
To appear in: Advances in Neural Information Processing Systems 5C.L. Giles, S.J Hanson, and J.D. Cowan (eds.)Morgan Kaufmann, San Mateo, CA, 1993Kohonen Feature Maps and GrowingCell Structures {a Performance ComparisonBernd FritzkeInternational Computer Science Institute1947 Center Street, Suite 600Berkeley, CA 94704-1105, USAAbstractA performance comparison of two self-organizing networks, the Ko-honen Feature Map and the recently proposed Growing Cell Struc-tures is made. For this purpose several performance criteria forself-organizing networks are proposed and motivated. The modelsare tested with three example problems of increasing di�culty. TheKohonen Feature Map demonstrates slightly superior results onlyfor the simplest problem. For the other more di�cult and also morerealistic problems the Growing Cell Structures exhibit signi�cantlybetter performance by every criterion. Additional advantages ofthe new model are that all parameters are constant over time andthat size as well as structure of the network are determined auto-matically.1 INTRODUCTIONSelf-organizing networks are able to generate interesting low-dimensional represen-tations of high-dimensional input data. The most well-known of these models isthe Kohonen Feature Map (Kohonen [1982]). So far it has been applied to a largevariety of problems including vector quantization (Schweizer et al. [1991]), biolog-ical modelling (Obermayer, Ritter & Schulten [1990]), combinatorial optimization(Favata & Walker [1991]) and also processing of symbolic information(Ritter &Kohonen [1989]).



It has been reported by a number of researchers that one disadvantage of Kohonen'smodel is the fact that the network structure had to be speci�ed in advance. This isgenerally not possible in an optimal way since a necessary piece of information, theprobability distribution of the input signals, is usually not available. The choice ofan unsuitable network structure, however, can badly degrade network performance.Recently we have proposed a new self-organizing network model { the Growing CellStructures { which can automatically determine a problem speci�c network struc-ture (Fritzke [1992]). By now the model has been successfully applied to clustering(Fritzke [1991]) and combinatorial optimization (Fritzke & Wilke [1991]).In this contribution we directly compare our model to that of Kohonen. We �rstreview some general properties of self-organizing networks and several performancecriteria for these networks are proposed and motivated. The new model is thenbriey described. Simulation results are presented and allow a comparison of bothmodels with respect to the proposed criteria.2 SELF-ORGANIZING NETWORKS2.1 CHARACTERISTICSA self-organizing network consists of a set of neurons arranged in some topolog-ical structure which induces neighborhood relations among the neurons. An n-dimensional reference vector is attached to every neuron. This vector determinesthe speci�c n-dimensional input signal to which the neuron is maximally sensitive.By assigning to every input signal the neuron with the nearest reference vector(according to a suitable norm), a mapping is de�ned from the space of all possibleinput signals onto the neural structure. A given set of reference vectors thus dividesthe input vector space into regions with a common nearest reference vector. Theseregions are commonly denoted as Voronoi regions and the corresponding partitionof the input vector space is denoted Voronoi partition.Self-organizing networks learn (change internal parameters) in an unsupervisedmanner from a stream of input signals. These input signals obey a generally un-known probability distribution. For each input signal the neuron with the nearestreference vector is determined, the so-called \best matching unit" (bmu). The ref-erence vectors of the bmu and of a number of its topological neighbors are movedtowards the input signal. The adaptation of topological neighbors distinguishesself-organization (\winner take most") from competitive learning where only thebmu is adapted (\winner take all").2.2 PERFORMANCE CRITERIAOne can identify three main criteria for self-organizing networks. The importanceof each criterion may vary from application to application.Topology Preservation. This denotes two properties of the mapping de�ned bythe network. We call the mapping topology-preserving if



a) similar input vectors are mapped onto identical or closely neighboring neu-rons andb) neighboring neurons have similar reference vectors.Property a) ensures that small changes of the input vector cause correspondinglysmall changes in the position of the bmu. The mapping is robust against distortionsof the input, a very important property for applications dealing with real, noisy data.Property b) ensures robustness of the inverse mapping. The topology preservationis especially interesting when the dimension of the input vectors is higher than thenetwork dimension. Then the mapping reduces the data dimension but usuallypreserves important similarity relations among the input data.Modelling of Probability Distribution. A set of reference vectors is said tomodel the probability distribution, if the local density of reference vectors in the inputvector space approaches the probability density of the input vector distribution.This property is desirable for two reasons. First, we get an implicit model of theunknown probability distribution underlying the input signals. Second, the networkbecomes fault-tolerant against damage since every neuron is only \responsible" fora small fraction of all input vectors. If neurons are destroyed for some reason themapping ability of the network degrades only proportionally to the number of thedestroyed neurons (soft fail). This is a very desirable property for technical (as wellas natural) systems.Minimization of Quantization Error. The quantization error for a given inputsignal is the distance between this signal and the reference vector of the bmu. Wecall a set of reference vectors error minimizing for a given probability distributionif the mean quantization error is minimized.This property is important, if the original signals have to be reconstructed fromthe reference vectors which is a very common situation in vector quantization. Thequantization error in this case limits the accuracy of the reconstruction.One should note that the optimal distribution of reference vectors for error mini-mization is generally di�erent from the optimal distribution for distribution mod-elling.3 THE GROWING CELL STRUCTURESThe Growing Cell Structures are a self-organizing network an important featureof which is the ability to automatically �nd a problem speci�c network structurethrough a growth process.Basic building blocks are k-dimensional hypertetrahedrons: lines for k = 1, trianglesfor k = 2, tetrahedrons for k = 3 etc. The vertices of the hypertetrahedrons are theneurons and the edges denote neighborhood relations.By insertion and deletion of neurons the structure is modi�ed. This is done during aself-organization process which is similar to that in Kohonen's model. Input signalscause adaptation of the bmu and its topological neighbors. In contrast to Kohonen'smodel all parameters are constant including the width of the neighborhood around



the bmu where adaptation takes place. Only direct neighbors and the bmu itselfare being adapted.3.1 INSERTION OF NEURONSTo determine the positions where new neurons should be inserted the concept of aresource is introduced. Every neuron has a local resource variable and new neuronsare always inserted near the neuron with the highest resource value. New neuronsget part of the resource of their neighbors so that in the long run the resource isdistributed evenly among all neurons.Every input signal causes an increase of the resource variable of the best matchingunit. Choices for the resource examined so far are� the summed quantization error caused by the neuron� the number of input signals received by the neuronAlways after a constant number of adaptation steps (e.g. 100) a new neuron isinserted. For this purpose the neuron with the highest resource is determined andthe edge connecting it to the neighbor with the most di�erent reference vector is\split" by inserting the new neuron. Further edges are added to rebuild a structureconsisting only of k-dimensional hypertetrahedrons.The reference vector of the new neuron is interpolated from the reference vectorsbelonging to the ending points of the split edge. The resource variable of the newneuron is initialized by subtracting some resource from its neighbors, the amount ofwhich is determined by the reduction of their Voronoi regions through the insertion.3.2 DELETION OF NEURONSBy comparing the fraction of all input signals which a speci�c neuron has receivedand the volume of its Voronoi region one can derive a local estimate of the probabilitydensity of the input vectors.Those neurons, whose reference vectors fall into regions of the input vector spacewith a very low probability density, are regarded as \superuous" and are removed.The result are problem-speci�c network structures potentially consisting of severalseparate sub networks and accurately modelling a given probability distribution.4 SIMULATION RESULTSA number of tests have been performed to evaluate the performance of the newmodel. One series is described in the following.Three methods have been compared.a) Kohonen Feature Maps (KFM)b) Growing Cell Structures with quantization error as resource (GCS-1)c) Growing Cell Structures with number of input signals as resource (GCS-2)



Distribution A:The probability densityis uniform in the unitsquare Distribution B:The probability densityis uniform in the 10 �10-�eld, by a factor 100higher in the 1 � 1-�eldand zero elsewhere Distribution C:The probability densityis uniform inside theseven lower squares, bya factor 10 higher in thetwo upper squares andzero elsewhere.Figure 1: Three di�erent probability distributions used for a performance compar-ison. Distribution A is very simple and has a form ideally suited for the KohonenFeature Map which uses a square grid of neurons. Distribution B was chosen toshow the e�ects of a highly varying probability density. Distribution C is the mostrealistic with a number of separate regions some of which have also di�erent prob-ability densities.These models were applied to the probability distributions shown in �g. 1. The Ko-honen model was used with a 10�10-grid of neurons. The Growing Cell Structureswere used to build up a two dimensional cell structure of the same size. This wasachieved by stopping the growth process when the number of neurons had reached100.At the end of the simulation the proposed criteria were measured as follows:� The topology preservation requires two properties. Property a) was mea-sured by the topographical product recently proposed by Bauer e.a. for thispurpose (Bauer & Pawelzik [1992]). Property b) was measured by com-puting the mean edge length in the input space, i.e. the mean di�erencebetween reference vectors of directly neighboring neurons.� The distribution modelling was measured by generating 5000 test signalsaccording to the speci�c probability distribution and counting for everyneuron the number of test signals it has been bmu for. The standarddeviation of all counter values was computed and divided by the meanvalue of the counters to get a normalized measure, the distribution error,for the modelling of the probability distribution.� The error minimization was measured by computing the mean square quan-tization error of the test signals.The numerical results of the simulations are shown in �g. 2. Typical examples ofthe �nal network structures can be seen in �g. 3. It can be seen from �g. 2 that the



model A B CKFM 0.0013 0.022 0.048GCS-1 0.0085 0.014 0.044GCS-2 0.0087 0.011 0.019 model A B CKFM 0.09 0.092 0.110GCS-1 0.11 0.056 0.015GCS-2 0.11 0.071 0.013a) topographical product b) mean edge lengthmodel A B CKFM 0.20 0.84 0.90GCS-1 0.26 0.31 0.59GCS-2 0.26 1.57 0.73 model A B CKFM 0.0020 0.00077 0.00086GCS-1 0.0019 0.00089 0.00010GCS-2 0.0019 0.00055 0.00004c) distribution error d) quantization errorFigure 2: Simulation results of the performance comparison. The model of Koho-nen(KFM) and two versions of the Growing Cell Structures have been comparedwith respect to di�erent criteria. All criteria are such that smaller values are bettervalues. The best (smallest) value in each column is enclosed in a box. Simulationswere performed with the probability distributions A, B and C from �g. 1.model of Kohonen has superior values only for distribution A, which is very regularand formed exactly like the chosen network structure (a square). Since generallythe probability distribution is unknown and irregular, the distributions B and C areby far more realistic. For these distributions the Growing Cell Structures have thebest values.The modelling of the distribution and the minimization of the quantization errorare generally concurring objectives. One has to decide which objective is moreimportant for the current application. Then the appropriate version of the GrowingCell Structures can optimize with respect to that objective. For the complicateddistribution C, however, either version of the Growing Cell Structures performs forevery criterion better than Kohonen's model.Especially notable is the low quantization error for distribution C and the errorminimizing version (GCS-2) of the Growing Cell Structures (see �g. 2d ). Thisvalue indicates a good potential for vector quantization.5 DISCUSSIONOur investigations indicate that { w.r.t the proposed criteria { the Growing CellStructures are superior to Kohonen's model for all but very carefully chosen trivialexamples. Although we used small examples for the sake of clarity, our experimentslead us to conjecture that the di�erence will further increase with the di�culty andsize of the problem.There are some other important advantages of our approach. First, all parametersare constant. This eliminates the di�cult choice of a \cooling schedule" whichis necessary in Kohonen's model. Second, the network size does not have to bespeci�ed in advance. Instead the growth process can be continued until an arbitraryperformance criterion is met. To meet a speci�c criterion with Kohonen's model,one generally has to try di�erent network sizes. To start always with a very large



Distribution A Distribution B Distribution Ca)b)c)Figure 3: Typical simulation results for the model of Kohonen and the two ver-sions of the Growing Cell Structures. The network size is 100 in every case. Theprobability distributions are described in �g. 1.a) Kohonen Feature Map (KFM). For distributions B and C the �xed networkstructure leads to long connections and neurons in regions with zero probabilitydensity.b) Growing Cell Structures, distribution modelling variant (GCS-1). The growthprocess combined with occasional removal of \superuous" neurons has led to sev-eral sub networks for distributions B and C. For distribution B roughly half ofthe neurons are used to model either of the squares. This corresponds well to theunderlying probability density.c) Growing Cell Structures, error minimizing variant (GCS-2). The di�erence tothe previous variant can be seen best for distribution B, where only a few neuronsare used to cover the small square.
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