
ar
X

iv
:q

-b
io

.Q
M

/0
50

40
13

 v
1

 8
 A

pr
 2

00
5

PCA deciphers genome

Alexander Gorban
Centre for Mathematical Modelling, University of Leicester, UK

ag153@le.ac.uk; http://www.le.ac.uk/∼ag153

Andrey Zinovyev

Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

Institut Curie, Service Bioinformatique, France
Andrei.zinovyev@curie.fr; http://www.ihes.fr/∼zinovyev/

Abstract

In this paper, we give a tutorial for undergraduate students studying sta-
tistical methods and/or bioinformatics. The students learn how data visual-
ization can help in genomic sequences analysis. Students start with a fragment
of genetic text of a bacterial genome and analyze its structure. By means of
principal component analysis they “discover” that the information in genome
is encoded by non-overlapping triplets. Next, they learn to find gene positions.
This exercise on principal component analysis and K-Means clustering gives
a possibility for active study of the basic bioinformatics notions. In Appendix
the program listings for MatLab are published.

Keywords: Principal component analysis; Data visualization; Bioinfomatics; Cryp-
tography; Clustering

1 Introduction

When it is claimed in newspapers that a new genome is deciphered, it usually means
only that the sequence of the genome has been read, so one can write down a long
sequence using four genetic letters: A, C, G and T. The first step in real deciphering
is always identification of positions of elementary messages in this text or detecting
genes in the biological language. Only after one can try to understand what these
messages mean for a living cell.

Bioinformatics and genomic sequence analysis in particular is one of the hottest
topic in modern science. One can not overestimate usefulness of statistical tech-
niques in these fields. In particular, a successful approach to gene positions identi-
fication is statistical analysis of a genetic text composition.

1

http://www.le.ac.uk/~ag153
http://www.ihes.fr/~zinovyev/

In this exercise we use Matlab environment to convert genetic text into a table of
short word frequencies and to visualize this table using principal component analysis
(PCA). Students find by themselves that the sequence of letters is not random and
that the information in the text is encoded by non-overlapping triplets. Using the
simplest K-Means clustering method from Matlab Statistical toolbox, it is possible
to detect position of genes in genome and even predict their direction.

2 Required materials

To follow this exercise, it is needed to prepare a genomic sequence. For this activity
we propose a fragment of genomic sequence of Caulobacter Crescentus bacteria.
Other sequences can be downloaded from the Genbank FTP-site [1]. Our procedures
work with the files in the Fasta format (the corresponding files have .fa extension)
and limited in practice with 400-500kb length fragments.

Five simple functions are used:

LoadFreq.m loads Fasta-file into Matlab string
CalcFreq.m converts a text into numerical table of short word

frequencies
PCAFreq.m visualizes a numerical table using principal component

analysis
ClustFreq.m is used to perform clustering with K-Means algorithm
GenBrowser.m is used to visualize the results of clustering onto the text

All sequence files and the m-files should be placed into the current Matlab work-
ing folder.

The sequence of Matlab commands for this exercise is the following:

str = LoadSeq(’ccrescentus.fa’);

xx1 = CalcFreq(str,1,300);

xx2 = CalcFreq(str,2,300);

xx3 = CalcFreq(str,3,300);

xx4 = CalcFreq(str,4,300);

PCAFreq(xx1);

PCAFreq(xx2);

PCAFreq(xx3);

PCAFreq(xx4);

fragn = ClustFreq(xx3,7);

GenBrowser(str,300,fragn,13000);

All the required materials can be downloaded from [2].

2

3 Genomic sequence

3.1 Background

The information that is needed for a living cell functioning is encoded in a long
molecule of DNA with only four letters A, C, G and T. The diversity of living
organisms and their complex properties is hidden in their genomic sequences. One
of the most exciting problem in modern science is to understand organization of
living matter by reading genomic sequences.

One distinctive message in a genomic sequence is a piece of text, called gene.
Genes can be oriented in the sequence in the forward and backward directions (see
Fig. 1). The simplified picture with continuous genes is close to reality for bacteria.
In highest organisms (humans, for example), the notion of gene is more complex.

It was one of many great discoveries of the 20th century that biological informa-
tion is encoded in genes by means of triplets of letters, called codons in the biological
literature. In the famous paper of Crick et al. [3] this fact was proven with use of
genetic experiments on bacteria mutants. In this exercise we will prove it by using
the genetic sequence only.

In nature there is a special mechanism designed to read genes. It is evident that
since the information is encoded by non-overlapping triplets, it is very important
for this mechanism to start reading a gene without a shift, from the first letter of
the first codon to the last one, otherwise the information decoded will be completely
corrupted.

One can find an easy introduction to the modern molecular biology in [4].

3.2 Sequences for the analysis

The activity starts with a fragment of genomic sequence of Caulobacter Crescentus
bacterium. One can read a short biological description of this bacterium at [5].
The sequence is given as a long text file (300kb), the students are proposed to look
inside the file and ensure that there is a text there in which only four letters a, c,
g and t are used without spaces. It is noticed that although the text seems to be
random, it is rather well organized, though without any intention to be read and
understood by human mind. Nevertheless, statistical methods help to understand
the text organization.

The sequence can be loaded in the Matlab environment by LoadSeq function:

str = LoadSeq(’ccrescentus.fa’);

4 Converting text to a numerical table

A word is any continuous piece of text containing several subsequent letters. Since
we do not have spaces in the text, the separation into words is not unique.

The method we utilize is as follows. We clip the whole text into fragments of 300
letters length and calculate frequencies of short words (of length 1-4) inside every

3

1)

2)

 3)

 cgtggtgaATGgatgctagggcgcacgTAGtgagctgatgctCTAgcgacgtggtgagctgCATctagg

cgtggtgaATGgatgctagggcgcacgTAGtgagctgatgctCTAgcgacgtggtgagctgCATctagg

cgtggtgaATGgatgctagggcgcacgTAGtgagctgatgctctagcgacgtggtgagctgcatctagg
gcaccacttacctacgatcccgcgtgcatcactcgactacgaGATcgctgcaccactcgacGTAgatcc

c) a) d) b)

Figure 1: 1) DNA can be represented as two complementary text strings. ”Com-
plementary” here means that for every ”a”,”t”,”g” and ”c” in one string one has
”t”,”a”,”c” and ”g” in the other respectively. Elementary messages or genes can be
located in both strings, but in the lower one they are read from right to the left.
Genes usually start with ”atg” and end with ”tag” or ”taa” or ”tga” words. 2)
In databases one obtains only the upper ”forward” string. Genes from the lower
”backward” string can be reflected on it, but should be read in the opposite direc-
tion and changing the letters, accordingly to the complementary rules. 3) If we take
a randomly chosen fragment, it can be of one of three types: a) entirely in a gene
from the forward string; b) entirely in a gene from the backward string; c) entirely
out of genes; d) partially in a gene and partially out.

4

fragment. This will give us description of the text in the form of a numerical table.
There will be four such tables, for every short word length from 1 to 4.

Since we have only four letters, then there are 4 possible words of length 1
(singlets), 16 = 42 possible words of length 2 (duplets), 64 = 43 possible words of
length 3 (triplets) and 256 = 44 possible words of length 4 (quadruplets). Then the
first table contains 4 columns (frequency of every singlet) and the number of rows
equals to the number of fragments. The second table has 16 columns and the same
number of rows and so on.

To calculate the tables, students use CalcFreq.m function. The first input argu-
ment for the function CalcFreq is the string containing the text, the second input
argument is the length of the words to be counted, the third argument is the frag-
ment length. The output argument is the resulting table of frequencies. Students
use the following set of commands to generate tables corresponding to four different
word lengths:

xx1 = CalcFreq(str,1,300);

xx2 = CalcFreq(str,2,300);

xx3 = CalcFreq(str,3,300);

xx4 = CalcFreq(str,4,300);

5 Data visualization

5.1 Visualization

PCAFreq.m function has the only input argument: it is the table obtained at the
previous step. It produces a PCA plot for this table. For introduction to Principal
Component Analysis, see [6].

By typing this set of commands, students produce four plots for the word lengths
from 1 to 4 (see Fig. 2).

PCAFreq(xx1);

PCAFreq(xx2);

PCAFreq(xx3);

PCAFreq(xx4);

5.2 Understanding plots

The main message in these four pictures is that the genomic text contains informa-
tion which is encoded by non-overlapping triplets, because the plot corresponding
to the triplets is evidently highly structured as opposite to the pictures of singlets,
duplets and quadruplets. The triplet picture evidently contains 7 clusters.

It is important to demonstrate to students how this 7-cluster structure can be
naturally explained from Fig. 1.

We know that the text contains genes and that the information is encoded by
non-overlapping subsequent triplets (codons) but we know neither where the genes
start and end nor what is the frequency distribution codons are used.

5

a) −6 −4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

PCA plot for text fragments

n=1

b) −6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

PCA plot for text fragments

n=2

c) −8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

PCA plot for text fragments

n=3

d) −10 −5 0 5

−10

−8

−6

−4

−2

0

2

PCA plot for text fragments

n=4

Figure 2: PCA plots of word frequencies of different length. On fig.c) one can
see the most structured distribution. The structure is interpreted as existence of
non-overlapping triplet code.

6

Let us blindly cut the text into fragments. Any fragment can contain: a) piece
of gene in forward direction; b) piece of gene in backward direction; c) no genes
(non-coding part); d) mix of coding and non-coding.

Consider the a) case. The fragment can overlap with a gene in three possible
ways, with three possible shifts (mod3) of the first letter of the fragment with respect
to gene beginning: if we enumerate the letters in the gene form the first one, 1-
2-3-4-..., then the first letter of the fragment can be in the sequence 1-4-7-10-...
(=1(mod(3)) (a “correct” shift), the sequence 2-5-8-11-... (=2(mod(3)), or 3-6-9-12-
... (=0(mod(3)). If we start to read the information one triplet by an other starting
from the first letter of the fragment then we can read the gene correctly only if the
fragment overlaps with it with a correct shift (see Fig. 1). In general, if the start of
the fragment is not chosen deliberately then we can read the gene in three possible
ways. Thus, case a) generates three possible frequency distributions, “shifted” one
with respect to another.

The b) case is quite analogous and gives also three possible triplet distributions.
They are not quite independent from the ones obtained at the step a) for the follow-
ing reason. The difference is the triplets are read “from the end to the beginning”
which produces a kind of mirror reflection of the triplet distributions from the case
a).

The c) case will produce only one distribution which will be symmetrical with
respect to the “shifts” (or rotations) in the first two cases, and there is a hypothesis
that this is a result of genomic sequence evolution. Let us explain it.

Vitality of a bacterium depends on correct functioning of all biological mecha-
nisms. These mechanisms are encoded in genes, and if something wrong happens
with gene sequences (for example there is an error when DNA is duplicated), then
the organism risks to become non-vital. Nothing is perfect in our world and the
errors happen all the time, and in DNA duplication process as well. These errors
are called mutations.

The most dangerous mutations are those which change the reading frame, i.e.
letter deletions or insertions. If such a mutation happens in the middle of a gene
sequence, the rest of the gene becomes corrupted: the reading mechanism (which
reads the triplets one by one and does not know about the mutation) will read it
with a shift. Because of this the organisms with such mutations often die without
leaving their off-springs. In opposite, if such a mutation happens in the non-coding
part, where there is no genes, this does not lead to a serious problem, and the
organism leaves off-springs. Thus such mutations are constantly accumulated in the
non-coding part and mixes three shifted triplet distribution in one. The d) case also
produces mix of triplet distributions.

As a result, we have three distributions for the case a), three for the case b)
and one, symmetrical for the “non-coding” fragments (case c)). Because of natural
statistical deviations and other reasons we have 7 clusters of points in the multidi-
mensional space of triplet frequencies.

For more illustrative material see [7, 8, 11, 14].

7

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

K−means clustering

Figure 3: K-Means clustering of triplet frequencies.

6 Clustering and visualizing results

The next step is clustering fragments into 7-clusters. The students are explained that
this is a way to classify fragments of text by similarity in their triplet distributions.
This is an unsupervised classification (the cluster centers are not known in advance).

Clusterization is performed by K-Means algorithm from Matlab Statistical tool-
box and implemented in the ClustFreq.m file. The first argument is the frequency
table name, the second is the number of clusters proposed. Since we visually iden-
tified 7 clusters, in this activity we put 7 as the value of the second argument:

fragn = ClustFreq(xx3,7);

The function puts different colors onto the cluster points. The cluster which is
the closest to the center of the picture is automatically colored in black (see Fig. 3).

After clusterization, every fragment of the text is assigned a cluster label (a
color). The GenBrowser function put this color back to the text and visualize it.
The input arguments of this function are a string with genetic text, the fragment
size, a vector with cluster labels and a position in the genetic text to read from (we
use 13000 value which can be changed for any):

GenBrowser(str,300,fragn,13000);

8

This function implements a simple genome browser with information about gene
positions.

The students are explained that clusterization of fragments corresponds to seg-
mentation of the whole sequence into homogeneous parts. The homogeneity is un-
derstood as similarity of the short word frequency distributions for the fragments of
the same cluster (class). For example, for the following text

aaaaaaaatataaaaaattttatttttttattttttggggggggggaagagggggccccccgcctccccccc

it is evident that the frequency dictionary of length 1 for a fragment size around
5-10 will be able to separate the text into four homogeneous parts.

7 Task list and further information

Interested students can continue this activity. They can modify the Matlab functions
in order to solve the following problems (the first three of them are rather difficult
and require programming):

Determine a cluster corresponding to the correct shift. As it was explained in
the “Understanding plots” section, some fragments overlap with genes in such a
way that the information can be red with correct shift, others contain the “shifted”
information. The problem is to detect the cluster corresponding to the correct shift.
To give a hint, we can say that the correct triplet distribution, most probably, will
contain the lowest frequency of the stop codons TAA, TAG and TGA (see [15, 16]).

Measure information content for every phase. The information of a triplet dis-
tribution with respect to a letter distribution is I =

∑
ijk fijk ln

fijk

pipjpk
, where pi is a

frequency of letter i (a genetic text is characterized by four such frequencies), and
fijk is the frequency of triplet ijk. Each cluster is an ensemble of fragments. Each
fragment F can be divided on triplets starting from the first letter. We can calculate
the information value of this triplet distribution I(F) for each fragment F . Is the
information of fragments in the cluster with correct shift significantly different from
the entropy of fragments in other clusters? Is the mean information value in the
cluster with correct shift significantly different from the mean information value of
fragments in other clusters? Could you verify the hypothesis that in the cluster with
correct shift the mean information value is higher than in other clusters?

Increase resolution of determining gene positions. In this exercise we use the
same set of fragments to calculate the cluster centers and to annotate the genome.
As a result the gene positions are determined with precision equal to the fragment
size. In fact, one can calculate the cluster centers with non-overlapping fragments
and then scan the genome once again with a sliding window (this will produce a
set of overlapping fragments), calculate triplet frequencies for every window and
determine the corresponding cluster in the 64-dimensional space. The position in
the text is assigned a color corresponding to the content of the fragment centered
in this position. For reference, see how it is done in [9, 10, 11, 12].

9

acgatgccgttgcggatgtcgcccatcgggaaaaactcgatgccgttgtcggcgacgttgcgggccagcgtcttcagctgcaggcgcgcttcctcgtcgg

ccacggcgtcgacgcccagggcctggccctcggttgggatgttgtggtcggccacggccagggtgcggtcaggccggcgcaccttgcggccggccgcgcg

aaggcctgcgaaggcctgtggcgtggtcacctcatggatgaggtgcaggtcgatatagaggatcgcttcgccgcctgcttcgctgacgacgtgggcgtcc

cagatcttgtcgtaaagggttttgccggacatggcggggatatagggcggatcgtgcgccaaaatccagtggcgccccaggctcgcgacaatttcttgcg

ccctgtggccttccagtctcccgaacagccccgaacgacatagggcgcgcccatgtttcggcgcgccctcgcatcgttttcagccttcgggggccgatgg

gctccgcccgaagagggccgtccactagaaagaagacggtctggaagcccgagcgacaagcgccgggggtggcatcacgttctcacgaaacgctggtttg

tcaatctatgtgtggttgcacccaagcttgaccgtacggcgcgggcaagggcgagggctgttttgacgttgagtgttgtcagcgtcgtggaaaccgtcct

cgcccttcgacaagctcagggtgagcacgactaatggccacggttcgcacgaaatcctcatcctgagcttgtcccccgggaccgaccgaaggtcggcccg

aggataaactccggacgaggatttccatccaggctagcgccaacagccagcgcgaagtcagccaaagaaaaaggccccggtgtctccaccggggcctcgt

tcatttccgaaggtcggaagcttaggcttcggtcgaagccgaagccttcgggccgcccgcgcgctcggcgatacgggccgacttaccgcgacggtcgcgc

aggtagtacagcttggcgcgacggacgacgccgcgacgcttgacttcgatgctttcgatgctcggcgacagcagcgggaacagacgctccacgccttcgc

cgaacgaaatcttacggaccgtgaagctctcgtgcacgcccgtgccggcgcgggcgatgcagacgccttcataggcctgaacgcgctcgcgctcgccttc

cttgatcttcacgttgacgcgcagggtgtcgccgggacggaagtccgggatcgcgcgggcggccagcagacgggccgattcttcttgctcgagctgagcg

atgatgttgatcgccatgatcatgtctccttgggcttacccggtttcgggtcgccttttgcctgttgattggcgaggtgggcctcccagagatccgggcg

ccgctcgcgggtcgtttcttcacgcatacgcttgcgccattggtcgatcttcttgtgatcgcccgacagcagcacctcggggatgtcgagctcttcgaac

gtccgcggtctcgtgtactgcggatgctcgaggagaccgtcctcgaagctttcttccagcgtgctctcgatattccccagaacccccggggcaagtcgaa

cgcacgcctcgatcacgaccatcgccgccgcttcgccaccggcgagtacggcgtctccgaccgagacctcttcgaaccctcgggcgtcgagcacccgctg

gtccaccccctcgaagcggccgcacagcaccacgatgccgggcgccttggaccactccctcacgcgcgcctgggtcaggggcctgccccgggcgctcatg

tacaaaagcggccgcccatcgcgttcgaggctgtccagcgccgaggcgatcacgtccgctttgagtacggctcctgcgccgccacccgcaggggtgtcgt

cgaggaagccgcgcttatccttggaaaaggcgcgaatgtccagtgtttccaaacgccacaggtcctgctccttccaggcggtcccgatcatcgagacgcc

gagcgggccggggaaggcctcggggaacatggtcaggacggtggcggtgaacggcatggccgctgtttagcggctggacgctccagagtcgaagccctgc

gcggcgcgggggttcatcaagcgcattttccagttgttcaccgtcatcggcgaagttcggcggacaaactgaggtccacttcgtcccatgccgaccaaga

gccgtttccttcgacgccttagcgagggcgtcgctgctttcgcccgccgtctgagacgtgacgaccgcggggcgatcgcgatccagttcgcgctgttggc

cctgccgctgtcgatccttctgtttggtctcttggatgtgggccgcctcagcctgcagcggcgccagatgcaggacgcgctcgatgcggcgaccctgatg

Figure 4: Visualizing results onto the text. There are three scale in the browser.
The bottom color code represents the genetic text as whole. The second line shows
colors of 100 fragments starting from a position in the text specified as an argument
of GenBrowser.m function. The letter color code shows 2400 symbols starting from
the same position. The black color corresponds to the fragments with non-coding
information (the central cluster), other colors correspond to locations of coding
information in different directions and with different shifts with respect to randomly
chosen division of the text into fragments.

10

Precise start and end positions of genes. The biological mechanism for genes
reading (the polymerase molecule) identifies the beginning and the end of a gene
using special signals, specialized codons. Thus, almost all genes start with “ATG”
start codon and end with “TAG”,“TAA”,“TGA” stop codons. Try to use this
information to precise the beginning and end of every gene.

Play with natural texts. The CalcFreq function is not designed specifically for
the four-letters alphabet text, it can work with any text. For a natural text, it is
also possible to construct local frequency dictionaries and segment it into “homoge-
neous” (in the meaning of short word frequencies) parts. But be careful with longer
frequency dictionaries, for an English text one has (28 + 1)2 = 841 possible duplets!

Students can also look at visualizations of 143 bacterial genomic sequences at
[13]. All possible types of the 7-cluster structure have been described in [14]. Non-
linear principal manifolds were utilized for visualization of the 7-cluster structure in
[16].

8 Conclusion

In this exercise on applying PCA to the analysis of a genomic sequence the students
learn basic bioinformatics notions and how to apply PCA for visualization of local
frequency dictionaries in genetic text.

11

9 Appendix. Program listings

function str=LoadSeq(fafile)

fid = fopen(fafile); i=1; str = ’’;

disp(’Reading fasta-file...’);

while 1

if round(i/200)==i/200

disp(strcat(int2str(i),’ lines’));

end

tline = fgetl(fid);

if ischar(tline), break, end;

if(size(tline) =0)

if(strcmp(tline(1),’>’)==0)

str = strcat(str,tline);

end;

end;

i=i+1;

end

nn = size(str); n = nn(2);

disp(strcat(’Length of the string:

’,int2str(n)));

12

function xx=CalcFreq(str,len,wid)

disp(’Cutting in fragments...’);

i=1; k=1;nn = size(str);

while i+wid<nn(2)

if round(k/200)==k/200

disp(strcat(int2str(k),’ fragments’));

end

frag = str(i:i+wid-1); vf(k) =

calcf(frag,len);

i = i+wid; k=k+1;

end

disp(’Merging into table...’);

names = java.util.Vector; n = 0;

for i=1:size(vf)

if size(vf(i)) =0

keys = vf(i).keys;

while keys.hasMoreElements

key = keys.nextElement;

if names.indexOf(key)==-1

names.add(key);

end

end, n=n+1; end, end

xx = zeros(n,size(names));

for i=1:size(vf)

if size(vf(i)) =0

if round(i/200)==i/200

disp(strcat(int2str(i),’ points’));

end

for j=1:size(names)

xx(i,j) = getwf(names.elementAt(j-1),vf(i));

end, end, end

13

function vf=calcf(str,num)

vf = java.util.Hashtable; i = 1; nn =

size(str);

while i+num<nn(2)

wrd = str(i:i+num-1); i = i+num;

addwf(wrd,vf,1);

end

function addwf(word,hash,fr)

wf = hash.get(word);

if size(wf)==0 hash.put(word,fr); else

hash.put(word,fr+wf); end

function fr=getwf(word,hash)

wf = hash.get(word);

if size(wf)==0 r=0; else fr=wf; end

function PCAFreq(xx)

% standard normalization

nn = size(xx); n = nn(1) mn = mean(xx);

mas = xx - repmat(mn,n,1); stdr = std(mas);

mas =

mas./repmat(stdr,n,1);

% creating PCA plot

[pc,dat] = princomp(mas);

plot(dat(:,1),dat(:,2),’k.’); hold on;

set(gca,’FontSize’,16);

axis equal; title(’PCA plot for text

fragments’,’FontSize’,22);

set(gcf,’Position’,[232 256 461 422]);

hold off;

14

function fragn = ClustFreq(xx,k)

% centralization and normalization

nn = size(xx); n = nn(1)

mn = mean(xx);

mas = xx - repmat(mn,n,1);

stdr = std(mas);

mas = mas./repmat(stdr,n,1);

% calculating principal components

[pc,dat] = princomp(mas);

% k-means clustering

[fragn,C] = kmeans(mas,k);

% projecting cluster centers into the PCA

basis

XTP = C; temp = size(XTP); nums = temp(1);

X1c = XTP-repmat(mn,nums,1);

X1r = X1c./repmat(stdr,nums,1);

X1P = pc’*X1r’; X1P = X1P’;

% marking the central cluster black

cnames = [’k’,’r’,’g’,’b’,’m’,’c’,’y’];

for i=1:k no(i) = norm(X1P(i,1:3)); end

[m,mi] = min(no);

for i=1:size(fragn)

if fragn(i)==mi fragn(i)=1;

elseif fragn(i)==1 fragn(i)=mi; end

end

% plotting the result using PCA

for i=1:n

plot(dat(i,1),dat(i,2),’ko’,

’MarkerEdgeColor’,[0 0

0],’MarkerFaceColor’,cnames(fragn(i)));

hold on;

end

set(gca,’FontSize’,16); axis equal;

title(’K-means clustering’,’FontSize’,22);

set(gcf,’Position’,[232 256 461 422]);

15

function GenBrowser(str,wid,fragn,startp)

% we will show 100 fragments in the detailed

view

endp = startp+wid*100; nn = size(fragn); n =

nn(1);

xr1 = startp/(n*wid); xr2 = endp/(n*wid);

cnames = [’k’,’r’,’g’,’b’,’m’,’c’,’y’];

subplot(’Position’,[0 0 1 0.1]);

for i=1:size(fragn)

plot(i/n,0,strcat(cnames(fragn(i)),’s’),’MarkerSize’,2);

hold on;

end

plot([xr1 xr1],[-1 1],’k’); hold on;

plot([xr2 xr2],[-1 1],’k’); axis off;

subplot(’Position’,[0 0.1 1 0.1]);

for i=floor(startp/wid)+1:floor(endp/wid)+1

plot([(i-0.5)*wid (i+0.5)*wid],[0 0],

strcat(cnames(fragn(i)),’-’),’LineWidth’,5);

hold on;

end

axis off;

subplot(’Position’,[0 0.25 0.98 0.75]);

xlim([0,1]); ylim([0,1]); twid = 100; nlin =

24; k=startp;

for j=1:nlin

for i=1:twid

col = cnames(fragn(floor(k/wid)+1));

h=text(i/twid,1-j/nlin,str(k),’FontSize’,8,’FontName’,’FixedWidth’);

set(h,’Color’,col);

k=k+1;

end end

axis off;

set(gcf,’Position’,[64 356 879 195]);

References

[1] Genbank FTP-site: ftp://ftp.ncbi.nih.gov/genbank/genomes

[2] An http-folder with all materials required for the tutorial:
http://www.ihes.fr/∼zinovyev/pcadg .

[3] Crick F.H.C., Barnett L., Brenner S., Watts-Tobin R.J. General nature of the
genetic code for proteins. Nature, December 30, 1961. p.1227-1232.

[4] Clark D., Russel, L. Molecular Biology Made Simple and Fun. Cache River Press,
2000.

16

ftp://ftp.ncbi.nih.gov/genbank/genomes
http://www.ihes.fr/~zinovyev/pcadg

[5] Caulobacter crescentus short introduction at http://caulo.stanford.edu/caulo/ .

[6] Jackson, J. A User’s Guide to Principal Components (Wiley Series in Probability
and Statistics). Wiley-Interscience, 2003.

[7] Zinovyev A. Hierarchical Cluster Structures and Symmetries in Ge-
nomic Sequences. Colloquium talk at the Centre for Mathematical Mod-
elling, University of Leicester. December, 2004. PowerPoint presentation at
http://www.ihes.fr/∼zinovyev/presentations/7clusters.ppt.

[8] Zinovyev, A., Visualizing the spatial structure of triplet distri-
butions in genetic texts. 2003. IHES Preprint, M/02/28. Online:
http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-28.html .

[9] Gorban, A.N., Zinovyev, A.Yu., Popova, T.G. Statistical ap-
proaches to the automated gene identification without teacher, Insti-
tut des Hautes Etudes Scientiques. - IHES Preprint, France. 2001. -
M/01/34. Available at http://www.ihes.fr web-site. (See also e-print:
http://arxiv.org/abs/physics/0108016)

[10] Zinovyev, A.Yu., Gorban, A.N., Popova, T.G., Self-Organizing Approach for
Automated Gene Identification. Open Systems and Information Dynamics 10(4)
(2003), 321–333.

[11] Gorban, A., Zinovyev, A., Popova, T., Seven clusters in
genomic triplet distributions, In Silico Biology. 3 (2003),
0039. (e-print: http://arxiv.org/abs/cond-mat/0305681 and
http://cogprints.ecs.soton.ac.uk/archive/00003077/)

[12] Ou, H.Y., Guo, F.B., Zhang, C.T., Analysis of nucleotide distribution in the
genome of Streptomyces coelicolor A3(2) using the Z curve method, FEBS Lett.
Apr 10 540 (1-3) (2003), 188–194.

[13] Cluster structures in genomic word frequency distributions. Web-site with sup-
plementary materials. http://www.ihes.fr/∼zinovyev/7clusters/index.htm

[14] Gorban, A.N., Zinovyev, A.Yu., Popova, T.G., Four basic symmetry types in
the universal 7-cluster structure of 143 complete bacterial genomic sequences. In
Silico Biology 5 (2005) 0025. On-line: http://www.bioinfo.de/isb/2005/05/0025/

[15] Staden, R., McLachlan, A. D. Codon preference and its use in identifying pro-
tein coding regions in long DNA sequences. 1982. Nucleic Acids Res 10(1): 141-
56.

[16] Gorban, A.N., Zinovyev, A.Y., Wunsch, D.C., Application of The Method of
Elastic Maps In Analysis of Genetic Texts, In Proceedings of International Joint
Conference on Neural Networks (IJCNN), 2003, Portland, Oregon, July 20-24.

17

http://caulo.stanford.edu/caulo/
http://www.ihes.fr/~zinovyev/presentations/7clusters.ppt
http://www.ihes.fr/PREPRINTS/M02/Resu/resu-M02-28.html
http://www.ihes.fr
http://arxiv.org/abs/physics/0108016
http://arxiv.org/abs/cond-mat/0305681
http://cogprints.ecs.soton.ac.uk/archive/00003077/
http://www.ihes.fr/~zinovyev/7clusters/index.htm
http://www.bioinfo.de/isb/2005/05/0025/

	Introduction
	Required materials
	Genomic sequence
	Background
	Sequences for the analysis

	Converting text to a numerical table
	Data visualization
	Visualization
	Understanding plots

	Clustering and visualizing results
	Task list and further information
	Conclusion
	Appendix. Program listings

