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Macroscopic dynamics through coarse-graining: A solvable example
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The recently derived fluctuation-dissipation form{#a N. Gorbanet al, Phys. Rev. E63, 066124(2001)]
is illustrated by the explicit computation for McKean’s kinetic mofidl P. McKean, J. Math. Phys, 547
(1967)]. It is demonstrated that the result is identical, on the one hand, to the sum of the Chapman-Enskog
expansion, and, on the other hand, to the exact solution of the invariance equation. The equality between all
three results holds up to the crossover from the hydrodynamic to the kinetic domain.
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Derivation of macroscopic equations from microscopica particular form by Ehrenfe$i] (the coarse-grainingThe
dynamics is the outstanding problem of nonequilibrium stasolution at the timé+ 7 is replaced by the state on the mani-
tistical physics[1]. In particular, a simple method to derive fold f(M,x). Notice that the coarse-graining timein Eq.
dissipative macroscopic models in the short memory ap¢3) is finite, and we stress the importance of the required
proximation from Ehrenfest's coarse-graining concept hasndependence from the initial timg and from the initial
been suggestd@—4]. Let us consider microscopic dynamics condition att.
given by an equation for the distribution functib(x,t) over The essence of the reconstruction of the macroscopic
a configuration space equations from the condition just formulated is in the follow-

ing [2,3]: Seeking the macroscopic equations in the form,
af=J3(f), )
. . atM:R(M!T)! (4)
where operatod(f) may be linear or nonlinear. Leh(f)

be a set of linear functionals whose valuds=m(f) repre- \ye proceed with Taylor expansion of the unknown functions
sent the macroscopic variables, and alsd (81,x) be a set R iy terms of powersr", wheren=0,1,..., and require that
of distribution functions satisfying the consistency condition, g5, approximatioR™ of the ordem is such that resulting

m(F(M)=M @) macroscopic solutions satisfy the conditict) to the order
' 1. This process of successive approximation is solvable.

The choice of the relevant distribution functions is the point! NUS, the unknown macroscopic Eé¢) can be reconstructed

of central importance which we discuss later on but for thel® @ny given accuracy. _ o
time being we need only specificati¢®). Coming back to the problem of chosing the distribution

The starting point has been the following observationfunction f(M,x), we recall that many physically relevant
[2,3]: Given a finite time intervak, it is possible to recon- Ccases of the microscopic dynami(® are characterized by
struct uniquely the macroscopic dynamics from a single conthe existence of a concave functiof ) (the entropy func-
dition. For the sake of completeness, we shall formulate thi§iona) (discussions ofs can be found ir{5-7]). Tradition-
condition here. Let us denote Bt) the initial condition at  @lly, two cases are distinguished, the conservaftv&/dt
the timet to the yet unknowrequations of the macroscopic =0 due to Eq(1)], and the dissipativid S'dt=0 due to Eq.
motion, and let us tak&(M (t),x) for the initial condition of ~ (1), where the equality sign corresponds to the stationary
the microscopic Eq(1) at the timet. Then the condition for Solution]. The approach(3) and (4) is applicable to both
the reconstruction of the macroscopic dynamics reads as fofituations. In both of these cases, among the possible sets of
lows: For every initial conditior{M(t),t}, solutions to the distribution functionsf(M,x), the distinguished role is
macroscopic dynamic equations at the titrer are equal to  Played by the well-known quasi-equilibrium approximations
the values of the macroscopic variables on the solution to Ed," (M.X), which are maximizers of the function8(f ) for

(1) with the initial condition{f (M (t),x),t}: ixed M. We recall that, due to concavity of the functiorgl
if such a maximizer exists then it is unique. The special role
M(t+7)=m(T f(M(1))), (3 of the quasi-equilibrium approximations is due to the well-

known fact that they preserve the type of dynamics: If
whereT, is the formal solution operator of the microscopic dSdt=0 due to Eq.1), thendS*/dt=0 due to the quasi-
Eq. (1). The right-hand side of E(3) represents an opera- equilibrium dynamics, whereS*(M)=S(f*(M)) is the
tion on trajectories of the microscopic Ed), introduced in  quasi-equilibrium entropy, and where the quasi-equilibrium
dynamics coincides with zeroth order in the above construc-
tion R©=m(J(f*(M)). We notice it in passing that, since
*Corresponding author. Email address: ikarlin@ifp.mat.ethz.ch the well-known work of Jaynels8], the usefulness of quasi-
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equilibrium approximations is well understood in various 1 . .
versions of projection operator formalism for the conserva- R= I|m;ln[m(e7 f*9m")]. (7)
tive case[9-12], as well as for the dissipative dynamics T

[7,13,14. Relatively less studied remains the case of open or ) )

externally driven systems, where invariant quasi-equilibrium~ormula(7) has been already briefly mentioned[®J, and
manifolds may become unstall5]. The use of the quasi- ItS relat_lon to the Green-Kubo formula has been demon-
equilibrium approximations for the above construction hasstrated in[4]. In our case, the Green-Kubo formula reads
been stressed {i2—4]. In particular, the strict increase in the
quasi-equilibrium entropy has been demonstrated for first-
and higher-order approximatioi8]. Examples have been
provided| 3], focusing on the conservative case, and demon-

strating that several well-known dissipative macroscopiGynpere angular brackets denote equilibrium averaging, and
equations, such as the Navier-Stokes equation and the diffyghere n=L"m. The difference between formuld@) and
sion equation for the one-body distribution function, are de<g) stems from the fact that conditiof8) does not use an
rived as the lowest-order approximations of this construcy priori hypothesis of the separation of the macroscopic and
tion. ) . microscopic time scales. For the classibbparticle dynam-
The advantage of the approa¢®,3] is the locality of e Eq.(7) is a complicated expression, involving a loga-
construction, because only Taylor series expansion of the Mijinm of noncommuting operators. It is therefore very desir-
croscopic solution is involved. This is also its natural limita- gpe to gain understanding in simple model situations.
tion. From the physical standpoint, finite and fixed coarse- |, this paper we want to give an explicit example of for-
graining timer remains a phenomeno-logical device which yya (7). In order to make our point, we consider here dis-
makes it possible to infer the form of the macroscopic equasipative rather than conservative dynamics in the framework
tions by a noncomphcate.d computation rather than to d(_arlv%f the well-known toy kinetic model introduced by McKean
a full form thereof. For instance, the form of the Navier- [17] for the purpose of testing various ideas in kinetic theory.
Stokes equations can be derived from the simplest model qf, the dissipative case with a clear separation of time scales,
free motion of particles, in which case the coarse-graining igyistence of formula(7) is underpinned by the entropy
a substitution for collisions. Going away from the limitations growth in both the rapid and the slow parts of the dynamics.
imposed by the finite coarse-graining tif®3] can be rec-  Thjs physical idea underlies generically the extraction of the
ognized as the major problem of a consistent formulation of)q (hydrodynami¢ component of motion through the con-
nonequilibrium statistical thermodynamics. Intuitively, this cept of normal solutions to kinetic equations, as pioneered by
requires taking the limit— o, allowing for all the relevant  Hijlpert [18], and has been discussed by many authors, e.g.,
correlations to be developed by the microscopic dynamics,16,19,2Q. Case studies for linear kinetic equations help
rather than to be cut off at the finite Indeed, in the case of ¢jarify the concept of this extractidii7,21,23.
the dissipative dynamics, in particular, for the linearized Therefore, for the dissipative case there exist well-
Boltzmann equation, one typically expects an initial layerestaplished approaches to the problem of reducing the de-
[16] which is completely cut off in the short-memory ap- scription, and which are exact in the present setting. It is very
proximation, whereas those effects can be made small bynstryctive to see their relation to formu(@). Specifically,
making 7 large enough. A way of doing this in the general e compare the result with the exact sum of the Chapman-
nonlinear setting for entropy-conserving systems still re-epskog expansiofi23], and with the exact solution in the
quires further work at the time of this writing. framework of the method of invariant manifold3,14. We
However, there is one important exception when the “ gemonstrate that all three approaches, different in their na-
— 0 problem” is readily solved3,4]. This is the case where tyre, give the same result as long as the hydrodynamic and
Eq. (1) is linear, the kinetic regimes are separated.
The McKean model is the kinetic equation for the two-

Rex= J:<m<0>m<t)>, ®

af =LA, 5) component vector functiof(r,t)=(f_(r,t),f_(r,t))':
and where the quasi-equilibrium is a linear functionhof
This is, in particular, the classical case of linear irreversible _ -1 fotfo _
: : : ; wf,=—af +e + | 9
thermodynamics where one considers the linear macroscopic 2
dynamics near the equilibriuni®9, Lf®%=0. We assume, for
simplicity of presentation, that the macroscopic varialies fo+f

vanish at equilibrium, and are normalized in such a way that af_=of_+et
m(f®m’)=1, where t denotes transposition, and one is an

appropriate identity operator. In this case, the linear dynam- . . . . N
ics of the macroscopic variabl has the form Equation(9) describes the one-dimensional kinetics of par-

ticles with velocities+1 and —1 as a combination of free
HM=RM, (6) flight and a relaxation with the rate ! to the local equilib-
rium. Using the notation,X,y), for the standard scalar prod-
where the linear operatdR is determined by the coarse- uct of the two-dimensional vectors, we introduce the fields,
graining condition(3) in the limit 7— oo: n(r,t)=(n,f) [the local particle density, whene=(1,1)],
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and j(r,t)=(j,f) [the local momentum density, wheie
=(1,—1)]. Equation(9) can be equivalently written in terms
of the moments,

(10)

(?tn: —(?rj,

1:

Hhj=—dn—e .

The local equilibrium
f*(n)= n (12)
(n)=3n
is the conditional maximum of the entropy,

S=—f (fyInfy+f_Inf_)dr,

under the constraint which fixes the density,ft)=n. The
quasi-equilibrium manifold11) is linear in our example, as
well as is the kinetic equation.

The problem of reducing the description for the mo@!|

amounts to finding the closed equation for the density field

n(r,t). When the relaxation parameter?® is small enough
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17

1
Re= Ilm;ln[(n,e“-kn)].

T—®©

Equation(17) defines the macroscopic dynamids}) within
the present approach. Explicit evaluation of expression
is straightforward in the present model. Indeed, operafor
has two eigenvalues), , where

o1 T
AQZ—Zi E—k

Let us denote axaKi the two (arbitrary) eigenvectors of the
matrix L,, corresponding to the eigenvaludg . Vectorn
has a representatian= «, €, + «, g, , Wherea,  are com-
plex valued coefficients. With this, we obtain in Ed7),

(18

1 + —
R¢= Iim;ln[a;(n,qf)e“k +ag (ng)e™k]. (19

Fork<k., wherek?=4¢, we haveA, > A, . Therefore,

Re=A, , for k<ke. (20)

(the relaxation dominangethen the first Champan-Enskog g was expected, formul) in our case results in the exact

approximation to the momentum variablej(r,t)

hydrodynamic branch of the spectrum of the kinetic £9j.

~—€d;n(r,t) amounts to the standard diffusion approxima-he standard diffusion approximation is recovered from Eq.

tion. Let us consider now how the formul&), and other
methods, extend this result.

Because of the linearity of E¢9), and of the local equi-
librium, it is natural to use the Fourier transformm,
= [exp(kr)h(r) dr. Equation(9) is then written,

dfi=Lfy, (12
where
1o
K™%  2¢
L= 1 (13
2 Ko

Derivation of formula(7) in our example goes as follows:
We seek the macroscopic dynamics of the form
= Ryny, (14

where the functiorR, is yet unknown. In the left-hand side
of Eqg. (3) we have

ni(t+ 7)=e™kn,(t). (15
In the right-hand side of Eq3) we have
(n,e™* [ (t)])=3(n,e™kn)ni(t). (16)

After equating the expressiofis5) and(16), we require that
the resulting equality holds in the limit— independently
of the initial datan,(t). Thus, we arrive at formulé7):

(20 ag the first nonvanishing approximation in terms of the
(kike)“.

At k=k., the crossover from the extended hydrodynamic
to the kinetic regime takes place, and Re=ReA, . How-
ever, we may still extend the functidr, for k=k; on the
basis of formula(17)

Rc=ReA, for k=Kk.. (22)
Notice that the functioiRy as given by Eqs(20) and(21) is
continuous but nonanalytic at the crossover.

Let us now compare this result with the Chapman-Enskog
method. Since the exact Chapman-Enskog solution for the
systems like Eq(10) has been recently discussed in detail
elsewhere[24—-26, we shall be brief here. Following the
Chapman-Enskog method, we seek the momentum vaijable
in terms of an expansion,

jCE:nZ:O €n+lj(n)_ (22)

The Chapman-Enskog coefficierjt$’, are found from the
recurrence equations,

n-1
j(n): _ 2 5£m)j<nflfm),

(23
where the Chapman-Enskog operatéf® are defined by
their action on the density

AMn=—g,jm, (24)
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The recurrence EQs(22), (23), and (24), become well- AF K<k

. . . CE k s C
defined as soon as the aforementioned zeroth-order approxi- Ry™—= =k (33
mation () is specified, none, k=Kk.

j©O=—0gn. (25)

From Egs.(23), (24), and(25), it follows that the Chapman-

Enskog coefficient$(™ have the following structure:

jM=bnaf"" *n, (26)

The Chapman-Enskog solution does not extend beyond the
crossover ak.. This happens because the full Chapman-
Enskog solution appears as a continuation of the diffusion
approximation, whereas formu{&7) is not based on such an
extensiona priori.

Finally, let us discuss briefly the comparison with the so-
lution within the method of invariant manifold.3,14]. Spe-

where coefficientd, are found from the recurrence equa- cifically, the momentum variablg!'=ikB!"n, is required to

tion,

n—-1
bn:mz=o bh-1-mbm, bo=-1. (27)

Notice that coefficient$27) are real-valued, by the sense of
the Chapman-Enskog procedure. The Fourier image of the

be invariant of both the microscopic and the macroscopic
dynamics, that is, the time derivative gf" due to the mac-
roscopic subsystem,

jinv ) _
—kkatnkzikBL”" —ik)[ikBIM™],

an (34

Chapman-Enskog solution for the momentum variable hagpgyid pe equal to the derivative pf* due to the micro-

the form,
jcE=ikB{Eny, (28

where

BCE= }_}O by(— ek?)". (29)

Equation for the functioB (29) is easily found upon multi-
plying Eq. (27) by (—k?)", and summing im from zero to
infinity,

€k?B2+ By +1=0. (30)

Solution to the latter equation which respects conditi2f),

scopic subsystem,

A= —ikn,—e LikB'ny, (35

and that the equality between E¢34) and(35) should hold
independently of the specific value of the macroscopic vari-
ablen, . This amounts to a condition for the unknown func-
tion B;", which is essentially the same as E80), and it is
straightforward to show that the same selection procedure of
the hydrodynamic root as above in the Chapman-Enskog
case results in Eq33).

In conclusion, in this paper we have given the explicit
illustration for formula(7). The example considered above
demonstrates that formul@) gives the exact macroscopic
evolution equation, which is identical to the sum of the

and which constitutes the exact Chapman-Enskog solutiokhapman-Enskog expansion, as well as to the invariance

(29 is
K 2A,

none,

k<k,
k=k;.

CE_

ce_ (3D

principle. This identity holds up to the point where the hy-
drodynamics and the kinetics cease to be separated. Whereas
the Chapman-Enskog solution does not extend beyond the
crossover point, formul&7) demonstrates a nonanalytic ex-
tension. The example considered adds to the confidence of

Thus, the exact Chapman-Enskog solution derives the madbe correctness of the approach suggestd@+¥].

roscopic equation for the density as follows:
= — ik =Ry, (32)

where
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