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Abstract

We give a compact non-technical presentation of two basic principles for reducing the description of non-
equilibrium systems based on the quasi-equilibrium approximation. These two principles are: construction of in-
variant manifolds for the dissipative microscopic dynamics, and coarse-graining for the entropy-conserving micro-
scopic dynamics. Two new results are presented: first, an application of the invariance principle to hybridization
of micro–macro integration schemes is introduced, and is illustrated with non-linear dumbbell models; second,
Ehrenfest’s coarse-graining is extended to general quasi-equilibrium approximations, which gives the simplest way
to derive dissipative equations from the Liouville equation in the short memory approximation. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Quasi-equilibrium approximations and their place in the problem of transition from
microscopic to macroscopic variables

Most of the works on non-equilibrium thermodynamics deal with corrections to quasi-equilibrium
approximations or with applications of these approximations (with or without corrections). This view-
point is not only possible but it proves very efficient for the construction of a variety of useful models,
approximations and equations, as well as methods to solve them.
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The quasi-equilibrium approximation is based on the entropy maximum principle under fixed con-
straints [1–8]:1

S(f ) → max, m(f ) = M, (1)

wheref is the microscopic state,S is the entropy, andM are the values of the macroscopic variables
of a reduced description. Operatorsm map f into M. In most cases, operatorsm are linear, whileS is
concave, and then if the solution to the problem (1) exists, it is unique. The solution to Eq. (1) is called the
quasi-equilibriumstate, and it will be denoted asf ∗(M). 2 The classical example is the local equilibrium
of a simple gas:f is the one-body distribution function,S is the Boltzmann entropy,m are five linear
operators,m(f ) = ∫ {1,vvv, v2}f dvvv, with vvv being the particle’s velocity; correspondingf ∗(M) is called
the local Maxwell distribution function. Further examples will be encountered later on. Several branches
of modern non-equilibrium thermodynamics are built upon the quasi-equilibrium approximation, most
notably and explicitly, the extended irreversible thermodynamics [9].

When the macroscopic variablesM span the range of their admissible values, the quasi-equilibrium state
spans a set of states, thequasi-equilibrium manifoldΩ∗. It is useful to visualize the quasi-equilibrium
manifold (see Fig. 1).

If the microscopic dynamics is given by an equation

ḟ = J (f ), (2)

then thequasi-equilibrium dynamicsof the variablesM reads

Ṁ = 〈Dm(f )|J (f )〉|f ∗(M). (3)

Here,Dm(f) is the differential ofm— linear operator, and we use shorthand notation〈g|h〉 for the scalar
product between the elements of the phase space of Eq. (2).

The quasi-equilibrium approximation has an important property, itconserves the type ofthedynamics:
if the entropy increases monotonically (or not decreases) due to Eq. (2), then the same is true for the
quasi-equilibrium entropyS∗(M) = S(f ∗(M)) due to the quasi-equilibrium dynamics (3). That is, if

Ṡ = 〈DS(f )|ḟ 〉=〈DS(f )|J (f )〉 ≥ 0,

then

Ṡ∗ =
∑

k

∂S∗

∂Mk

Ṁk =
∑

k

∂S∗

∂Mk

〈Dmk(f )|J (f )〉|f ∗(M) = 〈DS(f )|J (f )〉|f ∗(m) ≥ 0. (4)

1 From time to time, it is discussed in the literature as to who was the first to introduce the quasi-equilibrium approxima-
tions, and how to interpret them. At least a part of the discussion is due to a different role the quasi-equilibrium plays in the
entropy-conserving and the dissipative dynamics. The very first use of the entropy maximization dates back to the classical
work of G.W. Gibbs [1], but it was first claimed for a principle by E.T. Jaynes [2]. Probably, the first explicit and systematic use
of quasi-equilibria to derive dissipation from entropy-conserving systems is due to the works of D.N. Zubarev (recent detailed
exposition is given in [3]). For dissipative systems, the use of the quasi-equilibrium to reduce description can be traced to the
works of H. Grad on the Boltzmann equation [4]. The viewpoint of two of the present authors (ANG and IVK) was influenced
by the papers by L.I. Rozonoer and co-workers, in particular A.M. Kogan and L.I. Rozonoer [5–7]. A detailed exposition of the
quasi-equilibrium approximation for Markov chains is given in [8].

2 In this paper, the notion of quasi-equilibrium refers solely to the context of problem (1), and ‘quasi’ does not obligatorily
imply ‘near’. Alternatively,f ∗(M) is sometimes called the ‘generalized canonical state’ or simply the ‘maximum entropy state’.
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Fig. 1. The quasi-equilibrium manifoldΩ∗: dashed convex curves represent the levels of the entropy. Each straight solid line
represents the plane which contains all states with the fixed values of macroscopic parameters. The values of macroscopic
parameters are different on different planes. In the case of linear macroscopic parameters, the bunch of hyperplanes consists of
parallel individual planes. The point where the plane touches the level of the entropy is the quasi-equilibrium state. The totality
of these tangency points makes up the bold curve in the phase space called the quasi-equilibrium manifoldΩ∗. Dashed bold
arrows, touching the levels of the entropy, represent the microscopic vector field in the case of the entropy-conserving dynamics.
Solid bold arrows represent the microscopic vector field in the case of the dissipative dynamics. In the former case, the angle
between the gradient of the entropy (thin arrows) is towards the right-hand side, in the latter case it is acute. Zero projection of
dashed arrows onto the quasi-equilibrium manifold is the peculiarity of the two-dimensional picture.

Here, DS(f) is the differential ofS — the linear functional, and summation ink will always imply
summation over the set of the macroscopic variables. The last line in Eq. (4) is the immediate implication
of the identity

∑
k

∂S∗

∂Mk

Dmk(f )
∣∣
f ∗(M) = DS(f )

∣∣
f ∗(M) ,

which follows from solving the problem (1) by the method of Lagrange multipliers, and that of the chain
rule of differentiation.

Conservation of the type of dynamics by the quasi-equilibrium approximation is a simple yet a general
and useful fact. If the entropyS is an integral of motion of Eq. (2), thenS∗(M) is the integral of motion
for the quasi-equilibrium equation (3). Consequently, if we start with a system that conserves the entropy
(for example, with the Liouville equation), then we end up with the quasi-equilibrium system which
conserves the quasi-equilibrium entropy. For instance, ifM is the one-body distribution function, and
(2) is the (reversible) Liouville equation, then (3) is the Vlasov equation which is as well reversible,
that is, the entropy does not change for it. On the other hand, if the entropy increases monotonically
on solutions to Eq. (2), then the quasi-equilibrium entropy also increases monotonically on solutions to
the quasi-equilibrium dynamic equations (3). For instance, if Eq. (2) is the Boltzmann equation for the
one-body distribution function, andM is a finite set of moments (chosen in such a way that the solution to
the problem (1) exists), then (3) are closed moment equations forM which increase the quasi-equilibrium
entropy (this is the essence of a well-known generalization of Grad’s moment method).
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Quasi-equilibrium approximations may be regarded as insufficient for various reasons such as inac-
curacy, lack of a correct (in one’s opinion) dissipation etc. How can one improve the quasi-equilibrium
approximation? Practically, all routes of improvements can be grouped in two directions.

The first route comprisescorrections— construction of a manifold which corresponds to an intuitive
idea of time separation: solutions ‘rapidly’ approach this manifold and after that they ‘slowly’ move along
this manifold. The absolute success in this direction means that we have constructed a stable invariant
manifold. Various approximate methods follow this route. They may use small parameter expansions
(for example, the Chapman–Enskog method of the theory of the Boltzmann equation which seeks cor-
rections to the simplest quasi-equilibrium manifold, the local equilibrium), or instead, iteration methods
of the Newton type. Along these lines, the quasi-equilibrium approximations are seen asnatural initial
approximationsto the invariant manifolds. In Section 2, we outline the route of corrections as applied to
dissipative systems, focusing on the invariance principle as the guide for corrections. In particular, we
describe a novel application of the invariance principle in combining micro and macro computations, and
demonstrate how this works for non-linear dumbbell models of non-Newtonian fluids.

But seeking invariant manifolds does not always lead to the desired goal. For example, following the
route of corrections, it is impossible to derive dissipative systems from the Liouville equation because the
entropy is conserved on any solution, and thus, no monotonic dissipation can be introduced. Therefore, a
second route (which we callenhancement) is considered in Section 3. This is a formalization and extension
of Ehrenfest’s coarse-graining procedure [10], and it is aimed at deriving short-memory dissipative models
from entropy-conserving dynamics. We prove the explicit entropy production formula for these models,
and discuss the advantages and limitations of this construction. We close this introductory section with
three comments.
1. Division into ‘micro’ and ‘macro’ is context-dependent: what is regarded as ‘micro’ in one statement of

the problem can become ‘macro’ in a different context. For example, the one-body distribution function
was the macroscopic variable in the first example mentioned above (derivation of kinetic equation from
the Liouville equation), while it was the microscopic variable in the second example (derivation of
moment equations from the kinetic equation). In a similar way, the dumbbell configuration function
is the macroscopic variable when derived in a full-chain setting, while it is the microscopic variable
when constitutive equations for the stress tensor are derived from dumbbell models, and so on.

2. In view of many possible paths from micro to macro, any reasonable procedure of coarse-graining the
evolution equation should satisfy the followingrequirement of commutativity of diagrams:

Π2→3∗Π1→2 = Π1→3. (5)

Here, 1, 2, and 3 are different levels of description, andΠi→j transforms from a microscopic level of
description to a more macroscopic level. The diagram must be commutative: it should not matter as
to which route of coarse-graining was taken to come from microscopic level 1 to macroscopic level
3. One route (1→ 2 → 3) goes stepwise, first to some intermediate level 2 and then from level 2 to
level 3. Another route is directly 1→ 3. The result (the macroscopic kinetic equations on level 3) is
defined only by equations on level 1, by the initial and the final choice of variables and cannot depend
on the route given in diagram (5).

3. The connection between the entropy chosen to construct quasi-equilibrium approximations and the
classical definition —

∫
f ln f dx — is rather conventional. In the first place, it is important thatS

is an increasing (or not decreasing) Lyapunov function of the ‘microscopic’ dissipative system or the
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integral of motion if the system is entropy-conserving. Let us remind that Markov processes always
have a whole family of non-decreasing Lyapunov functions:

Sh = −
∫

f eq(x)h

(
f (x)

f eq(x)

)
dx, (6)

where f eq is the equilibrium of the Markov process, andh(y) is a strictly convex function of one
variable,h′′(y) > 0.

If h(y) = y ln y, thenSh (6) is the usual entropy. The condition of additivity of the entropy under
joining of statistically independent subsystems is satisfied by the one-parametric set of convex functions

had(y) = αy ln y − (1 − α) ln y, (7)

whereα ∈ [0, 1]. The usual entropy is distinguished in this one-parametric set by continuity asy → 0.
For computations, it is sometimes useful to consider the ‘entropy’ defined byh(f ) = f α, where

α > 1. It may be considered as an approximation to the additive entropy (7), but one also can seek
separate physical motivations for that [11]. It is not the goal of this paper to discuss this point in any detail
though motivations like multifractality, presence of long-range interactions or Lévy flights should be
mentioned. From the perspective of methods which are seeking improvements on the quasi-equilibrium
approximations, the choice of the entropy from the family (6) is, to a large extent, a matter of convention.
If the quasi-equilibrium is considered only as an initial approximation, and not as the ‘ultimate truth’,
then the requirements of the choice are different — they are dictated by convenience of computations,
may be, by convergence reasoning and so on. In other words, if the quasi-equilibrium is introduced
in a process of successive approximations, then the requirements of the choice of the entropy become
technical rather having a fundamental character. Even the requirement of additivity can be violated ‘on
the way’ to the final answer, and instead of (7) we, in principle, can take non-additive entropies. This will
correspond to a violation of additivity and an effective many-body interaction. Yet another restriction on
the choice of the entropy comes from equilibrium thermodynamics: if a problem of reduced description
under consideration allows for matching it to the equilibrium thermodynamics in some limit, then the
choice of the entropy should be consistent with the expected properties of the thermodynamic entropy in
that limit.

Finally, one should keep in mind that there are dissipative systems where the question of the choice
of the entropy does not appear. These are classical kinetic equations like the Boltzmann and Landau
equations which have only oneuniversal(that is, independent of the details of the interaction) Lyapunov
function.

2. The invariance principle

2.1. The method of invariant manifold for dissipative systems

The method of invariant manifold [12,13] is aimed at constructing the invariant manifold of slow
motionsΩ = f (M), which is parameterized with the values of the chosen macroscopic parametersM,
that is,m(f (M)) = M. Invariance means that the true vector fieldJ of Eq. (2) touches the manifoldΩ
in each of its points. Iff (t) is a solution to Eq. (2) withf (0) ∈ Ω, thenf (t) ∈ Ω for all timest > 0, that
is, solutions do not leaveΩ. ‘Slowness’ of the manifoldΩ means that thetime hierarchy hypothesisis
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applicable: solutions of Eq. (2) ‘rapidly’ approachΩ, and after that move ‘slowly’ along it. It is natural
to assume that such a behavior applies to solutions with the initial conditions from a small surrounding
of Ω.

Motion along the manifoldΩ is induced by a projection of the vector field onto the tangent bundle of
the manifoldΩ. If the manifoldΩ is the quasi-equilibrium manifold for the macroscopic parametersM,
then the motion along it is induced by the quasi-equilibrium projector

P ∗• =
∑

k

∂f ∗(M)

∂Mk

〈Dmk(f )|•〉 ∣∣
f ∗(M) · (8)

In the general case, if the manifoldΩ is not quasi-equilibrium for the macroscopic variablesM, the
correct choice of the projectorPΩ for each statefΩ ∈ Ω is a non-trivial problem, and it is, in fact,
well known from various ‘closure problems’. For example, the Tamm–Mott–Smith approximation for
strong shock waves [14] is based on the representation of the one-body distribution function in the form
αf+ + (1 − α)f−, wheref ± are down- and upstream Maxwellians, andα is a parameter (the internal
coordinate on the manifold). When a dynamic equation forα is derived from the Boltzmann equation,
one needs to expressα in terms of a moment (this is equivalent to choosing a projector). The difficulty
here is that a priori there is no guide for how to choose this moment.

The problem of constructing the projector is solved in [12] on the basis of two considerations:
1. The vector field of the motions leading to the statefΩ ∈ Ω should be contained in the null-space of the

projector kerPΩ : if the hypothesis about the decomposition of motions is correct, then the projection
of rapid motions onto the manifoldΩ should be small.

2. The entropy should increase in the course of rapid motions.
Therefore, if we accept that the hypothesis about the decomposition of motions is true, then each state

fΩ ∈ Ω should bethe maximum entropy state on the linear manifold of the formfΩ + kerPΩ . If Ω is
the quasi-equilibrium manifold, the set of planes kerPΩ are parallel to each other for different individual
states on this manifold (cf. Fig. 1), but ifΩ is not quasi-equilibrium, then these planes are not parallel to
each other any more. This construction of the projector for a manifoldΩ implies that wedo it as if the
hypothesis of the decomposition of motions were true. This rule is used in the further steps of the method.

If the projectorPΩ is defined, one can write down theinvariance equation:

(1 − PΩ)J (fΩ) = 0. (9)

The invariance equation (9) is solved iteratively. If the manifoldΩ is not invariant (that is, the invariance
condition (9) is not satisfied for eachfΩ ), we seek a correctionδfΩ such that{

PΩδfΩ = 0,

(1 − PΩ)DJ
∣∣
fΩ

δfΩ = −(1 − PΩ)J (fΩ).
(10)

Here,DJ|fΩ
is the differential of the vector fieldJ evaluated in the statefΩ . Solving iteration (10), we

obtain a set of new statesfΩ + δΩ which build up a new (corrected) manifoldΩ ′.
Equations (10) are linear. Solutions to this equation build up a new manifoldΩ ′. Moreover, using the

same idea of ‘acting as if the decomposition of motions is true’, we can replace the operatorDJ with a
self-adjoined operator. This new operator is taken self-adjoined with respect to the scalar product〈|〉S ,
defined by the quadratic approximation to the entropy:

〈g|h〉S = −〈g|D2S|h〉,
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whereD2Sis the second differential of the entropy (represented, for instance, by the matrix of second-order
derivatives). Construction of the self-adjoined operator makes use of the detail balance principle and
Onsager relations as applied to rapid motions, and the explicit realization is given in [15].

Performing iterations along with the scheme

(Ω, PΩ) → (Ω ′, PΩ) → (Ω ′, PΩ ′), (11)

we obtain the sequence of manifoldsΩk and projectorsPΩk
. In this sequence, each first step is the solution

of the linearized invariance equation, while each second step is the construction of the new projector in
accord with the rule given above. The use of an incomplete linearization should be stressed when going
from Eq. (9) to (10), that is, derivatives of the projectorPΩ were not used. Besides purely technical reasons,
this is motivated also by the fact that the iterations (Ωk, PΩk

) converge to the slowest invariant manifold
(in the situations where this convergence can be proved), while the complete linearization converges only
to the invariant manifold closest to the initial approximation.

It should be stressed that the method of invariant manifolds seeks true solutions of the original dynamics
(or at least sufficient approximations thereof). In spite of the fact that the method is rather elaborative,
it has been successful in a set of problems, in particular, the derivation of higher-order hydrodynamics
from the Boltzmann and related equations [13,16,17], the construction of a reduced description for
non-linear reaction kinetic equations [15,18], and the establishment of the universal limit in the dilute
polymer dynamics [19]. It is essential that the method of invariant manifold assumes dissipativity of
the microscopic dynamics, and cannot be used to introduce dissipativity if it is absent from the input
microscopic dynamics.

2.2. Quasi-equilibria as approximations to invariant manifolds

From the standpoint of the method of invariant manifold, the quasi-equilibrium manifolds are seen
as relevant initial approximations. Already, the knowledge of thevarianceof the quasi-equilibrium
approximation

∆∗ = (1 − P ∗)J (f ∗) (12)

contains an information which helps to infer the form of the macroscopic equations of the first correction.
Eq. (12) is simply the right-hand side of iteration (10) evaluated in the quasi-equilibrium approximation.

Let us look at an example. Let the microscopic variablef (rrr,vvv, t) be the one-particle distribution
function, obeying the Boltzmann kinetic equationḟ = −vα∂αf +Q(f ), whereQ is the Boltzmann colli-
sion integral. Subject to appropriate boundary conditions which we assume, this equation has the entropy
S = −kB

∫
f ln f dvvv drrr. The local Maxwell distribution function is the quasi-equilibrium approximation,

the maximizer of the Boltzmann entropy subject to constraintsM = {M0, Mα, M4} = ∫ {1, vα, v
2}f dvvv,

whereα = 1, . . . , d, and whered is the dimension of the microscopic velocity space. The macroscopic
parametersM are related to the usual local hydrodynamic fields, the mass, the momentum, and the energy
density. The quasi-equilibrium dynamics is given by the Euler equations of inviscid fluid. Variance (12)
is

∆∗ = −f ∗{[c2 − 5
2](vα − uα)T

−1∂αT + 2(cαcβ − (1
3)δαβ)∂αuβ}, (13)

whereccc = v−1
T (vvv−uuu) is the peculiar velocity divided by the thermal velocityvT = (2kBT/m)1/2,uuu is the

mean velocity, andT is the kinetic temperature. It is clearly seen that the correction is due to the gradients
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Fig. 2. The method of invariant manifold within the ansatz (14): the phase space and the quasi-equilibrium manifold are the
same as in the Fig. 1. Non-invariance of the quasi-equilibrium approximation (open circles) is shown with the vector diagram.
The correction (filled circles) is a shift of open circles in the direction of variance∆. Corrections form a new manifoldΩ ′ (bold
line).

of the temperature and average velocity. When one solves the first iteration of the invariance equation (10)
under the additional (simplifying) assumption that the characteristic time of collisions is much shorter
than the characteristic time of free flight, the result is the Navier–Stokes equation. However, we caninfer
this result simply uponinspectionof the variance. Indeed, let us consider the followingansatz:

f ′ = f ∗ + α∆∗, (14)

whereα has the dimension of time. The form (14) satisfies the additional condition in Eq. (10), and
can be used as a simple ansatz for solving this equation (which, in fact, amounts to an evaluation of
the parameterα). Under the same assumption about collision dominance, this simple ansatz leads again
to the Navier–Stokes equations with values of transport coefficients estimated in the first-order Sonine
polynomial approximation. This result is equivalent to the classical Chapman–Enskog solution under the
same assumptions. Entirely the same considerations as applied to another well-known quasi-equilibrium,
the Grad moment approximation, result in so-called Guyer–Krumhansl equations (see [20]).

The simple ansatz (14) is a guide for writing corrections to quasi-equilibrium approximations from the
dissipative microscopic dynamics on semi-phenomenological grounds. The approximate solution to the
iterations of the invariance equation via the ansatz (14) is sketched in Fig. 2.

2.3. Invariance principle for hybridization of exact and approximate integration schemes

A well-known problem of the non-Newtonian fluids is the problem of establishing constitutive equations
on the basis of microscopic kinetic equations. We here consider a toy model introduced by Lielens et al.
[21]:

ḟ (q, t) = −∂q{κ(t)qf − 1
2f ∂qU(q2)} + 1

2∂
2
qf. (15)
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With the potentialU(x) = −(b/2) ln((1 − x)/b), Eq. (15) becomes the one-dimensional version of
the well-known FENE dumbbell model. The reduced description seeks a closed equation for the stress
τ = 〈q∂qU〉 − 1. In this section, angular brackets denote averaging withf.

The kinetic equation (15) can be rewritten equivalently in terms of moment equations for the moments
Mk = 〈q2k〉. Because of the non-polynomial character of the FENE potential, this moment chain has an
infinite coupling: in each moment equatioṅMk = Fk, the functionFk depends on all moments.

We want to write the invariance equation in terms of moments. This is difficult for the FENE potential
just because of the infinite-order coupling in the moment equations. In order to circumvent this difficulty,
we first approximate the FENE equation with a hierarchy of kinetic equations for the potentialsUn,
n = 0, 1, . . ., formally converging to the FENE potential asn tends to infinity.

The first two potentials are

U0 = U ′(M1)q
2, (16)

U1 = U0 + 1
2(q

4 − 2M1q
2)U ′′(M1) + 1

2(M2 − M2
1)q2U ′′′(M1), (17)

whereU′, U′′ andU ′′′ denote the first, second and third derivative of the potentialU, respectively. (The
construction is described in [22], and here we indicate only the main ideas: first, we rewrite the force
term on the right-hand side of Eq. (15) as−(1/2)∂qf ∂q(δS

U/δf ), whereSU = − ∫
Uf dq is the spring

contribution to the entropy. Next, after expanding the functionU into the power series inq2, interchanging
summation and integration, we come to a correlation function expansion of the functionalSU . Partial sums
of this expansion are functionalsSU

0 , SU
1 etc., functional derivatives of which are the effective potentials

U0, U1 etc.) The potentialsUn are polynomials inq2 with coefficients depending on the momentsMk to
the ordern+1. Corresponding moment equations are therefore only finitely coupled in contrast to the full
FENE potential. The potentialU0 corresponds to the well-known FENE-P model. The kinetic equation
(15) with the potentialU1 (17) will be termed the FENE-P+1 model below. Direct Brownian dynamics
(BD) simulation of the kinetic equation (15) with the potentialU1 for the flow situations studied in [21]
demonstrates that it is a reasonable approximation to the true FENE dynamics, whereas the corresponding
moment chain has a simpler structure (see Fig. 3).

For any potentialUn, the invariance equation can be studied directly in terms of the moments. Let us
first consider the familiar FENE-P potentialU0 (16), where the moment chain has the following structure:

Ṁk = Fk(Mk, Mk−1, M1),

Fk = k(2k − 1)Mk−1 + 2k[κ(t) − U ′(M1)]Mk.
(18)

We seek functionsMk(Ml ), k = 2, . . . which are form-invariant under the dynamics (18):

dMk(M1)

dM1
F1(M1) − Fk(Mk(M1), Mk−1(M1), M1) = 0. (19)

This set of invariance equations states the following: the time derivative of the formMk(M1) when
computed due to the closed equation forM1 (the first contribution on the left-hand side of Eq. (19),
or the ‘macroscopic’ time derivative) equals the time derivative ofMk as computed by a true moment
equation with the same formMk(M1) (the second contribution, or the ‘microscopic’ time derivative), and
this equality should hold whatsoever the values of the momentM1 are.

Equations (19) are solvable exactly with the result

Mk = akM
k
1, with ak = (2k − 1)ak−1, a0 = 1.
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Fig. 3. Stress tensor vs. time from direct Brownian dynamics simulation for the periodic flow: symbols — FENE, dashed line
— FENE-P (16), solid line — potentialU1 (17).

This dependence corresponds to the Gaussian solution in terms of the distribution functions. As expected,
the invariance principle gives just the same result as the usual method of solving the FENE-P model.

In general, for the potentialUn, we seek functions of the formMk(M1, M2, . . . , Mn), k = n + 1, . . ..
The invariance equations are written in the same pattern as for the FENE-P case just considered. Let us
discuss the potentialU1, considering a closure approximation

Mk = akM
k
1 + bkM2M

k−2
1 , (20)

whereak = 1 − k(k − 1)/2 andbk = k(k − 1)/2. The ansatz (20) corresponds to the approximation
used when deriving the potentialU1 (17). The functionM3 closes the moment equations for the two
independent momentsM1 andM2. The variance of this approximation is a set of functions∆k:

∆k(M1, M2) = ∂Mk

∂M1
F1 + ∂Mk

∂M2
F2 − Fk, (21)

In the sequel, we make all conclusions based on the variance∆3 (21). It is instructive to plot the variance
∆3 versus time, assuming the functionsM1 andM2 are found by the BD simulation (see Fig. 4). We observe
that the variance is a non-monotonic function of time, and that there are three pronounced domains: from
t0 = 0 to t∗ the variance is almost 0, which means that the ansatz is reasonable. In the intermediate
domain, the variance jumps to high values (so the quality of approximation is poor). However, after some
time t = t∗, the variance again becomes negligible, and remains so for later times in spite of the fact
that the flow is periodic. Such a behavior is typical of the so-called ‘kinetic layer’. The BD simulation
for the distribution function helps to understand what happens between the timest∗ andt∗: the shape of
the distribution function changes rapidly from Gaussian-like att∗ to almost a delta-functional form att∗,
and the latter form does not change qualitatively at later times (similar behavior is found for the FENE
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Fig. 4. The variance∆3 of the closure (20): symbols and the solid line — the time dependence of the momentsM1 andM2

was taken from the BD simulation, dashed line — the time dependence of the momentsM1 andM2 was taken from the closed
macroscopic equation. The BD data for times aftert∗ is given for comparison.

model also [21]). It should be stressed that it is the closure (20) that ‘sees’ the domain betweent∗ andt∗

as the kinetic layer, and not the kinetic model itself. In other words, ‘good’ closures will see less kinetic
layers than ‘poor’ closures (the limiting case is the invariant closure which sees no kinetic layers at all, as
it is in the case of the FENE-P model). Similar considerations are valid elsewhere: for instance, it is the
Navier–Stokes (macroscopic) equation which tends not to follow the solution of the Boltzmann equation
at high Mach number shock layers.

Instead of attempting to improve the closure analytically, the invariance principle can be used directly
to switch from the BD simulation to the solution of the macroscopic equation without losing the accuracy
to a given tolerance. Indeed, the variance is a function ofM1 andM2, and it can be easily evaluated
both on the data from the solution to the macroscopic equation, and the BD data. If the varianceexceeds
some given tolerance on the macroscopic solution, this signals to switch to the BD integration. On the
other hand, if the variance becomeslessthan the tolerance level on the BD data, it is a signal that the
BD simulation is not necessary anymore, and one can continue with the integration of the macroscopic
equations. This reduces the necessity of using BD simulations only to get through the kinetic layers. A
realization of this hybrid approach is demonstrated in Figs. 5 and 6: for the same flow, we have used the
BD dynamics only fromt = 0 to t = t∗, while we have integrated the macroscopic equations at all later
times. The quality of the result is comparable to the BD simulation, whereas the total integration time is
much shorter. Thetransient dynamicsat the point of switching from the BD scheme to the integration of
the macroscopic equations deserves a special comment: the initial conditions att∗ are taken from the BD
data. Therefore, we cannot expect that at the timet∗ the solution is already on the invariant manifold, rather,
it is at best, close to it. Transient dynamics therefore signals thestability of the invariant manifold we
expect: even though the macroscopic solution does not start on this manifold, it nevertheless is attracted to
it. The transient dynamics becomes progressively less pronounced if the switching is done at later times.
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Fig. 5. Switching from the BD simulation to the macroscopic equation after the variance has reached the given tolerance level:
symbols — the BD simulation, solid line — the BD simulation fromt = 0 tot = t∗, dashed line — integration of the macroscopic
dynamics with the initial data from the BD simulation att = t∗. The point of switching is characterized by a short period of
transient dynamics.

Fig. 6. Transient dynamics at the switching from BD to macroscopic equation on a finer time scale.
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This approach can be realized on the level of moment closures (which then needs reconstruction of the
distribution function from the moments at the switching from macroscopic integration to BD procedures),
or for parametric sets of distribution functions if they are available [21].

3. Enhancement of quasi-equilibrium approximations for entropy-conserving dynamics

3.1. Entropy-conserving dynamics with periodic coarse-graining

On the ‘most microscopic’ level, the level of individual particles, dynamics conserves the entropy. Thus,
as we have already mentioned in Section 1, neither the quasi-equilibria nor any of its corrections (in the
sense of Section 2)can bring in the dissipativity. Nevertheless, the quasi-equilibriumapproximations
play the central role in deriving dissipative dynamics from the entropy-conserving dynamics. Actual
implementations of this derivation may differ from one another. It is the goal of the present section to
describe the simplest analytic implementation,the microscopic motion with periodic coarse-graining.
The notion of coarse-graining was introduced by P. Ehrenfest and T. Ehrenfest in their seminal work
[10]: the phase space is partitioned into cells, and the coarse-grained variables are the amounts of the
phase density inside the cells. Dynamics is described by two processes, by the Liouville equation forf,
and by periodic coarse-graining, replacement off (x) in each cell by its average value in this cell. The
coarse-graining operation means forgetting the microscopic details, or the history.

From the perspective of general quasi-equilibrium approximations, periodic coarse-graining amounts
to the return of the true trajectory on the quasi-equilibrium manifold with the preservation of macro-
scopic variables. The motion starts at the quasi-equilibrium statef ∗

i . Then, the true solutionfi(t) of
the microscopic equation (2) with the initial conditionfi(0) = f ∗

i is coarse-grained at a fixed time
t = h — the functionfi(h) is replaced by the quasi-equilibrium functionf ∗

i+1 = f ∗(m(fi(h))). The
entropy-conserving dynamics with periodic coarse-graining is visualized in Fig. 7. From the features of
the quasi-equilibrium approximation, we have the following:

Proposition. For the motion with periodic coarse-graining, the following inequality is valid:

S(f ∗
i ) ≤ S(f ∗

i+1), (22)

while the equality occurs if and only if the dynamic system(2) conserves the entropy, and the segment of
the true trajectoryfi(t) betweent = 0 andt = h belongs to the quasi-equilibrium manifold.

Thus, if this process of motion with periodic coarse-graining is continued, and if the quasi-equilibrium is
notthe invariant manifold of the microscopic dynamics, the valuesS(f ∗

i ) form a monotonically increasing
sequence. It is important to stress here that the quasi-equilibrium manifold used in the construction must
not be the invariant manifold of the microscopic dynamics: if the true trajectory cannot ‘take off’ from
the manifold, the entropy remains constant all the time.

3.2. Second-order dissipative dynamics and the entropy production formula

The actual implementation of the periodically coarse-grained motion still requires integration of the
Liouville equation for timeh. This certainly can be done only formally. In this section, we consider
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Fig. 7. Entropy-conserving dynamics with periodic coarse-graining: curved arrows represent the microscopic solutions, and
straight arrows represent the coarse-graining.

an approximate implementation, dealing with second-order accurate solutions to the Liouville equation
rather than with full solutions.

We consider linear macroscopic variables, and writeMk(f ) = 〈mk|f 〉, assuming linear independence
(〈mk|∂f ∗/∂Mj 〉 = δkj). Let us write down the solution to the microscopic equation (2) to second order
in h, subject to the quasi-equilibrium initial condition:

f (h) = f ∗ + hJ∗ + h2

2
DJ∗|J ∗〉 + o(h2). (23)

Here,DJ∗ is the first differential of the vector fieldJ evaluated in the quasi-equilibrium. This scheme is
entropy-conserving, that isS(h) ≡ S(f (h)) = S∗(M) + o(h2). Evaluation of the macroscopic variables
on the function (23) gives

Mk(h) = Mk + hϕ∗
k (M) + h2

2
〈mk|DJ∗|J ∗〉 + o(h2), (24)

whereϕ∗
k (M) = 〈mk|J ∗〉 is the quasi-equilibrium macroscopic vector field, the right-hand side of Eq. (3).

We shall now establish the macroscopic dynamic equations by matching the macroscopic and
the microscopic dynamics at the collocation points. Specifically, the macroscopic dynamic equations,
Ṁk = ϕk(M) with the right-hand side not yet defined, give the following second-order result:

Mk(h) = Mk + hϕk + h2

2

∑
j

∂ϕk

∂Mj

ϕj + o(h2). (25)
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Assuming the functionsϕk in the formϕk = ϕ∗
k + hRk, and requiring the matching of Eqs. (24) and (25)

to the orderh2 for every coarse-graining event, we find

Ṁk = ϕ∗
k + hRk, (26a)

Rk = 1

2


〈mk|DJ∗|J ∗〉 −

∑
j

∂ϕ∗
k

∂Mj

ϕ∗
j


 = h

2
〈mk|DJ∗|(1 − P ∗)J ∗〉, (26b)

whereP∗ is the quasi-equilibrium projector (8). Macroscopic equations (26)enhancethe quasi-equilibrium
dynamics, and unlike the latter, they are dissipative. The use of the fixed period at which the coarse-graining
is done amounts to ashort memory assumption.

Why the macroscopic entropy production is expected to be positive in the dynamics (26) follows from
the proposition mentioned above: by our assumption, the quasi-equilibrium is not the solution to the
dynamic equations (2); therefore, any true solution when started at the quasi-equilibrium manifold does
not belong as a whole to this manifold. The true value of the entropy at timeh is thereforelessthan the
value of the quasi-equilibrium entropyS∗ computed from the corresponding values of the macroscopic
variables. Coarse-grainingreleasesthis entropy difference, and because the scheme (23) conserves the
entropy, this consideration remains valid to the relevant (second) order.

A direct computation demonstrates that the entropy production due to the dynamics (26) has the
following explicit form:

Ṡ∗ = −h

2
〈(1 − P ∗)J ∗|D2S∗|(1 − P ∗)J ∗〉 = −h

2
〈∆∗|∆∗〉S, (27)

where∆∗ is the variance of the quasi-equilibrium approximation, familiar from Section 2. The right-hand
side of Eq. (27) is a non-negative definite form because the entropy functionalSis concave, and it equals 0
only if the quasi-equilibrium approximation is the true solution to the originating dynamics, in agreement
with the remarks given above.

In order to illustrate the results (26) and (27), we shall consider again the case of the one-particle
distribution function, while the entropy-conserving dynamics is given by the streaming operator (that
is, we consider again the ‘Boltzmann equation’ as in the Section 2 but this time without the collision
operator). Then, the quasi-equilibrium dynamics is again the Euler (inviscid) dynamics, the variance of
the local Maxwell manifold is again given by Eq. (13), and the terms (26c) are the Navier–Stokes–Fourier
dissipation terms with transport coefficient proportional toh. Thus, the periodic coarse-graining procedure
in this example replaces the collisions, and approximates the transport coefficients essentially in the same
way as it does the ansatz (14), that is, in this example, the physically meaningful interpretation of the
time h between subsequent coarse-grainings is the characteristic free flight time. Several comments are
in order:
1. The periodically coarse-grained motion can be seen as a motion with fluctuations around the quasi-

equilibrium manifold. The ‘driving force’ of the fluctuations is the variance∆∗ = (1 − P ∗)J ∗. It
is therefore not surprising that the form of the entropy production (27) is similar to the standard
expression of the fluctuation-dissipation theorem, where the time integral is approximated by the
timeh.

2. In view of the previous remark, it should be stressed that, within our approach, the kinetic coefficients
in the resulting macroscopic equations are only crude approximations when compared to standard
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expressions containing the memory integral. In particular, all transport coefficients are proportional
to onecharacteristic time scaleh. Nevertheless, the real advantage of the approach is itssimplicity.
This is crucial when relevant quasi-equilibria are of a complicated form (such as, for example, the
quasi-equilibrium for the pair correlation function as the macroscopic variable [23]). Analysis of
quasi-equilibrium approximations for ‘non-standard’ macroscopic variables is, with no doubt, one of
the important steps in the development of the theory of complex fluids. Derivation of macroscopic
equations presented here is advantageous when theform of the resulting dissipative equations is
difficult to guess.

Furthermore, the procedure of periodic coarse-graining can be extended in order to take into account
the (possible) memory effects and spectra of relaxation times. There are at least two natural ways for
such an extension: first, the order of approximation of the trajectory can be extended from the second to
a higher order. Second, instead of just one coarse-graining per time step, one can take the averaged state
after several coarse-grainings over a larger time segment. It can be demonstrated that, in the limit of the
infinite time segment, the result formally converges to Zubarev’s method of non-equilibrium statistical
operator [1–8]. A detailed study of these questions is the matter of a separate investigation.

4. Final remarks

In this paper, we have discussed the two main routes along which the quasi-equilibrium states en-
ter the non-equilibrium thermodynamics. The focus of our discussion in both cases (corrections and
enhancement) was: once we have a quasi-equilibrium manifold, can we do something ‘better’ out of
it? We therefore have not focused on a more traditional use of quasi-equilibrium ensembles ‘as is’.
Finally, a further progress can be expected when linking the results of corrections and enhancement of
quasi-equilibrium ensembles with the recent advances in writing macroscopic equations following certain
patterns or structural prescriptions. Some of these prescriptions are discussed in several contributions to
the present collection of papers.
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