
Principal Component Analysis 

How to Simplify and Visualise  
Data Sets 



Plan 

 Data sets 

 Curse of Dimensionality 

 Struggle with Complexity 

 Data sets approximation by lines and 
planes 

 Least square definition of mean point 

 “Least Square” definition of the first 
principal component 

 



Plan 

 Empirical covariance matrix 

 Principal components are eigenvectors 
of empirical covariance matrix 

 PCA scheme 

 Eigenfaces and Eigenmuzzles  



Principal components analysis (PCA) 
is a technique used to reduce 
multidimensional data sets to lower 
dimensions for analysis. Depending on 
the field of application, it is also named: 
(i) the discrete Karhunen-Loève transform,  
(ii) the Hotelling transform or  
(iii) proper orthogonal decomposition (POD). 

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/w/index.php?title=Kari_Karhunen&action=edit
http://en.wikipedia.org/wiki/Michel_Lo%C3%A8ve
http://en.wikipedia.org/wiki/Harold_Hotelling


Everybody is a Vector 



How transform them  
into vectors? 



Curse of dimensionality 

Curse of dimensionality (Bellman 1961) 
refers to the exponential growth of 
complexity as a function of dimensionality.  

And what to do if dim>1000? 

2          4          8     



Two Main Tricks in our  
Struggle with Complexity 

A “minimal” space 
with this 
interesting content 

In high dimensionality many 
different things become similar, if we 
choose the proper point of view 

A large space  
with something 
interesting inside 



A 3D representation  
of an 8D hypercube 

The body has the same 
radial distribution and the 
same number of vertices 
as the hypercube.  
 
A very small fraction of the 
mass lies near a vertex.  
 
Also, most of the interior 
is void.  
(Hamprecht & Agrell, 2002) 

Self-simplification in large dim 



Karl Pearson, 1901 
 



Data approximation by a straight 
line. The illustration from Pearson’s 
paper 
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The closest approximation=  
The widest scattering of projections 

1st Principal 

axis 

2nd principal 

axis 



Mean point 
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“Least Square” definition of 
mean point 
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Centralisation 

Let us centralise all data: 

Mean Point=The Origin 

XXX ii 



“Least Square” definition of 
the first principal component 
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“Least Square” definition of 
the first principal component.2 
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Theorem: The closest approximation=The widest scattering of projections 



“Least Square” definition of 
the first principal component.3 
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Properties of empirical 
covariance matrix 

0...

numbers, real negative-non are  of seigenvalue Hence,

0),(),( Indeed,

.0),(  :definite positive is .2

; :symmetric is .1

1
 

21

1

2

1



















n

m

i
i

kjjk

m

i
ikijjk XX

m



C(X)

eXC(X)ee

C(X)eeC(X)

C(X)C(X)C(X)

C(X)



Principal components are eigenvectors 

of empirical covariance matrix. 1  
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Principal components are eigenvectors 
of empirical covariance matrix. 2 

 Centralise data;  

 Subtract projection on the first eigenvector; 

 Solve the same minimisation problem again  

 – and immediately get: e2=v2 

 Iterate! 



Principal components analysis 

 Calculate the empirical mean  
 Calculate the deviations from the mean 
 Find the covariance matrix   
  Find the eigenvectors and eigenvalues of the covariance 

matrix 
 Rearrange the eigenvectors and eigenvalues  
 Compute the cumulative energy content for each 

eigenvector  
 Select a subset of the eigenvectors as low-dimensiona basis 

vectors  
 Project the data onto the new basis  


