Principal Component Analysis

How to Simplify and Visualise Data Sets

Plan

- Data sets
- Curse of Dimensionality
- Struggle with Complexity
- Data sets approximation by lines and planes
- Least square definition of mean point
- "Least Square" definition of the first principal component

Plan

- Empirical covariance matrix
- Principal components are eigenvectors of empirical covariance matrix
- PCA scheme

Eigenfaces and Eigenmuzzles

Everybody is a Vector

Here is a dataset

age	employme	education	edur	marital		job	relation	race	gender	hour	country	wealth
39	State_gov	Bachelors	13	Never_mar		Adm_cleni	Not in fan	White	Male	40	United_Sti	poor
51	Self_emp_	Bachelors	13	Marned	...	Exec_mar	Husband	White	Male	13	United_St:	poor
39	Private	HS_grad		Divorced		Handlers_	Not in_ fan	White	Male	40	United_St:	poor
54	Private	11th		Marned		Handlers_	Husband	Black	Male	40	United_St	poor
28	Private	Bachelors	13	Marnied	-	Prof_spec	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married		Exec_mar	Wife	White	Female	40	United_St:	poor
50	Private	9th		Marned_s		Other_ser	Not in_ fan	Black	Female	18	Jamaica	poor
52	Self_emp_	HS_grad	O	Marned	...	Exec_mar	Husband	White	Male	45	United_Sti	rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_ in_fan	White	Female	50	United_Sti	rich
42	Private	Bachelors	13	Marned	...	Exec_mar	Husband	White	Male	40	United_St:	rich
37	Private	Some_coll	10	Married	\ldots	Exec_mar	Husband	Black	Male	80	United_Sti	rich
30	State_gov	Bachelors	13	Marnied	...	Prof_speci	Husband	Asian	Male	40	India	nich
24	Private	Bachelors	13	Never_mar	.	Adm_cleni	Own_child	White	Female	30	United_St:	poor
33	Private	Assoc_act	12	Never_mar	...	Sales	Not_in_fan	Black	Male	50	United_St:	poor
41	Private	Assoc_voc	11	Marned	...	Crat_repa	Husband	Asian	Male	40	'MissingV	rich
34	Private	7th_8:h		Marned	...	Transport_	Husband	Amer_Indi:	Male	45	Mexico	poor
26	Self_emp_	HS_grad		Never_mar	..	Farming_fi	Own_child	White	Male	35	United_Sti	poor
33	Private	HS_grad		Never_mar	.	Machine_c	Unmarried	White	Male	40	United_Sti	poor
38	Private	11th		Marned	...	Sales	Husband	White	Male	50	United_St:	poor
44	Self_emp	Masters	14	Divorced	\ldots	Exec_mar	Unmarried	White	Female	45	United_St:	
41	Private	Doctorate	16	Marnied	...	Prof_speci	Husband	White	Male	60	United_St:	
:		:	:	:	:	:			:		:	:

How transform them into vectors?

Curse of dimensionality

Curse of dimensionality (Bellman 1961) refers to the exponential growth of complexity as a function of dimensionality. And what to do if dim>1000?

Two Main Tricks in our
 Struggle with Complexity

A 3D representation of an 8D hypercube

The body has the same radial distribution and the same number of vertices as the hypercube.

A very small fraction of the mass lies near a vertex.

Also, most of the interior is void.
(Hamprecht \& Agrell, 2002)

Karl Pearson, 1901

LIII. On Lines and Planes of Closest Fit to Systems of Points in S'pace. By Karl Pearson, F.R.S., University College, London *.
(1) IN many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensioned space by the "best-fitting" straight line or plane. Analytically this consists in taking

$$
\begin{aligned}
& \quad y=a_{0}+a_{1} \cdot x, \quad \text { or } \quad z=a_{0}+a_{1} \cdot x+b_{1} y, \\
& \text { or } \quad z=a_{0}+a_{1} x_{1}+a_{2} x_{3}+a_{3} x_{2}+\ldots+a_{n} x_{n},
\end{aligned}
$$

where $y, x, 2, x_{1}, x_{2}, \ldots x_{n}$ are variables, and determining the "best" values for the constants $a_{0}, a_{1}, b_{1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots a_{n}$ in relation to the observed corresponding values of the variables. In nearly all the cases dealt with in the text-books

Data approximation by a straight line. The illustration from Pearson's paper

The closest approximation=

The widest scattering of projections

Mean point

\mathbf{X}_{i} - datapoints, $i=1, \ldots m$
$X_{i j}-$ coordinates of datapoints, $j=1, \ldots n$

"Least Square" definition of mean point

$$
\begin{aligned}
& \Delta^{2}=\sum_{i=1}^{m}\left\|\mathbf{X}_{i}-\mathbf{Y}\right\|^{2} \rightarrow \min , \quad \mathbf{Y}=? \\
& \Delta^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(X_{i j}-Y_{j}\right)^{2} \rightarrow \min ; \\
& \frac{\partial \Delta^{2}}{\partial Y_{j}}=-2 \sum_{i=1}^{m}\left(X_{i j}-Y_{j}\right)=-2\left(\left(\sum_{i=1}^{m} X_{i j}\right)-m Y_{j}\right)=0 ; \\
& Y_{j}=\frac{1}{m} \sum_{i=1}^{m} X_{i j}, \quad \mathbf{Y}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{X}_{i}=\langle\mathbf{X}\rangle .
\end{aligned}
$$

Centralisation

Let us centralise all data: Mean Point=The Origin

$$
\mathbf{X}_{i} \mapsto \mathbf{X}_{i}-\langle\mathbf{X}\rangle
$$

"Least Square" definition of the first principal component

"Least Square" definition of the first principal component. 2

$\Delta^{2}=\sum_{i=1}^{m} p_{i}{ }^{2}=\sum_{i=1}^{m}\left(\mathbf{X}_{i}-\mathbf{e}_{1}\left(\mathbf{e}_{1}, \mathbf{X}_{i}\right), \mathbf{X}_{i}-\mathbf{e}_{1}\left(\mathbf{e}_{1}, \mathbf{X}_{i}\right)\right) \rightarrow \min ; \quad \mathbf{e}_{1}=?$
$\Delta^{2}=\sum_{i=1}^{m}\left(\mathbf{X}_{i}-\mathbf{e}_{1}\left(\mathbf{e}_{1}, \mathbf{X}_{i}\right), \mathbf{X}_{i}-\mathbf{e}_{1}\left(\mathbf{e}_{1}, \mathbf{X}_{i}\right)\right)=$
$=\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{X}_{i}\right)-2 \sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2}+\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2}=\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{X}_{i}\right)-\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2} ;$
$\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2} \rightarrow \max ; \quad \mathbf{e}_{1}=$?
Theorem: The closest approximation=The widest scattering of projections

"Least Square" definition of the first principal component. 3

Theorem: The closest approximation=The widest scattering of projections
$\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2} \rightarrow \max ; \quad \mathbf{e}_{1}=$?
$\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}_{1}\right)^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} X_{i j} e_{1 j}\right)^{2}=\sum_{i=1}^{m}\left(\sum_{j, k=1}^{n} X_{i j} e_{1 j} X_{i k} e_{1 k}\right)=$
$=\sum_{j, k=1}^{n} e_{1 j}\left(\sum_{i=1}^{m} X_{i j} X_{i k}\right) e_{1 k}=m\left(\mathbf{e}_{1}, \mathbf{C}(\mathbf{X}) \mathbf{e}_{1}\right)$,
where $\mathbf{C}(\mathbf{X})$-empirical covariance matrix $: \mathbf{C}(\mathbf{X})_{j k}=\frac{1}{m} \sum_{i=1}^{m} X_{i j} X_{i k}$

Properties of empirical covariance matrix

$$
\mathbf{C}(\mathbf{X})_{j k}=\frac{1}{m} \sum_{i=1}^{m} X_{i j} X_{i k}
$$

1. $\mathbf{C}(\mathbf{X})$ is sy mmetric: $\mathbf{C}(\mathbf{X})_{j k}=\mathbf{C}(\mathbf{X})_{k j}$;
2. $\mathbf{C}(\mathbf{X})$ is positivedefinite : $(\mathbf{e}, \mathbf{C}(\mathbf{X}) \mathbf{e}) \geq 0$.

Indeed, $(\mathbf{e}, \mathbf{C}(\mathbf{X}) \mathbf{e})=\sum_{i=1}^{m}\left(\mathbf{X}_{i}, \mathbf{e}\right)^{2} \geq 0$
Hence, eigenvalue s of $\mathbf{C}(\mathbf{X})$ are non - negative real numbers, $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq 0$

Principal components are eigenvectors of empirical covariance matrix. 1

$\mathbf{C}(\mathbf{X})_{j k}=\frac{1}{m} \sum_{i=1}^{m} X_{i j} X_{i k}$
Eigenvalues of $\mathbf{C}(\mathbf{X})$ are non- negativereal numbers, $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq 0$;
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}$ are thecorrespondent orthonormbeigenvectors.
We are lookingfor $\mathbf{e}_{1}=\sum_{i=1}^{m} \varepsilon_{1 i} \mathbf{v}_{i}, \quad \varepsilon_{1 i}=\left(\mathbf{e}_{1}, \mathbf{v}_{i}\right), \quad \sum_{i=1}^{m} \varepsilon_{1 i}{ }^{2}=1$.
$\mathbf{C}(\mathbf{X}) \mathbf{e}_{1}=\sum_{i=1}^{m} \varepsilon_{1 i} \mathbf{C}(\mathbf{X}) \mathbf{v}_{i}=\sum_{i=1}^{m} \varepsilon_{1 i} \lambda_{i} \mathbf{v}_{i} ;$
$\left(\mathbf{e}_{1}, \mathbf{C}(\mathbf{X}) \mathbf{e}_{1}\right)=\sum_{i=1}^{m} \varepsilon_{1 i}^{2} \lambda_{i} \rightarrow$ max under condition $\sum_{i=1}^{m} \varepsilon_{1 i}{ }^{2}=1$.
Let first eigenvalues be different $\lambda_{1}>\lambda_{2}>\ldots$
In thiscase, $\varepsilon_{11}^{2}=1, \varepsilon_{1 i}=0(i>1), \quad \mathbf{e}_{1}= \pm \mathbf{v}_{1}$

Principal components are eigenvectors of empirical covariance matrix. 2

- Centralise data;
- Subtract projection on the first eigenvector;
- Solve the same minimisation problem again
- - and immediately get: $\mathrm{e}_{2}=\mathrm{v}_{2}$
- Iterate!

Principal components analysis

- Calculate the empirical mean
- Calculate the deviations from the mean
- Find the covariance matrix
- Find the eigenvectors and eigenvalues of the covariance matrix
- Rearrange the eigenvectors and eigenvalues
- Compute the cumulative energy content for each eigenvector
- Select a subset of the eigenvectors as low-dimensiona basis vectors
- Project the data onto the new basis

