Principal Component Analysis

How to Simplify and Visualise Data Sets

Plan

- Data sets
- Curse of Dimensionality
- Struggle with Complexity
- Data sets approximation by lines and planes
- Least square definition of mean point
- Least Square definition of the first principal component

Empirical covariance matrix

- Principal components are eigenvectors of empirical covariance matrix
- PCA scheme
- Eigenfaces and Eigenmuzzles

Principal components analysis (PCA) is a technique used to reduce multidimensional data sets to lower dimensions for analysis. Depending on the field of application, it is also named: (i) the discrete Karhunen-Loève transform, (ii) the <u>Hotelling</u> transform or (iii) proper orthogonal decomposition (POD).

Everybody is a Vector

Here is a dataset

age	employme	education	edun	marital		job	relation	race	gender	hour	country	wealth
39	State_gov	Bachelors	13	Never_mar		Adm_cleri	Not_in_fan	White	Male	40	United_Sta	poor
51	Self_emp_	Bachelors	13	Married		Exec_mar	Husband	White	Male	13	United_Sta	poor
39	Private	HS_grad	9	Divorced		Handlers_	Not_in_fan	White	Male	40	United_Sta	poor
54	Private	11th	7	Married		Handlers_	Husband	Black	Male	40	United_Sta	poor
28	Private	Bachelors	13	Married		Prof_speci	Wife	Black	Female	40	Cuba	poor
38	Private	Masters	14	Married		Exec_mar	Wife	White	Female	40	United_Sta	poor
50	Private	9th	5	Married_sp		Other_sen	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married		Exec_mar	Husband	White	Male	45	United_Sta	rich
31	Private	Masters	14	Never_mar		Prof_speci	Not_in_fan	White	Female	50	United_Sta	rich
42	Private	Bachelors	13	Married		Exec_mar	Husband	White	Male	40	United_Sta	rich
37	Private	Some_coll	10	Married		Exec_mar	Husband	Black	Male	80	United_Sta	rich
30	State_gov	Bachelors	13	Married		Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar		Adm_cleri	Own_child	White	Female	30	United_Sta	poor
33	Private	Assoc_acc	12	Never_mar		Sales	Not_in_fan	Black	Male	50	United_Sta	poor
41	Private	Assoc_voc	: 11	Married		Craft_repa	Husband	Asian	Male	40	*MissingV	rich
34	Private	7th_8th	4	Married		Transport_	Husband	Amer_India	Male	45	Mexico	poor
26	Self_emp_	HS_grad	9	Never_mar		Farming_fi	Own_child	White	Male	35	United_Sta	poor
33	Private	HS_grad	9	Never_mar		Machine_c	Unmarried	White	Male	40	United_Sta	poor
38	Private	11th	7	Married		Sales	Husband	White	Male	50	United_Sta	poor
44	Self_emp_	Masters	14	Divorced		Exec_mar	Unmarried	White	Female	45	United_Sta	rich
41	Private	Doctorate	16	Married		Prof_speci	Husband	White	Male	60	United_Sta	rich
:	-	-	:	:	:	:	:	:	:	:	2	:

How transform them into vectors?

Curse of dimensionality

Curse of dimensionality (Bellman 1961) refers to the exponential growth of complexity as a function of dimensionality. And what to do if dim>1000?

Two Main Tricks in our Struggle with Complexity

A 3D representation of an 8D hypercube

The body has the same radial distribution and the same number of vertices as the hypercube.

A very small fraction of the mass lies near a vertex.

Also, most of the interior is void. (Hamprecht & Agrell, 2002)

Self-simplification in large dim

Karl Pearson, 1901

LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. By KARL PEARSON, F.R.S., University College, London *.

(1) \mathbf{I}^{N} many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensioned space by the "best-fitting" straight line or plane. Analytically this consists in taking

$$y = a_0 + a_1 x$$
, or $z = a_0 + a_1 x + b_1 y$,
or $z = a_0 + a_1 x_1 + a_2 x_3 + a_3 x_3 + \dots + a_n x_n$,

where $y, x, z, x_1, x_2, \ldots x_n$ are variables, and determining the "best" values for the constants $a_0, a_1, b_1, a_0, a_1, a_2, a_3, \ldots a_n$ in relation to the observed corresponding values of the variables. In nearly all the cases dealt with in the text-books Data approximation by a straight line. The illustration from Pearson's paper

The closest approximation = The widest scattering of projections

 \mathbf{X}_i – datapoints, $i = 1, \dots, m$

 X_{ij} – coordinates of datapoints, j = 1,...n

"Least Square" definition of mean point

$$\Delta^2 = \sum_{i=1}^m \|\mathbf{X}_i - \mathbf{Y}\|^2 \to \min, \quad \mathbf{Y} = ?$$

$$\Delta^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - Y_{j})^{2} \to \min;$$

Centralisation

Let us centralise all data: Mean Point=The Origin

$$\mathbf{X}_i \mapsto \mathbf{X}_i - \langle \mathbf{X} \rangle$$

"Least Square" definition of the first principal component.2

$$\Delta^{2} = \sum_{i=1}^{m} p_{i}^{2} = \sum_{i=1}^{m} (\mathbf{X}_{i} - \mathbf{e}_{1}(\mathbf{e}_{1}, \mathbf{X}_{i}), \mathbf{X}_{i} - \mathbf{e}_{1}(\mathbf{e}_{1}, \mathbf{X}_{i})) \to \min; \quad \mathbf{e}_{1} = ?$$

$$\Delta^2 = \sum_{i=1}^{m} (\mathbf{X}_i - \mathbf{e}_1(\mathbf{e}_1, \mathbf{X}_i), \mathbf{X}_i - \mathbf{e}_1(\mathbf{e}_1, \mathbf{X}_i)) =$$

$$= \sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{X}_{i}) - 2\sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{e}_{1})^{2} + \sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{e}_{1})^{2} = \sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{X}_{i}) - \sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{e}_{1})^{2};$$

$$\sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{e}_{1})^{2} \to \max; \quad \mathbf{e}_{1} = ?$$

Theorem: The closest approximation=The widest scattering of projections

"Least Square" definition of the first principal component.3

Theorem: The closest approximation=The widest scattering of projections

$$\sum_{i=1}^{m} (\mathbf{X}_i, \mathbf{e}_1)^2 \to \max; \quad \mathbf{e}_1 = ?$$

$$\sum_{i=1}^{m} (\mathbf{X}_{i}, \mathbf{e}_{1})^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} X_{ij} e_{1j} \right)^{2} = \sum_{i=1}^{m} \left(\sum_{j,k=1}^{n} X_{ij} e_{1j} X_{ik} e_{1k} \right) =$$
$$= \sum_{j,k=1}^{n} e_{1j} \left(\sum_{i=1}^{m} X_{ij} X_{ik} \right) e_{1k} = m(\mathbf{e}_{1}, \mathbf{C}(\mathbf{X})\mathbf{e}_{1}),$$

where $\mathbf{C}(\mathbf{X})$ – empirical covariance matrix : $\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{m} \sum_{i=1}^{m} X_{ij} X_{ik}$

Properties of empirical covariance matrix

$$\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{m} \sum_{i=1}^{m} X_{ij} X_{ik}$$

- 1. $C(\mathbf{X})$ is symmetric: $C(\mathbf{X})_{jk} = C(\mathbf{X})_{kj}$;
- 2. C(X) is positive definite : $(e, C(X)e) \ge 0$.

Indeed,
$$(\mathbf{e}, \mathbf{C}(\mathbf{X})\mathbf{e}) = \sum_{i=1}^{m} (\mathbf{X}_i, \mathbf{e})^2 \ge 0$$

Hence, eigenvalues of C(X) are non - negative real numbers,

$$\lambda_1 \ge \lambda_2 \ge \dots \lambda_n \ge 0$$

Principal components are eigenvectors of empirical covariance matrix. 1

$$\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{m} \sum_{i=1}^{m} X_{ij} X_{ik}$$

Eigenvalues of **C**(**X**) are non-negative real numbers, $\lambda_1 \ge \lambda_2 \ge ... \lambda_n \ge 0$;

 $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ are the correspondent orthonormal eigenvectors.

We are looking for
$$\mathbf{e}_1 = \sum_{i=1}^m \varepsilon_{1i} \mathbf{v}_i$$
, $\varepsilon_{1i} = (\mathbf{e}_1, \mathbf{v}_i)$, $\sum_{i=1}^m \varepsilon_{1i}^2 = 1$.
 $\mathbf{C}(\mathbf{X})\mathbf{e}_1 = \sum_{i=1}^m \varepsilon_{1i} \mathbf{C}(\mathbf{X})\mathbf{v}_i = \sum_{i=1}^m \varepsilon_{1i}\lambda_i \mathbf{v}_i$;
 $(\mathbf{e}_1, \mathbf{C}(\mathbf{X})\mathbf{e}_1) = \sum_{i=1}^m \varepsilon_{1i}^2\lambda_i \rightarrow \text{max under condition} \sum_{i=1}^m \varepsilon_{1i}^2 = 1$.
Let first eigenvalues be different $\lambda_1 > \lambda_2 > \dots$.
In this case, $\varepsilon_{11}^2 = 1$, $\varepsilon_{1i} = 0$ ($i > 1$), $\mathbf{e}_1 = \pm \mathbf{v}_1$

Principal components are eigenvectors of empirical covariance matrix. 2

- Centralise data;
- Subtract projection on the first eigenvector;
- Solve the same minimisation problem again
- and immediately get: $e_2 = v_2$
- Iterate!

Principal components analysis

- Calculate the empirical mean
- Calculate the deviations from the mean
- Find the covariance matrix
- Find the eigenvectors and eigenvalues of the covariance matrix
- Rearrange the eigenvectors and eigenvalues
- <u>Compute the cumulative energy content for each eigenvector</u>
- <u>Select a subset of the eigenvectors as low-dimensiona basis</u> vectors
- Project the data onto the new basis