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We discuss a new approach to nonequilibrium statistical thermodynamics based on mappings of the microscopic dynamics into the macro-
scopic dynamics. Near stationary solutions, this mapping results in a compact formula for the macroscopic vector field without a hypothesis of
a separation of time scales. Relations of this formula to short-memory approximation, the Green-Kubo formula, and expressions of transport
coefficients in terms of Lyapunov exponents are discussed.
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Se discute una nueva aproximación a la termodińamica estad́ıstica fuera de equilibrio basándose en mapeos de la dinámica microsćopica
dentro de la dińamica macrosćopica. En soluciones casi estacionarias, este mapeo da lugar a una fórmula compacta para el campo vectorial
macrosćopico, sin una hiṕotesis de separación de escalas de tiempo. Se discuten las relaciones de esta fórmula con la aproximación de
memoria corta, la f́ormula de Green-Kubo y las expresiones de los coeficientes de transporte en términos de los exponentes de Lyapunov.
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1. Introduction

One of the most important issues of the mathematical mod-
eling in natural sciences is the description of a projection
of the detailed microscopic dynamics onto a coarser macro-
scopic dynamics. This issue becomes of increasing impor-
tance, in particular, in molecular biology where even the
terms in which the “micro” and the “macro” are accessible
for a sensible formalization are not completely settled [1].

Leaving aside the most general questions of mappings
between various dynamics, in this paper we intend to dis-
cuss some aspects of this problem as it arises in a much
more studied discipline, the classical statistical mechanics
of nonequilibrium systems. Seminal works of Ehrenfest [2],
Onsager [3], Green [4], Kubo [5], have posed a question of
derivation of macroscopic dynamics from the microscopic
dynamics. An answer of remarkable generality has been first
suggested by Onsager [3] by imposing his famous condition
that a regression towards the equilibrium is the same as the
dynamics of fluctuations in the equilibrium. A technical im-
plementation of Onsager’s condition for the Liouville equa-
tion has been first achieved by Green [4] in the case of a wide
separation of time scales of the microscopic and the macros-
copic motions, and is by now the textbook material [6].

Recently [7, 8], the geometric feature of the coarse-
graining has been formalized to the following observation:
given a finite coarse-graining time intervalτ , it is possible to
reconstruct uniquely the macroscopic dynamics from a single
condition. In order to formulate this condition for the pur-

pose of what will follow, let us consider a microscopic dy-
namics given by the linear equation for the distribution func-
tion f(x, t),

ḟ = Lf, (1)

whereL is the linear operator. Furthermore, letm[f ] be a
set of linear functionals whose values,M = m[f ] represent-
ing the macroscopic variables, andf(M) a set of distribution
functions satisfying the consistency condition,

m[f(M)] = M. (2)

Let us denote asM(t) the initial condition at the timet to
the (unknown!) equations of the macroscopic motion, and let
us takef [m(t)] for the initial condition of the microscopic
equation (1) at the timet. Then the condition for the recons-
truction of the macroscopic dynamics [7, 8] reads as follows:

For every initial condition{M(t), t}, solutions to the
macroscopic dynamic equations at the timet + τ are equal
to the values of the macroscopic variables on the solution to
Eq. (1) with the initial condition{f(M(t)), t}

M(t + τ) = m
{

eLτf [M(t)]
}

. (3)

The right hand side of Eq. (3) represents an operation on tra-
jectories of the microscopic equation (1), introduced in a par-
ticular form by Ehrenfest [2] (the coarse-graining): the solu-
tion at the timet + τ is replaced by the state on the mani-
fold f(M). Notice that the coarse-graining timeτ in Eq. (3)
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is finite, and we stress the required independence of the con-
dition (3) from the initial timet and the initial condition att.

The major observation of Ref. 7 and 8 is that the condition
just formulated is sufficient for the unique reconstruction of
the macroscopic dynamics which carries on the macroscopic
variables in the left-hand side of Eq. (3). The essence of the
derivation is as follows: seeking the macroscopic equations
in the form

Ṁ = R(M, τ), (4)

we proceed with Taylor expansion of the unknown func-
tions R in terms of powersτn, wheren = 0, 1, . . . , and
require that approximation,R(n), of the ordern, is such
that resulting macroscopic solutions verify the condition (3)
to the orderτn+1. This process of successive approximation
is solvable. Thus, the unknown macroscopic equation (4) is
reconstructed to any given accuracy from the condition (3).

The result [7, 8] is sufficiently general, it applies even
if the microscopic equation is nonlinear (for example, to
the Liouville equation in the presence of mean field inter-
actions). In the sequel, we refer only to a particularly inte-
resting case of the microscopic dynamics which conserves a
concave functionalS(f) along any trajectory (the entropy).
This is the case of the standard Liouville equation. Among
possible setsf(M), distinguished r̂ole is played by quasi-
equilibrium approximationsf∗(M) which are maximizers
of the functionalS(f) for fixed M, and which are not in-
variant under the microscopic dynamics [Eq. (1)]. Then the
first and higher order approximations,R(1), and so on, to the
macroscopic dynamics (4) are dissipative with the Lyapunov
functionS∗(M) = S[f∗(M)], and explicit entropy produc-
tion formula has been demonstrated for the vector fieldR(1).
We notice it in passing that, since the work of Jaynes [9],
the usefulness of quasi-equilibrium approximations is well
understood in various versions of projection operator forma-
lism [10–13], (see also Remarks 3 and 4) below), as well as
for the dissipative dynamics [14–16]. Relatively less studied
remains the case of open or externally driven systems, where
invariant quasi-equilibrium manifolds may become unsta-
ble [17].

Examples have been provided [8], demonstrating that
several well known dissipative macroscopic equations, such
as the Navier-Stokes equation and the diffusion equation for
the one-body distribution function, are derived as the lowest
order approximations of this construction. Thus, the cons-
truction [7, 8] outlined above has formalized the original
Ehrenfest’s idea [2] by bridging the apparent gap between
the discrete time coarse-graining and the continuous time
macroscopic dynamics. In the sequel, we term it as there-
construction lemma.

Remark 1. One instance where the condition (3) has been
used in the past is the work of Lewis [18], who suggested a
formal replacement

M(t + τ) → M(t) + τṀ,

on the left hand side of Eq. (3), and

Ṁ =
1
τ

{
m

[
eLτf∗(M)

]−M
}

(5)

This is very different from Refs. 7 and 8: Eq. (5) does not
establish a mapping of the microscopic trajectories into the
macroscopic, and is identified as a well known differential
pursuit. In particular, Eq. (5) does not pass a consistency
test since it gives a non-trivial entropy production in the case
when the quasi-equilibrium solves the Liouville equation.

Remark 2. The Ehrenfest’s argument has been used in a
different way by del Ŕıo-Correa and Garcı́a-Coĺın [19]: if the
coarse-graining timeτ is considered as thedynamically unre-
solved scalethen the macroscopic dynamics on a much larger
scale is seen as a (stationary) Markov process.

Remark 3. It is instructive to compare the present ap-
proach with the projection operator formalism mentioned
above. These approaches can be represented as the following
two steps
i) Introducing a projection operatorP , the Liouville equa-
tion is rewritten into equivalent system describing the mo-
tion along and transverse the manifoldf(M). The choice
of projector is a priori not unique. For quasi-equilibrium
manifoldsf∗(M), it is prompted by the fact that the pro-
jection of the vector fieldLf∗ attached to each point of
the quasi-equilibrium manifold being projected by the quasi-
equilibrium projector,P ∗ = DMf∗ · m, preserves the en-
tropic property of the Liouville equation: ifDfS · Lf = 0
for any f , then DMS∗(M) · P ∗Lf∗(M) = 0 for any
M (if entropy is conserved by the microscopic dynam-
ics, the quasi-equilibrium entropy is also conserved by the
quasi-equilibrium approximation to the macroscopic dyna-
mics, or, the zero-order approximationR(0) [Eq. (3)] is non-
dissipative, and is purely kinematics [13]). This way of repre-
senting the Liouville equation has been introduced by Robert-
son [10], and has been used with some modifications by
many authors. Modifications, in the first place, concern the
choice of the representation of Robertson’s projection oper-
ator (notice thatP ∗ acts on vector fields, and maps vector
fields onto tangent space of the quasi-equilibrium manifold),
such as the affine projector (acting on the distribution func-
tions) and the adjoint projector (acting on the adjoint space,
or “observables”, in the language of quantum mechanics),
see,e.g. [11, 12], for relations between various representa-
tions of the projection operator.
ii) Any system equivalent to the Liouville equation is not dis-
sipative (we do not consider here the case ofinfinite systems
which can demonstrate behaviour atypical to their finite and
arbitrary large counterparts. For instance, the infinite ideal
gas without collisions is a K-system [20]). Therefore, an ana-
log of coarse-graining is introduced on the later stages of the
projector operator formalism. To the best of our knowledge,
a general discussion of the latter step is still missing, in spite
of some efforts (see,e.g. Ref. 21). Notice that, in the recon-
struction lemma, the projection operator is not introduced a
priori, although it arises quite naturally in the result [7, 8].
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Remark 4. Let us comment on how the coarse-graining
is implemented in the method of nonequilibrium statisti-
cal operator introduced by Zubarev [12]. Instead of con-
sidering individual solutions to the Liouville equation (1),
f(t) = U(t, t′)f∗(t′), whereU(t, t′) = exp[(t − t′)L], and
f∗(t′) is the initial quasi-equilibrium condition, one averages
over a set of initial conditions, and the “true nonequilibrium
state”f(t) is considered to be

f(t) =
1

t− t0

∫ t

t0

U(t, t′)f∗[ f(t′)] dt′. (6)

Here t0 is some initial time taken far enough in the past
relative tot. In order to make it explicit the way the coarse-
graining is implemented by Eq. (6), let us do the follow-
ing: solving Eq. (6) by iterations, we obtain a sequence of

approximationsfn, where

fn+1(t) =
1

t− t0

∫ t

t0

U(t, t′)f∗[ fn(t′)] dt′. (7)

On the first iteration we have,

f1(t) =
1

t− t0

∫ t

t0

U(t, t′)f∗[U(t′, t0)f
∗(t0)] dt′. (8)

Let us now approximate the time integral in Eq. (8) by the
integral sum: partitioning the intervalt− t0 into N segments
of lengthτ , we may write

f1(t) ≈
1

N + 1

N∑

k=0

U(t, tk)f∗k , (9)

wheretk = t0 + kτ , and

f∗k = f∗[U(tk, t0)f
∗(t0)], (10)

are the initial conditions on the quasi-equilibrium manifold
obtained by coarse-graining the solutionU(t, t0)f

∗(t0) at
the timestk. Thus, the sense of the averaged nonequilibrium
statef1 is as follows:

a) By coarse-graining the solutionU(t, t0)f
∗(t0), we

create a set of quasi-equilibrium statesf∗k .

b) Taking these states as initial conditions, we find cor-
responding solutions to the Liouville equation at the
time t.

c) The nonequilibrium statef1(t) is taken as the average
of these solutions.

This process is visualized in Fig. 1. Once the first iteration
f1(t) is obtained, the entire process is iterated according to
Eq. (7). Though the coarse-graining behind Eq. (6) is rather
involved, the differential equation for the functionf has a
compact form,

ḟ(t) = Lf(t)− 1
t− t0

{
f(t)− f∗[f(t)]

]
. (11)

This is the Liouville equation with the source term which im-
plements the coarse-graining. The time segmentt− t0 is

FIGURE 1. Coarse-graining in the method of nonequillibrium sta-
tistical operator. The manifold of quasi-equilibrium states is de-
noted asΩ∗. Thin curves represent solutions to the Liouville equa-
tion. Arrows represent coarse-graining (CG) which replaces the so-
lution at discrete timestk by the quasi-equilibrium statesf∗k (empty
circles). The averaged nonequilibrium statef(t) (9) is the mean of
filled circlesU(t, tk)f∗k .

regarded as the time necessary for the system to develop
nonequilibrium correlations. By sending the initial timet0
to−∞ one expects that all the relevant correlations will have
enough time to develop. With this, one comes up with the
Liouville equationwith broken time-symmetry:

ḟ(t) = Lf(t)− ε
{

f(t)− f∗[f(t)]
}
, (12)

whereε → +0 (the latter limit should be taken after find-
ing solutions for finiteε, and after taking the thermodynamic
limit).

It can be said that the limitε → +0 in Zubarev’s for-
malism implements a “weak” coarse-graining (as opposed
to the “hard” coarse-graining in the reconstruction lemma).
Indeed, the sequence of quasi-equilibrium states can be ob-
tained by solving Eq. (11) with finiteε = 1/τ with a splitting
algorithma. However, this analogy is incomplete. A single
sequence of quasi-equilibrium states does not form the con-
dition (3), missing are two ingredients

1) The macroscopic motion [the left hand side of Eq. (3)],
and, most important.

2) Condition (3) should hold foreverysuch sequence, re-
gardless of the initial conditions [22].

The advantage of the reconstruction lemma is the local-
ity of construction since only Taylor series expansion in the
vicinity of the manifold is involved. This is also its limita-
tion. From the physical standpoint, finite and fixed coarse-
graining timeτ is a phenomenological device which makes
it possible to infer the form of the macroscopic equations by
a non-complicated computation rather than to derive a full
form thereof. While using the fixed coarse-graining time we,
in some cases, just mimic a true physical process of coarse-
graining by a generalized thermostat, resulting in the short
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memory approximation. For instance, the form of the Navier-
Stokes equations can be derived from the simplest model of
free motion of particles without collisions, in which case
the coarse-graining is a substitution for the collisions. Go-
ing away from the limitations imposed by the reconstruc-
tion lemma [7, 8] is the major problem of the mathematically
consistent formulation of the nonequilibrium statistical me-
chanics based on mappings between the microscopic and the
macroscopic dynamics. In this paper, we demonstrate it that
taking the limit of the infinite coarse-graining timeτ in the
above construction,and without invoking any additional as-
sumptions, results in a compact formula for the macroscopic
dynamics near equilibrium microscopic solutions. This result
has been only briefly mentioned already [8] but here we ar-
gue that it covers all possible outcomes of the macroscopic
dynamics near the equilibrium. In particular, we demonstrate
that the Green-Kubo formula is contained in our result if one
restores to the argument about separation of time scales. We
shall also comment on the extensions of this result to the non-
linear domain, as well as relations to dynamic-theoretic ap-
proach to transport coefficients.

We consider here the case of a dynamics close to the equi-
librium state,f eq, such thatLf eq = 0, andf eq is normalized.
We also assume that the macroscopic variablesM vanish at
equilibrium, and are normalized in such a way that

m[f eqm†] = 1,

where(†) denotes transposition, and where1 is an appro-
priate identity operator. To the first order inM, the quasi-
equilibrium is a linear manifold,

f∗(M) = f eq(1 + m† ·M).

The linear dynamics of the macroscopic variablesM is
thought in the form,

Ṁ = AM, (13)

where A is a linear operator to be determined from the
coarse-graining condition (3). In order to do this, we use ex-
ponential representation of solutions to Eq. (13), and write
the condition (3) as follows:

eτAM = m
[
eLτf∗(M)

]
= m

[
eLτf eqm†] ·M. (14)

Next we require that this condition should be valid foreve-
ry M in the (formal) limit of infinitely large coarse-graining
time. Thus,

A = lim
τ→∞

1
τ

ln
[
m

(
eLτf eqm†)]. (15)

Equation (15) is compact but, in fact, a rather compli-
cated expression involving logarithm of non-commuting ope-
ratorsm and L. It is the general expression for the near-
equilibrium macroscopic dynamics, as it follows from the
condition (3) in the limit of large coarse-graining time.

Remark 5. In general, Eq. (15) does not require a sepa-
ration of the time scales of the microscopic and the macros-
copic evolution. On the other hand, intuitively, if there is such
a separation, then we expect a “two-time coarse-graining
condition” instead of the “one-time coarse-graining condi-
tion” (3),

M(t + τ1) = m
{
eLτ2f∗[m(t)]

}
, (16)

for τ1 ¿ τ2. However, the reconstruction lemma cannot be
implemented rigorously starting with Eq. (16).

Let us now demonstrate how the result (15) reduces to
the well known Green-Kubo formula in the limit of a large
separation of the macroscopic and the microscopic motions.
In order to do so, for simplicity, we shall assume that the
kinematic contribution,

A(0) = m[Lf eqm†], (17)

is equal to zero. Next, using an operator identity (which can
be checked by differentiation),

eLτ = 1 + Lτ + Lτ

[
1
τ

∫ τ

0

(τ − t)etL dt

]
L, (18)

in the Eq. (15), we furtherassumethat

i) The microscopic dynamics is such that the underlined
term in Eq. (18) for large enoughτ is well approxi-
mated by the following expression∫ ∞

0

etL dt.

ii ) The expansion of the logarithm in terms ofτ to first
order is a valid approximationbeforetaking the limit.

With these two crucial assumptions, and taking into ac-
count the simplifying assumption (17), we obtain in Eq. (15),

A = m
[
L

( ∫ ∞

0

etL dt

)
Lf eqm†

]
. (19)

Finally, using the two properties of the Liouville operatorL,
L† = −L (anti-symmetry), andL(fg) = fLg + gLf (ope-
ratorL is differentiation), and introducing the usual notation,
ṁ = L†m, and〈. . . 〉 =

∫
f eq(x) . . . dx (averaging over the

equilibrium state), we arrive in Eq. (19) at

A =
∫ ∞

0

〈ṁ(0)ṁ(t)〉 dt. (20)

This is the most standard case of the Green-Kubo formula,
or the fluctuation-dissipation theorem, which expresses the
matrix of transport coefficientsA in terms of the auto-
correlation function of the corresponding fluxes.

The above analysis demonstrates that though the Eq. (15)
reduces to the Green-Kubo formula, this derivation uses a
set of sensitive assumptions. The necessity of using these as-
sumptions stems from the fact already mentioned above that
the derivation of the Eq. (15) does not uses a two time scales
picture. It would be interesting to test equation (15) in those
cases where the Green-Kubo Eq. (20) is known to be inap-
plicable [23]. Extension of the present approach to the ge-
neral quasi-equilibrium manifolds is a challenge for our fur-
ther study.
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Final remarks. Theexistenceof the non-trivial limit (15)
is a difficult problem which requires a separate investigation.
Strictly speaking, the limit is expected to be non-trivial only
in the thermodynamic limit. On the other hand, if dissipa-
tivity is brought into the Liouville equation, for example, in
the form of a thermostatting mechanism of NEMD [24], then
the non-trivial limit (15) will exist also for finite systems.
It is not surprising, therefore, that the form of the genera-

lized fluctuation-dissipation theorem (15) is quite similar to
expressions of transport coefficients in terms of Lyapunov ex-
ponents (see,e.g.[25], and references therein).
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