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Family of additive entropy functions out of thermodynamic limit
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We derive a one-parametric family of entropy functions that respect the additivity condition, and which
describe effects of finiteness of statistical systems, in particular, distribution functions with long tails. This
one-parametric family is different from the Tsallis entropies, and is a convex combination of the Boltzmann-
Gibbs-Shannon entropy and the entropy function proposed by Burg. An example of how longer tails are
described within the present approach is worked out for the canonical ensemble. We also discuss a possible
origin of a hidden statistical dependence, and give explicit recipes on how to construct corresponding gener-
alizations of the master equation.
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I. INTRODUCTION theoretical derivation of a different, and in a certain sense
unigue, one-parametric family of entropy functions that can
The past several years have witnessed a burst of interegtodel effects of finiteness.
in nonextensive statistical mechanics, a topic that finds in- We first remark that real-world systems, to which statisti-
creasingly more applications due to the concept of the Tsalli§al mechanics is applied, are finite and, though they consist

entropy[1,2]. In this approach, one postulates the following Of @ large number of subsystems, the natural logarithm of
one-parametric family of concave functions: this number is not that big after all, it is not larger than 100

and is often less than 2Bince we address questions related
to entropies, one should estimate the magnitude of the loga-
1- E q rithm, in the first placeg Extensivity in the true sense of this
: Pi notion, theorems of equivalence of the microcanonic and the
Sq:T’ (1)  canonic ensemblegs] and the like, are valid only in the
q thermodynamic limit where the system can be partitioned
into an arbitrary large number of noninteracting and statisti-
whereq>0. The family of Tsallis’ entropie$l) extends the ~cally independent subsystems. Namely, it is the numbef
traditional Boltzmann-Gibbs-Shannon entrofy, such independent and noninteracting subsystems, which are
similar in all their observable properties to the larger system,
that plays the role of the parameter whose value tells us how
. close the system is to the thermodynamic limit.
Sl_(!";nlsq_ B Z pilnp;. @ One realizes that is finite when it is needed to cut off the
tails of the distribution functions with divergent averages
(with this, one restores the argument about the incomplete
One of the important results associated with the Tsallis enextensivity. This is a well known fact, for example, in the
tropy (1) is the fact that it provides an easy access—througltase of the classical Boltzmann equation. The maximum en-
the method of entropy maximization—to a rich set of distri- tropy solution to the Boltzmann entropy does not efisnot
bution functions, different from the traditional Gaussian dis-normalizablg if the observables are the density, the average
tribution function. With this, one can address lamgnexpo-  momentum, the stress tensor, and the heaf{8ux.0]. Regu-
nentia) tails of probability distributions. The characteristic |arization by the argument that the magnitude of the micro-
feature of Tsallis’ entropy is its nonextensivity fqr=1. If  scopic velocity is restricted to the value dictated by finiteness
the system is composed of two statistically independent sulwsf the total energy[7] is an example of the incomplete ex-
systems then Tsallis’ entropy of this system is not equal taensivity argument.
the sum of Tsallis’ entropies of the subsystems. Since Tsallis’ Thus, when the system is not strictly in the thermody-
entropy is postulated rather than derived, this point remainaamic limit, details of the interactions should gradually be-
open to discussiofB3,4]. come more and more important and prospects oihigersal
The goal of this paper is to present an argument on howdescription using a maximization of arinteraction-
long tails can be described in a usual, extengivere pre-  independenentropy functional become less evident. Never-
cisely, almost extensiyestatistical mechanics, and to give a theless, the very possibility of a sufficiently accurate univer-
sal description in the sense just mentioned cannot be ruled
outa priori. For that reason, a search for nonclassical entro-
*Electronic address: gorban@icm.krasn.ru pies for a possible description of nonextensive systems
"Electronic address: ikarlin@ifp.mat.ethz.ch seems to be motivated.
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The structure of this paper is as follows. In Sec. I, we N
review, for the sake of completeness, the theory of Lyapunov E 0ik=0. 4)
functions of the master equation. In Sec. Il we derive the =1
family of the (almos} additive entropies from the condition
of additivity for statistically independent systems. In Sec. IV
we demonstrate with a simple example how long tails arefhe graph of transitions is put in correspondence to each
related to the effects of finiteness in the present approach. Markov chain by drawing the oriented link from the ndée
Sections Ill and IV are the central point of our presenta-to the nodeE, if g,;>0. The important subclass of Markov
tion. In Sec. V we discuss a different scenario, how an apehains is characterized by directional connectivity. The graph
parent statistical dependence may occur when the descriptiaf transitions is called directionally connected if there is a
of the system is incomplete. We also develop a natural gerpath built of oriented links from each node to any other node.
eralization of the master equation for the situations with arThen the following ergodic theorem is valid. Let the transi-
incomplete description in Sec. VI. Finally, results are dis-tions graph of the Markov chain be directionally connected.

cussed briefly in Sec. VII. Then there exists a positive stationary st pF*>0, and
for any initial conditionp(0), the solution p(t) to Eq. (3)
Il. LYAPUNOV FUNCTIONS OF MASTER EQUATION tends top®*?att—co.

In the sequel we consider only a Markov chain which
satisfies the ergodic theorem. Let us assume that the station-
ary statep®®is known, and leh(x) be a convex twice dif-
ferentiable function of one variabbes [0,0]. Any function
H with these properties defines a convex Lyapunov function
H,, of the Markov chain(3) by the following rule:

We begin our discussion with a brief summary of the
theory of Markov chains. Our presentation essentially fol-
lows Ref. [11]. Let us consider a finite set of states
E,, ... ,Eyn, and let us assume that the system can occup
only these states. The probability distribution at titee0 is
given by theN-component vectop with componentg;(t),

wherep;=0, andEiNzlpizl. Equation formp,

N N
b= Gubr, &) Hi(p)= 2, p{*h(p; /7). ®
k=1 =

describes the time evolution of a Markov chain if and only if
the matrix elements;, satisfyq;=0 fori#k, and for every The time derivative of the functiohl,, (5) due to Eq.(3) is
K, nonpositive,

Ho= > gy pSUh(pi/pe) —h(p; /peh+h' (pi /pE[(p; /pE% — (pi /pEY T} <0, (6)

L, i#]

where the prime denotes derivative with respect to argument. The equality sign is reached only in the stationary state. The
stationary stat@®?is called the state of detail balance, if it satisfies

QikPk = dwiP; - (7)

Markov chains with detail balance are colloquially termed master equations. In this case, the time derivative of the Lyapunov
function becomes especially simple,

. 1
Hh=—5, 2 aiP T (pi/pf) =’ (py /Y IL(PI /P — (py P <. ®

The physical significance of the detail balance for the Mar- kN
kov chain(master equationis a well known textbook mate- Halh1 ,,,,, agh = mzl |El p e mhm(pi /P79, 9
rial. B

Since a convex linear combination of convex functions is
again a convex function, the obvious construction that enis also the Lyapunov function of the Markov chain. It should
ables one to construct other Lyapunov functions from giverbe stressed that the sé) does not extend the familgs)

representatives of the familgs) is this: If hy, ... h, are  already specified.
convex functions, and ik, ...,a are non-negative and Concluding this summary, we stress that under physically
satisnyﬁqzlam=1, then significant restrictions on the existence of the stationary
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state, any Markov chain has a large class of Lyapunov func- Remark 1In the thermodynamic limit, which in the case
tions of the form(5), each constructed using a convex func- considered here corresponds formallyNe-«, for any «,
tion h of one variable. The additivity requirement makes itwe haveH ,—(1— a)H;. That is, the nonclassical contribu-
possible to drastically restrict the class of physically relevantion due toH, becomes significant only if the system is not
Lyapunov functions of Markov chaingsee the following too close to the thermodynamic limit. Only the classical
section). Boltzmann-Gibbs-Shannon contribution survives in the ther-
modynamic limit.

Remark 21t is not difficult to prove that the family11)
. _ » exhausts all the possible additive Lyapunov functions of the
_ In order to derive the family of additive Lyapunov func- foym (5) (up to adding a constant and a multiplication with a
tions, let us consider two statistically independent systemggnstant factor Indeed, the classical treatment of the addi-
described by probability vectors andq, pi=0, whereq; ity condition requires averaging the vector functionpin
=0, Zipi=1, ¥;p;=1. First, we will consider the case of \hich can be done using eitheror p® The latter is the
the equipartition at the equilibrium, in order to simplify no- istinguished probability distribution which, same psis
tation (a generalization to the arbitrary case is straightfor-jiplicative with respect to joining the statistically inde-
ward, see remark 5 belowSpecifically, we assume that the nendent subsystems. Relevance of the master equation, and
equilibrium states of both the systems are equipartitions withhance of the kinetic rather than of the static picture, to our

Ill. FAMILY OF ADDITIVE LYAPUNOV FUNCTIONS

probability vectorsp®® and g°% wherep{%=1/P, g% 1/Q,

derivation of the one-parametric familjll) is clear. This

and whereP andQ are the numbers of the states in each ofgnaples to considéwo sets of probabilities, the “currenty,

the the systems.

Since the systems are independent, the joint system
characterized by the joint probability vectprg. The equi-
librium of the joint system is again the equipartitiorp (

and the “final” p®¥ (the equipartition hene

IS Other convex functions that are additive under joining
statistically independent systems do exist, for example, the
Renyi entropy functior{12], but they are not of the forr(b)

-Q)*%=p g, that is, the equilibrium is multiplicative with (that is, not of the so-called “trace form,” cf. Ref13]). For
respect to joining the systems if the latter are statisticallythis reason, such functions fall out of our discussion.

independent. The condition of additivity for the Lyapunov

function (5) of the joint system reads,

Hp(p-q)=Hp(p) +Hp(Q).

This functional equation has two special solutions that co
respond to the convex functionby(x)=xInx, andh,(x)
=—Inx. We denoteH;=H,,, and H,=H_,«, respec-
tively. The functionH; corresponds to the classica@ddi-

(10

Remark 3 FunctionH, is not definedand, consequently,
any of the functiorH,, a#0 is not definedif one of the
probabilities p; equals to zero. The classical Boltzmann-
Gibbs-Shannon solution to the additivity equation is distin-
rguished by the property of continuity g =0. This is a
blueprint of the long-tail featuresee the following section
Work with the family of entropieg11) assumes preserving
additivity on the expense of abandoning the continuity of the

tive) Boltzmann-Gibbs-Shannon entropy, thus, we demon&ntropy functions on closed intervals<(p;<1, and its re-

strate here the additivity dfl, only. Indeed,

PQ
Ha(p- )= —{ij}Ezl P~1Q n(PQpa;))

P Q
=—In(PQ)—;1 In pi—JZl Inq;

P Q
—;1 P*lln(Ppo—;l Q!In(Qqy)

=Hz(p)+H2(g).

Neglecting the irrelevant constant and constant factors, a
using Eq.(9), we finally arrive at the one-parametric family
of additive convex Lyapunov functions of the for(g) for
master equation witiN states,

N
Ho=(1—a)>, pinp—
i=1

<

=

a<l.

(11)

1 N
a— > Inp;, 0
i=1

The one-parametric family of additive Lyapunov functions is
the central point of our further discussion. Several remarks

are in order.

placement by continuity on semiopen intervals; @ <1.
Remark 4 To the best of our knowledge, the entropy
function

N

_H2:|Zl In pi

S, (12)

was first considered by Burg in the context of applications of
information theory to geophysical problenjd4,15. Re-
cently, the Burg entropy12) was used to construct examples
of the entropic lattice Boltzmann meth¢dl6] in Ref. [17].
However, we failed to find a reference to the one-parametric
nfamily (11) prior to Ref.[11]. Whereas in Ref.11] the one-
parametric family(11) was mentioned as just the solution to
the additivity condition, its relevance to describing effects of
finiteness in statistical systems was not duly discussed.
Remark 5 If the equilibrium p® of the Markov chain
differs from the equipartition but remains multiplicative un-
der joining statistically independent subsystems, the one-
parametric family(11) generalizes to the following:

N N
Ha=(1—a)z piln(%)—aE p?‘ln(%). (13
=1 P; =1 pi
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IV. LONGER TAILS: AN EXAMPLE

In this section we want to explicitly work out an example

in order to demonstrate that the entropies of the fartiill
indeed describe the long tails far#1. In the context of

PHYSICAL REVIEW E 67, 016104 (2003

N
c=2, EXp. (21)
=1

HereV is the total energy of the states, and the denominator

discrete system of states, the long tail has to be understood astering into Eq{(18), C—U?, is the correlation of the en-

a broadening of the distribution functions.
Since we are going to study the case of smalin this
section, the factor N in front of the second term in Eq11)

will be omitted in order to simplify notation, and we consider

the one-parametric set of entropy functions,
N

N
Ha=(1—a)2 pilnpi—aE Inp;, Osa<1. (14
i=1 i=1

We shall consider first the microcanonic ensemble, that is,

ergy levelsE; in the canonical stat€l9). We further denote,

V—NU

Cc-u?’

(22

It can be argued th&>0. The total energy of the states,

is not less(and in most of the relevant cases, much larger
than the average energy times the number of states,
whereas the correlatd®® — U? is always positive.
Function(18) is the first-order perturbation result, and it is

the minimizer ofH , under the constraint of fixed normaliza- ot a positive definite quantity. Yet, it is sufficient to our

tion, =L p;=1. It is straightforward to see that, for any purpose here, since the question we want to address is as
admissible value of the parameter the microcanonic state fo|lows: what is the sign of the derivativedp{®/da|,_o?
is the equipartition, as expected. _ The canonical distributioil9) decays wherE; exceeds the

energies of the statds;=0, and find the minimum oH,,
(14) under the constraints,

(19

(16)

Denoting the solutiop(®, we find, fora#1,

p@expl — —
(1-a)

*

0 ]ZEXP{N—BEi}, 7

do we see the “raising” of the populations of this “high-
energy tail”? In order to answer this question, we obtain in
Eq' (17)1

dp{®
_Ap©
da | Aipi™, (23
where the factod; is
A =2@ef V5 _N—_B(E - U). (24)

Factor A; amplifies populations of the states that are less
populated in the standard canonical ensenb® if E; sat-
isfies the inequalityE;>¢€, where € is the solution to the

where\ andg are Lagrange multipliers corresponding to the €auation,

constraints(15). In order to address the effect af~0, we

shall restore to a perturbation theory around the Boltzmann-

Gibbs-Shannon poim(®) . After some algebra, we find for

a<l, a>0,
V_Nupfo) |
Cc-U?

(=p@+a

1-Np©@+(U-E)

(18

where
1 N

0 —_—_ oA 0= -

= we . Z 2‘,1 e AR (19
is the canonical distribution function for the Boltzmann-
Gibbs-Shannon entropylLagrange multiplier 3©) is ex-
pressed in terms of the average enet§jpy the constraint
(16); we do not need here the explicit express@f)(U) in
terms ofU], and

N
v=21 E:, (20)

(1Z@)e F7N+B(e—U)]=1. (25

In order to make the situation even more transparent, we
shall assume that the energkgsare in a narrow band around
the valueE>O0, that is, E;=E+4;, =,6,=0, and 4
<E. All the quantities contributing to the expressi¢iB)
can be then evaluated in terms of expansiod;itnotice that
the second-order perturbation &y must be used in order to
compute the correlationC—U?). We obtain, B=B,(5°)
+0(6?), and, up to second order, E@5) reads

N
B(NI2—1) 5%+ B(1—N) 5+ BAN"1-1/2) >, 82=0.
=1

(26)

For largeN, factor(24) is larger than zero, and hence ampli-
fies the populations of the energy levéls- §;, if
5=21BY. (27)

In other words, raising of the populations of the higher-
energy levels is explicitly demonstrated by this example. We
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do not discuss corrections for finifé to the estimatg27), Fermi-Dirac entropy has the well known form
which are easily obtained from E(R6).

Thus, we have demonstrated with an explicit example that
taking into account the Burg component in the one-
parametric family(11) indeed is able to describe the broad-
ening of the canonical distribution function. Appearance ofThis expression can be interpreted in the following way.
the energy levels correlation in the above form(l®) re-  With the electron gas, there is associated a gas of “places”
markably resembles recent results of applications of the Tsalholeg. The state of the ensemble of this gas of holes is
lis entropy to the fittings of experimental data in turbulenceuniquely determined by the ensemble of the electrons,
(see Ref[18] and references cited thergirGeneralizations p; noe=1—p;. If, for the two subsystems of the electrons,
to the quasiequilibrium situation with more constraints isp;;=q;rj, then, for the corresponding ensembles of holes,
straightforward. In the case of the continuous states, the longe havep;; noe=1—q;irj, and the corresponding product for
tail feature of the corresponding distribution functions be-the subsystems reads,
comes even more transparent. For example, the counterpart
of the Gaussian distribution functid®(x) (maximizer of the (1=g)(1—r))=1—0;—r;+qirj#pij,nole-
Boltzmann-Gibbs-Shannon entropy under the constraint fix-
ing the normalization and the variandeas the formP(x) Thus_, §ub_systems of the electrons are dependent even for the
~(N+ Bx?)~1 (the well-known Cauchy distributionFor it, multiplicative p;; =qir; . It should pe.stressed that, in fact,
algebraic decay at infinity precludes existence of the variWe Speak of an incomplete descriptidmoth the ensembles
ance, and a cutoff is required. are uniquely related to each othenamely, that there are

In order to conclude, in Secs. Ill and IV we have demon-hidden components whose entropy has to be taken into ac-
strated that for systems out of the thermodynamic limit ther&ount.. _
exists the universalthat is, independent of details of inter- A different example is the entropy of monolayers on a
actiong one-parametric family of additive entropy functions SOlid surface(see, e.g., Ref.20]). In the simplest case, the
that are able to describe the same long tail effects as Tsalli§ntropy density, up to constant factors and constants, has the
entropy. The one-parametric family of additive functiga®  form,
or (14) is unique in the sense that any other convex function
of the probability which satisfies simultaneously the additiv-

ity and the trace-form requirements is obtained from (&) whereA denotes molecules of the ga&js the vacant posi-

or Eq. (14) by adding a constant or multiplication by a con- .. ) X
stant. In the remainder of this paper we shall discuss a dif'Elon on the surfacdadsorbing centéy AZ is the adsorbed

ferent issue of how the additivity of the entropy ar- molecule,c denotes corresponding surface concentrations.

. . o . Sincecz+caz= const(the number of places per unit area is
ently be violated if the description of the system is conserveli the entropy Eq(29) is again of the Fermi-Dirac

S<p>=—2i[pilnpi+<1—pi>ln<1—pi>]. (28)

S=—cazn(caz/cid) —czIn(cz/c5Y, (29

incomplete. form which is now obtained without any relation to quantum
effects.
V. NONADDITIVITY AND INCOMPLETE DESCRIPTION Thus, the simplest known version of the apparent viola-

) o ) tion of the additivity implies the existence of subsystems of
In the recent literature, it is sometimes argued that the|gcations,” “holes,” “ghosts,” and the like. These sub-

entropy is not additive under joining the statistically inde- systems occupy the same states as the “observed” system
pendent subsystems becausereality, these subsystems are it the probabilities,
not independent. For example, “the conceptimdependent

subsystems does not make any sense, since all subsystems gi=1l—-ap;, ae[0,1], or
are interacting’[18]. Possible physical agents such as long-
range forces that could lead to such a situation are occasion- gi=(1—a)+ap;. (30)

ally mentioned, though, to the best of our knowledge, it has
not yet been demonstrated for any realistic system. MorefWe have distinguished two possible cases, with a positive
over, caution is needed in rejecting the “concept of indepenand with a negative constraipnfThere might be several such
dent subsystems” because this leads to a confrontation withidden subsystems, and thus
the traditional axiomati¢Kolmogorov’'s probability theory
that is strongly based on this concé¢p®] (in the worst case,
one should abandon the concept of independent trials, which
is at the very heart of the definition of the probabilijies

This all leads to one question. If the probability distribu- where | is the label of the hidden subsystem, amd>0.
tion over pairs of statep;; factors into the product of the Hidden subsystems can describe effects such as excluded
distributions, p;; =q;r;, but the subsystems are dependentyvolume in various spacesot obligatory in the physicaR®,
then where is this dependence hidden? In order to answes in the example with the adsorbing cente@@ther inter-
this question, one should realize that such a situation of @retations are probably possible. Here we do not consider
“hidden” dependence, in fact, has been long known in phys-any specific example. Rather, we want to emphasize the re-
ics. This is the Pauli exclusion principle. The correspondingmarkable approximation possibilities provided by the expres-

S=S<p>+$ a;S;(qV), (31)
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sion (31) when the entropieS, are used. Indeed, already for _ N

just one hidden subsystem we have four fitting parameters pi=>, wii[(p; /97— (pi /pf9]. (34
(two coefficients in front of the Burg component for the sys- =1

tem and for the ghost, one coefficienin the constraint30), . o )
and 1—a for the ghost Because approximations to the ex-  Though simple, the above derivation should be appreci-
perimental data are obtained by the maximum entropy prinated because the natural definition of the equilibri(88)
ciple under certain constraints, whereas the choice of theg@sults in the equilibrium between pairs of states only. How-
coefficients is yet another optimization problem, it is not&ver, if the entropy of the hidden subsystem is not of the
difficult to organize a procedure of choosing the parameterform S,= —Hy, with Hy, given by Eq.(5), for example, if it
(learning or fitting in such a way as it is done in neural includes terms like

networks based on the error back propagation algorithm.

N N

VI. HIDDEN SUBSYSTEMS CHANGING KINETICS aOJr;l aipi) In a0+;l aipi)-

All the entropies discussed above, including either Tsallis’
entropy or the familyS,, can be used to describe incom- then condition(32) results in a more complicated equation,
pletely known or restricted equilibria, for constructitgen- ~ Which, unlike Eq.(33), mixes together all the components of
eralized canonical ensembles of dynamically conserved oithe vectorp. In this case, a model kinetic equation, more
quasiconserved quantities. If the probability evolves in timegeneral than the master equations can be addressed.
according to the master equation, all these entropy functions Let us introduce notation; = — dS/dp;, and let¥ (x) be
behave equally correctly, that is, they monotonically increas@ monotonically increasing function. We define the rate of
with the time (see Sec. )l In other words, as long as the transitionsp;—p; as
hidden subsystem is described by the same set of states, as
the observed one, no restrictions arise on the Markov kinetic Wi (P W (i), (35
equation. This situation becomes different if more freedom is
allowed in the choice of the entropy. Before describing theyhere Wij=Ww;;, W;;=0 is a symmetric matrix with non-

corresponding generalization of the master equation, it is innegative matrix elementématrix elements are allowed to

structive to consider again the standard case. depend on the probability distributiop). Given the rates
For a Markov chain consistent with the detalil balance(35)1 the genera"zed kinetic equation takes the form
condition (7), the natural conditionthat defines the equilib-
rium of the transitionp;=p; can be written as follows: _ 2
=2, Wi V(i) —V(u)]. (36)
o"S_ JS . Pi : Ij(p)[ (/Jq) ()]

Ip; 8pj ' . . o .

Equation(36) is a generalization of the Marcelin—De Donder
For the entropy function of the forl8= —H,,, whereHy is  kinetic formalism(see, e.g., Ref$11,20,21,4).

given by Eq.(5), the latter equation gives, Equation(36) is natural to use if the entropy of the system
, o , . has the form
h'(pi/piH=h"(p;/p%. (33
Furthermore, thanks to the strict monotonicity of the deriva- S=8,+5, (37)

tive h', this results in the usual definition of the equilibrium,

pi/pf%=p;/pj?. Master equatiori3) with the detail balance where the partS,=—Hy, has standard forn5) for some
condition can be written in such a way as to make it explic-convex functionh while S is the part of entropy function of
ity consistent with the latter result. Introducing notation, a different form. Then we pu¥ (x)=[—h’] *(x), that is,
Wjj =qijpfq, master equatiofB) can be cast into the follow- ¥ is the inverse of the derivative h’. With this, Eq.(36)
ing form: becomes

N

bi=j21 Wi {[—h'T" [0 (p; /p§ — dS/ap;1—[—h']T '[N’ (pi /pf%) — IS/ ap; T} (39

This is the minimal extension of the master equation. If theentropy increase in the kinetic processes, and therefore can

hidden system can be described with the same entr§py (be used in modeling the kinetic processes. Other kinetic rep-
=0), then Eq.(38) reduces to the master equation. By con-resentations specializing to the Tsallis entropy can be found
struction, both Eq(36) and Eq.(38) are consistent with the in the literature(see, e.g., Ref§22,23).
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VII. DISCUSSION demonstrated that the nontrivial contribution from the Burg
Once a classical statistical system is out of the thermod component results in a broadening of the high-energy tail of

namic limit, the exclusive character of the Boltzmann-GibbsN€ canonical distribution function. The functional form of

Shannon entropy is lost, and classical ensembles are nii€ deviation and, in particular, the appearance of the energy

equivalent anymore. Whereas using the microcanonical erorrelations indicates that the maximum entropy approach
semble for any description of finite systems may be mosBuccessively used rgcgntly in the context of the Tsallis en-
appropriate, this route is very complicated from the compuiropy may lead to similar results when the present entropy
tational standpoint. For that reason, seeking the entropic ddunctions are used. Detailed study of this option is left for the
scription of effects of finiteness is a relevant option. future work.

In this paper, we have demonstrated that there exists the Finiteness of classical statistical systems is one option that
unique one-parametric family of entropy functions that arecalls for nonclassical entropies. A differgittdependentop-
consistent with the additivity of the entropy under joining tion is the incompleteness of the description. This has been
statistically independent subsystems. This family is esserdemonstrated by analyzing the classical example of the
tially the convex combination of the Boltzmann-Gibbs- Fermi-Dirac type of entropy, and a generalization in the form
Shannon entropy and of the Burg entropy. This family ofof “standard entropy for a multicomponent mixture plus lin-
entropy functions appears in a natural way as the distinear constraints” has been suggested. Finally, we have sug-
guished(by the additivity requiremeitsubset of the family gested a modification of the master equation consistent with
of Lyapunov functions of the master equation. It has beerthe given entropy.
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