A.N. Gorban I.V. Karlin

Invariant Manifolds
for Physical
and Chemical Kinetics

@ Springer



Authors

Alexander N. Gorban
Multidisciplinary Research Institute 213
Department of Mathematics
University of Leicester

University Road

LE1 7RH Leicester

United Kingdom

agi53@mcs.le.ac.uk

and

Institute of Computational Modeling
Russian Academy of Sciences

660036 Krasnoyarsk

Russia

Ilya V. Karlin

Institut fiir Energietechnik
Clausiusstrasse 33

ETH Zentrum, CLT A 6

8092 Ziirich

Switzerland
karlin@lav.mavt.ethz.ch

and

Institute of Computational Modeling
Russian Academy of Sciences
660036 Krasnoyarsk

Russia

A.N. Gorban, I. V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics,
Lect. Notes Phys. 660 (Springer, Berlin Heidelberg 2004), DOI 10.1007/b98103

Library of Congress Control Number: 2004113306

ISSN 0075-8450

ISBN 3-540-22684-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer BTEX macro package
Cover design: design & production, Heidelberg

Printed on acid-free paper
55/3141/j1-543210



Lecture Notes in Physics

For information about Vols. 1-613
please contact your bookseller or Springer
LNP Online archive: springerlink.com

Vol.614: E. Falgarone, T. Passot (Eds.), Turbulence
and Magnetic Fields in Astrophysics.

Vol.615: ]J. Biichner, C.T. Dum, M. Scholer (Eds.),
Space Plasma Simulation.

Vol.616: J. Trampetic, ]. Wess (Eds.), Particle Physics
in the New Millenium.

Vol.617: L. Fernandez-Jambrina, L. M. Gonzélez-
Romero (Eds.), Current Trends in Relativistic Astro-
physics, Theoretical, Numerical, Observational
Vol.618: M.D. Esposti, S. Graffi (Eds.), The Mathe-
matical Aspects of Quantum Maps

Vol.619: H.M. Antia, A. Bhatnagar, P. Ulmschneider
(Eds.), Lectures on Solar Physics

Vol.620: C. Fiolhais, F. Nogueira, M. Marques (Eds.),
A Primer in Density Functional Theory

Vol.621: G. Rangarajan, M. Ding (Eds.), Processes
with Long-Range Correlations

Vol.622: F. Benatti, R. Floreanini (Eds.), Irreversible
Quantum Dynamics

Vol.623: M. Falcke, D. Malchow (Eds.), Understand-
ing Calcium Dynamics, Experiments and Theory
Vol.624: T. Pschel (Ed.), Granular Gas Dynamics
Vol.625: R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera
(Eds.), Statistical Mechanics of Complex Networks
Vol.626: G. Contopoulos, N. Voglis (Eds.), Galaxies
and Chaos

Vol.627: S.G. Karshenboim, V.B. Smirnov (Eds.), Pre-
cision Physics of Simple Atomic Systems

Vol.628: R. Narayanan, D. Schwabe (Eds.), Interfacial
Fluid Dynamics and Transport Processes

Vol.629: U.-G. Meifiner, W. Plessas (Eds.), Lectures
on Flavor Physics

Vol.630: T. Brandes, S. Kettemann (Eds.), Anderson
Localization and Its Ramifications

Vol.631: D. J. W. Giulini, C. Kiefer, C. Limmerzahl
(Eds.), Quantum Gravity, From Theory to Experi-
mental Search

Vol.632: A. M. Greco (Ed.), Direct and Inverse Meth-
ods in Nonlinear Evolution Equations

Vol.633: H.-T. Elze (Ed.), Decoherence and Entropy in
Complex Systems, Based on Selected Lectures from
DICE 2002

Vol.634: R. Haberlandt, D. Michel, A. P6ppl, R. Stan-
narius (Eds.), Molecules in Interaction with Surfaces
and Interfaces

Vol.635: D. Alloin, W. Gieren (Eds.), Stellar Candles
for the Extragalactic Distance Scale

Vol.636: R. Livi, A. Vulpiani (Eds.), The Kolmogorov
Legacy in Physics, A Century of Turbulence and
Complexity

Vol.637: 1. Miiller, P. Strehlow, Rubber and Rubber
Balloons, Paradigms of Thermodynamics

Vol.638: Y. Kosmann-Schwarzbach, B. Grammaticos,
K.M. Tamizhmani (Eds.), Integrability of Nonlinear
Systems

Vol.639: G. Ripka, Dual Superconductor Models of
Color Confinement

Vol.640: M. Karttunen, I. Vattulainen, A. Lukkarinen
(Eds.), Novel Methods in Soft Matter Simulations

Vol.641: A. Lalazissis, P. Ring, D. Vretenar (Eds.),
Extended Density Functionals in Nuclear Structure
Physics

Vol.642: W. Hergert, A. Ernst, M. Dine (Eds.), Com-
putational Materials Science

Vol.643: E. Strocchi, Symmetry Breaking

Vol.644: B. Grammaticos, Y. Kosmann-Schwarzbach,
T. Tamizhmani (Eds.) Discrete Integrable Systems
Vol.645: U. Schollwdck, J. Richter, D.J.]J. Farnell, R.E.
Bishop (Eds.), Quantum Magnetism

Vol.646: N. Bretén, J. L. Cervantes-Cota, M. Salgado
(Eds.), The Early Universe and Observational Cos-
mology

Vol.647: D. Blaschke, M. A. Ivanov, T. Mannel (Eds.),
Heavy Quark Physics

Vol.648: S. G. Karshenboim, E. Peik (Eds.), Astro-
physics, Clocks and Fundamental Constants

Vol.649: M. Paris, J. Rehacek (Eds.), Quantum State
Estimation

Vol.650: E. Ben-Naim, H. Frauenfelder, Z. Toroczkai
(Eds.), Complex Networks

Vol.651: J.S. Al-Khalili, E. Roeckl (Eds.), The Eu-
roschool Lectures of Physics with Exotic Beams, Vol.I

Vol.652: J. Arias, M. Lozano (Eds.), Exotic Nuclear
Physics

Vol.653: E. Papantonoupoulos (Ed.), The Physics of
the Early Universe

Vol.654: G. Cassinelli, A. Levrero, E. de Vito, P. J.
Lahti (Eds.), Theory and Appplication to the Galileo
Group

Vol.655: M. Shillor, M. Sofonea, J.J. Telega, Models
and Analysis of Quasistatic Contact

Vol.656: K. Scherer, H. Fichtner, B. Heber, U. Mall
(Eds.), Space Weather

Vol.657: J. Gemmer, M. Michel, G. Mahler (Eds.),
Quantum Thermodynamics

Vol.658: K. Busch, A. Powell, C. Réthig, G. Schén, J.
Weissmiiller (Eds.), Functional Nanostructures
Vol.659: E. Bick, ED. Steffen (Eds.), Topology and
Geometry in Physics

Vol.660: A.N. Gorban, 1.V. Karlin,
Invariant Manifolds in Chemical Kinetics



To our parents






Preface

This book is about model reduction in kinetics. Is this physics or mathemat-
ics? There are at least four reasonable answers to this question:

— It is physics, it is not mathematics;

— It is mathematics, it is not physics;

— It is both physics and mathematics;

— Tt is neither physics, nor mathematics, it is something else (but what could
that be?).

Of course, it is physics. Model reduction in kinetics requires physical con-
cepts and structures; it is impossible to make an expedient reduction of a ki-
netic model without thermodynamics, for example. The entropy, the Legendre
transformation generated by the entropy, and the Riemann structure defined
by the second differential of the entropy provide the elementary geometrical
basis for the first approximation. The physical sense of the models gives many
hints for their further processing. So, it is not mathematics; we care about
the physical sense more than about rigorous proofs. We should deal with
equations even in the absence of theorems about existence and uniqueness of
solutions. Mathematics assimilates the physical notions with a considerable
delay in time, but any such an assimilation leads to further insights.

But, without doubt, it is mathematics. The story about invariant man-
ifolds for differential equations began inside mathematics. The first signifi-
cant steps were taken by two great mathematicians, A.M. Lyapunov and H.
Poincaré, at the end of the XIXth century. Then N.M. Krylov and N.N. Bo-
golyubov, A.N. Kolmogorov, V.I. Arnold and J. Moser, J.E. Marsden, M.I.
Vishik, R. Temam, and many other mathematicians developed this field of
science, and many elegant theorems and useful methods were created. This is
not only pure mathematics, the wide field of applications was developed too,
from hydrodynamics to process engineering and control theory and methods.
This is pure and applied dynamics. The language of model reduction, the ba-
sic notions that we use, the theorems and methods, all this either came from

! The closest example: after mathematicians discovered how the entropy functional
may be important for the theory of the Boltzmann equation, then they proved
the existence theorem (P.L. Lions and R. DiPerna, this work was awarded the
Fields medal in 1994).
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pure and applied dynamics directly, or bears the visible imprint of its ideas
and methods. Maybe the book presents a specific chapter on this subject?

But, of course, the problems came from physics, from engineering. Maybe
it is both physics and mathematics? Or perhaps it is something different, but
what can it be? It is not so easy to answer the question, what is the subject
of our book, even for the authors. But we can say what we want it to be.
We want it to be a special “meeting point” of pure and applied dynamics,
of physics, and of engineering sciences. This meeting point has a sufficient
number of specific problems, methods and results to deserve a special name.
We propose the name Model Engineering. As long as it is engineering, it is
synthetic subject: if it is possible to prove something exactly, this is great,
and we should follow this possibility, but if the physical sense gives us a
seminal hint, well, we should use it even if the rigorous foundations are far
from complete. The result is the model that works. In this enormous field
of intellectual activity our book tends to be in the theoretical corner; we
focus our study on constructive methods, and the examples that fill up more
than three-quarters of the book are used for motivation, demonstration and
development of the methods.

Which scientific disciplines should meet at the meeting point we build in
our book? The last century demonstrated the emergence of two disciplines, of
the theory of dynamical systems in mathematics, and of statistical physics.
Nonequilibrium statistical physics, in short, is a science about slow-fast mo-
tion decomposition. Dynamic theory is about general features of long-time
typical behaviour. Our book is about what dynamic theory has to say about
nonequilibrium systems. The very brief answer is — it makes the theory of
nonequilibrium systems the theory of slow invariant manifolds. But the re-
verse impact of physics on methods is also significant. Applied mathematics
and computational physics create a “second (computational) reality”. This is
a beautiful intellectual building, but in each element of this building, at each
step of the work, we should take into account the basic physics; the violation
of a physical law at one place can destroy an important part of the whole
construction.

The presented methods to construct slow invariant manifolds certainly
reflect the authors’ preference and their own work. Much effort was spent to
coordinate the developed methods with the basic physics at each step.

The book can be used for various purposes:

— As a collection of tools for model reduction in kinetics;

— As a source of mathematical problems;

— As a guide to physical concepts useful for model reduction;

— As a collection of successful examples of model reduction;

— As a source of recent literature on model reduction, invariant manifolds
and related topics.

We wrote the book for our colleagues and for our students in order to avoid
in the future the usual excessive explanation: to explain the basic notions and
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physical sense, to answer the common questions about invariant manifolds
and model reduction, about our point of view, about the balance between
physics, mathematics (dynamics) and engineering in our work. Now we can
simply hand over this book and suggest reading approaches. There are many
possible approaches for different purposes. Some of them are presented in the
introduction.

As useful background for reading the book, three graduate courses should
be mentioned: differential equations and dynamical systems, kinetics and
thermodynamics, and elementary functional analysis.

Once upon a time Lev Landau gave the following advice: If the Contents
of a book is interesting to you, close the book and try to write it. If it is
too difficult a task, then look through the first chapter and try to write it.
If it is still too hard, go ahead and try to write a section, a subsection, a
paragraph, a formula. We completely agree with this advice with just one
addition: please send us your results, because your book will contain another
point of view, and will be highly interesting.
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