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Macroscopic dynamics through coarse-graining: A solvable example
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The recently derived fluctuation-dissipation formula@A. N. Gorbanet al., Phys. Rev. E63, 066124~2001!#
is illustrated by the explicit computation for McKean’s kinetic model@H. P. McKean, J. Math. Phys.8, 547
~1967!#. It is demonstrated that the result is identical, on the one hand, to the sum of the Chapman-Enskog
expansion, and, on the other hand, to the exact solution of the invariance equation. The equality between all
three results holds up to the crossover from the hydrodynamic to the kinetic domain.
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Derivation of macroscopic equations from microscop
dynamics is the outstanding problem of nonequilibrium s
tistical physics@1#. In particular, a simple method to deriv
dissipative macroscopic models in the short memory
proximation from Ehrenfest’s coarse-graining concept
been suggested@2–4#. Let us consider microscopic dynamic
given by an equation for the distribution functionf (x,t) over
a configuration spacex

] t f 5J~ f !, ~1!

where operatorJ( f ) may be linear or nonlinear. Letm( f )
be a set of linear functionals whose valuesM5m( f ) repre-
sent the macroscopic variables, and also letf (M ,x) be a set
of distribution functions satisfying the consistency conditio

m„f ~M !…5M . ~2!

The choice of the relevant distribution functions is the po
of central importance which we discuss later on but for
time being we need only specification~2!.

The starting point has been the following observat
@2,3#: Given a finite time intervalt, it is possible to recon-
struct uniquely the macroscopic dynamics from a single c
dition. For the sake of completeness, we shall formulate
condition here. Let us denote asM (t) the initial condition at
the timet to theyet unknownequations of the macroscop
motion, and let us takef „M (t),x… for the initial condition of
the microscopic Eq.~1! at the timet. Then the condition for
the reconstruction of the macroscopic dynamics reads as
lows: For every initial condition$M (t),t%, solutions to the
macroscopic dynamic equations at the timet1t are equal to
the values of the macroscopic variables on the solution to
~1! with the initial condition$ f „M (t),x…,t%:

M ~ t1t!5m~Tt f „M ~ t !…!, ~3!

whereTt is the formal solution operator of the microscop
Eq. ~1!. The right-hand side of Eq.~3! represents an opera
tion on trajectories of the microscopic Eq.~1!, introduced in
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a particular form by Ehrenfest@1# ~the coarse-graining!: The
solution at the timet1t is replaced by the state on the man
fold f (M ,x). Notice that the coarse-graining timet in Eq.
~3! is finite, and we stress the importance of the requi
independence from the initial timet, and from the initial
condition att.

The essence of the reconstruction of the macrosco
equations from the condition just formulated is in the follow
ing @2,3#: Seeking the macroscopic equations in the form

] tM5R~M ,t!, ~4!

we proceed with Taylor expansion of the unknown functio
R in terms of powerstn, wheren50,1,..., and require tha
each approximationR(n) of the ordern is such that resulting
macroscopic solutions satisfy the condition~4! to the order
tn11. This process of successive approximation is solva
Thus, the unknown macroscopic Eq.~4! can be reconstructed
to any given accuracy.

Coming back to the problem of chosing the distributi
function f (M ,x), we recall that many physically relevan
cases of the microscopic dynamics~1! are characterized by
the existence of a concave functionalS( f ) ~the entropy func-
tional! ~discussions ofS can be found in@5–7#!. Tradition-
ally, two cases are distinguished, the conservative@dS/dt
[0 due to Eq.~1!#, and the dissipative@dS/dt>0 due to Eq.
~1!, where the equality sign corresponds to the station
solution#. The approach~3! and ~4! is applicable to both
situations. In both of these cases, among the possible se
distribution functions f (M ,x), the distinguished role is
played by the well-known quasi-equilibrium approximatio
f * (M ,x), which are maximizers of the functionalS( f ) for
fixed M . We recall that, due to concavity of the functionalS,
if such a maximizer exists then it is unique. The special r
of the quasi-equilibrium approximations is due to the we
known fact that they preserve the type of dynamics:
dS/dt>0 due to Eq.~1!, thendS* /dt>0 due to the quasi-
equilibrium dynamics, whereS* (M )5S„f * (M )… is the
quasi-equilibrium entropy, and where the quasi-equilibriu
dynamics coincides with zeroth order in the above constr
tion R(0)5m(J( f * (M )…. We notice it in passing that, sinc
the well-known work of Jaynes@8#, the usefulness of quasi
©2002 The American Physical Society16-1
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equilibrium approximations is well understood in vario
versions of projection operator formalism for the conser
tive case@9–12#, as well as for the dissipative dynamic
@7,13,14#. Relatively less studied remains the case of open
externally driven systems, where invariant quasi-equilibri
manifolds may become unstable@15#. The use of the quasi
equilibrium approximations for the above construction h
been stressed in@2–4#. In particular, the strict increase in th
quasi-equilibrium entropy has been demonstrated for fi
and higher-order approximations@3#. Examples have bee
provided@3#, focusing on the conservative case, and dem
strating that several well-known dissipative macrosco
equations, such as the Navier-Stokes equation and the d
sion equation for the one-body distribution function, are d
rived as the lowest-order approximations of this constr
tion.

The advantage of the approach@2,3# is the locality of
construction, because only Taylor series expansion of the
croscopic solution is involved. This is also its natural limit
tion. From the physical standpoint, finite and fixed coar
graining timet remains a phenomeno-logical device whi
makes it possible to infer the form of the macroscopic eq
tions by a noncomplicated computation rather than to de
a full form thereof. For instance, the form of the Navie
Stokes equations can be derived from the simplest mode
free motion of particles, in which case the coarse-grainin
a substitution for collisions. Going away from the limitation
imposed by the finite coarse-graining time@2,3# can be rec-
ognized as the major problem of a consistent formulation
nonequilibrium statistical thermodynamics. Intuitively, th
requires taking the limitt→`, allowing for all the relevant
correlations to be developed by the microscopic dynam
rather than to be cut off at the finitet. Indeed, in the case o
the dissipative dynamics, in particular, for the lineariz
Boltzmann equation, one typically expects an initial lay
@16# which is completely cut off in the short-memory a
proximation, whereas those effects can be made smal
making t large enough. A way of doing this in the gener
nonlinear setting for entropy-conserving systems still
quires further work at the time of this writing.

However, there is one important exception when thet
→` problem’’ is readily solved@3,4#. This is the case where
Eq. ~1! is linear,

] t f 5L f , ~5!

and where the quasi-equilibrium is a linear function ofM .
This is, in particular, the classical case of linear irreversi
thermodynamics where one considers the linear macrosc
dynamics near the equilibrium,f eq, L f eq50. We assume, for
simplicity of presentation, that the macroscopic variablesM
vanish at equilibrium, and are normalized in such a way t
m( f eqm†)51, where † denotes transposition, and one is
appropriate identity operator. In this case, the linear dyna
ics of the macroscopic variableM has the form

] tM5RM , ~6!

where the linear operatorR is determined by the coarse
graining condition~3! in the limit t→`:
02611
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R5 lim
t→`

1

t
ln@m~etL f eqm†!#. ~7!

Formula ~7! has been already briefly mentioned in@3#, and
its relation to the Green-Kubo formula has been dem
strated in@4#. In our case, the Green-Kubo formula reads

RGK5E
0

`

^ṁ~0!ṁ~ t !&, ~8!

where angular brackets denote equilibrium averaging,
where ṁ5L†m. The difference between formulas~7! and
~8! stems from the fact that condition~3! does not use an
a priori hypothesis of the separation of the macroscopic a
microscopic time scales. For the classicalN-particle dynam-
ics, Eq. ~7! is a complicated expression, involving a log
rithm of noncommuting operators. It is therefore very des
able to gain understanding in simple model situations.

In this paper we want to give an explicit example of fo
mula ~7!. In order to make our point, we consider here d
sipative rather than conservative dynamics in the framew
of the well-known toy kinetic model introduced by McKea
@17# for the purpose of testing various ideas in kinetic theo
In the dissipative case with a clear separation of time sca
existence of formula~7! is underpinned by the entrop
growth in both the rapid and the slow parts of the dynami
This physical idea underlies generically the extraction of
slow ~hydrodynamic! component of motion through the con
cept of normal solutions to kinetic equations, as pioneered
Hilbert @18#, and has been discussed by many authors, e
@16,19,20#. Case studies for linear kinetic equations he
clarify the concept of this extraction@17,21,22#.

Therefore, for the dissipative case there exist we
established approaches to the problem of reducing the
scription, and which are exact in the present setting. It is v
instructive to see their relation to formula~7!. Specifically,
we compare the result with the exact sum of the Chapm
Enskog expansion@23#, and with the exact solution in the
framework of the method of invariant manifold@13,14#. We
demonstrate that all three approaches, different in their
ture, give the same result as long as the hydrodynamic
the kinetic regimes are separated.

The McKean model is the kinetic equation for the tw
component vector functionf(r ,t)5„f 1(r ,t), f 2(r ,t)…†:

] t f 152] r f 11e21S f 11 f 2

2
2 f 1D , ~9!

] t f 25] r f 21e21S f 11 f 2

2
2 f 2D .

Equation~9! describes the one-dimensional kinetics of p
ticles with velocities11 and21 as a combination of free
flight and a relaxation with the ratee21 to the local equilib-
rium. Using the notation, (x,y), for the standard scalar prod
uct of the two-dimensional vectors, we introduce the fiel
n(r ,t)5(n,f ) @the local particle density, wheren5(1,1)#,
6-2
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and j (r ,t)5( j ,f ) @the local momentum density, wherej
5(1,21)#. Equation~9! can be equivalently written in term
of the moments,

] tn52] r j , ~10!

] t j 52] rn2e21 j .

The local equilibrium

f* ~n!5
n

2
n ~11!

is the conditional maximum of the entropy,

S52E ~ f 1 ln f 11 f 2 ln f 2! dr,

under the constraint which fixes the density, (n,f* )5n. The
quasi-equilibrium manifold~11! is linear in our example, as
well as is the kinetic equation.

The problem of reducing the description for the model~9!
amounts to finding the closed equation for the density fi
n(r ,t). When the relaxation parametere21 is small enough
~the relaxation dominance!, then the first Champan-Ensko
approximation to the momentum variablej (r ,t)
'2e] rn(r ,t) amounts to the standard diffusion approxim
tion. Let us consider now how the formula~7!, and other
methods, extend this result.

Because of the linearity of Eq.~9!, and of the local equi-
librium, it is natural to use the Fourier transformhk
5*exp(ikr)h(r) dr. Equation~9! is then written,

] tfk5L kfk , ~12!

where

L k5S 2 ik2
1

2e

1

2e

1

2e
ik2

1

2e

D . ~13!

Derivation of formula~7! in our example goes as follows
We seek the macroscopic dynamics of the form

] tnk5Rknk , ~14!

where the functionRk is yet unknown. In the left-hand sid
of Eq. ~3! we have

nk~ t1t!5etRknk~ t !. ~15!

In the right-hand side of Eq.~3! we have

~n,etLkf* @nk~ t !# !5 1
2 ~n,etLkn!nk~ t !. ~16!

After equating the expressions~15! and~16!, we require that
the resulting equality holds in the limitt→` independently
of the initial datank(t). Thus, we arrive at formula~7!:
02611
d

-

Rk5 lim
t→`

1

t
ln@~n,etLkn!#. ~17!

Equation~17! defines the macroscopic dynamics~14! within
the present approach. Explicit evaluation of expression~17!
is straightforward in the present model. Indeed, operatorL k

has two eigenvalues,Lk
6 , where

Lk
652

1

2e
6A 1

4e2 2k2. ~18!

Let us denote asek
6 the two ~arbitrary! eigenvectors of the

matrix L k , corresponding to the eigenvaluesLk
6 . Vector n

has a representationn5ak
1ek

11ak
2ek

2 , whereak
6 are com-

plex valued coefficients. With this, we obtain in Eq.~17!,

Rk5 lim
t→`

1

t
ln@ak

1~n,ek
1!etLk

1

1ak
2~n,ek

2!etLk
2

#. ~19!

For k<kc , wherekc
254e, we haveLk

1.Lk
2 . Therefore,

Rk5Lk
1 , for k,kc . ~20!

As was expected, formula~7! in our case results in the exac
hydrodynamic branch of the spectrum of the kinetic Eq.~9!.
The standard diffusion approximation is recovered from E
~20! as the first nonvanishing approximation in terms of t
(k/kc)

2.
At k5kc , the crossover from the extended hydrodynam

to the kinetic regime takes place, and ReLk
15ReLk

2 . How-
ever, we may still extend the functionRk for k>kc on the
basis of formula~17!

Rk5ReLk
1 for k>kc . ~21!

Notice that the functionRk as given by Eqs.~20! and~21! is
continuous but nonanalytic at the crossover.

Let us now compare this result with the Chapman-Ensk
method. Since the exact Chapman-Enskog solution for
systems like Eq.~10! has been recently discussed in det
elsewhere@24–26#, we shall be brief here. Following th
Chapman-Enskog method, we seek the momentum variaj
in terms of an expansion,

j CE5 (
n50

`

en11 j ~n!. ~22!

The Chapman-Enskog coefficientsj (n), are found from the
recurrence equations,

j ~n!52 (
m50

n21

] t
~m! j ~n212m!, ~23!

where the Chapman-Enskog operators] t
(m) are defined by

their action on the densityn

] t
~m!n52] r j

~m!. ~24!
6-3
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The recurrence Eqs.~22!, ~23!, and ~24!, become well-
defined as soon as the aforementioned zeroth-order app
mation j (0) is specified,

j ~0!52] rn. ~25!

From Eqs.~23!, ~24!, and~25!, it follows that the Chapman
Enskog coefficientsj (n) have the following structure:

j ~n!5bn] r
2n11n, ~26!

where coefficientsbn are found from the recurrence equ
tion,

bn5 (
m50

n21

bn212mbm , b0521. ~27!

Notice that coefficients~27! are real-valued, by the sense
the Chapman-Enskog procedure. The Fourier image of
Chapman-Enskog solution for the momentum variable
the form,

j k
CE5 ikBk

CEnk , ~28!

where

Bk
CE5 (

n50

`

bn~2ek2!n. ~29!

Equation for the functionB ~29! is easily found upon multi-
plying Eq. ~27! by (2k2)n, and summing inn from zero to
infinity,

ek2Bk
21Bk1150. ~30!

Solution to the latter equation which respects condition~25!,
and which constitutes the exact Chapman-Enskog solu
~29! is

Bk
CE5H k22Lk

1 , k,kc

none, k>kc .
~31!

Thus, the exact Chapman-Enskog solution derives the m
roscopic equation for the density as follows:

] tnk52 ik j k
CE5Rk

CEnk , ~32!

where
02611
xi-

e
s

n

c-

Rk
CE5H Lk

1 , k,kc

none, k>kc .
~33!

The Chapman-Enskog solution does not extend beyond
crossover atkc . This happens because the full Chapma
Enskog solution appears as a continuation of the diffus
approximation, whereas formula~17! is not based on such a
extensiona priori.

Finally, let us discuss briefly the comparison with the s
lution within the method of invariant manifold@13,14#. Spe-
cifically, the momentum variablej k

inv5 ikBk
invnk is required to

be invariant of both the microscopic and the macrosco
dynamics, that is, the time derivative ofj k

inv due to the mac-
roscopic subsystem,

] j k
inv

]nk
] tnk5 ikBk

inv~2 ik !@ ikBk
inv#, ~34!

should be equal to the derivative ofj k
inv due to the micro-

scopic subsystem,

] t j k
inv52 iknk2e21ikBk

invnk , ~35!

and that the equality between Eqs.~34! and~35! should hold
independently of the specific value of the macroscopic v
ablenk . This amounts to a condition for the unknown fun
tion Bk

inv , which is essentially the same as Eq.~30!, and it is
straightforward to show that the same selection procedur
the hydrodynamic root as above in the Chapman-Ens
case results in Eq.~33!.

In conclusion, in this paper we have given the expli
illustration for formula~7!. The example considered abov
demonstrates that formula~7! gives the exact macroscopi
evolution equation, which is identical to the sum of th
Chapman-Enskog expansion, as well as to the invaria
principle. This identity holds up to the point where the h
drodynamics and the kinetics cease to be separated. Whe
the Chapman-Enskog solution does not extend beyond
crossover point, formula~7! demonstrates a nonanalytic e
tension. The example considered adds to the confidenc
the correctness of the approach suggested in@2–4#.
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