ X that (x, k) is the point of ω0(x, k)-bifurcation is (k,+)-invariant.

Proof. The statement that the sets of points of ω0(x, k)- and ω0(k)-bifurcations are
the sets of first category follows from the upper semicontinuity of the functions ω0(x, k)
and ω0(k) and from known theorems about semicontinuous functions ([49], p.78-81). Let
us prove (k,+)-invariance. Note that for any t > 0 ω0(f(t, x, k), k) = ω0(x, k). If
(xi, ki) → (x, k), then (f(t, xi, ki), ki) → (f(t, x, k), k). Therefore, if (x, k)is the point of
ω0(x, k)-bifurcation, then (f(t, x, k), k) is also the point of ω0(x, k)-bifurcation for any
t > 0.

Let (x0, k0) be the point of ω0(x, k)-bifurcation, Γ be a set of such γ > 0 for which
there exist x∗ ∈ ω0(x0, k0) and such sequence (xi, ki) → (x0, k0) that ρ∗(x∗, ω0(xi, ki)) ≥ γ
for all i = 1, 2, . . .. Let us call the number γ̃ = sup Γ the value of discontinuity of ω0(x, k)
in the point (x0, k0).
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Proposition 4.14 Let γ > 0. The set of those (x, k) ∈ X × K, in which the function
ω0(x, k) is not continuous and the value of discontinuity γ̃ ≥ γ, is nowhere dense in
X ×K.

The proof can be easily obtained from the upper semicontinuity of the functions ω0(x, k)
and from known results about semicontinuous functions ([49], p.78-81).

Proposition 4.15 If there is such γ > 0 that for any ε > 0 there are (x, k) ∈ X ×K for
which d(ωε(x, k), ω0(x, k)) > γ then the system (1) possesses ω0(x, k)-bifurcations with
the discontinuity γ̃ ≥ γ.

Proof. Let the statement of the proposition be true for some γ > 0. Then there are
sequences εi > 0, εi → 0 and (xi, ki) ∈ X×K, for which d(ωεi(xi, ki), ω

0(xi, ki)) > γ. For
every i = 1, 2, . . . choose such point yi ∈ ωεi(xi, ki) that ρ∗(yi, ω

0(xi, ki)) > γ. Using the
compactness of X and K, choose subsequence (preserving the denotations) in such a way
that the new subsequences yi and (xi, ki) would be convergent: yi → y0, (xi, ki) → (x0, k0).
According to Proposition 4.10 y0 ∈ ω0(x0, k0). For any κ > 0 ρ∗(y0, ω

0(xi, ki)) > γ − κ
from some i = i(κ). Therefore (x0, k0) is the point of ω0(x, k)-bifurcation with the
discontinuity γ̃ ≥ γ.

4.2 Slow Relaxations of ε-motions

Let ε > 0, f ε(t|x, k) be (k, x, ε)-motion, γ > 0. Let us define the following relaxation
times:

(a) τ ε
1 (t|x, k), γ) = inf{t ≥ 0 | ρ∗(f ε(t|x, k), ωε(x, k)) < γ};

(b) τ ε
2 (f ε(t|x, k), γ) = mes{t ≥ 0 | ρ∗(f ε(t|x, k), ωε(x, k)) ≥ γ};

(c) τ ε
3 (f ε(t|x, k), γ) = inf{t ≥ 0 | ρ∗(f ε(t′|x, k), ωε(x, k)) < γ for t′ > t}; (34)

(d) ηε
1(f

ε(t|x, k), γ) = inf{t ≥ 0 | ρ∗(t|x, k), ωε(k)) < γ};
(e) ηε

2(f
ε(t|x, k), γ) = mes{t ≥ 0 | ρ∗(f ε(t|x, k), ωε(k)) ≥ γ};

(f) ηε
3(f

ε(t|x, k),= inf{t ≥ 0 | ρ∗(f ε(t′|x, k), ωε(k)) < γ for t′ > t}.

Here mes{ } is the external measure, ωε(k) =
⋃

x∈X ω
ε(x, k).

There are another three important relaxation times. They are bound up with the
relaxation of a ε-motion to its ω-limit set. We do not consider them in this work.

Proposition 4.16 For any x ∈ X, k ∈ K, ε > 0, γ > 0 and (k, x, ε)-motion f ε(t|x, k)
the relaxation times (34a-f) are defined (finite) and the inequalities τ ε

1 ≤ τ ε
2 ≤ τ ε

3 , η
ε
1 ≤

ηε
2 ≤ ηε

3, τ
ε
i ≥ ηε

i (i = 1, 2, 3) are valid.

Proof. The validity of the inequalities is obvious due to the corresponding inclusions
relations between the sets or their complements from the right parts of (34). For the
same reason it is sufficient to prove definiteness (finiteness) of τ ε

3 (f ε(t|x, k), γ). Sup-
pose the contrary: the set from the right part of (34c) is empty for some x ∈ X, k ∈
K, γ > 0 and (k, x, ε)-motion f ε(t|x, k). Then there is such sequence ti → ∞ that
ρ∗(f ε(ti|x, k), ωε(x, k)) ≥ γ. Owing to the compactness of X, from the sequence f ε(ti|x, k)
can be chosen a convergent one. Denote its limit as y. Then y satisfies the definition of

43



ω-limit point of (k, x, ε)-motion but does not lie in ωε(x, k). The obtained contradiction
proves the existence (finiteness) of τ3(f

ε(t|x, k), γ).
In connection with the introduced relaxation times (34a-f) it is possible to study

many different kinds of slow relaxations: infiniteness of the relaxation time for given ε,
infiniteness for any ε small enough e.c. We confine ourselves to one variant only. The
most attention will be paid to the times τ ε

1 and τ ε
3 .

Definition 4.4 We say that the system (1) possesses τ 0
i - (η0

i -)-slow relaxations, if there
are such γ > 0, sequences of numbers εj > 0, εj → 0, of points (xj , kj) ∈ X ×K, and of
(kj, xj , εj)-motions f εj(t|xj , kj) that τ

εj

i (f εj(t|xj , kj), γ) → ∞ (η
εj

i (f εj(t|xj, kj), γ) → ∞)
as j → ∞.

Theorem 4.1 The system (1) possesses τ 0
3 -slow relaxations if and only if it possesses

ω0(x, k)-bifurcations.

Proof. Suppose that the system (1) possesses τ 3
0 -slow relaxations: there are such γ > 0,

sequences of numbers εj > 0, εj → 0, of points (xj , kj) ∈ X×K and of (kj, xj , εj)-motions
f εj(t|xj , kj) that

τ
εj

3 (f εj(t|x, k), γ) → ∞ (35)

as j → ∞.
Using the compactness of X × K, choose from the sequence (xj , kj) a convergent

one (preserving the denotations): (xj , kj) → (x∗, k∗). According to the definition of the
relaxation time τ ε

3 there is such sequence tj → ∞ that

ρ∗(f εj(tj|xj , kj), ω
εj(xj , kj)) ≥ γ. (36)

Choose again from (xj , kj) a sequence (preserving the denotations) in such a manner,
that the sequence yj = f εj(tj|xj , kj) would be convergent: yj → y∗ ∈ X. According
to Proposition 4.6 (k∗, y∗)-motion is whole and f εj(tj + t|xj , kj) → f(t, y∗, k∗) uniformly
over any compact segment t ∈ [t1, t2]. Two cases are possible: ω0(y∗, k∗)

⋂

α(y∗, k∗) 6= ∅
or ω0(y∗, k∗)

⋂

α(y∗, k∗) = ∅. We shall show that in the first case there are ω0(x, k)-
bifurcations with the discontinuity γ̃ ≥ γ/2 ((y∗, k∗) is the point of bifurcation), in the
second case there are ω0(x, k)-bifurcations too ((p, k∗) is the point of bifurcation, where
p is any element from α(y∗, k∗)), but the value of discontinuity can be less than γ/2. We
need four lemmas.

Lemma 4.2 Let x ∈ X, k ∈ K, ε > 0, f ε(t|x, k) be (k, x, k)-motion, t > 0, y =
f ε(t|x, k). Then ω0(y, k) ⊂ ω2ε+σ(x, k) for any σ > 0.

The proof is an obvious consequence of the definitions and Proposition 4.2.

Lemma 4.3 Let x ∈ X, k ∈ K, t0 > 0, y = f(t0, x, k), , δ > 0, ε = ε(χ(δ, t0, T ), T )+ δ.
Then ωδ(x, k) ⊂ ωε(y, k).

Proof. Let f δ(t|x, k) be (k, x, δ)-motion. Then

f ∗(t) =

{

y, if t = 0;
f δ(t+ t0|x, k), if t > 0,

(37)

is (k, y, ε)-motion, ω(f ∗) ⊂ ωε(y, k), and ω(f ∗) = ω(f δ(t|x, k)).
Since ε(χ(δ, t0, T ), T ) → 0, for δ → 0 we obtain
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Corollary 4.5 Let x ∈ X, k ∈ K, t0 > 0, y = f(t0, x, k). Then ω0(x, k) = ω0(y, k).

Lemma 4.4 Let (k, y)-motion be whole and ω0(y, k)
⋂

α(y, k) 6= ∅. Then y ∈ ω0(y, k).

Proof. Let ε > 0, p ∈ ω0(y, k)
⋂

α(y, k). Let us construct a periodical (k, y, ε)-
motion. Suppose that δ = 1

2
δ( ε

2
, T ). There is such t1 > T that for some (k, y, δ)-motion

f δ(t|y, k) ρ(f δ(t1|y, k), p) < δ. There is also such t2 < 0 that ρ(f(t2, y, k), p) < δ. Then it
is possible to construct a periodical (k, y, ε)-motion, due to the arbitrariness of ε > 0 and
y ∈ ω0(y, k).

Lemma 4.5 Let y ∈ X, k ∈ K, (k, y)-motion be whole. Then for any p ∈ α(y, k)
ω0(p, k) ⊃ α(y, k).

Proof. Let p ∈ α(y, k), ε > 0. Let us construct a periodical (k, p, ε)-motion. Suppose
that δ = 1

2
δ(ε, T ). There are two such t1, t2 < 0 that t1− t2 > T and ρ(f(t1,2, y, k), p) < δ.

Suppose

f ∗(t) =

{

p, if t = 0 or t = t1 − t2;
f(t+ t2|y, k), if 0 < t < t1 − t2,

where f ∗(t+ n(t1 − t2)) = f ∗(t). Periodical (k, p, ε)-motion is constructed. Since ε > 0 is
arbitrary, p ∈ ω0(p, k). Using Proposition 4.11 and the connectivity of α(y, k), we obtain
the required: α(y, k) ⊂ ω0(p, k).

Let us return to the proof of Theorem 4.1. Note that according to Proposition 4.15
if there are not ω0(x, k)-bifurcations with the discontinuity γ̃ ≥ γ/2, then from some
ε0 > 0 (for 0 < ε ≤ ε0) d(ω

ε(x, k), ω0(x, k)) ≤ γ/2 for any x ∈ X, k ∈ K. Suppose that
the system has τ 0

3 -slow relaxations and does not possess ω0(x, k)-bifurcations with the
discontinuity γ̃ ≥ γ/2. Then from (36) it follows that for 0 < ε ≤ ε0

p∗(f εj(tj |xj , kj), ω
ε(xj , kj)) ≥ γ/2. (38)

According to Lemma 4.2 ω0(yj, kj) ⊂ ω3εj(xi, kj). Let 0 < κ < γ/2. From some j0
(for j > j0) 3εj < ε0 and ρ(f εj(tj |xj, kj), y

∗) < γ/2 − κ. For j > j0 from (38) we obtain

ρ∗(y∗, ω0(yj, kj)) > κ. (39)

If ω0(y∗, k∗)
⋂

α(y∗, k∗) 6= ∅, then from (39) and Lemma 4.4 follows the existence of
ω0(x, k)-bifurcations with the discontinuity γ̃ ≥ γ/2. The obtained contradiction (if
ω0(y∗, k∗)

⋂

α(y∗, k∗) 6= ∅ and there are not ω0(x, k)-bifurcations with the discontinu-
ity γ̃ ≥ γ/2, then they are) proves in this case the existence of ω0(x, k)-bifurcations
with the discontinuity γ̃ ≥ γ/2. If ω0(y∗, k∗)

⋂

α(y∗, k∗) = ∅, then there also exist
ω0(x, k)-bifurcations. Really, let p ∈ α(y∗, k∗). Consider such a sequence ti → −∞
that f(ti, y

∗, k∗) → p. According to Corollary 4.5 ω0(f(ti, y
∗, k∗), k∗) = ω0(y∗, k∗), conse-

quently, according to Lemma 4.5, d(ω0(p, k∗), ω0(f(ti, y
∗, k∗)) ≥ d(α(y∗, k∗), ω0(y∗, k∗)) >

0 and there are ω0(x, k)-bifurcations. The theorem is proved.
Note that inverse to Theorem 4.1 is not true: for unconnected X from the existence

of ω0(x, k)-bifurcations does not follow the existence of τ 0
3 -slow relaxations.
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Example 4.1 (ω0(x, k)-bifurcations without τ 0
3 -slow relaxations). Let X be a subset of

plane, consisting of points with coordinates ( 1
n
, 0) and vertical segment J = {(x, y)|x =

0, y ∈ [−1, 1]}. Let us consider on X a trivial dynamical system f(t, x) ≡ x. In this
case ω0

f((
1
n
, 0)) =

{

( 1
n
, 0)

}

, ω0
f((0, y)) = J . There are ω0(x, k) bifurcations: ( 1

n
, 0) →

(0, 0) as n → ∞, ω0
f((

1
n
, 0)) =

{

( 1
n
, 0)

}

, ω0
f((0, 0)) = J . But there are not τ 3

0 -slow
relaxations: τ ε

3 (f ε(t|x), γ) = 0 for any (x, ε)-motion f ε(t|x) and γ > 0. This is associated
with the fact that for any (x, ε)-motion and arbitrary t0 ≥ 0 the following function

f ∗(t) =

{

f ε(t|x), if 0 ≤ t ≤ t0;
f ε(t0|x), if t ≥ t0

is (x, ε)-motion too, consequently, each (x, ε)-trajectory consists of the points of ωε
f(x).

For connected X the existence of ω0(x, k)-bifurcations is equivalent to the existence
of τ 0

3 -slow relaxations.

Theorem 4.2 Let X be connected. In this case the system (1) possesses τ 0
3 -slow relax-

ations if and only if it possesses ω0(x, k)-bifurcations.

One part of Theorem 4.2 (only if) follows from the Theorem 4.1. Let us put off the proof
of the other part of Theorem 4.2 till Subsection 4.4, and the remained part of the present
subsection devote to the study of the set of singularities of the relaxation time τ2 for
perturbed motions.

Theorem 4.3 Let γ > 0, εi > 0, εi → 0, (xi, ki) ∈ X × K, f εi(t|xi, ki) be (ki, xi, εi)-
motions, τ εi

2 (f εi(t|xi, ki), γ) → ∞. Then any limit point of the sequence {(xi, ki)} is a
point of ω0(x, k)-bifurcation with the discontinuity γ̃ ≥ γ.

Proof. Let (x0, k0) be limit point of the sequence {(xi, ki)}. Turning to subsequence and
preserving the denotations, let us write down (xi, ki) → (x0, k0). Let X =

⋃n
j=1 Vj be a

finite open covering of X. Note that

τ εi

2 (f εi(t|xi, ki)γ) ≤

≤
n

∑

j=1

mes{t ≥ 0 | f εj(t|xi, ki) ∈ Vj, ρ
∗(f εi(t|xi, ki), ω

εi(xi, ki)) ≥ γ}.

Using this remark, consider a sequence of reducing coverings. Let us find (similarly to the
proof of Theorem 3.1) such y0 ∈ X and subsequence in {(xi, ki)} (preserving for it the
previous denotation) that for any neighbourhood V of the point y0

mes{t ≥ 0 | f εi(t|xi, ki) ∈ V, ρ(f εi(t|xi, ki), ω
εi(xi, ki)) ≥ γ} → ∞.

Let us show that y0 ∈ ω0(x0, k0). Let ε > 0. Construct such a (k0, x0, ε)-motion that
y0 is its ω-limit point. Suppose δ = 1

2
δ( ε

3
, T ). From some i0 (for i > i0) the following

inequalities are true: ρ(xi, x0) < δ, ρK(ki, k0) < δ, εi < δ, and

mes{t ≥ 0 | ρ(f εi(t|xi, ki), y0) < δ, ρ∗(f εi(t|xi, ki), ω
εi(xi, ki)) ≥ γ} > T.
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On account of the last of these inequalities for every i > i0 there are such t1, t2 > 0 that
t2 − t1 > T and ρ(f εi(t1,2|xi, ki), y0) < δ. Let i > i0. Suppose

f ∗(t) =







x0, if t = 0;
f εi(t|xi, ki), if 0 < t < t2, t 6= t1;
y0, if t = t1.

If t ≥ t1, then f ∗(t + n(t2 − t1)) = f ∗(t), n = 0, 1, . . .. By virtue of the construction
f ∗ is (k0, x0, ε)-motion, y0 ∈ ω(f ∗). Consequently (due to the arbitrary choice of ε >
0), y0 ∈ ω0(x0, k0). Our choice of the point y0 guarantees that y0 6∈ ωεi(xi, ki) from some i.
Furthermore, for any κ > 0 exists such i = i(κ) that for i > i(κ) ρ∗(y0, ω

εi(xi, ki) > γ−κ.
Consequently, (x0, k0) is the point of ω0(x, k)-bifurcation with the discontinuity γ̃ ≥ γ.

Corollary 4.6 Let γ > 0. The set of all points (x, k) ∈ X ×K, for which there are such
sequences of numbers εi > 0, ε → 0, of points (xi, ki) → (x, k), and of (ki, xi, εi)-motions
f εi(t|xi, ki) that τ εi

2 (f εi(t|xi, ki), γ) → ∞, is nowhere dense in X ×K. The union of all
γ > 0 these sets (for all γ > 0) is a set of first category in X ×K.

4.3 Smale Order and Smale Diagram for General Dynamical
Systems

Everywhere in this subsection one semiflow of homeomorphisms f on X is studied. We
study here the equivalence and preorder relations generated by semiflow.

Definition 4.5 Let x1, x2 ∈ X. Say that points x1 and x2 are f -equivalent (denotation
x1 ∼ x2), if for any ε > 0 there are such (x1, ε)- and (x2, ε)-motions f ε(t|x1) and f ε(t|x2)
that for some t1, t2 > 0

f ε(t1|x1) = x2, f
ε(t2|x2) = x1.

Proposition 4.17 The relation ∼ is a closed f -invariant equivalence relation: the set of
pairs (x1, x2), for which x1 ∼ x2 is closed in X × K; if x1 ∼ x2 and x1 6= x2, then x1-
and x2-motions are whole and for any t ∈ (−∞,∞) f(t, x1) ∼ f(t, x2). If x1 6= x2, then
x1 ∼ x2 if and only if ω0

f(x1) = ω0
f(x2), x1 ∈ ω0

f(x1), x2 ∈ ω0
f(x2).

7

Proof. Symmetry and reflexivity of the relation ∼ are obvious. Let us prove its transi-
tivity. Let x1 ∼ x2, x2 ∼ x3, ε > 0. Construct ε-motions which go from x1 to x3, and
from x3 to x1, gluing together δ-motions, going from x1 to x2, from x2 to x3 and from
x3 to x2, from x2 to x1. Suppose that δ = ε/4. Then, according to Proposition 4.2, as a
result of the gluing we obtain ε-motions with required properties. Therefore x1 ∼ x3.

Let us consider the closure of the relation ∼. Let ε > 0, xi, yi ∈ X, xi → x, yi →
y, xi ∼ yi. Suppose δ = 1

2
δ( ε

3
, T ). There is such i that ρ(xi, x) < δ and ρ(yi, y) < δ.

Since xi ∼ yi, there are binding them δ-motions f δ(t|yi) and f δ(t|xi) : f δ(t1i|xi) =
yi, f

δ(t2i|yi) = xi, for which t1i, t2i > 0. Suppose that

f ∗
1 (t) =







x, if t = 0;
y, if t = t1i;
f δ(t|xi), if t 6= 0, t1i,

7Compare with [76], Ch.6, Sec. 1, where analogous propositions are proved for equivalence relation
defined by action functional.
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f ∗(t) =







y, if t = 0;
x, if t = t2i;
f δ(t|yi), if t 6= 0, t2i,

here f ∗
1 and f ∗

2 are correspondingly (x, ε)- and (y, ε)-motions, f ∗
1 (t1i) = y, f ∗(t2i) = x.

Since was chosen arbitrarily, it is proved that x ∼ y. Let x1,2 ∈ X, x1 ∼ x2, x1 6= x2.
Show that ω0

f(x1) = ω0
f(x2) and x1,2 ∈ ω0

f(x1). Let ε > 0, y ∈ ω0
f(x2). Prove that

y ∈ ωε
f(x1). Really, let f ε/3(t|x1) be (x1, ε/3)-motion, f ε/3(t0|x1) = x2, f

ε/3(t|x2) be

(x2, ε/3)-motion, y ∈ ω(f ε/3(f ε/3(t|x2)). Suppose

f ∗(t) =

{

f ε/3(t|x1), if 0 ≤ t ≤ t0;
f ε/3(t0|x2), if t > t0,

here f ∗ is (x1, ε)-motion (in accordance with Proposition 4.2), y ∈ ω(f ∗). Consequently,
y ∈ ωε(x1) and, due to arbitrary choice of ε > 0, y ∈ ω0(x1). Similarly ω0(x1) ⊂ ω0(x2),
therefore ω0(x1) = ω0(x2). It can be shown that x1 ∈ ω0

f (x1), x2 ∈ ω0
f(x2). According to

Proposition 4.8, the sets ω0
f(x1,2) are invariant and x1,2-motions are whole.

Now, let us show that if x2 ∈ ω0
f(x1) and x1 ∈ ω0

f(x2) then x1 ∼ x2. Let x2 ∈
ω0

f(x1), ε > 0. Construct a ε-motion going from x1 to x2. Suppose that δ = δ = 1
2
δ( ε

2
, T ).

There is such a (x1, δ)-motion that x2 is its ω-limit point: f δ(t1|x1) → x2, t1 → ∞. There
is such t0 > 0 that ρ(f δ(t0|x1), x2) < δ. Suppose that

f ∗(t) =

{

f δ(t|x1), if t 6= t0;
x2, if t = t0,

where f ∗(t) is (x1, ε)-motion and f ∗(t0) = x2. Similarly, if x1 ∈ ω0
f(x2), then for any

ε > 0 exists (x2, ε)-motion which goes from x2 to x1. Thus, if x1 6= x2, then x1 ∼ x2 if
and only if x1 ∈ ω0(x2) and x2 ∈ ω0

f(x1). In this case ω0
f(x1) = ω0

f(x2). The invariance
of the relation ∼ follows now from the invariance of the sets ω0

f(x) and the fact that
ω0

f(x) = ω0
f(f(t, x)) if f(t, x) is defined. The proposition is proved.

Let us remind, that topological space is called totally disconnected if there exist a base
of topology, consisting of sets which are simultaneously open and closed. Simple examples
of such spaces are discrete space and Cantor discontinuum.

Proposition 4.18 Factor space ω0
f/ ∼ is compact and totally disconnected.

Proof. This proposition follows directly from Propositions 4.11, 4.17 and Corollary 4.4.

Definition 4.6 (Preorder, generated by semiflow). Let x1, x2 ∈ X. Let say x1 % x2 if
for any ε > 0 exists such a (x1, ε)-motion f ε(t|x1) that f ε(t0|x1) = x2 for some t0 ≥ 0.

Proposition 4.19 The relation % is a closed preorder relation on X.

Proof. Transitivity of % easily follows from Proposition 4.2 about gluing of ε-motions.
The reflexivity is obvious. The closure can be proved similarly to the proof of the closure
of ∼ (Proposition 4.17, practically literal coincidence).

Proposition 4.20 Let x ∈ X. Then

ω0
f(x) = {y ∈ ω0

f | x % y}.
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Proof. Let y ∈ ω0
f(x). Let us show that x % y. Let ε > 0. Construct a ε-motion

going from x to y. Suppose δ = 1
2
δ( ε

3
, T ). There is such a (x, δ)-motion f δ(t|x) that y

is its ω-limit point: f δ(tj |x) → for some sequence tj → ∞. There is such t0 > 0 that
ρ(f δ(t0|x), y) < δ. Suppose that

f ∗(t) =

{

f δ(t|x), if t 6= t0;
y, if t = t0,

here f ∗(t) is (x, ε)-motion and f ∗(t0) = y. Consequently, x % y. Now suppose that
y ∈ ω0

f , x % y. Let us show that y ∈ ω0
f (x). Let ε > 0. Construct such a (x, ε)-motion

that y is its ω-limit point. To do this, use Proposition 4.9 and Corollary 4.1 and construct
a periodical (y, ε/3)-motion f ε/3 : f ε/3(nt0|y) = y, n = 0, 1, . . . .. Glue it together with
(x, ε/3)-motion going from x to y(f ε/3(t1|x) = y):

f ∗(t) =

{

f ε/3(t|x), if 0 ≤ t ≤ t1;
f ε/3(t− t1|y), if t ≥ t1,

where f ∗(t) is (x, ε)-motion, y ∈ ω(f ∗), consequently (ε > 0 is arbitrary), y ∈ ω0
f(x). The

proposition is proved.
We say that the set Y ⊂ ω0

f is saturated downwards, if for any y ∈ Y

{x ∈ ω0
f |y % x} ⊂ Y.

It is obvious that every saturated downwards subset in ω0
f is saturated also for the equiv-

alence relation ∼.

Proposition 4.21 Let Y ⊂ ω0
f be open (in ω0

f) saturated downwards set. Then the set
At0(Y ) = {x ∈ X | ω0

f(x) ⊂ Y } is open in X.

Proof. Suppose the contrary. Let x ∈ At0(Y ), xi → x and for every i = 1, 2, . . . there is
yi ∈ ω0

f(xi) \ Y . On account of the compactness of ω0
f \ Y there is a subsequence in {yi},

which converges to y∗ ∈ ω0
f \Y . Let us turn to corresponding subsequences in {xi}, {yi},

preserving the denotations: yi → y∗. Let us show that y ∈ ω0
f(x). Let ε > 0. Construct

a ε-motion going from x to y. Suppose that δ = 1
2
δ( ε

3
, T ). From some i0 ρ(xi, x) < δ

and ρ(yi, y
∗) < δ. Let i > i0. There is (xi, δ)-motion going from xi to yi : f δ(t0|xi) = yi

(according to Proposition 4.20). Suppose that

f ∗(t) =







f ∗, if t = 0;
y∗, if t = t0;
f δ(t|xi), if t 6= 0, t0,

where f ∗ is (x, )-motion going from x to y∗. Since ε > 0 is arbitrary, from this it follows
that x % y∗ and, according to Proposition 4.20, y∗ ∈ ω0

f (x). The obtained contradiction
(y∗ ∈ ω0

f(x) \ Y , but ω0
f(x)subsetY ) proves the proposition.

Theorem 4.4 Let x ∈ X be a point of ω0
f(x)-bifurcation. Then there is such open in ω0

f

saturated downwards set W that x ∈ ∂At0(W ).
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Proof. Let x ∈ X be a point of ω0
f -bifurcation: there are such sequence xi → x and

such y∗ ∈ ω0
f(x) that ρ∗(y∗, ω0

f(xi)) > α > 0 for all i = 1, 2, . . .. Let us consider the set
ω =

⋃∞
i=1 ω

0
f(xi). The set ω is saturated downwards (according to Proposition 4.20). We

have to prove that it possesses open (in ω0
f) saturated downwards neighbourhood which

does not contain y∗. Beforehand let us prove the following lemma.

Lemma 4.6 Let y1, y2 ∈ ω0
f , y1 6∈ ω0

f(y2). Then there exists such an open saturated
downwards set Y that y2 ∈ Y , y1 /∈ Y , and Y ⊂ ωε

f(y2) for some ε > 0.

Proof. ω0
f(y2) =

⋂

ε>0 ω
ε(y2) (according to Proposition 4.7). There are such ε0 > 0, τ > 0

that if 0 < ε ≤ ε0 then ρ∗(y1, ω
ε(y2)) > λ. This follows from the compactness of X and

the so-called Shura-Bura lemma ([2], p.171-172): let a subset V of compact space be
intersection of some family of closed sets. Then for any neighbourhood of V exists a finite
collection of sets from that family, intersection of which contains in given neighbourhood.
Note now that if ρ∗(z, ω0

f (y2)) < δ = 1
2
δ( ε

3
, T ) and z ∈ ω0

f , then z ∈ ωε
f(y2). Really, in this

case there are such p ∈ ω0
f(y2), (y2, δ)-motion f δ(t|y2), and monotone sequence ti → ∞

that ρ(z, p) < δ, tj+1 − tj > T and ρ(f δ(ti|y2), p) < δ. Suppose

f ∗(t) =

{

f δ(t|y2), if t 6= tj ;
z, if t = tj ,

here f ∗(t) is (y2, ε)-motion and z ∈ ω(f ∗) ⊂ ωε(y2). Strengthen somewhat this statement.
Let z ∈ ω0

f and for some n > 0 exist such chain {z1, z2, . . . , zn} ∈ ω0
f that y2 = z1, z = zn

and for any i = 1, 2, . . . , n − 1 either zi % zi+1 or ρ(zi, zi+1) < δ = 1
2
δ( ε

7
, T ). Then

z ∈ ωε(y2) and such a (y2, ε)-motion that z is its ω-limit point is constructed as follows.
If zi % zi+1, then find (zi, δ)-motion going from zi to zi+1, and for every i = 1, . . . , n find a
periodical (zi, δ)-motion. If z1 % z2, then suppose that f ∗

1 is (z1, δ)-motion going from z1
to z2, f

∗
1 (t1) = z2; and if ρ(z1, z2) < δ, z1 % z2, then suppose that f ∗

1 is a periodical (z2, δ)-
motion and t1 > 0 is such a number that t1 > T and f ∗

1 (t1) = z2. Let f ∗
1 , . . . , f

∗
k , t1, . . . , tk

be already determined. Determine f ∗
k+1. Four variants are possible:

1) f ∗ is periodical (zi, δ)-motion, i < n, zi % zi+1, then f ∗
k+1 is (zi, δ)-motion going

from zi to zi+1 f
∗
k+1(tk+1) = zi+1;

2) f ∗
k is periodical (zi, δ)-motion, i < n, ρ(zi, zi+1) < δ, then f ∗

k+1 is periodical (zi+1, δ)-
motion, f ∗

k+1(tk+1) = zi+1, tk+1 > T ;
3) f ∗

k is (zi, δ)-motion going from zi to zi+1, then f ∗
k+1 is periodical (zi+1, δ)-motion,

f ∗
k+1(tk+1) = zi+1, tk+1 > T ;

4) f ∗
k is periodical (zn, δ)-motion, then the constructing is finished.

After constructing the whole chain of δ-motions f ∗
k and time moments tk, let us denote

the number of its elements by q and assume that

f ∗(t) =























z1, if t = 0;
f ∗

1 (t), if 0 < t ≤ t1;

f ∗
k

(

t−
∑k−1

j=1 tj

)

, if
∑k−1

j=1 tj < t ≤
∑k

j=1 tj(k < q);

f ∗
q

(

t− ∑q−1
j=1 tj

)

, if t >
∑q−1

j=1 tj.

Here f ∗(t) is (y2, ε)-motion, and zn = z is its ω-limit point. The set of those z ∈ ω0
f for

which exist such chains z1, . . . , zn (n = 1, 2, . . .) is an openly-closed (in ω0
f) subset of ω0

f ,
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saturated downwards. Supposing 0 < ε ≤ ε0, we obtain the needed result. Even more
strong statement was proved: Y can be chosen openly-closed (in ω0

f), not only open.
Let us return to the proof of Theorem 4.4. Since ω =

⋃∞
i=1 ω

0
f(xi) and each z ∈ ω0

f(xi)
has an open (in ω0

f) saturated downwards neighbourhood Wz which does not contain
y∗, then the union of these neighborhoods is an open (in ω0

f) saturated downwards set
which includes ω but does not contain y∗. Denote this set by W : W =

⋃

z∈ω Wz. Since
xi ∈ At0(W ), x 6∈ At0(W ) and xi → x, then x ∈ ∂At0(W ). The theorem is proved.

The following proposition will be used in Subsection 4.4 when studying slow relaxations
of one perturbed system.

Proposition 4.22 Let X be connected, ω0
f be disconnected. Then there is such x ∈ X

that x-motion is whole and x 6∈ ω0
f . There is also such partition of ω0

f into openly-closed
(in ω0

f ) subsets:

ω0
f = W1

⋃

W2, W
⋂

W2 = ∅, αf (x) ⊂W1butω
0
f(x) ⊂W2.

Proof. Repeating the proof of Lemma 3.3 (the repetition is practically literal, ω0
f should

be substituted instead of ωf), we obtain that ω0
f is not Lyapunov stable. Then, according

to Lemma 3.2, there is such x ∈ X that x-motion is whole and x 6∈ ω0
f . Note now that

the set αf(x) lies in equivalence class by the relation ∼, and the set ω0
f is saturated by

the relation ∼ (Proposition 4.17, Lemma 4.5). αf (x)
⋂

ω0
f(x) = ∅, otherwise, according

to Proposition 4.17 and Lemma 4.4, x ∈ ω0
f . Since ω0

f/ ∼ is totally disconnected space
(Proposition 4.18), there exists partition of it into openly-closed subsets, one of which
contains image of αf(x) and the other contains image of ω0

f(x) (under natural projection
ω0

f → ω0
f/ ∼). Prototypes of these openly-closed sets form the needed partition of ω0

f .
The proposition is proved.

4.4 Slow Relaxations in One Perturbed System

In this subsection, as in the preceding one, we investigate one semiflow of homeomorphisms
f over a compact space X.

Theorem 4.5 η0
1- and η0

2-slow relaxations are impossible for one semiflow.

Proof. It is enough to show that η0
2-slow relaxations are impossible. Suppose the contrary:

there are such γ > 0 and such sequences of numbers εi > 0 εi → 0, of points xi ∈ X
and of (xi, εi)-motions f εi(t|xi) that ηεi

2 (f εi(t|xi), γ) → ∞. Similarly to the proofs of the
theorems 4.3 and 3.1, find a subsequence in {f εi(t|xi)} and such y∗ ∈ X that ρ∗(y∗, ω0

f) ≥ γ
and, whatever be the neighbourhood V of the point y∗ in X, mes{t ≥ 0 | f εi(t|xi) ∈ V } →
∞ (i→ ∞, f εi(t|xi) belongs to the chosen subsequence). As in the proof of Theorem 4.3,
we have y∗ ∈ ω0

f(y
∗) ⊂ ω0

f . But, according to the constructing, ρ∗(y∗, ω0
f) ≥ γ > 0. The

obtained contradiction proves the absence of η0
2-slow relaxations.

Theorem 4.6 Let X be connected. Then, if ω0
f is connected then the semiflow f has not

τ 0
1,2,3- and η0

3-slow relaxations. If ω0
f is disconnected, then f possesses τ 0

1,2,3- and η0
3-slow

relaxations.
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Proof. Let X and ω0
f be connected. Then, according to the propositions 4.17 and 4.18,

ω0
f(x) = ω0

f for any x ∈ X. Consequently, ω0(x)-bifurcations are absent. Therefore
(Theorem 4.1) τ3-slow relaxations are absent. Consequently, there are not other τ 0

i - and
η0

i -slow relaxations due to the inequalities τ ε
i ≤ τ ε

3 and ηε
i ≤ τ ε

3 (i = 1, 2, 3) 1,2,3) (see
Proposition 4.16). The first part of the theorem is proved.

Suppose now that X is connected and ω0
f is disconnected. Let us use Proposition

4.22. Find such x ∈ X that x-motion is whole, x 6∈ ω0
f , and such partition of ω0

f into
openly-closed subsets ω0

f = W1

⋃

W2, W1

⋂

W2 = ∅ that αf(x) ⊂ W1, ω
0
f(x) ⊂ W2.

Suppose γ = 1
3
r(W1,W2). There is such t0 that for t < t0 ρ

∗(f(t, x),W2) > 2γ. Let
p ∈ αf (x), tj < t0, tj → −∞, f(tj, x) → p. For each j = 1, 2, . . . exists such
δj > 0 that for ε < δj d(ω

ε
f(f(tj, x)), ω

0
f(f(ti, x))) < γ (this follows from the Shura-

Bura lemma and Proposition 4.8). Since ω0
f(f(tj , x)) = ω0

f(x) (Corollary 4.5), for
ε < δj d(ω

ε
f(f(tj , x)),W2) < γ. Therefore ρ∗(f(t, x), ωε

f(f(tj , x))) > γ if t ∈ [tj , t0], ε > δj.
Suppose xi = f(tj, x), εj > 0, εj < δj, εj → 0, f εj(t|xj) = f(t, xj). Then
τ

εj

1 (f εj(t|xj), γ) ≥ t0 − ti → ∞. The existence of τ1- (and consequently of τ2,3-)-slow
relaxations is proved. To prove the existence of η3-slow relaxations we need the following
lemma.

Lemma 4.7 For any ε > 0, κ > 0

ωε
f ⊂ ωε+κ

f .

Proof. Let y ∈ ωε
f : there are such sequences of points xi ∈ X, yi ∈ ωε

f , of (xi, ε)-motions

f ε(t|xi), of numbers tij > 0, tij → ∞ as j → ∞ that yi → y, f ε(tij|xi) → yi as j → ∞.
Suppose that δ = 1

2
δ(κ

3
, T ). There is such yi that ρ(yi, y) < δ. For this yi there is such

monotone sequence tj → ∞ that tj − tj−1 > T and ρ(yi, f
ε(tj |xi)) < δ. Suppose

f ∗(t) =

{

f ε(t|xi), if t 6= tj ;
y, if t = tj (j = 1, 2, . . .),

where f ∗(t) is (xi,κ + ε)-motion and y ∈ ω(f ∗). Consequently, y ∈ ωε+κ

f . The lemma is
proved.

Corollary 4.7 ω0
f =

⋂

ε>0 ω
ε
f .

Let us return to the proof of Theorem 4.6 and show the existence of η0
3-slow relaxations

if X is connected and ω0
f is not. Suppose that γ = 1

5
r(W1,W2). Find such ε0 > 0 that

for ε < ε0 d(ω
ε
f , ω

0
f) > γ (it exists according to Corollary 4.7 and the Shura-Bura lemma).

There is t1 for which d(f(t1, x), ω
0
f) > 2γ. Let tj < t1, tj → −∞, xj = f(xj , x). As

(xj , ε)-motions let choose true motions f(t, xj). Suppose that εj → 0, 0 < εj < ε0. Then
ηεj(f(t, xj), γ) > t1 − tj → ∞ and, consequently, η0

3-slow relaxations exist. The theorem
is proved.

In conclusion of this subsection let us give the proof of Theorem 4.2. We consider
again the family of parameter depending semiflows.

Proof. Let X be connected and ω0(x, k)-bifurcations exist. Even if for one k ∈
K ω0(k) is disconnected, then, according to Theorem 4.6, τ 0

3 -slow relaxations exist. Let
ω0(k) be connected for any k ∈ K. Then ω0(x, k) = ω0(k) for any x ∈ X, k ∈ K.
Therefore from the existence of ω0(x, k)-bifurcations follows in this case the existence
of ω0(k)-bifurcations. Thus, Theorem 4.2 follows from the following lemma which is of
interest by itself too.
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Lemma 4.8 If the system (1) possesses ω0(k)-bifurcations, then it possesses τ 0
3 - and η0

3-
slow relaxations.

Proof. Let k∗ be a point of ω0(k)-bifurcation: and there are such α > 0, y∗ ∈ ω0(k∗)
that ρ∗(y∗, ω0(ki)) > α > 0 for any i = 1, 2, . . .. According to Corollary 4.7 and the
Shura-Bura lemma, for every i exists δi > 0 for which ρ∗(y∗, ωδi(ki)) > 2α/3. Suppose
that 0 < εi ≤ δi, εi → 0. As the ε-motions appearing in the definition of slow relaxations
take the real (ki, yi)-motions, where yi = f(−ti, y∗, k∗), and ti are determined as follows:

ti = sup{t > 0 | ρ(f(t′, x, k), f(t′x, k′)) < α/3}

under the conditions t′ ∈ [0, t], x ∈ X, ρK(k, k′) < ρK(k∗, ki)}.
Note that ρ∗(f(ti, yi, ki), ω

εi(ki)) ≥ α/3, consequently, ηεi

3 (f(t, yi, ki), α/4) > ti and
ti → ∞ as i → ∞. The last follows from the compactness of X and K (see the proof of
Proposition 4.1). Thus, η0

3-slow relaxations exist and then τ 0
3 -slow relaxations exist too.

Lemma 4.8 and Theorem 4.2 are proved.

∗ ∗

∗

In Sections 1-4 the basic notions of the theory of transition processes and slow re-
laxations are stated. Two directions of further development of the theory are possible:
introduction of new relaxation times and performing the same studies for them or widen-
ing the circle of solved problems and supplementing the obtained existence theorems with
analytical results.

Among interesting but unsufficiently explored relaxation times let us mention the
approximation time

τ(x, k, ε) = inf{t ≥ 0 | d(ω(x, k), f([0, t], x, k)) < ε}

and the averaging time

τv(x, k, ε, ϕ) = inf

{

t ≥ 0
∣

∣

∣

∣

∣

∣

∣

∣

1

t′

∫ t′

0

ϕ(f(τ, x, k))dτ − 〈ϕ〉x,k

∣

∣

∣

∣

∣

< ε for t′ > t

}

,

here ε > 0, ϕ is a continuous function over the phase space X,

〈ϕ〉x,k = lim
t→∞

1

t

∫ t

0

ϕ(f(t, x, k))dτ

(if the limit exists).
The approximation time is the time necessary for the motion to visit the ε-

neighbourhood of each its ω-limit point. The averaging time depends on continuous
function ϕ and shows the time necessary for establishing the average value of ϕ with
accuracy ε along the trajectory.

As the most important problem of analytical research, one should consider the problem
of studying the asymptotical behaviour under T → ∞ of “domains of delay”, that is, the

53



sets of those pairs (x, k) (the initial condition, parameter) for which τi(x, k, ε) > T (or
ηi(x, k, ε) > T ). Such estimations for particular two-dimensional system are given in the
work [10].

“Structurally stable systems are not dense”. It would not be exaggeration to say that
the so titled work by Smale [67] opened a new era in the understanding of dynamics.
Structurally stable (rough) systems are those whose phase portraits do not change qual-
itatively under small perturbations (accurate definitions with detailed motivation see in
[12]). Smale constructed such structurally unstable system that any other system close
enough to it is also structurally unstable. This result broke the hopes to classify if not
all then “almost all” dynamical systems. Such hopes were associated with the successes
of classification of two-dimensional dynamical systems [3, 4] among which structurally
stable ones are dense.

There are quite a number of attempts to correct the catastrophic situation with struc-
tural stability: to invent such natural notion of stability, for which almost all systems
would be stable. The weakened definition of structural stability is proposed in the works
[21, 62, 63]: the system is stable if almost all trajectories change little under small per-
turbations. This stability is already typical, almost all systems are stable in this sense.

The other way to get rid of the “Smale nightmare” (the existence of domains of
structurally unstable systems) is to consider the ε-motions, subsequently considering (or
not) the limit ε→ 0. The picture obtained (even in limit ε→ 0) is more stable than the
phase portrait (the accurate formulation see above in Section 4). It seems to be obvious
that one should first study those (more rough) details of dynamics, which do not disappear
under small perturbations.

The approach based on consideration of limit sets of ε-motions, in the form stated
here was proposed in the paper [30]. It is necessary to note the conceptual proximity of
this approach to the method of quasi-averages in statistical physics [17]. By analogy, the
stated approach could be called the method of “quasi-limit” sets.

Unfortunately, elaborated analytical or numerical methods of studying (constructing
or, wider, localizing) limit sets of ε-motions for dynamical systems of general type are
currently absent. However, the author does not give up the hope for the possibility of
elaboration of such methods.

Is the subject of this work in the “mainstream” of Dynamics? I don’t know, but let
us imagine an experimental situation: we observe a dynamic of a system. It might be a
physical or a chemical system, or just a computational model, the precise nature of the
system is not important. How long should we monitor the system in order to study the
limit behaviour? When does the transition process turn into the limit dynamics? This
work tries to state these problems mathematically and to answer them, at least partially.
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