
7 Quasi-Chemical Representation

7.1 Decomposition of Motions, Non-Uniqueness
of Selection of Fast Motions, Self-Adjoint Linearization,
Onsager Filter, and Quasi-Chemical Representation

In Chap. 5 we have used the second law of thermodynamics, the existence of
the entropy, in order to equip the problem of constructing the slow invariant
manifolds with a geometric structure. The requirement of the entropy growth
(universally, for all reduced models) restricts significantly the form of the
projectors (5.25).

In this chapter we introduce a different but equally important argument –
the micro-reversibility (T -invariance), and its macroscopic consequences, the
reciprocity relations. As first discussed by Onsager in 1931 [187], the impli-
cation of the micro-reversibility is the self-adjointness of the linear approxi-
mation of the system (3.1) in the equilibrium x∗: for any z and p,

〈(DxJ)x∗z|p〉x∗ ≡ 〈z|(DxJ)x∗p〉x∗ . (7.1)

The main idea in the present chapter is to use the reciprocity relations
(7.1) for the fast motions. In order to appreciate this idea, we should men-
tion that the decomposition of motions into fast and slow is not unique. Re-
quirement (7.1) for any equilibrium point of fast motions means a selection
(filtration) of the fast motions. We term this the Onsager filter. Equilibrium
points of fast motions are all the points on manifolds of slow motions. Ap-
plication of the Onsager filter amounts to a distinguished symmetrization of
the linearized vector field (DxJ)x in the points x of the slow manifolds.

To begin with, let us remind the standard way of symmetrization: the
linear operator A is decomposed into the symmetric and the skew-symmetric
parts, A = 1

2 (A + A†) + 1
2 (A − A†). Here A† is adjoint to A with respect

to a fixed scalar product (entropic scalar product in the present context).
However, a replacement of an operator with its symmetric part can lead to
catastrophic (from the physical standpoint) consequences such as, for exam-
ple, loss of stability. In order to construct a sensible Onsager filter, we shall
use the quasi-chemical representation.

The formalism of the quasi-chemical representation is one of the most
developed means of modelling, it makes it possible to “assemble” complex
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processes out of elementary processes. There exist various presentations of
the quasi-chemical formalism. Our presentation here is a generalization of the
approach suggested first by Feinberg [243] (see also [81,242,244]).

Symbol Ai (“quasi-substance”) is put into correspondence to each vari-
able xi. The elementary reaction is defined according to the stoichiometric
equation, ∑

i

αiAi �
∑

i

βiAi , (7.2)

where αi (the loss stoichiometric coefficients) and βi (the gain stoichiometric
coefficients) are real numbers. Apart from the entropy, one has to specify
a monotonic function of one variable, Ψ(a), Ψ ′(a) > 0. In particular, the
function Ψ(a) = exp(λa), λ = const, is encountered oft in applications.

Given the elementary reaction (7.2), one defines the rates of the direct
and of the reverse reactions:

W+ = w∗Ψ

(∑
i

αiµi

)
,

W− = w∗Ψ

(∑
i

βiµi

)
, (7.3)

where µi = ∂S
∂xi

, x∗ = const, x∗ > 0. The rate of the elementary reaction is
then defined as W = W+ −W−.

The equilibrium of the elementary reaction (7.2) is given by the following
equation:

W+ = W− . (7.4)

Thanks to the strict monotonicity of the function Ψ , equilibrium of the ele-
mentary reaction is reached when the arguments of the functions coincide in
equation (7.3), that is, whenever

∑
i

(βi − αi)µi = 0 . (7.5)

The vector with the components γi = βi − αi is termed the stoichiometric
vector of the elementary reaction.

Let x0 be a point of equilibrium of the reaction (7.2). The linear approx-
imation of the reaction rate has a particularly simple form:

W (x0 + δ) = −w∗Ψ ′(a(x0))〈γ|δ〉x0 + o(δ) , (7.6)

where a(x0) =
∑

i αiµi(x0) =
∑

i βiµi(x0), and 〈|〉x0 is the entropic scalar
product in the equilibrium. In other words,

(DxW )x0 = −w∗Ψ ′(a(x0))〈γ| . (7.7)

Let us write down the kinetic equation for the elementary reaction:



7.1 Onsager Filter, and Quasi-Chemical Representation 181

dx
dt

= γW (x) . (7.8)

Linearization of this equation at the equilibrium x0 has the following form:

dδ
dt

= −w∗Ψ ′(a(x0))γ〈γ|δ〉x0 . (7.9)

That is, the matrix of the linear approximation has the form,

K = −k∗|γ〉〈γ| , (7.10)

where
k∗ = w∗Ψ ′(a(x0)) > 0 ,

while the entropic scalar product is taken at the equilibrium point x0.
If there are several elementary reactions, then the stoichiometric vectors

γr and the reaction rates Wr(x) are specified for each individual reaction,
while the kinetic equation is obtained by summing the right hand sides of
equation (7.8) for individual elementary reactions,

dx
dt

=
∑

r

γrWr(x) . (7.11)

Let us assume that under the reversion of the motions, the direct reaction
transforms into the reverse reaction. Thus, the T -invariance of the equilibrium
means that it is reached in the point of the detailed balance, where all the
elementary reaction equilibrate simultaneously:

W+
r (x∗) = W−

r (x∗) . (7.12)

This assumption is nontrivial if vectors γr are linearly dependent (for exam-
ple, if the number of reactions is greater than the number of species minus
the number of conservation laws).

One can call the equations of detailed balance (7.12) the “nonlinear On-
sager relations”. These equations give us the restrictions on the reaction rates
not only near the equilibrium, in the linear approximation, but also far away
from the equilibrium. The representation (7.3) is crucial for this continuation
of the usual linear Onsager relations from the neighbourhood of the equilib-
rium point to the whole phase space. The problem of a rigorous foundation
of nonlinear Onsager relations [188,189] remains open, but a recent attempt
made by Berdichevsky [190] seems to be promising.

In the detailed balance case, the linearization of equation (7.11) in the
neighborhood of x∗ has the following form (x = x∗ + δ):

dδ
dt

= −
∑

r

k∗rγ
r〈γr|δ〉x∗ , (7.13)

where
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k∗r = w∗
rΨ

′
r(a

∗
r) > 0 ,

a∗r =
∑

i

αr
iµi(x∗) =

∑
i

βr
i µi(x∗) .

The following matrix of the linear approximation is obviously self-adjoint and
stable:

K = −
∑

r

k∗r |γr〉〈γr| . (7.14)

Note that matrix K is the sum of matrices of rank one.
Let us now extract the self-adjoint part of the form (7.14) in the arbitrary

point x. Linearizing the reaction rate about x, we obtain:

W (x+ δ) = w∗ (Ψ ′(a(x))〈α|δ〉x − Ψ ′(b(x))〈β|δ〉x) + o(δ) , (7.15)

where

a(x) =
∑

i

αiµi(x) ,

b(x) =
∑

i

βiµi(x) .

Let us introduce notation,

kSYM(x) =
1
2
w∗ (Ψ ′(a(x)) + Ψ ′(b(x))) > 0 ,

kA(x) =
1
2
w∗ (Ψ ′(a(x)) − Ψ ′(b(x))) .

In terms of this notation, equation (7.15) may be rewritten,

W (x+ δ) = −kSYM(x)〈γ|δ〉x + kA(x)〈α+ β|δ〉x + o(δ) . (7.16)

The second term vanishes in the equilibrium (kA(x∗) = 0, due to the detailed
balance).

The symmetric linearization (Onsager filter) amounts to keeping only the
first term in the linearized vector field (7.16) when studying the fast mo-
tion towards the (approximate) slow manifolds, instead of the full expression
(7.15). Matrix K(x) of the linear approximation becomes then similar to
(7.14):

K(x) = −
∑

r

kSYM
r (x)|γr〉〈γr| , (7.17)

where

kSYM
r (x) =

1
2
w∗

r (Ψ ′
r(a(x)) + Ψ ′

r(b(x))) > 0 ,

ar(x) =
∑

i

αr
iµi(x) ,

br(x) =
∑

i

βr
i µi(x) ,
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while the entropic scalar product 〈|〉x is taken at the point x. For each label
of the elementary reaction r, the function kSYM

r (x) is positive. Thus, the
stability of the symmetric matrix (7.17) is elicit.

Symmetric linearization (7.17) is distinguished also by the fact that it
preserves the rank of the elementary processes contributing to the complex
mechanism. Same as in the equilibrium case, the matrix K(x) is the sum of
rank one operators corresponding to each individual process. This is not so
for the standard symmetrization.

Using the symmetric operator (7.17) in the above Newton method with
incomplete linearization can be considered as a version of a heuristic strategy
of “we act in such a way as if the manifolds F (W ) were already slow invariant
manifolds”. If this were the case, then, in particular, the fast motions towards
the were described by the self-adjoint linear approximation.

We have described the quasi-chemical formalism for finite-dimensional
systems. Infinite-dimensional generalizations are almost straightforrwad in
many important cases, and are achieved by a mere replacement of summa-
tion by integration. The best known example is the Boltzmann collision in-
tegral: each velocity v corresponds to a quasi-substance Av, and a collision
is described by a stoichiometric equation:

Av +Aw � Av′ +Aw′ .

In the Example to this chapter we consider the Boltzmann collision integral
from this standpoint in a more detail.

7.2 Example: Quasi-Chemical Representation
and Self-Adjoint Linearization
of the Boltzmann Collision Operator

A decomposition of motions near a thermodynamically nonequilibrium states
results in a linear relaxation towards this state. In this Example, the linear
operator of this relaxation is explicitly constructed in the case of the Boltz-
mann equation.

Let us remind that the entropy-related specification of the equilibrium
state is due to the two points of view. From the first, thermodynamic view-
point, equilibrium is a state in which the entropy is maximal. From the sec-
ond, kinetic viewpoint, a quadratic form of the entropy increases in a course
of linear regression towards this state. If the underlying microscopic dynam-
ics is time-reversible, the kinetic viewpoint is realized due to the well-known
symmetry properties of the linearized kinetic operator.

In a majority of near-equilibrium studies, a principle of a decomposition
of motions into fast and slow occupies a distinct place. In some special cases,
decomposition of motions is taken into account explicitly, by introducing a
small parameter into dynamic equations. More frequently, however, it comes
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into play implicitly, for example, through an assumption of a fast decay of
memory in the projection operator formalism [194]. Even in presence of long-
living dynamic effects (mode coupling), an assumption about decomposition
of motions is required as a final instance to obtain a closed set of equations
for slow variables.

However, for closed systems, there remains a question: whether and to
what extend the two aforementioned entropy-related points of view are ap-
plicable to non-equilibrium states? Further, if an answer is affirmative, then
how to make explicitly the corresponding specification?

This Example is aimed at answering the questions just mentioned, and it
is a straightforward continuation of results [11,14]. Namely, in [11,14], it was
demonstrated that the principle of motions decomposition alone constitutes
a necessary and sufficient condition for the thermodynamic specification of a
non-equilibrium state. However, in a general situation, one deals with states
f other than f0. A question is, whether these two ideas can be applied to
f �= f0 (at least approximately), and if so, then how to make the presentation
explicit.

The positive answer to this question was partially given in the framework
of the method of invariant manifolds [9, 11, 14]. Objects studied in [9, 11, 14]
were manifolds in the space of distribution functions, and the goal was to
construct iteratively a manifold that is tangent in all its points to a vector
field of a dissipative system (an invariant manifold), beginning with some
initial manifold with no such property. It was natural to employ methods of
KAM-theory (Newton-type linear iterations to improve the initial manifold).
However, additional idea of the decomposition of motions into fast and slow
near the manifold was required to adapt KAM-theory to dissipative systems.
The geometrical formulation of this idea [9, 11, 14] results in a definition of
a plane of fast motion, Γf , associated with the state f , and orthogonal to
the gradient of the entropy in f . The physical interpretation of Γf is that
contains all those states from a neighborhood of f , which come into f in the
course of fast relaxation (as if f were the final state of fast processes occuring
in its neighborhood). Usually, Γf contains more states than can come into
f in a fast relaxation because of the conservation of certain macroscopic
quantities (e.g. density, momentum, and energy, as well as, possibly, higher
moments of f which practically do not vary during the fast processes). The
redundant states are eliminated by imposing additional restrictions which cut
out “thinner” linear manifolds, planes of fast motions Pf , inside Γf . Extremal
property of f on Γf is preserved also on Pf (cf. [9, 11,14]).

Thus, the decomposition of motions near a manifold results in the thermo-
dynamical viewpoint: the states f on the manifold are described as the unique
points of the entropy maximum of corresponding planes of fast motions Γf .
This formulation defines a slow dynamics on the manifolds in agreement with
the H-theorem for the Boltzmann equation, or with its analogs for other sys-
tems (see [9, 11, 14] for details). As it was demonstrated in [9, 11, 14], the
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decomposition of motions in a neighborhood of f is a criterion (a necessary
and sufficient condition) of the existence of the thermodynamic description
of f .

The Newton iteration improves the states of a non-invariant manifold
(f + δf), while δf is thought on Γf . Equation for δf involves a linearization
of the collision integral in the state f . Here, if f �= f0, where f0 is the
local equilibrium, we face a problem of how to perform the linearization of
the collision integral in concordance with the H-theorem (corrections to the
manifold of local equilibrium states were studied in detail in [11]).

Here we show that the aforementioned assumption about the decompo-
sition of motions results in the kinetic description of states on manifolds of
slow motions, and that Onsager’s principle can be applied in a natural way
to linearize the Boltzmann collision integral.

As it follows from the definition to definition of Γf , the state f is the
unique point of minimum of the H-function on Γf . In the first non-vanishing
approximation, we have the following expression for the H-function in the
states on Γf :

H(f + δf) ≈ H(f) +
1
2
〈δf |δf〉f

Here 〈·|·〉f denotes the scalar product generated by the second derivative of
H in the state f : 〈g1|g2〉f =

∫
f−1g1g2 dv.

Decomposition of motions means that the quadratic form 〈δf |δf〉f decays
monotonically in the course of the linear relaxation towards the state f . It
is natural, therefore, to impose the requirement that this linear relaxation
should obey Onsager’s principle. Namely, the corresponding linear operator
should be symmetric (formally self-adjoint) and non-positively definite with
respect to the scalar product 〈·|·〉f , and furthermore, the kernel of this oper-
ator should consist of linear combinations of conserved quantities (1, v, and
v2). In other words, the decomposition of motions should portray the pattern
of the linear relaxation in the vicinity of f similar to that in a small neigh-
borhood of f0. Following this idea, we shall now decompose the linearized
collision integral Lf in two parts: LSYM

f (satisfying Onsager’s principle), and
LA

f (the non-thermodynamic part).
In the state f , each direct encounter, (v,v1) → (v′,v′

1), together with
the reverse encounter, (v′,v′

1) → (v,v1), contribute a rate, G+(f) − L−(f)
(“gain−loss”), to the collision integral, where (see Chap. 2):

W (f) = W (v′,v′
1;v,v1) exp

{
DfH|f=f(v) +DfH|f=f(v1)

}
;

W ′(f) = W (v′,v′
1;v,v1) exp

{
DfH|f=f(v′) +DfH|f=f(v′

1)

}
;

A deviation δf from the state f will change the rates of both the direct
and the reverse processes. Resulting deviations of the rates are:

δW = W (f)
{
D2

fH|f=f(v) · δf(v) +D2
fH|f=f(v1) · δf(v1)

}
;
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δW ′ = W ′(f)
{
D2

fH|f=f(v′) · δf(v′) +D2
fH|f=f(v′

1)
· δf(v′

1)
}

;

Symmetrization with respect to the direct and the reverse encounters will
give a term proportional to a balanced rate, W SYM(f) = 1

2 (W (f) +W ′(f)),
in both of the expressions δW and δW ′. Thus, we come to the decomposition
of the linearized collision integral, Lf = LSYM

f + LA
f , where

LSYM
f δf =

∫
w
f ′f ′

1 + ff1

2

{
δf ′

f ′ +
δf ′

1

f ′
1

− δf1

f1
− δf

f

}
dv′

1 dv′ dv1 ; (7.18)

LA
f δf =

∫
w
f ′f ′

1 − ff1

2

{
δf ′

f ′ +
δf ′

1

f ′
1

+
δf1

f1
+
δf

f

}
dv′

1 dv′ dv1 ; (7.19)

f = f(v), f1 = f(v1), f ′ = f(v′), f ′
1 = f(v′

1), δf = δf(v), δf1 = δf(v1), δf ′ =
δf(v′), δf ′

1 = δf(v′
1).

Operator LSYM
f (7.18) satisfies all the aforementioned requirements per-

tinent to Onsager’s principle, namely:

(i) 〈g1|LSYM
f |g2〉f = 〈g2|LSYM

f |g1〉f (symmetry);
(ii) 〈g|LSYM

f |g〉f ≤ 0 (local entropy production inequality);
(iii) f,vf, v2f ∈ kerLSYM

f (conservation laws).

For an unspecified f , the non-thermodynamic operator LA
f (7.19) has none of

these properties. If f = f0, then the part (7.19) vanishes, while operator LSYM
f0

becomes the usual linearized collision integral due to the balance W (f0) =
W ′(f0).

The non-negative definite form 〈δf |δf〉f decays monotonically due to the
equation of linear relaxation, ∂tδf = LSYM

f δf , and the unique point of mini-
mum, δf = 0, of 〈δf |δf〉f corresponds to the equilibrium point of the vector
field LSYM

f δf .
Operator LSYM

f describes the state f as the equilibrium state of the linear
relaxation. Note that the method of extracting the symmetric part (7.18) is
strongly based on the representation of the direct and the reverse processes,
and it is not a simple procedure like, e.g., 1

2 (Lf + L+
f ). The latter expres-

sion cannot be used as a basis for Onsager’s principle since it would violate
conditions (ii) and (iii).

Thus, if motions do decompose into a fast motion towards the manifold
and a slow motion along the manifold, then states on this manifold can be
described from both the thermodynamic and the kinetic points of view. Our
consideration results in the explicit construction of the operator LSYM

f (7.18)
responsible for the fast relaxation towards the state f . It can be used, in par-
ticular, for obtaining corrections to such approximations as the Grad moment
approximations and the Tamm–Mott-Smith approximation, in the framework
of the method of invariant manifold [9,14,21]. The non-thermodynamic part
(7.19) is always present in Lf , when f �= f0, but if trajectories of an equation
∂tδf = Lfδf are close to the trajectories of the equation ∂tδf = LSYM

f δf ,
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then LSYM
f is a good approximation to Lf . Statements about closeness of tra-

jectories depend on specific features of f , and typically they can be claimed
when a small parameter is present. On the other hand, the explicit thermo-
dynamic and kinetic presentation of states on a manifold of slow motions
(the extraction of LSYM

f as above and construction of planes Γf [9,11,14]) is
based just on the assumption about the decomposition of motions, and can
be used avoiding a consideration of a small parameter.
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