
5 Entropy, Quasiequilibrium,
and Projectors Field

Projection operators Py contribute both to the invariance equation (3.2), and
to the film extension of the dynamics (4.5). Limiting results, exact solutions,
etc. only weakly depend on the particular choice of projectors, or do not
depend on it at all. However, validity of approximations obtained on each
iteration step towards the limit strongly depends on the choice of the pro-
jector. Moreover, if we want each approximate solution to be consistent with
such physically crucial conditions as the second law of thermodynamics (the
entropy of the isolated systems increases), then the choice of the projector
becomes practically unique.

In this chapter we consider the main ingredients for constructing the
projector, based on the two additional structures:

(a) The moment parameterization,
(b) The entropy and the entropic scalar product.

5.1 Moment Parameterization

Same as in the previous chapters, let a regular map (projection) is defined,
Π : U → W . We consider only maps F : W → U which satisfy Π ◦F = 1. We
seek slow invariant manifolds among such maps. (A remark is in order here:
sometimes one has to consider F which are defined not on the whole W but
only on some subset of it.) In this case, the unique projector consistent with
the given structure is the superposition of the differentials (the chain rule):

Py = (DyF )y ◦ (DxΠ)F (y) . (5.1)

In the language of differential equations (5.1) has the following significance:
First, equation (3.1) is projected,

dy
dt

= (DxΠ)F (y)J(F (y)) . (5.2)

Second, the latter equation is lifted back to U with the help of F and its
differential,
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x(t) = F (y(t)) ; (5.3)
dx
dt

∣∣∣∣
x=F (y)

= (DyF )y

(
dy
dt

)
= (DyF )y((DxΠ)F (y)J(F (y))) = PyJ(F (y)) .

The most standard example of the construction just described is as follows:
x is the distribution density, y = Π(x) is the set of selected moments of this
density, F : y → x is a “closure assumption”, a distribution density parame-
terized by the values of the moments y. Another standard example is relevant
to problems of chemical kinetics: x is a detailed description of the reacting
mixture (including all intermediates and radicals), y are concentrations of
stable reactants and products of the reaction.

The moment parameterization and moment projectors (5.1) are often en-
countered in applications. However, they have certain shortcomings. In partic-
ular, it is by far not always the case that the moment projection transforms
a dissipative system into another dissipative system. Of course, for invari-
ant F (y) any projector transforms the dissipative system into a dissipative
system. However, for various approximations to invariant manifolds (closure
assumptions) this is not readilyso1. The property of projectors to preserve
the type of the dynamics will be imposed below as one of the requirements.

5.2 Entropy and Quasiequilibrium

The dissipation properties of the system (3.1) are described by specifying
the entropy S, the distinguished Lyapunov function which monotonically
increases along solutions of equation (3.1). In a certain sense, this Lyapunov
function is more fundamental than the system (3.1) itself. That is, usually, the
entropy is known much better than the right hand side of equation (3.1). For
example, in chemical kinetics, the entropy is obtained from the equilibrium
data. The same holds for other Lyapunov functions, which are defined by
the entropy and by a specification of the reaction conditions (the free energy,
U − TS, for the isothermal isochoric processes, the free enthalpy, U − TH,
for the isothermal isobaric processes etc.). On physical grounds, all these
entropic Lyapunov functions are proportional (up to additive constants) to
the entropy of the minimal isolated system which includes the system under
study [115]. In general, with some abuse of language, we term the Lyapunov
functional S the entropy elsewhere below, although it may be a different
functional for non-isolated systems.

Thus, we assume that a concave functional S is defined in U , such that it
takes maximum in an inner point x∗ ∈ U . This point is termed the equilib-
rium.

1 See, e.g. a discussion of this problem for the Tamm–Mott-Smith approximation
for the strong shock wave in [9].
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For any dissipative system (3.1) under consideration in U , the derivative
of S due to equation (3.1) must be nonnegative,

dS
dt

∣∣∣∣
x

= (DxS)(J(x)) ≥ 0 , (5.4)

where DxS is the linear functional, the differential of the entropy, while the
equality in (5.4) is attained only in the equilibrium x = x∗.

Most of the works on nonequilibrium thermodynamics deal with quasi-
equilibrium approximations and corrections to them, or with applications of
these approximations (with or without corrections). This viewpoint is not
the only possible but it proves very efficient for the construction of a vari-
ety of useful models, approximations and equations, as well as methods to
solve them. From time to time it is discussed in the literature, who was the
first to introduce the quasiequilibrium approximations, and how to interpret
them. At least a part of the discussion is due to a different role the qua-
siequilibrium plays in the entropy-conserving and the dissipative dynamics.
The very first use of the entropy maximization dates back to the classical
work of G. W. Gibbs [222], but it was first claimed for a principle of in-
formational statistical thermodynamics by E. T. Jaynes [193]. Probably the
first explicit and systematic use of quasiequilibria to derive dissipation from
entropy-conserving systems was undertaken by D. N. Zubarev. Recent de-
tailed exposition is given in [195]. For dissipative systems, the use of the
quasiequilibrium to reduce description can be traced to the works of H. Grad
on the Boltzmann equation [201]. A review of the informational statistical
thermodynamics was presented in [227]. The connection between entropy
maximization and (nonlinear) Onsager relations was also studied [164, 188].
The viewpoint of the present authors was influenced by the papers by L. I. Ro-
zonoer and co-workers, in particular, [223–225]. A detailed exposition of the
quasiequilibrium approximation for Markov chains is given in the book [115]
(Chap. 3, Quasiequilibrium and entropy maximum, pp. 92–122), and for the
BBGKY hierarchy in the paper [226]. The maximum entropy principle was
applied to the description the universal dependence the three-particle distri-
bution function F3 on the two-particle distribution function F2 in classical
systems with binary interactions [229]. For a discussion the quasiequilibrium
moment closure hierarchies for the Boltzmann equation [224] see the pa-
pers [230,233,234]. A very general discussion of the maximum entropy prin-
ciple with applications to dissipative kinetics is given in the review [231].
Recently the quasiequilibrium approximation with some further correction
was applied to description of rheology of polymer solutions [254, 266] and of
ferrofluids [267,268]. Quasiequilibrium approximations for quantum systems
in the Wigner representation [36, 37] was discussed very recently [232]. We
shall now introduce the quasiequilibrium approximation in the most general
setting.

A linear moment parameterization is a linear operator, Π : E → L,
where L = imΠ = E/ kerΠ, kerΠ is a closed linear subspace of space E,
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and Π is the projection of E onto factor-space L. Let us denote W = Π(U).
Quasiequilibrium (or restricted equilibrium, or conditional equilibrium, or
constrained equilibrium) is the embedding, F ∗ : W → U , which puts into
correspondence to each y ∈ W the solution to the entropy maximization
problem:

S(x) → max, Π(x) = y . (5.5)

We assume that, for each y ∈ intW , there exists the unique solution
F ∗(y) ∈ intU to the problem (5.5). This solution, F ∗(y), is called the quasi-
equilibrium, corresponding to the value y of the macroscopic variables. The
set of quasiequilibria F ∗(y), y ∈ W , forms a manifold in intU , parameterized
by the values of the macroscopic variables y ∈ W .

Let us specify some notations: ET is the adjoint to the E space. Adjoint
spaces and operators will be indicated by T , whereas notation ∗ is earmarked
for equilibria and quasiequilibria.

Furthermore, [l, x] is the result of application of the functional l ∈ ET to
the vector x ∈ E. We recall that, for an operator A : E1 → E2, the adjoint
operator, AT : ET

1 → ET
2 is defined by the following relation: For any l ∈ ET

2

and x ∈ E1,

[l, Ax] = [AT l, x] .

Next, DxS(x) ∈ ET is the differential of the entropy functional S(x),
D2

xS(x) is the second differential of the entropy functional S(x). The cor-
responding quadratic functional D2

xS(x)(z, z) on E is defined by the Taylor
formula,

S(x+ z) = S(x) + [DxS(x), z] +
1
2
D2

xS(x)(z, z) + o(‖z‖2) . (5.6)

We keep the same notation for the corresponding symmetric bilinear form,
D2

xS(x)(z, p), and also for the linear operator, D2
xS(x) : E → ET , defined by

the formula,

[D2
xS(x)z, p] = D2

xS(x)(z, p) .

In the latter formula, on the left hand side, there is the operator, on the
right hand side there is the bilinear form. Operator D2

xS(x) is symmetric on
E, D2

xS(x)T = D2
xS(x).

Concavity of the entropy S means that, for any z ∈ E, the inequality
holds,

D2
xS(x)(z, z) ≤ 0 ;

in the restriction onto the affine subspace parallel to kerΠ we assume the
strict concavity,

D2
xS(x)(z, z) < 0, if z ∈ kerΠ, and if z �= 0 .
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In the remainder of this section we are going to construct the important
object, the projector onto the tangent space of the quasiequilibrium manifold.

Let us compute the derivative DyF
∗(y). For this purpose, let us apply

the method of Lagrange multipliers: There exists such a linear functional
Λ(y) ∈ (L)T , that

DxS(x)
∣∣
F∗(y)

= Λ(y) ·Π, Π(F ∗(y)) = y , (5.7)

or
DxS(x)

∣∣
F∗(y)

= ΠT · Λ(y), Π(F ∗(y)) = y . (5.8)

From equation (5.8) we get,

Π(DyF
∗(y)) = 1L , (5.9)

where we have indicated the space in which the unit operator acts. Next, using
the latter expression, we transform the differential of the equation (5.7),

DyΛ = (Π(D2
xS)−1

F∗(y)Π
T )−1 , (5.10)

and, consequently,

DyF
∗(y) = (D2

xS)−1
F∗(y)Π

T (Π(D2
xS)−1

F∗(y)Π
T )−1 . (5.11)

Notice that, elsewhere in equation (5.11), operator (D2
xS)−1 acts on the linear

functionals from LT . These functionals are precisely those which become
zero on kerΠ or, that is the same, those which can be represented as linear
functionals of macroscopic variables.

The tangent space to the quasiequilibrium manifold at the point F ∗(y) is
the image of the operator DyF

∗(y):

im (DyF
∗(y)) = (D2

xS)−1
F∗(y)L

T = (D2
xS)−1

F∗(y)Ann(kerΠ) (5.12)

where Ann(kerΠ) is the set of linear functionals which become zero on kerΠ.
Another way to write equation (5.12) is the following:

x ∈ im (DyF
∗(y)) ⇔ (D2

xS)F∗(y)(z, p) = 0, p ∈ kerΠ . (5.13)

This means that im (DyF
∗(y)) is the orthogonal complement of kerΠ in E

with respect to the scalar product,

〈z|p〉F∗(y) = −(D2
xS)F∗(y)(z, p) . (5.14)

The entropic scalar product (5.14) appears often in the constructions
below. (Usually, it becomes the scalar product indeed after the conservation
laws are excluded). Let us denote as Ty = im(DyF

∗(y)) the tangent space
to the quasiequilibrium manifold at the point F ∗(y). Important role in the
construction of quasiequilibrium dynamics and its generalizations is played by
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the quasiequilibrium projector, an operator which projects E on Ty parallel
to kerΠ. This is the orthogonal projector with respect to the entropic scalar
product, P ∗

y : E → Ty:

P ∗
y = DyF

∗(y) ·Π =
(
D2

xS
∣∣
F∗(y)

)−1

ΠT

(
Π
(
D2

xS
∣∣
F∗(y)

)−1

ΠT

)−1

Π .

(5.15)
It is straightforward to check the equality P ∗2

y = P ∗
y , and the self-adjointness

of P ∗
y with respect to the entropic scalar product (5.14). Thus, we have in-

troduced the basic constructions: the quasiequilibrium manifold, the entropic
scalar product, and the quasiequilibrium projector.

Quasiequilibrium entropy S(y) is a functional on W . It is defined as the
value of the entropy on the corresponding quasiequilibrium x = F ∗(y):

S(y) = S(F ∗(y)) (5.16)

Quasiequilibrium dynamics is a dynamics on W , defined by the equation
(5.2) for the quasiequilibrium F ∗(y):

dy
dt

= ΠJ(F ∗(y)) . (5.17)

Here Π is constant linear operator (in the general case (5.2), it may be-
come nonlinear). The corresponding quasiequilibrium dynamics on the qua-
siequilibrium manifold F ∗(W ) is defined using the projector (5.1):

dx
dt

= P ∗
y |x=F∗(y)J(x) = (DyF

∗)x=F∗(y)ΠJ(x), x ∈ F ∗(W ) . (5.18)

The orthogonal projector P ∗
y in the right hand side of equation (5.18) can

be explicitly written using the second derivative of S and the operator Π
(5.15). Let’s remind that the only distinguished scalar product in E is the
entropic scalar product (5.14):

〈z, p〉x = −(D2
xS)x(z, p) (5.19)

It depends on the point x ∈ U . This dependence 〈|〉x endows U with the
structure of a Riemann space.

The most important property of the quasiequilibrium system (5.17), (5.18)
is highlighted by the conservation of the dynamics type theorem: if for the
original dynamic system (3.1) dS

dt ≥ 0, then for the quasiequilibrium dynam-
ics dS

dt ≥ 0. If for the original dynamic system (3.1) dS
dt = 0 (conservative

system), then for the quasiequilibrium dynamics dS
dt = 0 as well.

The construction of the quasiequilibrium allows for the following gener-
alization: Almost every manifold can be represented as a set of minimizers
of the entropy under linear constraints. However, in contrast to the standard
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quasiequilibrium, these linear constraints will depend, generally speaking, on
the point on the manifold.

So, let the manifold Ω = F (W ) ⊂ U be given. However, now macroscopic
variables y are not functionals on R or U but just parameters identifying
points on the manifold. The problem is how to extend the definitions of y
onto a neighborhood of F (W ) in such a way that F (W ) will become a solution
to the variational problem:

S(x) → max, Π(x) = y . (5.20)

For each point F (y), we identify Ty ∈ E, the tangent space to the manifold
Ω in Fy, and the subspace Yy ⊂ E, which depends smoothly on y, and which
has the property, Yy ⊕ Ty = E. Let us define Π(x) in the neighborhood of
F (W ) in such a way, that

Π(x) = y, if x− F (y) ∈ Yy . (5.21)

The point F (y) is the solution of the quasiequilibrium problem (5.20) if
and only if

DxS(x)
∣∣
F (y)

∈ Ann Yy . (5.22)

That is, if and only if Yy ⊂ kerDxS(x)
∣∣
F (y)

. It is always possible to con-
struct subspaces Yy with the properties just specified, at least locally, if the
functional DxS

∣∣
F (y)

is not identically equal to zero on Ty.
The construction just described allows to consider practically any mani-

fold as a quasiequilibrium. This construction is required when one seeks the
induced dynamics on a given manifold. Then the vector fields are projected
on Ty parallel to Yy, and this preserves the basic properties of the quasiequi-
librium approximations.

5.3 Thermodynamic Projector
without a Priori Parameterization

Quasiequilibrium manifolds is a place where the entropy and the moment
parameterization “meet each other”. The projector Py for a quasiequilibrium
manifold is nothing but the orthogonal with respect to the entropic scalar
product 〈|〉x projector (5.15). The quasiequilibrium projector preserves the
type of dynamics. Note that in order to preserve the type of dynamics we
needed only one condition to be satisfied,

kerPy ⊂ ker(DxS)x=F (y) . (5.23)

Let us require that the field of projectors, P (x, T ), is defined for any x
and T satisfying the following transversality condition holds
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T �⊂ kerDxS . (5.24)

It follows immediately from the condition (5.23) that in the equilibrium,
P (x∗, T ) is the orthogonal projector onto T (ortogonality is with respect to
the entropic scalar product 〈|〉x∗).

The field of projectors was constructed in the neighborhood of the equilib-
rium following the requirement of the maximal smoothness of P as a function
of gx = DxS and x [22]. It turns out that to the first order in the deviations
x − x∗ and gx − gx∗ , the projector is defined uniquely. Let us first describe
the construction of the projector, and next discuss its uniqueness [10].

Let the subspace T ⊂ E, the point x, and the differential of the entropy
at this point, g = DxS, be defined in such a way that the transversality
condition (5.24) is satisfied. Let us define T0 = T

⋂
ker gx. By the condition

(5.24), T0 �= T . Let us denote, eg = eg(T ) ∈ T the vector in T , such that
eg is orthogonal to T0, and is normalized by the condition g(eg) = 1. The
vector eg is defined unambiguously. The projector PS,x = P (x, T ) is defined
as follows: For any z ∈ E,

PS,x(z) = P0(z) + eggx(z) , (5.25)

where P0 is the orthogonal projector on T0 (orthogonality is with respect
to the entropic scalar product 〈|〉x). The thermodynamic projector (5.25) de-
pends on the point x through the x-dependence of the scalar product 〈|〉x,
and also through the differential of S in x, the functional gx. Further we shall
often omit the index S in PS,x.

Obviously, P (z) = 0 implies g(z) = 0, that is, the thermodynamicity
requirement (5.23) is satisfied. Uniqueness of the thermodynamic projector
(5.25) is supported by the requirement of the maximal smoothness (analytic-
ity) [22] of the projector as a function of gx and 〈|〉x, and is done in two steps
which we sketch here (detailed proof is given in the next section, following
the paper [10]):

1. Considering the expansion of the entropy at the equilibrium up to the
quadratic terms, one demonstrates that in the equilibrium the thermo-
dynamic projector is the orthogonal projector with respect to the scalar
product 〈|〉x∗ .

2. For a given g, one considers auxiliary dissipative dynamic systems (3.1),
which satisfy the condition: For every x′ ∈ U , it holds, gx(J(x′)) = 0,
that is, gx defines an additional linear conservation law for the auxiliary
systems. For the auxiliary systems, the point x is the equilibrium. Elimi-
nating the linear conservation law gx, and using the result of the previous
point, we end up with the formula (5.25).

Thus, the entropic structure defines unambiguously the field of projectors
(5.25), for which the dynamics of any dissipative system (3.1) projected on
any closure manifold remains dissipative.
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5.4 Uniqueness of Thermodynamic Projector

In this section, the uniqueness theorem for thermodynamic projector will be
proved.

5.4.1 Projection of Linear Vector Field

Let E be real Hilbert space with the scalar product 〈 | 〉, Q be a set of linear
bounded operators in E with negatively definite quadratic form 〈Ax | x〉 ≤ 0
for every A ∈ Q, T � E be a nontrivial (T �= {0}) closed subspace. For every
projector P : E → T (P 2 = P ) and linear operator A : E → E we define the
projected operator P (A) : T → T in such a way:

P (A)x = PAx ≡ PAPx for x ∈ T . (5.26)

The space T is the Hilbert space with the scalar product 〈 | 〉. Let QT be a
set of linear bounded operators in T with negatively definite quadratic form
〈Ax | x〉 ≤ 0.

Proposition 1. The inclusion P (Q) ⊆ QT for a projector P : E → T holds
if and only if P is the orthogonal projector with respect to the scalar product
〈 | 〉.

Proof. If P is orthogonal (and, hence, selfadjoint) and 〈Ax | x〉 ≤ 0, then

〈PAPx | x〉 = 〈APx | Px〉 ≤ 0 .

If P is not orthogonal, then Px �= 0 for some vector x ∈ T⊥ in orthogonal
complement of T . Let us consider the negatively definite selfadjoint operator

Ax = − | Px− ax〉〈Px− ax |

(Axy = −(Px− ax)〈Px− ax | y〉). The projection of Ax on T is:

P (Ax) = (a− 1) | Px〉〈Px | .

This operator is not negatively definite for a > 1. �

Immediately from this proof follows the Corollary 1.

Corollary 1. Let Qsym ⊂ Q be a subset of selfadjoint operators in E. The
inclusion P (Qsym) ⊆ QT for a projector P : E → T holds if and only if P is
the orthogonal projector with respect to the scalar product 〈 | 〉. �

Corollary 2. Let Qsym
T ⊂ QT be a subset of selfadjoint operators in T . If

P (Q) ⊆ QT for a projector P : E → T , then P (Qsym) ⊆ Qsym
T .�
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It follows from the Proposition 1 and the obvious remark: If operators A
and P are selfadjoint, then operator PAP is selfadjoint too.

The Proposition 1 means that a projector which transforms every linear
vector field Ax with Lyapunov function 〈x | x〉 into projected vector field
PAPx with the same Lyapunov function is orthogonal with respect to the
scalar product 〈 | 〉.

According to the Corollary 1, the conditions of the Proposition 1 can
be made weaker: A projector which transforms every selfadjoint linear vector
fieldAx with Lyapunov function 〈x | x〉 into projected vector field PAPx with
the same Lyapunov function is orthogonal with respect to the scalar product
〈 | 〉. In physical applications it means, that we can deal with requirement of
dissipation persistence for vector field with Onsager’s reciprocity relations.
The consequence of such a requirement will be the same, as for the class of
all continuous linear vector field: The projector should be orthogonal.

The Corollary 2 is a statement about persistence of the reciprocity rela-
tions.

5.4.2 The Uniqueness Theorem

In this subsection we discuss finite-dimensional systems. There are techni-
cal details which make the theory of nonlinear infinite-dimensional case too
cumbersome: the Hilbert spaces equipped with entropic scalar product 〈 | 〉x
(5.14) for different x consist of different functions. Of course, there exists a
common dense subspace, and geometrical sense remains the same, as for the
finite-dimensional space, but we defer the discussion of all the details till a
special mathematical publication.

Let E be n-dimensional real vector space, U ⊂ E be a domain in E, and
a m-dimensional space of parameters L be defined, m < n, and let W be a
domain in L. We consider differentiable maps, F : W → U , such that, for
every y ∈ W , the differential of F , DyF : L → E, is an isomorphism of L on
a subspace of E. That is, F are the manifolds, immersed in the phase space
of the dynamic system (3.1), and parametrized by parameter set W .

Let the twice differentiable function S on U be given (the entropy). We
assume that S is strictly concave in the second approximation: The quadratic
form defined by second differential of the entropy D2

xS(y, y) is strictly neg-
ative definite in E for every x ∈ U . We will use the entropic scalar product
(13.2). Let S have the interior point of maximum in U : xeq ∈ intU.

The function S is Lyapunov function for a vector field J in U , if

(DxS)(J(x)) ≥ 0 for every x ∈ U .

First of all, we shall study vector fields with Lyapunov function S in
the neighborhood of xeq. Let 0 ∈ intW, F : W → U be an immersion,
and F (0) = xeq. Let us define Ty = imDyF (y) for each y ∈ W. This Ty is
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the tangent space to F (W ) in the point y. Assume that the mapping F is
sufficiently smooth, and F (W ) is not tangent to entropy levels:

Ty � kerDxS|x=F (y)

for every y �= 0. The thermodynamic projector for a given F is a projector-
valued function y �→ Py, where Py : E → Ty is a projector. The thermody-
namic conditions reads: For every smooth vector field J(x) in U with Lya-
punov function S the projected vector field Py(J(F (y))) on F (W ) has the
same Lyapunov function S(F (y)).

Proposition 1 and Corollaries 1, 2 make it possible to prove uniqueness
of the thermodynamic projector for the weakened thermodynamic conditions
too: For every smooth vector field J(x) in U with Lyapunov function S and
selfadjoint Jacobian operator for every equilibrium point (zero of J(x)) the
projected vector field Py(J(F (y))) on F (W ) has the same Lyapunov function
S(F (y)). We shall not discuss it separately.

Proposition 2. Let the thermodynamic projector Py be a smooth function
of y. Then

P0 = P⊥
0 and Py = P⊥

y +O(y) , (5.27)

where P⊥
y is orthogonal projector onto Ty with respect to the entropic scalar

product 〈 | 〉F (y).

Proof. A smooth vector field in the neighborhood of F (0) = xeq can be
presented as A(x − xeq) + o(‖x − xeq‖), where A is a linear operator. If
S is the Lyapunov function for this vector field, then the quadratic form
〈Ax | x〉xeq is negatively definite. Py = P0 +O(y), because Py is a continuous
function. Hence, for P0 we have the problem solved by the Proposition 1, and
P0 = P⊥

0 . �

Theorem 1. Let the thermodynamic projector Py be a smooth function of y.
Then

Py = P0y + egDxS|x=F (y) , (5.28)

where notations of formula (13.4) are used: T0y is the kernel of linear func-
tional DxS|x=F (y) in Ty, P0y : T0y → E is the orthogonal projector with
respect to the entropic scalar product 〈 | 〉F (y) (5.14). Vector eg ∈ T is propor-
tional to the Riesz representation gy of linear functional DxS|x=F (y) in Ty

with respect to the entropic scalar product:

〈gy | x〉F (y) = (DxS|x=F (y))(x)

for every x ∈ Ty, eg = gy/〈gy | gy〉F (y).

Proof. Let y �= 0. Let us consider an auxiliary class of vector fields J on U
with additional linear balance (DxS)x=F (y))(J) = 0. If such a vector field has
Lyapunov function S, then x = F (y) is its equilibrium point: J(F (y)) = 0.
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The class of vector fields with this additional linear balance and Lyapunov
function S is sufficiently rich and we can use the Propositions 1, 2 for dy-
namics on the auxiliary phase space

{z ∈ U |(DxS|x=F (y))(z − F (y)) = 0} .

Hence, the restriction of Py on the hyperplane kerDxS|x=F (y) is P0y. Formula
(5.28) gives the unique continuation of this projector on the whole E. �

5.4.3 Orthogonality of the Thermodynamic Projector
and Entropic Gradient Models

In Euclidean spaces with the given scalar product, we often identify the dif-
ferential of a function f(x) with its gradient: in the orthogonal coordinate
system (gradf(x))i = ∂f(x)/∂xi. However, when dealing with a more general
setting, one can run into problems while making sense out of such a defini-
tion. What to do, if there is no distinguished scalar product, no preselected
orthogonality?

For a given scalar product 〈 | 〉 the gradient gradxf(x) of a function f(x)
at a point x is such a vector g that 〈g|y〉 = Dxf(y) for any vector y, where
Dxf is the differential of function f at a point x. The differential of function
f is the linear functional that provides the best linear approximation near
the given point.

In order to transform a vector into a linear functional one needs a pair-
ing, that means a bilinear form 〈 | 〉. This pairing transforms vector g into
linear functional 〈g|: 〈g|(x) = 〈g|x〉. Any twice differentiable function f(x)
generates a field of pairings: at any point x there exists a second differential
of f , a quadratic form (D2

xf)(∆x,∆x). For a convex function these forms are
positively definite, and we return to the concept of scalar product. Let us cal-
culate a gradient of f using this scalar product. In coordinate representation
the identity 〈gradf(x) | y〉x = (Dxf)(y) (for any vector y) has a form

∑
i,j

(gradf(x))i
∂2f

∂xi∂xj
yj =

∑
i

∂f

∂xj
yj , (5.29)

hence,

(gradf(x))i =
∑

j

(D2
xf)−1

ij

∂f

∂xj
. (5.30)

As we can see, this gradf(x) is the Newtonian direction, and with this gra-
dient the method of steepest descent transforms into the Newton method of
optimization.

Entropy is the concave function and we defined the entropic scalar prod-
uct through negative second differential of entropy (13.2). Let us define the
gradient of entropy by means of this scalar product: 〈gradxS|z〉x = (DxS)(z).
The entropic gradient system is
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dx
dt

= ϕ(x)gradxS , (5.31)

where ϕ(x) > 0 is a positive kinetic multiplier.
The system (5.31) is a representative of a family of model kinetic equa-

tions. One replaces complicated kinetic equations by model equations for
simplicity. The main requirements to such models are: they should be as
simple as possible and should not violate the basic physical laws. The most
known model equation is the BGK model [116] for the collision integral in
the Boltzmann equation. There are different models for simplifying kinet-
ics [117, 118]. The entropic gradient models (5.31) possesses all the required
properties (if the entropy Hessian is sufficiently simple). It was invented for
the lattice Boltzmann kinetics [166]. In many cases it is simpler than the BGK
model, because the gradient model is local in the sense that it uses only the
entropy function and its derivatives at a current state, and it is not necessary
to compute the equilibrium (or quasiequilibrium for quasiequilibrium models
2.92 [22,117]). The entropic gradient model has a one-point relaxation spec-
trum, because near the equilibrium xeq the gradient vector field (5.31) has
an extremely simple linear approximation: d(∆x)/dt = −ϕ(xeq)∆x. It corre-
sponds to a well-known fact that the Newton method minimizes a positively
defined quadratic form in one step.

A direct computation shows that the thermodynamic projector P (13.4)
in a point x onto the tangent space T can be rewritten as

P (J) = P⊥(J) +
gradxS

‖

〈gradxS
‖|gradxS

‖〉x
〈gradxS

⊥|J〉x , (5.32)

where P⊥ is the orthogonal projector onto T with respect the entropic scalar
product, and the gradient gradxS is splitted onto tangent and orthogonal
components:

gradxS = gradxS
‖ + gradxS

⊥ :

gradxS
‖ = P⊥gradxS; gradxS

⊥ = (1 − P⊥)gradxS .

From (5.32) it follows that the two properties of an ansatz manifolds are
equivalent: orthogonality of the thermodynamic projector and invariance of
the manifold with respect to the entropic gradient system (5.31).

Proposition 3. The thermodynamic projector for an ansatz manifold Ω is
orthogonal at any point x ∈ Ω if and only if gradxS ∈ Tx(Ω) at any point
x ∈ Ω. �

It should be possible to think of gradients as infinitesimal displacements
of points x. Usually there are some balances, at least the conservation of the
total probability, and the gradient should belong to a given subspace of zero
balances change. For example, for the classical Boltzmann-Gibbs-Shannon
entropy (x = Ψ(q)), S = −

∫
Ψ(q)(lnΨ(q)−1) dq, the entropic scalar product
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is 〈g(q)|f(q)〉Ψ =
∫
g(q)f(q)/Ψ(q) dq, and gradΨS = −Ψ(q) ln(Ψ(q)) + c(q),

where function (vector) c(q) is orthogonal to a given subspace of zero bal-
ances. This function have to be founded from the conditions of zero balances
for the gradient gradΨS. For example, if the only balance is the conservation
of the total probability,

∫
Ψ(q) dq ≡ 1, then for the classical Boltzmann-

Gibbs-Shannon entropy S

gradΨS = −Ψ(q)
(

ln(Ψ(q)) −
∫
Ψ(q′) ln(Ψ(q′)) dq′

)
. (5.33)

For the Kullback-form entropy (i.e. for the negative free energy or the
Massieu-Planck function)

S = −F/T = −
∫
Ψ(q)

(
ln
(

Ψ(q)
Ψ eq(q)

)
− 1

)
dq ,

the second differential and the entropic scalar product are the same, as for
the classical Boltzmann-Gibbs-Shannon entropy, and

gradΨS = −Ψ(q)
(

ln
(

Ψ(q)
Ψ eq(q)

)
−
∫
Ψ(q′) ln

(
Ψ(q)
Ψ eq(q)

)
dq′
)
. (5.34)

For more complicated system of balances, linear or non-linear, the system of
linear equations for c(q) can also be written explicitly.

5.4.4 Violation of the Transversality Condition,
Singularity of Thermodynamic Projection,
and Steps of Relaxation

The thermodynamic projector transforms the arbitrary vector field equipped
with the given Lyapunov function into a vector field with the same Lyapunov
function for a given ansatz manifold which is not tangent to the Lyapunov
function levels. Sometimes it is useful to create an ansatz which violates this
transversality condition. The point of entropy maximum on such an ansatz is
not the equilibrium. The usual examples are: the non-correlated approxima-
tion x = Ψ(q1, . . . , qn) =

∏
i f(qi), the Gaussian manifold for a non-quadratic

potential, etc. Such manifolds arise often in applications because of simplicity
of computations. However, for these manifolds the thermodynamic projector
becomes singular in the point of entropy maximum x∗ on the ansatz manifold.
This is obvious from (5.32): in the neighborhood of x∗ it has the form

P (J) = P⊥(J) +
gradxS

‖

〈gradxS
‖|gradxS

‖〉x
〈gradxS

⊥|J〉x

= − ∆x

〈∆x|∆x〉x∗
σ(x∗) +O(1) , (5.35)
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where ∆x = x − x∗ is the deviation of x from x∗, σ(x∗) = 〈gradx∗S⊥|J〉x∗

is the entropy production at the point x∗, σ(x∗) �= 0, because the point of
entropy maximum x∗ is not the equilibrium. In this case the projected system
in the neighborhood of x∗ reaches the point x∗ in finite time t∗ as

√
t∗ − t

goes to zero. The entropy difference ∆S = S(x) − S(x∗) = − 1
2 〈∆x|∆x〉x∗ +

o(〈∆x|∆x〉x∗) goes to zero as −σ(x∗)(t∗ − t) (t ≤ t∗).
The singularity of projection has a transparent physical sense. The relax-

ation along the ansatz manifold to the point x∗ is not complete, because this
point is not the equilibrium. This motion should be considered as a step of
relaxation, and after it was completed, the next step should start. In that
sense it is obvious that the motion to the point x∗ along the ansatz manifold
should take the finite time. The results of this step-by-step relaxation can
represent the whole process (with smoothing [26], or without it [27]). The
experience of such a step-by-step computing of relaxation trajectories in the
initial layer problem for the Boltzmann kinetics demonstrated its efficiency
(see [26,27] and Sect. 9.3).

5.4.5 Thermodynamic Projector, Quasiequilibrium,
and Entropy Maximum

The thermodynamic projector projects any vector field which satisfies the
second law of thermodynamics into the vector field which satisfies the second
law too. Other projectors violate the second law. But what does it mean?
Each projector Px onto tangent space of an ansatz manifold in a point x
induces the fast-slow motion splitting: Fast motion is the motion parallel to
kerPx (on the affine subspace x + kerPx in the neighborhood of x), slow
motion is the motion on the slow manifold and in the first order it is parallel
to the tangent space Tx in the point x (in the first order this slow manifold
is the affine subspace x+ imPx, Tx = imPx), and velocity vector of the slow
motion in point x belongs to the image of Px.

If Px is the thermodynamic projector, then x is the point of entropy
maximum on the affine subspace of fast motion x+kerPx. It gives the solution
to the problem

S(z) → max, z ∈ x+ kerPx . (5.36)

This is the most important property of thermodynamic projector. It was
introduced in [9] as the main thermodynamic condition for model reduction.
Let us call it for nonequilibrium points x the property A:

A. kerPx ⊂ kerDxS . (5.37)

If the projector Px with the property A can be continued to the equilib-
rium point, xeq, as a smooth function of x, then in this point kerPx ⊥ imPx.
If this is valid for all systems (including systems with additional linear con-
servation laws), then the following property B holds:
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B. (kerPx

⋂
kerDxS) ⊥ (imPx

⋂
kerDxS) . (5.38)

Of course, orthogonality in (5.37, 5.38) is considered with respect to the
entropic scalar product in the point x.

The property A means that the value of the entropy production persists
for all nonequilibrium points. The sense of the property B is: each point of
the slow manifold can be made an equilibrium point (after a deformation
of the system which leads to an additional balance). And for equilibrium
points the orthogonality condition (5.38) follows from the property A.

If Px does not have the property A, then x is not the point of entropy
maximum on the affine subspace of fast motion x + kerPx, so either the
fast motion along this subspace does not leads to x (and, hence, the point
x does not belong to the slow manifold), or this motion violates the second
law, and the entropy decreases. This is the violation of the second law of
thermodynamics during the fast motion. If Px does not have the property A,
then such a violation is expected for almost every system.

On the other hand, if Px is not the thermodynamic projector, then
there exists a thermodynamically consistent vector field J , with a non-
thermodynamic projection: S is the Lyapunov function for J (it increases),
and is not the Lyapunov function for Px(J) (it decreases in the neighborhood
of x). The difference between violation of the second law of thermodynamics
in fast and slow motions for a projector without the property A is: for the
fast motion this violation typically exists, for the slow (projected) motion
there exist some thermodynamic systems with such a violation. On the other
hand, the violation of thermodynamics in the slow motion is worse for appli-
cations, if we use the slow dynamics as the answer (and assume that the fast
dynamics is relaxed).

If Px does not have the property B, then there exist systems with violation
of the second law of thermodynamics in fast and slow motions. Here we can
not claim that the second law is violated for almost every system, but such
systems exist.

One particular case of the thermodynamic projector is known during sev-
eral decades. It is the quasiequilibrium projector (5.15) on the tangent space
of the quasiequilibrium (MaxEnt) manifold (5.5) S(x) → max, Π(x) = y. The
solution of the problem (5.5) xqe

y parametrized by values of the macroscopic
variables y is the quasiequilibrium manifold.

The formula for the quasiequilibrium projector (5.15) was essentially ob-
tained by Robertson [126]. In his dissertation [126] Robertson studied “the
equation of motion for the generalized canonical density operator”. The gen-
eralized canonical density renders entropy a maximum for given statistical
expectations of the thermodynamic coordinates. Robertson considered the
Liouville equation for a general quantum system. The first main result of
Robertson’s paper is the explicit expression for splitting of the motion in two
components: projection of the motion onto generalized canonical density and
the motion in the kernel of this projection. The obtained projector operator
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is a specific case of the quasiequilibrium projector (5.15). The second result
is the exclusion of the motion in the kernel of quasiequilibrium projector
from the dynamic equation. This operation is similar to the Zwanzig for-
malism [125]. It leads to the integro-differential equation with delay in time
for the generalized canonical density. The quasiequilibrium projector (5.15)
is more general than the projector obtained by Robertson [126] in the fol-
lowing sense: It is derived for any functional S with non-degenerate second
differential D2

xS, for the manifold of conditional maxima of S, and for any
(nonlinear) evolution equation. Robertson emphasized that this operator is
non-Hermitian with respect to standard L2 scalar product and in that sense
is “not a projector at all”. Nevertheless, it is self-adjoint (and, hence, or-
thogonal), but with respect to another (entropic) scalar product. The general
thermodynamic projector (13.4) performs with an arbitrary ansatz manifolds
(not obligatory MaxEnt) and in that sense it is much more general.

The thermodynamic projector (5.15) for the quasiequilibrium manifold
(5.5) is the orthogonal projector with respect to the entropic scalar product
(5.14). In this case both terms in the thermodynamic projector (5.25) are
orthogonal projectors with respect to the entropic scalar product (5.14). The
first term, P0, is orthogonal projector by construction. For the second term,
eg(DxS), it means that the Riesz representation of the linear functional DxS
in the whole space E with respect to the entropic scalar product belongs to the
tangent space of the quasiequilibrium manifold. This Riesz representation is
the gradient of S with respect to 〈|〉x. The following Proposition gives a simple
and important condition of orthogonality of the thermodynamic projector
(5.25). Let Ω be an ansatz manifold, and let V be some quasiequilibrium
manifold, x ∈ Ω

⋂
V , Tx be the tangent space to the ansatz manifold Ω in

the point x. Suppose that there exists a neighborhood of x where V ⊆ Ω. We
use the notation gradxS for the Riesz representation of the linear functional
DxS in the entropic scalar product 〈 | 〉x: 〈gradxS|f〉x ≡ (DxS)(f) for f ∈ E.

Proposition 4. Under given assumptions, gradxS ∈ Tx, and the thermody-
namic projector Px is the orthogonal projector onto Tx with respect to the
entropic scalar product (5.14). �

So, if a point x on the ansatz manifold Ω belongs to some quasiequilib-
rium submanifold V ⊆ Ω, then the thermodynamic projector in this point is
simply the orthogonal projector with respect to the entropic scalar product
(13.2).

Proposition 4 is useful in the following situation. Let the quasiequilib-
rium approximation be more or less satisfactory, but the “relevant degrees of
freedom” depend on the current state of the system. It means that for some
changes of the state we should change the list of relevant macroscopic vari-
ables (moments of distribution function for generating the quasiequilibrium,
for example). Sometimes it can be described as presence of “hidden” degrees
of freedom, which are not moments. In these cases the manifold of reduced
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description should be extended. We have a family of systems of moments
Mα = mα(x), and a family of corresponding quasiequilibrium manifolds Ωα:
The manifold Ωα consist of solutions of optimization problem S(x) → max,
mα(x) = M for given α and all admissible values for M . To create a mani-
fold of reduced description it is possible to join all the moments Mα in one
family, and construct the corresponding quasiequilibrium manifold. Points on
this manifold are parametrized by the family of moments values {Mα} for
all possible α. It leads to a huge increase of the quasiequilibrium manifold.
Another way of extension of the quasiequlibrium manifold is a union of all
the manifolds Ωα for all α. In accordance with the Proposition 4, the ther-
modynamic projector for this union is simply the orthogonal projector with
respect to the entropic scalar product. This kind of manifolds gives a closest
generalization of the quasiequilibrium manifolds. Due to (5.36), the thermo-
dynamic projector gives the presentation of almost arbitrary ansatz as the
quasiequilibrium manifold. This property opens the natural field for applica-
tions of thermodynamic projector: construction of Galerkin approximations
with thermodynamic properties.

Of course, there is a “law of the difficulty conservation”: for the quasi-
equilibrium with the moment parameterization the slow manifold is usually
not explicitly known, and it can be difficult to calculate it. Thermodynamic
projector completely eliminates this difficulty: we can use almost any man-
ifold as appropriate ansatz now. On the other side, on the quasiequilibrium
manifold with the moment parameterization (if it is found) it is easy to find
the dynamics: simply write Ṁ = Π(J). Building of the thermodynamic pro-
jector may require some effort. Finally, if the quasiequilibrium manifold is
found, then it is easy to find the projection of any distributions x on the
quasiequilibrium manifold: x �→ Π(x) �→ xqe

Π(x). It requires just a calculation
of the moments Π(x). The preimage of the point xqe

Π(x) is a set (an affine
manifold) of distributions {x|Π(x − xqe

Π(x)) = 0}, and xqe
Π(x) is the point of

entropy maximum on this set. It is possible, but not so easy, to construct such
a projector of some neighborhood of the manifold Ω onto Ω for the general
thermodynamic projector Px: for a point z from this neighborhood

z �→ x ∈ Ω, if Px(z − x) = 0 . (5.39)

A point x ∈ Ω is the point of entropy maximum on the preimage of x, i.e.
on the affine manifold {z|Px(z − x) = 0}. It is necessary to emphasize that
the map (5.39) can be defined only in a neighborhood of the manifold Ω, but
not in the whole space, because some of affine subspaces {z|Px(z − x) = 0}
for different x ∈ Ω can intersect. Let us introduce a special notation for the
projection of some neighborhood of the manifold Ω onto Ω, associated with
the thermodynamic projector Px (5.39): PΩ : z �→ x. The preimage of a point
x ∈ Ω is:

P−1
Ω x = x+ kerPx , (5.40)
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(or, strictly speaking, a vicinity of x in this affine manifold). Differential of
the operator PΩ at a point x ∈ Ω from the manifold Ω is simply the projector
Px:

PΩ(x+ εz) = x+ εPxz + o(ε) . (5.41)

Generally, differential of PΩ at a point x has not so simple form, if x does
not belong Ω.

The “global extension” PΩ of a field of “infinitesimal” projectors Pf

(f ∈ Ω) is needed for a discussion of projector operators technique, memory
functions and a short memory approximation.

***
Is it necessary to use the thermodynamic projector everywhere? The per-

sistence of dissipation is necessary, because the violation of the second law
may lead to non-physical effects. If one creates a very accurate method for
solution of the initial equation (3.1), then it may be possible to expect that
the persistence of dissipation will hold without additional effort. But this
situation does not appear yet. All methods of model reduction need a special
tool to control the persistence of dissipation.

In order to summarize, let us give three reasons to use the thermodynamic
projector:

1. It guarantees the persistence of dissipation: all the thermodynamic processes
which should produce the entropy conserve this property after projecting,
moreover, not only the sign of dissipation conserves, but also the value of
entropy production and the reciprocity relations are conserved;

2. The coefficients (and, more generally speaking, the right hand part) of ki-
netic equations are less known than the thermodynamic functionals, so, the
universality of the thermodynamic projector (it depends only on thermo-
dynamic data) makes the thermodynamic properties of projected system
as reliable, as for the initial system;

3. It is easy (much more easy than the spectral projector, for example).

5.5 Example: Quasiequilibrium Projector
and Defect of Invariance
for the Local Maxwellians Manifold
of the Boltzmann Equation

The Boltzmann equation remains the most inspiring source for the model
reduction problems. With this subsection we start a series of examples for
the Boltzmann equation.
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5.5.1 Difficulties of Classical Methods
of the Boltzmann Equation Theory

The first systematic and (at least partially) successful method of construct-
ing invariant manifolds for dissipative systems was the celebrated Chapman-
Enskog method [70] for the Boltzmann kinetic equation (see Chap. 2). The
main difficulty of the Chapman-Enskog method [70] are “nonphysical” prop-
erties of high-order approximations. This was stated by a number of authors
and was discussed in detail in [112]. In particular, as it was noted in [72], the
Burnett approximation results in a short-wave instability of the acoustic spec-
tra. This fact contradicts the H-theorem (cf. in [72]). The Hilbert expansion
contains secular terms [112]. The latter contradicts the H-theorem.

The other difficulties of both of these methods are: the restriction upon
the choice of the initial approximation (the local equilibrium approximation),
the requirement for a small parameter, and the usage of slowly converging
Taylor expansion. These difficulties never allow a direct transfer of these
methods on essentially nonequilibrium situations.

The main difficulty of the Grad method [201] is the uncontrollability of
the chosen approximation. An extension of the list of moments can result in a
certain success, but it can also give nothing. Difficulties of moment expansion
in the problems of shock waves and sound propagation are discussed in [112].

Many attempts were made to refine these methods. For the Chapman-
Enskog and Hilbert methods these attempts are based in general on some
better rearrangement of expansions (e.g. neglecting high-order derivatives
[112], reexpanding [112], Pade approximations and partial summing [43,221,
233], etc.). This type of work with formal series is wide spread in physics.
Sometimes the results are surprisingly good – from the renormalization theory
in quantum fields to the Percus-Yevick equation and the ring-operator in
statistical mechanics. However, one should realize that success cannot be
guaranteed. Moreover, rearrangements never remove the restriction upon the
choice of the initial local equilibrium approximation.

Attempts to improve the Grad method are based on quasiequilibrium ap-
proximations [223, 224]. It was found in [224] that the Grad distributions
are linearized versions of appropriate quasiequilibrium approximations (see
also [230, 233, 234]). A method which treats fluxes (e.g. moments with re-
spect to collision integrals) as independent variables in a quasiequilibrium
description was introduced in [233, 234, 246, 248], and will be discussed later
in Example 5.6.

The important feature of quasiequilibrium approximations is that they
are always thermodynamic, i.e. they are consistent with the H-theorem by
construction. However, quasiequilibrium approximations do not remove the
uncontrollability of the Grad method. Dynamic corrections to Grad’s approx-
imation will be addressed later in Chap. 6.
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5.5.2 Boltzmann Equation

The phase space E consists of distribution functions f(v,x) which depend on
the spatial variable x and on velocity variable v. The variable x spans an open
domain Ω3

x ⊆ Rx, and the variable v spans the space R3
v. We require that

f(v,x) ∈ F are nonnegative functions, and also that the following integrals
are finite for every x ∈ Ωx (the existence of the moments and of the entropy):

I(i1i2i3)
x (f) =

∫
vi1
1 v

i2
2 v

i3
3 f(v,x) d3v, i1 ≥ 0, i2 ≥ 0, i3 ≥ 0 ; (5.42)

Hx(f) =
∫
f(v,x)(ln f(v,x) − 1) d3v,H(f) =

∫
Hx(f) d3x . (5.43)

Here and below integration in v is done over R3
v, and it is done over Ωx in x.

For every fixed x ∈ Ωx, I
(···)
x and Hx might be treated as functionals defined

in F.
We write the Boltzmann equation in the form of (3.1) (in the fixed refer-

ence system) using standard notation [112]:

∂f

∂t
= J(f), J(f) = −vs

∂f

∂xs
+Q(f, f) . (5.44)

Here and further in this Example summation in two repeated indices is as-
sumed, and Q(f, f) stands for the Boltzmann collision integral. The latter
represents the dissipative part of the vector field J(f) (5.44).

In this section we consider the case when boundary conditions for equation
(5.44) are relevant to the local with respect to x form of the H-theorem.

For every fixed x, we denote as H0
x(f) the space of linear functionals

4∑
i=0

ai(x)
∫
ψi(v)f(v,x) d3v ,

where ψi(v) represent invariants of a collision (ψ0 = 1, ψi = vi, i =
1, 2, 3, ψ4 = v2). We write (modH0

x(f)) if an expression is valid within the
accuracy of adding a functional from H0

x(f). The local H-theorem states: for
any functional

Hx(f) =
∫
f(v,x)(ln f(v,x) − 1) d3v (modH0

x(f)) (5.45)

the following inequality is valid:

dHx(f)
dt

≡
∫
Q(f, f)

∣∣
f=f(v,x)

ln f(v,x) d3v ≤ 0 . (5.46)

Expression (5.46) is equal to zero if and only if ln f =
∑4

i=0 ai(x)ψi(v).
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Although all functionals (5.45) are equivalent in the sense of the H-
theorem, it is convenient to work with the functional

Hx(f) =
∫
f(v,x)(ln f(v,x) − 1) d3v .

All what was said in this chapter can be applied to the Boltzmann equation
(5.44). Now we shall discuss some specific points.

5.5.3 Local Manifolds

Although the general description of manifolds Ω ⊂ F holds applies also to
the Boltzmann equation, a specific class of manifolds can be defined due to
the different character of spatial and velocity dependencies in the Boltzmann
equation vector field (5.44). These manifolds will be called local manifolds,
and they are constructed as follows. Denote as Floc the set of functions f(v)
with finite integrals

a)I(i1i2i3)(f) =
∫
vi1
1 v

i2
2 v

i3
3 f(v) d3v, i1 ≥ 0, i2 ≥ 0, i3 ≥ 0 ;

b)H(f) =
∫
f(v) ln f(v) d3v . (5.47)

In order to construct a local manifold in F , we, first, consider a manifold
in Floc. Namely, we define a domain A ⊂ B, where B is a linear space, and
consider a smooth immersion A → Floc: a → f(a,v). The set of functions
f(a,v) ∈ Floc, where a spans a domain A, is a manifold in Floc. Second, we
consider all bounded and sufficiently smooth functions a(x): Ωx → A, and
we define the local manifold in F as the set of functions f(a(x),v). Roughly
speaking, the local manifold is a set of functions which are parameterized
with x-dependent functions a(x). A local manifold will be called a locally
finite-dimensional manifold if B is a finite-dimensional linear space.

Locally finite-dimensional manifolds are the natural source of initial ap-
proximations for constructing dynamic invariant manifolds in the Boltzmann
equation theory. For example, the Tamm–Mott-Smith (TMS) approximation
is a locally two-dimensional manifold {f(a−, a+)} which consists of distribu-
tions

f(a−, a+) = a−f− + a+f+ . (5.48)

Here a− and a+ (the coordinates on the manifold ΩTMS = {f(a−, a+)}) are
non-negative real functions of the position vector x, and f− and f+ are fixed
up- and downstream Maxwellians.

The next example is the locally five-dimensional manifold {f(n,u, T )}
which consists of local Maxwellians (LM). The LM manifold consists of dis-
tributions f0 which are labeled with parameters n,u, and T :

f0(n,u, T ) = n

(
2πkBT

m

)−3/2

exp
(
−m(v − u)2

2kBT

)
. (5.49)
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Parameters n,u, and T in (5.49) are functions of x. In this section we
shall not indicate this dependency explicitly.

Distribution f0(n,u, T ) is the unique solution of the variational problem:

H(f) =
∫
f ln f d3v → min

for:

M0(f) =
∫

1 · f d3v ;

Mi(f) =
∫
vif d3v = nui, i = 1, 2, 3 ;

M4(f) =
∫
v2f d3v =

3nkBT

m
+ nu2 . (5.50)

Hence, the LM manifold is the quasiequilibrium manifold. Considering n,u,
and T as five parameters, we see that the LM manifold is parameterized with
the values of Ms(f), s = 0, . . . , 4, which are defined in the neighborhood of the
LM manifold. It is sometimes convenient to consider the variables Ms(f0), s =
0, . . . , 4, as a new coordinates on the LM manifold. The relationship between
the coordinates {Ms(f0)} and {n,u, T} is:

n = M0;ui = M−1
0 Mi, i = 1, 2, 3;T =

m

3kB
M−1

0 (M4 −M−1
0 MiMi) . (5.51)

This is the standard moment parametrization of the quasiequilibrium
manifold.

5.5.4 Thermodynamic Quasiequilibrium Projector

Thermodynamic quasiequilibrium projector Pf0(n,u,T )(J) onto the tangent
space Tf0(n,u,T ) is defined as:

Pf0(n,u,T )(J) =
4∑

s=0

∂f0(n,u, T )
∂Ms

∫
ψsJ d3v . (5.52)

Here we have assumed that n,u, and T are functions of M0, . . . ,M4 (see
relationship (5.51)), and

ψ0 = 1, ψi = vi, i = 1, 2, 3, ψ4 = v2 . (5.53)

Calculating derivatives in (5.52), and next returning to variables n,u, and
T , we obtain:

Pf0(n,u,T )(J) = f0(n,u, T ) (5.54)

×
{[

1
n
− mui

nkBT
(vi − ui) +

(
mu2

3nkB
− T

n

)(
m(v − u)2

2kBT 2
− 3

2T

)]∫
J d3v
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+
[

m

nkBT
(vi − ui) −

2mui

3nkB

(
m(v − u)2

2kBT 2
− 3

2T

)]∫
viJ d3v

+
m

3nkB

(
m(v − u)2

2kBT 2
− 3

2T

)∫
v2J d3v

}
.

It is sometimes convenient to rewrite (5.55) as

Pf0(n,u,T )(J) = f0(n,u, T )
4∑

s=0

ψ
(s)
f0(n,u,T )

∫
ψ

(s)
f0(n,u,T )J d3v . (5.55)

Here

ψ
(0)
f0(n,u,T ) = n−1/2, ψ

(i)
f0(n,u,T ) = (2/n)1/2ci, (5.56)

ψ
(4)
f0(n,u,T ) = (2/3n)1/2(c2 − (3/2)); ci = (m/2kBT )1/2(vi − ui), i = 1, 2, 3 .

It is easy to check that
∫
f0(n,u, T )ψ(k)

f0(n,u,T )ψ
(l)
f0(n,u,T ) d3v = δkl . (5.57)

Here δkl is the Kronecker delta.

5.5.5 Defect of Invariance for the LM Manifold

The defect of invariance for the LM manifold at the point f0(n,u, T ) for the
Boltzmann equation vector field in the co-moving reference system is:

∆(f0(n,u, T )) = Pf0(n,u,T )

(
−(vs − us)

∂f0(n,u, T )
∂xs

+Q(f0(n,u, T ))
)

−
(
−(vs − us)

∂f0(n,u, T )
∂xs

+Q(f0(n,u, T ))
)

= Pf0(n,u,T )

(
−(vs − us)

∂f0(n,u, T )
∂xs

)
+ (vs − us)

∂f0(n,u, T )
∂xs

. (5.58)

Substituting (5.55) into (5.58), we obtain:

∆(f0(n,u, T )) = f0(n,u, T )
{(

m(v − u)2

2kBT
− 5

2

)
(vi − ui)

∂ lnT
∂xi

+
m

kBT
(((vi − ui)(vs − us) −

1
3
δis(v − u)2)

∂us

∂xi

}
. (5.59)

The LM manifold is not a dynamic invariant manifold of the Boltzmann
equation and the defect (5.59) is not equal to zero. Indeed, inhomogeneity of
the temperature and of the flow velocity drives the invariant manifold away
from the local equilibrium.
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5.6 Example: Quasiequilibrium Closure Hierarchies
for the Boltzmann Equation

Explicit method of constructing approximations (the Triangle Entropy Me-
thod [233]) is developed for strongly nonequilibrium problems of Boltz-
mann’s–type kinetics, i.e. when the standard moment variables become in-
sufficient. This method enables one to treat any complicated nonlinear func-
tionals that fit best the physics of a problem (such as, for example, rates of
processes) as new independent variables.

The method is applied to the problem of derivation of hydrodynamics
from the Boltzmann equation. New macroscopic variables are introduced
(moments of the Boltzmann collision integral, or scattering rates). They are
treated as independent variables rather than as infinite moment series. This
approach gives the complete account of rates of scattering processes. Trans-
port equations for scattering rates are obtained (the second hydrodynamic
chain), similar to the usual moment chain (the first hydrodynamic chain). Us-
ing the triangle entropy method, three different types of the macroscopic de-
scription are considered. The first type involves only moments of distribution
functions, and results coincide with those of the Grad method in the Maxi-
mum Entropy version. The second type of description involves only scattering
rates. Finally, the third type involves both the moments and the scattering
rates (the mixed description). The second and the mixed hydrodynamics
are sensitive to the choice of the collision model. The second hydrodynam-
ics is equivalent to the first hydrodynamics only for Maxwell molecules, and
the mixed hydrodynamics exists for all types of collision models excluding
Maxwell molecules. Various examples of the closure of the first, of the second,
and of the mixed hydrodynamic chains are considered for the hard spheres
model. It is shown, in particular, that the complete account of scattering
processes leads to a renormalization of transport coefficients.

5.6.1 Triangle Entropy Method

In the present subsection, which is of introductory character, we shall refer, to
be specific, to the Boltzmann kinetic equation for a one-component gas whose
state (in the microscopic sense) is described by the one-particle distribution
function f(v,x, t) depending on the velocity vector v = {vk}3

k=1, the spatial
position x = {xk}3

k=1 and time t. The the Boltzmann equation describes the
evolution of f and in the absence of external forces is

∂tf + vk∂kf = Q(f, f) , (5.60)

where ∂t ≡ ∂/∂t is the time partial derivative, ∂k ≡ ∂/∂xk is partial deriva-
tive with respect to k-th component of x, summation in two repeating indices
is assumed, and Q(f, f) is the collision integral (its concrete form is of no im-
portance right now, just note that it is functional-integral operator quadratic
with respect to f).
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The Boltzmann equation possesses two properties principal for the sub-
sequent reasoning (for the basic properties of the Boltzmann equation see
Chap. 2) .

1. There exist five functions ψα(v) (additive collision invariants),

1,v, v2

such that for any their linear combination with coefficients depending on x, t
and for arbitrary f the following equality is true:

∫ 5∑
α=1

aα(x, t)ψα(v)Q(f, f) dv = 0 , (5.61)

provided the integrals exist.
2. The equation (5.60) possesses global Lyapunov functional: the H-

function,

H(t) ≡ H[f ] =
∫
f(v,x, t) ln f(v,x, t) dv dx , (5.62)

the derivative of which by virtue of the equation (5.60) is non-positive under
appropriate boundary conditions:

dH(t)/dt ≤ 0 . (5.63)

Grad’s method [201] and its variants construct closed systems of equations
for macroscopic variables when the latter are represented by moments (or,
more general, linear functionals) of the distribution function f (hence their
alternative name is the “moment methods”). The entropy maximum method
for the Boltzmann equation is of particular importance for the subsequent
reasoning. It consists in the following. A finite set of moments describing the
macroscopic state is chosen. The distribution function of the quasiequilibrium
state under given values of the chosen moments is determined, i.e. the problem
is solved

H[f ] → min, for M̂i[f ] = Mi, i = 1, . . . , k , (5.64)

where M̂i[f ] are linear functionals with respect to f ; Mi are the corresponding
values of chosen set of k macroscopic variables. The quasiequilibrium distri-
bution function f∗(v,M(x, t)), M = {M1, . . . ,Mk}, parametrically depends
on Mi, its dependence on space x and on time t being represented only by
M(x, t). Then the obtained f∗ is substituted into the Boltzmann equation
(5.60), and operators M̂i are applied on the latter formal expression.

In the result we have closed systems of equations with respect to Mi(x, t),
i = 1, . . . , k:

∂tMi + M̂i[vk∂kf
∗(v,M)] = M̂i[Q(f∗(v,M), f∗(v,M))] . (5.65)

The following heuristic explanation can be given to the entropy method.
A state of the gas can be described by a finite set of moments on some time



5.6 Example: Quasiequilibrium Hierarchies for the Boltzmann Equation 105

scale θ only if all the other moments (“fast”) relax on a shorter time scale time
τ, τ � θ, to their values determined by the chosen set of “slow” moments,
while the slow ones almost do not change appreciably on the time scale τ .
In the process of the fast relaxation the H-function decreases, and in the
end of this fast relaxation process a quasiequilibrium state sets in with the
distribution function being the solution of the problem (5.64). Then “slow”
moments relax to the equilibrium state by virtue of (5.65).

The entropy method has a number of advantages in comparison with the
classical Grad’s method. First, being not necessarily restricted to any specific
system of orthogonal polynomials, and leading to solving an optimization
problem, it is more convenient from the technical point of view. Second, and
ever more important, the resulting quasiequilibrium H-function, H∗(M) =
H[f∗(v,M)], decreases due of the moment equations (5.65).

Let us note one common disadvantage of all the moment methods, and, in
particular, of the entropy method. Macroscopic parameters, for which these
methods enable to obtain closed systems, must be moments of the distri-
bution function. On the other hand, it is easy to find examples when the
interesting macroscopic parameters are nonlinear functionals of the distrib-
ution function. In the case of the one-component gas these are the integrals
of velocity polynomials with respect to the collision integral Q(f, f) of (5.60)
(scattering rates of moments). For chemically reacting mixtures these are the
reaction rates, and so on. If the characteristic relaxation time of such nonlin-
ear macroscopic parameters is comparable with that of the “slow” moments,
then they should be also included into the list of “slow” variables on the same
footing.

In this Example for constructing closed systems of equations for non-
linear (in a general case) macroscopic variables the triangle entropy method
is used. Let us outline the scheme of this method.

Let a set of macroscopic variables be chosen: linear functionals M̂ [f ] and
nonlinear functionals (in a general case) N̂ [f ]:

M̂ [f ] =
{
M̂1[f ], . . . , M̂k[f ]

}
, N̂ [f ] =

{
N̂1[f ], . . . , N̂l[f ]

}
.

Then, just as for the problem (5.64), the first quasiequilibrium approximation
is constructed under fixed values of the linear macroscopic parameters M :

H[f ] → min for M̂i[f ] = Mi, i = 1, . . . , k , (5.66)

and the resulting distribution function is f∗(v,M). After that, we seek the
true quasiequilibrium distribution function in the form,

f = f∗(1 + ϕ) , (5.67)

where ϕ is a deviation from the first quasiequilibrium approximation. In order
to determine ϕ, the second quasiequilibrium approximation is constructed.
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Let us denote ∆H[f∗, ϕ] as the quadratic term in the expansion of the H-
function into powers of ϕ in the neighbourhood of the first quasiequilibrium
state f∗. The distribution function of the second quasiequilibrium approxi-
mation is the solution to the problem,

∆H[f∗, ϕ] → min for
M̂i[f∗ϕ] = 0, i = 1, . . . , k ,
∆N̂j [f∗, ϕ] = ∆Nj , j = 1, . . . , l , (5.68)

where ∆N̂j are linear operators characterizing the linear with respect to
ϕ deviation of (nonlinear) macroscopic parameters Nj from their values,
N∗

j = N̂j [f∗], in the first quasiequilibrium state. Note the importance of
the homogeneous constraints M̂i[f∗ϕ] = 0 in the problem (5.68). Physically,
it means that the variables ∆Nj are “slow” in the same sense, as the variables
Mi, at least in the small neighborhood of the first quasiequilibrium f∗. The
obtained distribution function,

f = f∗(v,M)(1 + ϕ∗∗(v,M,∆N)) (5.69)

is used to construct the closed system of equations for the macroparameters
M , and ∆N . Because the functional in the problem (5.68) is quadratic, and
all constraints in this problem are linear, it is always explicitly solvable.

Further in this section some examples of using the triangle entropy method
for the one-component gas are considered. Applications to chemically reacting
mixtures were discussed in [246,247].

5.6.2 Linear Macroscopic Variables

Let us consider the simplest example of using the triangle entropy method,
when all the macroscopic variables of the first and of the second quasiequi-
librium states are the moments of the distribution function.

Quasiequilibrium Projector

Let µ1(v), . . . , µk(v) be the microscopic densities of the moments

M1(x, t), . . . ,Mk(x, t)

which determine the first quasiequilibrium state,

Mi(x, t) =
∫
µi(v)f(v,x, t) dv , (5.70)

and let ν1(v), . . . , νl(v) be the microscopic densities of the moments

N1(x, t), . . . , Nl(x, t)



5.6 Example: Quasiequilibrium Hierarchies for the Boltzmann Equation 107

determining together with (5.60) the second quasiequilibrium state,

Ni(x, t) =
∫
νi(v)f(v,x, t) dv . (5.71)

The choice of the set of the moments of the first and second quasiequilibrium
approximations depends on a specific problem. Further on we assume that
the microscopic density µ ≡ 1 corresponding to the normalization condition is
always included in the list of microscopic densities of the moments of the first
quasiequilibrium state. The distribution function of the first quasiequilibrium
state results from solving the optimization problem,

H[f ] =
∫
f(v) ln f(v) dv → min (5.72)

for ∫
µi(v)f(v) dv = Mi, i = 1, . . . , k .

Let us denote by M = {M1, . . . ,Mk} the moments of the first quasiequi-
librium state, and by f∗(v,M) let us denote the solution of the problem
(5.72).

The distribution function of the second quasiequilibrium state is sought
in the form,

f = f∗(v,M)(1 + ϕ) . (5.73)

Expanding the H-function (5.62) in the neighbourhood of f∗(v,M) into pow-
ers of ϕ to second order we obtain,

∆H(x, t) ≡ ∆H[f∗, ϕ] = H∗(M) +
∫
f∗(v,M) ln f∗(v,M)ϕ(v) dv

+
1
2

∫
f∗(v,M)ϕ2(v) dv , (5.74)

where H∗(M) = H[f∗(v,M)] is the value of the H-function in the first
quasiequilibrium state.

When searching for the second quasiequilibrium state, it is necessary that
the true values of the moments M coincide with their values in the first
quasiequilibrium state, i.e.,

Mi =
∫
µi(v)f∗(v,M)(1 + ϕ(v)) dv

=
∫
µi(v)f∗(v,M) dv = M∗

i , i = 1, . . . , k . (5.75)

In other words, the set of the homogeneous conditions on ϕ in the problem
(5.68), ∫

µi(v)f∗(v,M)ϕ(v) dv = 0, i = 1, . . . , k , (5.76)
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ensures a shift (change) of the first quasiequilibrium state only due to the
new moments N1, . . . , Nl. In order to take this condition into account auto-
matically, let us introduce the following structure of a Hilbert space:

1. Define the scalar product

(ψ1, ψ2) =
∫
f∗(v,M)ψ1(v)ψ2(v) dv . (5.77)

2. Let Eµ be the linear hull of the set of moment densities

{µ1(v), . . . , µk(v)} .

Let us construct a basis of Eµ {e1(v), . . . , er(v)} that is orthonormal in
the sense of the scalar product (5.77):

(ei, ej) = δij , (5.78)

i, j = 1, . . . , r; δij is the Kronecker delta.
3. Define a projector P̂ ∗ on the first quasiequilibrium state,

P̂ ∗ψ =
r∑

i=1

ei(ei, ψ) . (5.79)

The projector P̂ ∗ is orthogonal: for any pair of functions ψ1, ψ2,

(P̂ ∗ψ1, (1̂ − P̂ ∗)ψ2) = 0 , (5.80)

where 1̂ is the unit operator. Then the condition (5.76) amounts to

P̂ ∗ϕ = 0 , (5.81)

and the expression for the quadratic part of the H-function (5.74) takes
the form,

∆H[f∗, ϕ] = H∗(M) + (ln f∗, ϕ) + (1/2)(ϕ,ϕ) . (5.82)

Now, let us note that the function ln f∗ is invariant with respect to the
action of the projector P̂ ∗:

P̂ ∗ ln f∗ = ln f∗ . (5.83)

This follows directly from the solution of the problem (5.72) using of the
method of Lagrange multipliers:

f∗ = exp
k∑

i=1

λi(M)µi(v) ,
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where λi(M) are Lagrange multipliers. Thus, if the condition (5.81) is satis-
fied, then from (5.80) and (5.83) it follows that

(ln f∗, ϕ) = (P̂ ∗ ln f∗, (1̂ − P̂ ∗)ϕ) = 0 .

Condition (5.81) is satisfied automatically, if ∆Ni are taken as follows:

∆Ni = ((1̂ − P̂ ∗)νi, ϕ), i = 1, . . . , l . (5.84)

Thus, the problem (5.68) of finding the second quasiequilibrium state
reduces to

∆H[f∗, ϕ] −H∗(M) = (1/2)(ϕ,ϕ) → min for
((1̂ − P̂ ∗)νi, ϕ) = ∆Ni, i = 1, . . . , l . (5.85)

Note that it is not ultimatively necessary to introduce the structure of the
Hilbert space. Moreover that may be impossible, since the “distribution func-
tion” and the “microscopic moment densities” are, strictly speaking, elements
of different (conjugate one to another) spaces, which may be not reflexive.
However, in the examples considered below the mentioned difference is not
manifested.

In the remainder of this section we demonstrate how the triangle entropy
method is related to Grad’s moment method.

Ten-Moment Grad Approximation

Let us take the five additive collision invariants as moment densities of the
first quasiequilibrium state:

µ0 = 1; µk = vk (k = 1, 2, 3); µ4 =
mv2

2
, (5.86)

where vk are Cartesian components of the velocity, and m is particle’s mass.
Then the solution to the problem (5.72) is the local Maxwell distribution
function f (0)(v,x, t):

f (0) = n(x, t)
(

2πkBT (x, t)
m

)−3/2

exp
{
−m(v − u(x, t))2

2kBT (x, t)

}
, (5.87)

where
n(x, t) =

∫
f(v) dv is local number density,

u(x, t) = n−1(x, t)
∫
f(v)v dv is the local flow density,

T (x, t) =
∫
f(v)m(v−u(x,t))2

3kBn(x,t) dv is the local temperature,
kB is the Boltzmann constant.

Orthonormalization of the set of moment densities (5.86) with the weight
(5.87) gives one of the possible orthonormal basis
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e0 =
5kBT −m(v − u)2

(10n)1/2kBT
,

ek =
m1/2(vk − uk)

(nkBT )1/2
, k = 1, 2, 3 , (5.88)

e4 =
m(v − u)2

(15n)1/2kBT
.

For the moment densities of the second quasiequilibrium state let us take,

νik = mvivk, i, k = 1, 2, 3 . (5.89)

Then

(1̂ − P̂ (0))νik = m(vi − ui)(vk − uk) − 1
3
δikm(v − u)2 , (5.90)

and, since ((1̂ − P̂ (0))νik, (1̂ − P̂ (0))νls) = (δilδks + δklδis)PkBT/m, where
P = nkBT is the pressure, and σik = (f, (1̂ − P̂ (0))νik) is the traceless part
of the stress tensor, then from (5.73), (5.86), (5.87), (5.90) we obtain the
distribution function of the second quasiequilibrium state in the form

f = f (0)

(
1 +

σikm

2PkBT

[
(vi − ui)(vk − uk) − 1

3
δik(v − u)2

])
(5.91)

This is precisely the distribution function of the ten-moment Grad approxi-
mation (let us recall that here summation in two repeated indices is assumed).

Thirteen-Moment Grad Approximation

In addition to (5.86), (5.89), let us extend the list of moment densities of the
second quasiequilibrium state with the functions

ξi =
mviv

2

2
, i = 1, 2, 3 . (5.92)

The corresponding orthogonal complements to the projection on the first
quasiequilibrium state are

(1̂ − P̂ (0))ξi =
m

2
(vi − ui)

(
(v − u)2 − 5kBT

m

)
. (5.93)

The moments corresponding to the densities (1̂− P̂ (0))ξi are the components
of the heat flux vector qi:

qi = (ϕ, (1̂ − P̂ (0))ξi) . (5.94)

Since
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((1̂ − P̂ (0))ξi, (1̂ − P̂ (0))νlk) = 0 ,

for any i, k, l, then the constraints

((1̂ − P̂ (0))νlk, ϕ) = σlk, ((1̂ − P̂ (0))ξi, ϕ) = qi

in the problem (5.85) are independent, and Lagrange multipliers correspond-
ing to ξi are

1
5n

(
kBT

m

)2

qi . (5.95)

Finally, taking into account (5.86), (5.91), (5.93), (5.95), we find the dis-
tribution function of the second quasiequilibrium state in the form

f = f (0)

(
1 +

σikm

2PkBT

(
(vi − ui)(vk − uk) − 1

3
δik(v − u)2

)

+
qim

PkBT
(vi − ui)

(
m(v − u)2

5kBT
− 1

))
, (5.96)

which coincides with the thirteen-moment Grad distribution function [201].
Let us remark on the thirteen-moment approximation. From (5.96) it fol-

lows that for large enough negative values of (vi−ui) the thirteen-moment dis-
tribution function becomes negative. This peculiarity of the thirteen-moment
approximation is due to the fact that the moment density ξi is odd-order poly-
nomial of vi. In order to eliminate this difficulty, one may consider from the
very beginning that in a finite volume the square of velocity of a particle
does not exceed a certain value v2

max, which is finite owing to the finiteness
of the total energy, and qi is such that when changing to infinite volume
qi → 0, v2

max → ∞ and qi(vi − ui)(v − u)2 remains finite.
On the other hand, the solution to the optimization problem (5.64) does

not exist (is not normalizable), if the highest-order velocity polynomial is
odd, as it is for the full 13-moment quasiequilibrium.

Approximation (5.91) yields ∆H (5.82) as follows:

∆H = H(0) + n
σikσik

4P 2
, (5.97)

while ∆H corresponding to (5.96) is,

∆H = H(0) + n
σikσik

4P 2
+ n

qkqkρ

5P 3
, (5.98)

where ρ = mn, and H(0) is the local equilibrium value of the H-function

H(0) =
5
2
n lnn− 3

2
n lnP − 3

2
n

(
1 + ln

2π
m

)
. (5.99)

These expressions coincide with the corresponding expansions of the qua-
siequilibrium H-functions obtained by the entropy method, if microscopic
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moment densities of the first quasiequilibrium approximation are chosen as
1, vi, and vivj , or as 1, vi, vivj , and viv

2. As it was noted in [224], they differs
from the H-functions obtained by the Grad method (without the maximum
entropy hypothesis), and in contrast to the latter they give proper entropy
balance equations.

The transition to the closed system of equations for the moments of the
first and of the second quasiequilibrium approximations is accomplished by
proceeding from the chain of the Maxwell moment equations, which is equiv-
alent to the Boltzmann equation. Substituting f in the form of f (0)(1 + ϕ)
into equation (5.60), and multiplying by µi(v), and integrating over v, we
obtain

∂t(1, P̂ (0)µi(v)) + ∂t(ϕ(v), µi(v)) + ∂k(vkϕ(v), µi(v))
+∂k(vk, µi(v)) = MQ[µi, ϕ] . (5.100)

Here

MQ[µi, ϕ] =
∫
Q(f (0)(1 + ϕ), f (0)(1 + ϕ))µi(v) dv

is a “moment” (corresponding to the microscopic density) µi(v) with respect
to the collision integral (further we term MQ the collision moment or the
scattering rate). Now, if one uses f given by equations (5.91), and (5.96) as
a closure assumption, then the system (5.100) gives the ten- and thirteen-
moment Grad equations, respectively, whereas only linear terms in ϕ should
be kept when calculating MQ.

Let us note some limitations of truncating the moment hierarchy (5.100)
by means of the quasiequilibrium distribution functions (5.91) and (5.96)
(or for any other closure which depends on the moments of the distribution
functions only). When such closure is used, it is assumed implicitly that the
scattering rates in the right hand side of (5.100) “rapidly” relax to their
values determined by “slow” (quasiequilibrium) moments. Scattering rates
are, generally speaking, independent variables. This peculiarity of the chain
(5.100), resulting from the nonlinear character of the Boltzmann equation,
distinct it essentially from the other hierarchy equations of statistical me-
chanics (for example, from the BBGKY chain which follows from the linear
Liouville equation). Thus, equations (5.100) are not closed twice: into the left
hand side of the equation for the i-th moment enters the (i+ 1)-th moment,
and the right hand side contains additional variables – scattering rates.

A consequent way of closure of (5.100) should address both sets of vari-
ables (moments and scattering rates) as independent variables. The triangle
entropy method enables to do this.
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5.6.3 Transport Equations for Scattering Rates
in the Neighbourhood of Local Equilibrium.
Second and Mixed Hydrodynamic Chains

In this section we derive equations of motion for the scattering rates. It proves
convenient to use the following form of the collision integral Q(f, f):

Q(f, f)(v) =
∫
w(v′

1, v
′|v, v1) (f(v′)f(v′

1) − f(v)f(v1)) dv′ dv′
1 dv1 ,

(5.101)
where v and v1 are velocities of the two colliding particles before the collision,
v′ and v′

1 are their velocities after the collision, w is a kernel responsible for
the post-collision relations v′(v,v1) and v′

1(v,v1), momentum and energy
conservation laws are taken into account in w by means of corresponding
δ-functions. The kernel w has the following symmetry property with respect
to its arguments:

w(v′
1,v

′|v,v1) = w(v′
1,v

′|v1,v) = w(v′,v′
1 | v1,v) = w(v,v1 | v′,v′

1) .
(5.102)

Let µ(v) be the microscopic density of a moment M . The corresponding
scattering rate MQ[f, µ] is defined as follows:

MQ[f, µ] =
∫
Q(f, f)(v)µ(v) dv . (5.103)

First, we should obtain transport equations for scattering rates (5.103),
analogous to the moment’s transport equations. Let us restrict ourselves to
the case when f is represented in the form,

f = f (0)(1 + ϕ) , (5.104)

where f (0) is local Maxwell distribution function (5.87), and all the quadratic
with respect to ϕ terms will be neglected below. It is the linear approximation
around the local equilibrium.

Since, by detailed balance,

f (0)(v)f (0)(v1) = f (0)(v′)f (0)(v′
1) (5.105)

for all such (v, v1), (v′, v′
1) which are related to each other by conservation

laws, we have,
MQ[f (0), µ] = 0, for any µ . (5.106)

Further, by virtue of conservation laws,

MQ[f, P̂ (0)µ] = 0, for any f . (5.107)

From (5.105)–(5.107) it follows,
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MQ[f (0)(1 + ϕ), µ] = MQ[ϕ, (1̂ − P̂ (0))µ] (5.108)

= −
∫
w(v′,v′

1 | v,v1)f (0)(v)f (0)(v1)
{

(1 − P̂ (0))µ(v)
}

dv′ dv′
1 dv1 dv .

We used notation,

{ψ(v)} = ψ(v) + ψ(v1) − ψ(v′) − ψ(v′
1) . (5.109)

Also, it proves convenient to introduce the microscopic density of the scat-
tering rate, µQ(v):

µQ(v) =
∫
w(v′,v′

1 | v,v1)f (0)(v1)
{

(1 − P̂ (0))µ(v)
}

dv′ dv′
1 dv1 . (5.110)

Then,
MQ[ϕ, µ] = −(ϕ, µQ) , (5.111)

where (·, ·) is the L2 scalar product with the weight f (0) (5.87). This is a
natural scalar product in the space of functions ϕ (5.104) (multipliers), and it
is obviously related to the entropic scalar product in the space of distribution
functions at the local equilibrium f (0), which is the L2 scalar product with
the weight (f (0))−1.

Now, we obtain transport equations for the scattering rates (5.111). We
write down the time derivative of the collision integral due to the Boltzmann
equation,

∂tQ(f, f)(v) = T̂Q(f, f)(v) + R̂Q(f, f)(v) , (5.112)

where

T̂Q(f, f)(v) =
∫
w(v′,v′

1 | v,v1) [f(v)v1k∂kf(v1) + f(v1)vk∂kf(v)

− f(v′)v′1k∂kf(v′
1) − f(v′

1)v
′
k∂kf(v′)] dv′ dv′

1 dv1 dv ; (5.113)

R̂Q(f, f)(v) =
∫
w(v′,v′

1 | v,v1) [Q(f, f)(v′)f(v′
1) +Q(f, f)(v′

1)f(v′)

− Q(f, f)(v1)f(v) −Q(f, f)(v)f(v1)] dv′ dv′
1 dv1 dv . (5.114)

Using the representation,

∂kf
(0)(v) = Ak(v)f (0)(v) ; (5.115)

Ak(v) = ∂k ln(nT−3/2) +
m

kBT
(vi − ui)∂kui +

m(v − u)2

2kBT
∂k lnT ,

and after some simple transformations using the relation

{Ak(v)} = 0 , (5.116)

in linear with respect to ϕ deviation from f (0) (5.104), we obtain in (5.112):
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T̂Q(f, f)(v) = ∂k

∫
w(v′,v′

1 | v,v1)f (0)(v1)f (0)(v) {vkϕ(v)} dv′
1 dv′ dv1

+
∫
w(v′,v′

1 | v,v1)f (0)(v1)f (0)(v) {vkAk(v)} dv′ dv′
1 dv1

+
∫
w(v′,v′

1 | v,v1)f (0)(v)f (0)(v1) [ϕ(v)Ak(v1)(v1k − vk)

+ϕ(v1)Ak(v)(vk − v1k) + ϕ(v′)Ak(v′
1)(v

′
k − v′1k)

+ ϕ(v′
1)Ak(v′)(v′1k − v′k)] dv′

1 dv′ dv1 ; (5.117)

R̂Q(f, f)(v) =
∫
w(v′,v′

1 | v,v1)f (0)(v)f (0)(v1) {ξ(v)} dv′
1 dv′ dv1 ;

ξ(v) =
∫
w(v′,v′

1 | v,v1)f (0)(v1) {ϕ(v)} dv′
1 dv′ dv1 ; (5.118)

∂tQ(f, f)(v) (5.119)

= −∂t

∫
w(v′,v′

1 | v,v1)f (0)(v)f (0)(v1) {ϕ(v)} dv′ dv′
1 dv1 .

Let us use two identities:
1. From the conservation laws it follows

{ϕ(v)} =
{

(1̂ − P̂ (0))ϕ(v)
}
. (5.120)

2. The symmetry property of the kernel w (5.102) which follows from (5.102),
(5.105)

∫
w(v′,v′

1 | v,v1)f (0)(v1)f (0)(v)g1(v) {g2(v)} dv′ dv′
1 dv1 dv (5.121)

=
∫
w(v′,v′

1 | v,v1)f (0)(v1)f (0)(v)g2(v) {g1(v)} dv′ dv′
1 dv1 dv .

It is valid for any two functions g1, g2 ensuring existence of the integrals, and
also using the first identity.

Now, multiplying (5.117)–(5.120) by the microscopic moment density
µ(v), performing integration over v (and using identities (5.120), (5.122))
we obtain the required transport equation for the scattering rate in the lin-
ear neighborhood of the local equilibrium:

−∂t∆MQ[ϕ, µ] ≡ −∂t(ϕ, µQ)

= (vkAk(v), µQ((1̂ − P̂ (0))µ(v)))

+∂k(ϕ(v)vk, µQ((1̂ − P̂ (0))µ(v))) +
∫
w(v′,v′

1 | v,v1)f (0)(v1)f (0)(v)

×
{

(1̂ − P̂ (0))µ(v)
}
Ak(v1)(v1k − vk)ϕ(v) dv′ dv′

1 dv1dv

+
(
ξ(v), µQ

(
(1̂ − P̂ (0))µ(v)

))
. (5.122)
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The chain of equations (5.122) for scattering rates is a counterpart of
the hydrodynamic moment chain (5.100). Below we call (5.122) the second
chain, and (5.100) – the first chain. Equations of the second chain are coupled
in the same way as the first one: the last term in the right part of (5.91)
(ξ, µQ((1̂− P̂ (0))µ)) depends on the whole totality of moments and scattering
rates and may be treated as a new variable. Therefore, generally speaking,
we have an infinite sequence of chains of increasingly higher orders. Only
in the case of a special choice of the collision model – Maxwell potential
U = −κr−4 – this sequence degenerates: the second and the higher-order
chains are equivalent to the first (see below).

Let us restrict our consideration to the first and second hydrodynamic
chains. Then a deviation from the local equilibrium state and transition to
a closed macroscopic description may be performed in three different ways
for the microscopic moment density µ(v). First, one can specify the moment
M̂ [µ] and perform a closure of the chain (5.100) by the triangle method given
in previous subsections. This leads to Grad’s moment method. Second, one
can specify scattering rate M̂Q[µ] and perform a closure of the second hydro-
dynamic chain (5.91). Finally, one can consider simultaneously both M̂ [µ] and
M̂Q[µ] (mixed chain). Quasiequilibrium distribution functions corresponding
to the last two variants will be constructed in the following subsection. The
hard spheres model (H.S.) and Maxwell’s molecules (M.M.) will be consid-
ered.

5.6.4 Distribution Functions
of the Second Quasiequilibrium Approximation
for Scattering Rates

First Five Moments and Collision Stress Tensor

Elsewhere below the local equilibrium f (0)(5.87) is chosen as the first quasi-
equilibrium approximation.

Let us choose νik = mvivk(5.89) as the microscopic density µ(v) of the
second quasiequilibrium state. Let us write down the corresponding scattering
rate (collision stress tensor) ∆ik in the form,

∆ik = −(ϕ, νQik) , (5.123)

where

νQik(v) = m

∫
w(v′,v′

1 | v1,v)f (0)(v1)

×
{

(vi − ui)(vk − uk) − 1
3
δik(v − u)2

}
dv′ dv′

1 dv1 (5.124)

is the microscopic density of the scattering rate ∆ik.
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The quasiequilibrium distribution function of the second quasiequilibrium
approximation for fixed scattering rates (5.123) is determined as the solution
to the problem

(ϕ,ϕ) → min for
(ϕ, νQik) = −∆ik . (5.125)

The method of Lagrange multipliers yields

ϕ(v) = λikνQik(v) ,
λik(νQik, νQls) = ∆ls , (5.126)

where λik are the Lagrange multipliers.
In the examples of collision models considered below (and in general, for

centrally symmetric interactions) νQik is of the form

νQik(v) = (1̂ − P̂ (0))νik(v)Φ((v − u)2) , (5.127)

where (1̂− P̂ (0))νik is determined by relationship (5.90) only, and function Φ
depends only on the absolute value of the peculiar velocity (v − u). Then

λik = r∆ik ;
r−1 = (2/15)

(
Φ2((v − u)2), (v − u)4

)
, (5.128)

and the distribution function of the second quasiequilibrium approximation
for scattering rates (5.123) is given by the expression

f = f (0)(1 + r∆ikµQik) . (5.129)

The form of the function Φ((v − u)2), and the value of the parameter r
are determined by the model of particle’s interaction. In the Appendix to this
example, they are found for hard spheres and Maxwell molecules models (see
(5.187)–(5.192)). The distribution function (5.129) is given by the following
expressions:
For Maxwell molecules:

f = f (0)

×
{

1 + µM.M.
0 m(2P 2kBT )−1∆ik

(
(vi − ui)(vk − uk) − 1

3
δik(v − u)2

)}
,

µM.M.
0 =

kBT
√

2m
3πA2(5)

√
κ
, (5.130)

where µM.M.
0 is viscosity coefficient in the first approximation of the Chapman-

Enskog method (it is exact in the case of Maxwell molecules), κ is a force
constant, A2(5) is a number, A2(5) ≈ 0.436 (see [70]);
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For the hard spheres model:

f = f (0)

×
{

1 +
2
√

2r̃mµH.S.
0

5P 2kBT
∆ik

∫ −1

+1

exp
{
−m(v − u)2

2kBT
y2

}
(1 − y2)(1 + y2)

×
(
m(v − u)2

2kBT
(1 − y2) + 2

)
dy
(

(vi − ui)(vk − uk) − 1
3
δik(v − u)2

)}
,

µH.S.
0 = (5

√
kBTm)/(16

√
πσ2) , (5.131)

where r̃ is a number represented as follows:

r̃−1 =
1
16

∫ +1

−1

∫ +1

−1

α−11/2β(y)β(z)γ(y)γ(z)

×(16α2 + 28α(γ(y) + γ(z)) + 63γ(y)γ(z)) dy dz , (5.132)
α = 1 + y2 + z2, β(y) = 1 + y2, γ(y) = 1 − y2 .

Numerical value of r̃−1 is 5.212, to third decimal point accuracy.
In the mixed description, the distribution function of the second qua-

siequilibrium approximation under fixed values of the moments and of the
scattering rates corresponding to the microscopic density (5.89) is determined
as a solution of the problem

(ϕ,ϕ) → min for (5.133)
((1̂ − P̂ (0))νik, ϕ) = σik ,

(νQik, ϕ) = ∆ik .

Taking into account the relation (5.127), we obtain the solution of the
problem (5.133) in the form,

ϕ(v) = (λikΦ((v−u)2)+βik)((vi−ui)(vk−uk)−(1/3)δik(v−u)2) . (5.134)

Lagrange multipliers λik, βik are determined from the system of linear
equations,

ms−1λik + 2PkBTm
−1βik = σik ,

mr−1λik +ms−1βik = ∆ik , (5.135)

where
s−1 = (2/15)(Φ((v − u)2), (v − u)4) . (5.136)

If the solvability condition of the system (5.135) is satisfied,

D = m2s−2 − 2PkBTr
−1 �= 0 , (5.137)

then the distribution function of the second quasiequilibrium approximation
exists and takes the form
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f = f (0)
{
1 + (m2s−2 − 2PkBTr

−1)−1 (5.138)

×[(ms−1σik − 2PkBTm
−1∆ik)Φ((v − u)2)

+ (ms−1∆ik −mr−1σik)]((vi − ui)(vk − uk) − (1/3)δik(v − u)2)
}
.

The condition (5.137) means independence of the set of moments σik from
the scattering rates ∆ik. If this condition is not satisfied, then the scattering
rates ∆ik can be represented in the form of linear combinations of σik (with
coefficients depending on the hydrodynamic moments). Then the closed by
means of (5.129) equations of the second chain are equivalent to the ten
moment Grad equations, while the mixed chain does not exist. This happens
only in the case of Maxwell molecules. Indeed, in this case

s−1 = 2P 2kBT (m2µM.M.
0 )−1;D = 0 .

The transformation changing ∆ik to σik is

µM.M.
0 ∆ikP

−1 = σik . (5.139)

For hard spheres:

s−1 =
5P 2kBT

4
√

2µH.S.
0 m2

· s̃−1, s̃−1 =
∫ +1

−1

γ(y)(β(y))−7/2

(
β(y) +

7
4
γ(y)

)
dy .

(5.140)
The numerical value of s̃−1 is 1.115 to third decimal point. The condition

(5.136) takes the form,

D =
25
32

(
P 2kBT

mµH.S.
0

)2

(s̃−2 − r̃−1) �= 0 . (5.141)

Consequently, for the hard spheres model the distribution function of the
second quasiequilibrium approximation of the mixed chain exists and is de-
termined by the expression

f = f (0)
{
1 +m(4PkBT (s̃−2 − r̃−1))−1

×
[(

σiks̃
−1 − 8

√
2

5P
µH.S.

0 ∆ik

)∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)

×(1 − y2)(1 + y2)
(
m(v − u)2

2kBT
(1 − y2) + 2

)
dy

+2

(
s̃−1 · 8

√
2

5P
µH.S.

0 ∆ik − r̃−1σik

)]

×((vi − ui)(vk − uk) − 1
3
δik(v − u)2

)}
. (5.142)
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First Five Moments, Collision Stress Tensor,
and Collision Heat Flux Vector

Distribution function of the second quasiequilibrium approximation which
takes into account the collision heat flux vector Q is constructed in a similar
way. The microscopic density ξQi is

ξQi(v) =
∫
w(v′,v′

1 | v,v1)f (0)(v1)
{

(1̂ − P̂ (0))
v2

i v

2

}
dv′ dv′

1 dv1 .

(5.143)
The desired distribution functions are the solutions to the following op-

timization problems: for the second chain it is the solution to the problem
(5.125) with the additional constraints,

m(ϕ, ξQi) = Qi . (5.144)

For the mixed chain, the distribution functions is the solution to the problem
(5.133) with additional conditions,

m(ϕ, ξQi) = Qi , (5.145)

m(ϕ, (1̂ − P̂ (0))ξi) = qi . (5.146)

Here ξi = viv
2/2 (see (5.92)). In the Appendix functions ξQi are found

for Maxwell molecules and hard spheres (see (5.192)–(5.197)). Since

(ξQi, νQkj) = ((1̂ − P̂ (0))ξi, νQkj)

= (ξQi, (1̂ − P̂ (0))νkj) = ((1̂ − P̂ (0))ξi, (1̂ − P̂ (0))νkj) = 0 , (5.147)

the conditions (5.144) are linearly independent from the constraints of the
problem (5.125), and the conditions (5.146) do not depend on the constraints
of the problem (5.133).

Distribution function of the second quasiequilibrium approximation of the
second chain for fixed ∆ik, Qi is of the form,

f = f (0)(1 + r∆ikνQik + ηQiξQi) . (5.148)

The parameter η is determined by the relation

η−1 = (1/3)(ξQi, ξQi) . (5.149)

According to (5.196), for Maxwell molecules

η =
9m3(µM.M.

0 )2

10P 3(kBT )2
, (5.150)

and the distribution function (5.148) is
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f = f (0)

×
{
1 + µM.M.

0 m(2P 2kBT )−1∆ik((vi − ui)(vk − uk) − (1/3)δik(v − u)2)

+ µM.M.
0 m(P 2kBT )−1(vi − ui)

(
m(v − u)2

5kBT
− 1

)}
. (5.151)

For hard spheres (see Appendix)

η = η̃
64m3(µH.S.

0 )2

125P 3(kBT )2
, (5.152)

where η is a number equal to 16.077 to third decimal point accuracy.
The distribution function (5.148) for hard spheres takes the form

f = f (0)

{
1 +

2
√

2r̃mµH.S.
0

5P 2kBT
∆ik

∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)
β(y)γ(y)

×
(
m(v − u)2

2kBT
γ(y) + 2

)
dy
(

(vi − ui)(vk − uk) − 1
3
δik(v − u)2

)

+
2
√

2η̃m3µH.S.
0

25P 2(kBT )2
Qi

[
(vi − ui)

(
(v − u)2 − 5kBT

m

)

×
∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)
β(y)γ(y)

(
m(v − u)2

2kBT
γ(y) + 2

)
dy

+(vi − ui)(v − u)2
∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)
β(y)γ(y)

×
(
σ(y)

m(v − u)2

2kBT
+ δ(y)

)
dy
]}

. (5.153)

The functions β(y), γ(y), σ(y) and δ(y) are

β(y) = 1 + y2, γ(y) = 1 − y2, σ(y) = y2(1 − y2), δ(y) = 3y2 − 1 . (5.154)

The condition of existence of the second quasiequilibrium approximation
of the mixed chain (5.137) should be supplemented with the requirement

R = m2τ−2 − 5P (kBT )2

2m
η−1 �= 0 . (5.155)

Here

τ−1 =
1
3

(
(1̂ − P̂ (0))

v2
i v

2
, ξQi(v)

)
. (5.156)

For Maxwell molecules

τ−1 =
(
5P 2k2

BT
2
)
/
(
3µM.M.

0 m3
)
,

and the solvability condition (5.155) is not satisfied. Distribution function of
the second quasiequilibrium approximation of mixed chain does not exist for
Maxwell molecules. The variables Qi are changed to qi by the transformation
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3µM.M.
0 Qi = 2Pqi . (5.157)

For hard spheres,

τ−1 = τ̃−1 =
25(PkBT )2

8
√

2m3µH.S.
0

, (5.158)

where

τ̃−1 =
1
8

∫ +1

−1

β−9/2(y)γ(y){63(γ(y) + σ(y))

+7β(y)(4 − 10γ(y) + 2δ(y) − 5σ(y))
+β2(y)(25γ(y) − 10δ(y) − 40) + 20β3(y)}dy . (5.159)

The numerical value of τ̃−1 is about 4.322. Then the condition (5.155) is
verified:

R ≈ 66m−4(PkBT )4(µH.S.
0 )2 .

Finally, for the fixed values of σik,∆ik, qi and Qi the distribution function
of the second quasiequilibrium approximation of the second chain for hard
spheres is of the form,

f = f (0)

{
1 +

m

4PkBT
(s̃−2 − r̃−1)−1

×
[(

s̃−1σik − 8
√

2
5P

µH.S.
0 ∆ik

)∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)

×β(y)γ(y)
(
m(v − u)2

2kBT
γ(y) + 2

)
dy + 2

(
s̃−1 8

√
2

5P
µH.S.

0 ∆ik − r̃−1σik

)]

×
(

(vi − ui)(vk − uk) − 1
3
δik(v − u)2

)

+
m2

10(PkBT )2
(τ̃−2 − η̃−1)−1

[(
τ̃−1qi −

4
√

2
5P

µH.S.
0 Qi

)

×
(

(vi − ui)
(

(v − u)2 − 5kBT

m

)∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)

×β(y)γ(y)
(
m(v − u)2

2kBT
γ(y) + 2

)
dy + (vi − ui)(v − u)2

×
∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)
β(y)γ(y)

(
m(v − u)2

2kBT
σ(y) + δ(y)

)
dy
)

+ 2

(
4
√

2
5P

µH.S.
0 τ̃−1Qi − η̃−1qi

)
(vi − ui)

(
(v − u)2 − 5kBT

m

)]}
.

(5.160)
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Thus, the expressions (5.130), (5.131), (5.142), (5.151), (5.153) and (5.160)
give distribution functions of the second quasiequilibrium approximation of
the second and mixed hydrodynamic chains for Maxwell molecules and hard
spheres. They are analogues of ten- and thirteen-moment Grad approxima-
tions (5.91), (5.95).

The next step is to close the second and mixed hydrodynamic chains by
means of the found distribution functions.

5.6.5 Closure of the Second and Mixed Hydrodynamic Chains

Second Chain, Maxwell Molecules

The distribution function of the second quasiequilibrium approximation un-
der fixed ∆ik for Maxwell molecules (5.130) presents the simplest example of
the closure of the first (5.99) and second (5.122) hydrodynamic chains. With
the help of it, we obtain from (5.99) the following transport equations for the
moments of the first (local equilibrium) approximation:

∂tρ+ ∂i(uiρ) = 0 ;
ρ(∂tuk + ui∂iuk) + ∂kP + ∂i(P−1µM.M.

0 ∆ik) = 0 ;
3
2
(∂tP + ui∂iP ) +

5
2
P∂iui + P−1µM.M.

0 ∆ik∂iuk = 0 . (5.161)

Now, let us from the scattering rate transport chain (5.122) find an equation
for ∆ik which closes the system (5.123). Substituting (5.130) into (5.122), we
obtain after some computation:

∂t∆ik + ∂s(us∆ik) +∆is∂suk +∆ks∂sui −
2
3
δik∆ls∂sul

+P 2(µM.M.
0 )−1

(
∂iuk + ∂kui −

2
3
δik∂sus

)

+P (µM.M.
0 )−1∆ik +∆ik∂sus = 0 . (5.162)

For comparison, let us give ten-moment Grad equations obtained when clos-
ing the chain (5.99) by the distribution functions (5.91):

∂tρ+ ∂i(uiρ) = 0 ;
ρ(∂tuk + ui∂iuk) + ∂kP + ∂iσik = 0 ;
3
2
(∂tP + ui∂iP ) +

5
2
P∂iui + σik∂iuk = 0 ; (5.163)

∂tσik + ∂s(usσik) + P

(
∂iuk + ∂kui −

2
3
δik∂sus

)

+σis∂suk + σks∂sui −
2
3
δikσls∂sul + P (µM.M.

0 )−1σik = 0 . (5.164)
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Using the explicit form of µM.M.
0 (5.130), it is easy to verify that the trans-

formation (5.139) maps the systems (5.161), (5.162) and (5.163) into one an-
other. This is a consequence of the degeneration of the mixed hydrodynamic
chain which was already discussed. The systems (5.161), (5.162) and (5.163)
are essentially equivalent. These specific properties of Maxwell molecules re-
sult from the fact that for them the microscopic densities (1̂− P̂ (0))vivk and
(1̂ − P̂ (0))viv

2 are eigen functions of the linearized collision integral.

Second Chain, Hard Spheres

We now turn our attention to the closure of the second and of the mixed
hydrodynamic chains for the hard spheres model. Substituting the distribu-
tion function (5.131) into (5.99) and (5.122), we obtain an analogue of the
systems (5.161) and (5.162) (second chain, hard spheres):

∂tρ+ ∂i(uiρ) = 0 ; (5.165)

ρ(∂tuk + ui∂iuk) + ∂kP + r̃s̃−1 · 8
√

2
5

∂i(µH.S.
0 P−1∆ik) = 0 ;

3
2
(∂tP + ui∂iP ) +

5
2
P∂iui + r̃s̃−1 · 8

√
2

5
µH.S.

0 P−1∆ik∂iuk = 0 ;

∂t∆ik + ∂s(us∆ik) + r̃ã1(∂sus)∆ik +
5s̃−1P 2

8
√

2µH.S.
0

(
∂iuk + ∂kui −

2
3
δik∂sus

)

+r̃(ã1 + ã2)
(
∆is∂suk +∆ks∂sui −

2
3
δik∆ls∂sul

)

+r̃(ã1 + ã3)
(
∆is∂kus +∆ks∂ius −

2
3
δik∆ls∂sul

)
+ (P r̂ã0/µ

H.S.
0 )∆ik = 0 .

The dimensionless parameters ã0, ã1, ã2 and ã3 are determined by the quadra-
tures

ã1 =
1
16

∫ +1

−1

∫ +1

−1

β(y)β(z)γ2(z)γ(y)α−13/2(y, z)

×{99γ(y)γ(z)(γ(z) − 1) + 18α(y, z)(2γ(z)(γ(z) − 1)
+4γ(y)(4γ(z) − 3)) + 8α2(y, z)(4γ(z) − 3)}dy dz ;

ã2 =
1
16

∫ +1

−1

∫ +1

−1

β(y)β(z)γ(y)γ2(z)α−11/2(y, z){63γ(y)γ(z)

+14α(y, z)(3γ(y) + 2γ(z)) + 24α2(y, z)}dy dz ;

ã3 =
1
16

∫ +1

−1

∫ +1

−1

α−11/2(y, z)β(y)β(z)γ(y)γ(z)

×{63γ(y)γ(z)(γ(z) − 1) + 14(2γ(z)(γ(z) − 1)
+γ(y)(3γ(z) − 2))α(y, z) + 8α2(y, z)(3γ(z) − 2)}dydz ; (5.166)
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ã0 ≈ 1
1536

√
2

∫ +1

−1

∫ +1

−1

∫ +1

−1

(ψ(x, y, z))−13/2β(x)β(y)β(z)

×γ(x)γ(y)γ(z){10395γ(x)γ(y)γ(z) + 3780ψ(x, y, z)
×(γ(x)γ(y) + γ(x)γ(z) + γ(y)γ(z)) + 1680ψ2(x, y, z)
×(γ(x) + γ(y) + γ(z)) + 960ψ3(x, y, z)}dxdy dz ;
ψ(x, y, z) = 1 + x2 + y2 + z2 . (5.167)

Their numerical values are ã1 ≈ 0.36, ã2 ≈ 5.59, ã3 ≈ 0.38, ã0 ≈ 2.92 to
second decimal point.

Mixed Chain

The closure of the mixed hydrodynamic chain with the functions (5.142) gives
the following modification of the system of equations (5.166):

∂tρ+ ∂i(uiρ) = 0 ;
ρ(∂tuk + ui∂iuk) + ∂kP + ∂iσik = 0 ;
3
2
(∂tP + ui∂iP ) +

5
2
P∂iui + σik∂iuk = 0 ;

∂tσik + ∂s(usσik) + P

(
∂iuk + ∂kui −

2
3
δik∂sus

)

+σis∂suk + σks∂sui −
2
3
δikσls∂sul +∆ik = 0 ;

∂t∆ik + ∂s(us∆ik) +
5P 2

s̃8
√

2µH.S.
0

(
∂iuk + ∂kui −

2
3
δik∂sus

)

+
5P

4
√

2µH.S.
0 (s̃−2 − r̃−1)

{
ã1

2
(∂sus)αik

+
1
2
(ã1 + ã2)

(
αis∂suk + αks∂sui −

2
3
δikαls∂sul

)

+
1
2
(ã1 + ã3)

(
αis∂kus + αks∂ius −

2
3
δikαls∂sul

)

+b̃1(∂sus)βik + (b̃1 + b̃2)
(
βis∂suk + βks∂sui −

2
3
δikβls∂sul

)

+(b̃1 + b̃3)
(
βis∂kus + βks∂ius −

2
3
δikβls∂sul

)}

+
5P 2

8
√

2(µH.S.
0 )2(s̃−2 − r̃−1)

{
5

8
√

2r̃
βik + ã0αik

}
= 0 ; (5.168)

αik = s̃−1σik − 8
√

2
5P

· µH.S.
0 ∆ik ;

βik = s̃−1 8
√

2
5P

· µH.S.
0 ∆ik − r̃−1σik . (5.169)
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It is clear from the analysis of distribution functions of the second quasiequi-
librium approximations of the second hydrodynamic chain that in the Grad
moment method the function Φ(c2) is substituted by a constant. Finally, let
us note the simplest consequence of the variability of function Φ(c2). If µ0

is multiplied with a small parameter (Knudsen number Kn equal to the ra-
tio of the main free path the to characteristic spatial scale of variations of
hydrodynamic values), then the first with respect to Kn approximation of
collision stress tensor ∆(0)

ik has the form,

∆
(0)
ik = P

(
∂iuk + ∂kui −

2
3
δik∂su

)
(5.170)

for Maxwell molecules, and

∆
(0)
ik =

5r̃
8
√

2s̃ã0

P

(
∂iuk + ∂kui −

2
3
δik∂sus

)
(5.171)

for hard spheres. Substitution of these expressions into the momentum equa-
tions results in the Navier-Stokes equations with effective viscosity coefficients
µeff ,

µeff = µM.M.
0 (5.172)

for Maxwell molecules and

µeff = ã−1
0 µH.S.

0 (5.173)

for hard spheres. When using ten-moment Grad approximation which does
not distinguish Maxwell molecules and hard spheres, we obtain µeff = µH.S.

0 .
Some consequences of this fact are studied below in Sect. 5.7.

5.6.6 Appendix:
Formulas of the Second Quasiequilibrium Approximation
of the Second and Mixed Hydrodynamic Chains
for Maxwell Molecules and Hard Spheres

Write νQik (5.124) in the standard form:

νQik =
∫
f (0) | v1 − v |

{
(vi − ui)(vk − uk) − 1

3
δik(v − u)2

}
bdbdεdv1 ,

(5.174)
where b is the impact parameter, ε is the angle between the plane containing
the trajectory of the particle being scattered in the system of the center
of mass and the plane containing the entering asymptote, the trajectory,
and a certain fixed direction. It is convenient to switch to the dimensionless
velocity c:

ci =
(

m

2kBT

)1/2

(vi − ui) (5.175)
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and to the dimensionless relative velocity g:

gi =
1
2

(
m

kBT

)1/2

(v1i − ui) (5.176)

After standard transformations and integration with respect to ε (see [70])
we obtain in (5.174)

νQik =
3P
m

π−1/2 (5.177)

×
∫

exp(−c21)ϕ
(2)
1 (g)

(
(c1i − ci)(c1k − ck) − 1

3
δik(c1 − c)2

)
dc1 .

Here

ϕ
(2)
1 =

∫
(1 − cos2 χ) | v1 − v | b(χ)

∣∣∣∣ db
dχ

∣∣∣∣dχ , (5.178)

and χ is an angle between the vectors g and g′.
The dependence of ϕ(2)

1 on the vector g is determined by the choice of the
model of particle’s interaction.

For Maxwell molecules,

ϕ
(2)
1 =

(
2κ
m

)1/2

A2(5) , (5.179)

where κ is a force constant, A2(5) is a number, A2(5) ≈ 0.436.
For the model of hard spheres

ϕ
(2)
1 =

√
2σ2

3

(
kBT

m

)1/2

| c1 − c | , (5.180)

where σ is diameter of the sphere modelling the particle.
Substituting (5.179) and (5.180) into (5.178), we transform the latter to

the form:
for Maxwell molecules

νQik =
3P
4m

(
2κ
πm

)1/2

A2(5) exp(−c2)
(

∂

∂ci

∂

∂ck
− 1

3
δik

∂

∂cs

∂

∂cs

)
TM.M.(c2) ;

TM.M.(c2) =
∫

exp(−x2 − 2xkck) dx ; (5.181)

for hard spheres

νQik =
Pσ2

2
√

2m

(
kBT

πm

)1/2

exp(−c2)
(

∂

∂ci

∂

∂ck
− 1

3
δik

∂

∂cs

∂

∂cs

)
TH.S.(c2) ;

TH.S.(c2) =
∫

| x | exp(−x2 − 2xkck) dx . (5.182)
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It is an easy matter to perform integration in (5.181), the integral is equal
to π3/2ec2

.
Therefore for Maxwell molecules,

νQik =
3
2
nπ

(
2κ
m

)1/2

A2(5)
(

(vi − ui)(vk − uk) − 1
3
δik(v − u)2

)
. (5.183)

The integral TH.S. in (5.182) can be transformed as follows:

TH.S.(c2) = 2π + π

∫ +1

−1

exp(c2(1 − y2))c2(1 + y2) dy . (5.184)

Then for the model of hard spheres,

νQik =
√

2πnσ2

(
kBT

m

)3/2(
cick − 1

3
δikc

2

)

×
∫ +1

−1

exp(−c2y2)(1 + y2)(1 − y2)(c2(1 − y2) + 2) dy . (5.185)

Let us note a useful relationship:

dnTH.S./d(c2)n = π

∫ +1

−1

exp(c2(1 − y2))

×(1 + y2)(1 − y2)n−1(c2(1 − y2) + n) dy, n ≥ 1 . (5.186)

Use the expressions for the viscosity coefficient µ0 which are obtained in
the first approximation of the Chapman-Enskog method:
for Maxwell molecules,

µM.M.
0 =

(
2m
κ

)1/2
kBT

3πA2(5)
; (5.187)

for hard spheres,

µH.S.
0 =

5(kBTm)1/2

16π1/2σ2
. (5.188)

Transformation of (5.183), (5.185) to the form of (5.127) gives the follow-
ing functions Φ((v − u)2):
for Maxwell molecules,

Φ = P/µM.M.
0 ; (5.189)

for hard spheres

Φ =
5P

16
√

2µH.S.
0

∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)

× (1 + y2)(1 − y2)
(
m(v − u)2

2kBT
(1 − y2) + 2

)
dy . (5.190)
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The parameter r from (5.128) is:
for Maxwell molecules:

r =
(
mµM.M.

0

)2
/(2P 3kBT ) ; (5.191)

for hard spheres:

r = r̃
64
(
mµM.M.

0

)2
25P 3kBT

. (5.192)

The dimensionless parameter r̃ is represented as follows:

r̃−1 =
1
16

∫ +1

−1

∫ +1

−1

α−11/2β(y)β(z)γ(y)γ(z)

× (16α2 + 28α(γ(y) + γ(z)) + 63γ(y)γ(z)) dy dz . (5.193)

Here and below the following notations are used:

β(y) = 1 + y2 , γ(y) = 1 − y2 , α = 1 + y2 + z2 . (5.194)

Numerical value of r̃−1 is 5.212 to third decimal point.
The parameter (5.136) is:

for Maxwell molecules

s−1 = (2P 2kBT )/
(
m2µM.M.

0

)
; (5.195)

for hard spheres

s−1 = s̃−1 5
√

2P 2kBT

8m2µH.S.
0

. (5.196)

The dimensionless parameter s̃−1 is of the form

s̃−1 =
∫ +1

−1

γ(y)β−7/2(y)
(
β(y) +

7
4
γ(y)

)
dy . (5.197)

Numerical value of s̃−1 is 1.115 to third decimal point.
The scattering rate density (5.143) is of the form,

ξQi =
√

2
(
kBT

m

)3/2 ∫
f (0)(v1) | v1 − v |

{
ci

(
c2 − 5

2

)}
bdbdεdv1 .

(5.198)
Standard transformation of the expression

{
ci(c2 − 5/2)

}
and integration

with respect to ε change (5.198) to the form,

ξQi =
P√
2πm

∫
exp(−c21)ϕ

(2)
1 (3(c21 − c2)(c1i − ci) − (c1 − c)2(c1i + ci)) dc1 .

(5.199)
Further, using the expressions (5.179) and (5.180) for ϕ(2)

1 , we obtain:
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for Maxwell molecules:

ξQi =
P

m2

(
κkBT

π

)1/2

A2(5) exp
(
−c2

)
D̂iT

M.M.(c2) ; (5.200)

for hard spheres:

ξQi =
PkBTσ

2

√
πm2

exp(−c2)D̂iT
H.S.(c2) . (5.201)

The operator D̂i is of the form

1
4
∂

∂ci

∂

∂cs

∂

∂cs
+

3
2
cs

∂

∂cs

∂

∂ci
− 1

2
ci

∂

∂cs

∂

∂cs
. (5.202)

The operator D̂i acts on the function ψ(c2) as follows:

d2ψ

d(c2)2
2ci

(
c2 − 5

2

)
+ cic

2

(
d2ψ

d(c2)2
− d3ψ

d(c2)3

)
. (5.203)

From (5.200), (5.201) we obtain:
for Maxwell molecules:

ξQi =
P

3µM.M.
0

(vi − ui)
(

(v − u)2 − 5kBT

m

)
; (5.204)

for hard spheres:

ξQi =
5P

16
√

2µH.S.
0

{
(vi − ui)

(
(v − u)2 − 5kBT

m

)
(5.205)

×
∫ +1

−1

exp
(
−m(v − u)2

2kBT
y2

)
β(y)γ(y)

(
m(v − u)

2kBT

2

γ(y) + 2

)
dy

+(vi − ui)(v − u)2

×
∫ +1

−1

exp

(
−m(v − u)

2kBT

2

y2

)
β(y)γ(y)

(
σ(y)

m(v − u)
2kBT

2

+ δ(y)

)
dy

}
.

The functions σ(y), δ(y) are of the form

σ(y) = y2(1 − y2) , δ(y) = 3y2 − 1 . (5.206)

The parameter η from (5.149) is:
for Maxwell molecules:

η =
9m3

(
µM.M.

0

)2
10P 3(kBT )2

; (5.207)

for hard spheres:
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η = η̃
64m3

(
µH.S.

0

)2
125P 3(kBT )2

. (5.208)

The dimensionless parameter η̃ is of the form

η̃−1 =
∫ +1

−1

∫ +1

−1

β(y)β(z)γ(y)γ(z)α−13/2

{
639
32

(γ(y)γ(z) + σ(y)σ(z)

+ σ(y)γ(z) + σ(z)γ(y)) +
63
16
α(2γ(y) + 2γ(z) − 5γ(y)γ(z)

+ 2(σ(y) + σ(z)) + γ(z)δ(y) + γ(y)δ(z) + σ(y)δ(z) + σ(z)δ(y))

+
7
8
α2(4 − 10γ(y) − 10γ(z)) +

25
4
γ(y)γ(z) + 2δ(y) (5.209)

+ 2δ(z) − 5σ(y) − 5σ(z) − 5
2
(γ(z)δ(y) + γ(y)δ(z) + δ(y)δ(z))

+
1
4
α3

(
−20 +

25
4

(γ(y) + γ(z)) − 5(δ(y) + δ(z))
)

+
5
2
α4

}
dy dz .

Numerical value of η̃−1 is 0.622 to second decimal point.
Finally, from (5.204), (5.206) we obtain τ−1(5.156):

for Maxwell molecules

τ−1 =
5(PkBT )2

3µM.M.
0 m3

; (5.210)

for hard spheres

τ−1 = τ̃−1 25P 2(kBT )2

8
√

2m3µH.S.
0

;

τ̃−1 =
1
8

∫ +1

−1

β−9/2(y)γ(y){63(γ(y) + σ(y))

+ 7β(y)(4 − 10γ(y) + 2δ(y) − 5σ(y)) + 20β3(y)
+ β2(y)(25γ(y) − 10δ(y) − 40)}dy ≈ 4.322 . (5.211)

5.7 Example: Alternative Grad Equations
and a “New Determination of Molecular Dimensions”
(Revisited)

Here we apply the method developed in the previous section to a classical
problem: determination of molecular dimensions (as diameters of equivalent
hard spheres) from experimental viscosity data. Scattering rates (moments
of collision integral) are treated as new independent variables, and as an
alternative to moments of the distribution function, to describe the rarefied
gas near local equilibrium. A version of entropy maximum principle is used
to derive the Grad-like description in terms of a finite number of scattering
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rates. New equations are compared to the Grad moment system in the heat
non-conductive case. Estimations for hard spheres demonstrate, in particular,
some 10% excess of the viscosity coefficient resulting from the scattering
rate description, as compared to the Grad moment estimation. All necessary
details of the second chain formalism are explained below.

The classical Grad moment method provides an approximate solution to
the Boltzmann equation, and leads to a closed system of equations where
hydrodynamic variables ρ, u, and P (density, mean flux, and pressure) are
coupled to a finite set of non-hydrodynamic variables. The latter are usually
the stress tensor σ and the heat flux q constituting 10 and 13 moment Grad
systems. The Grad method was originally introduced for diluted gases to
describe regimes beyond the normal solutions [70], but later it was used, in
particular, as a prototype of certain phenomenological schemes in nonequi-
librium thermodynamics [235].

However, the moments do not constitute the unique system of non-
hydrodynamic variables, and the exact dynamics might be equally expressed
in terms of other infinite sets of variables (possibly, of a non-moment nature).
Moreover, as long as one shortens the description to only a finite subset of
variables, the advantage of the moment description above other systems is
not obvious. As we have seen it above, the two sets of variables

5.7.1 Nonlinear Functionals Instead of Moments
in the Closure Problem

Here we consider a new system of non-hydrodynamic variables, scattering
rates MQ(f):

MQ i1i2i3(f) =
∫
µi1i2i3Q(f, f) dv ; (5.212)

µi1i2i3 = mvi1
1 v

i2
2 v

i3
3 ,

which, by definition, are the moments of the Boltzmann collision integral
Q(f, f):

Q(f, f) =
∫
w(v′,v′

1,v,v1) {f(v′)f(v′
1) − f(v)f(v1)} dv′ dv′

1 dv1 .

Here w is the probability density of a change of the velocities, (v,v1) →
(v′,v′

1), of the two particles after their encounter, and w is defined by a
model of pair interactions. The description in terms of the scattering rates
MQ (5.212) is alternative to the usually treated description in terms of the
moments M : Mi1i2i3(f) =

∫
µi1i2i3f dv.

A reason to consider scattering rates instead of the moments is that MQ

(5.212) reflect features of the interactions because of the w incorporated in
their definition, while the moments do not. For this reason we can expect



5.7 Example: A New Determination of Molecular Dimensions 133

that, in general, a description with a finite number of scattering rates will be
more informative than a description provided by the same number of their
moment counterparts.

To come to the Grad-like equations in terms of the scattering rates, we
have to complete the following two steps:

(i) To derive a hierarchy of transport equations for ρ, u, P , and MQ i1i2i3 in
a neighborhood of the local Maxwell states f0(ρ,u, P ).

(ii) To truncate this hierarchy, and to come to a closed set of equations with
respect to ρ, u, P , and a finite number of scattering rates.

In the step (i), we derive a description with infinite number of variables,
which is formally equivalent both to the Boltzmann equation near the local
equilibrium, and to the description with an infinite number of moments. The
approximation comes into play in the step (ii) where we reduce the description
to a finite number of variables. The difference between the moment and the
alternative description occurs at this point.

The program (i) and (ii) is similar to what is done in the Grad method
[201], with the only exception (and this is important) that we should always
use scattering rates as independent variables and not to expand them into
series in moments. Consequently, we use a method of a closure in the step (ii)
that does not refer to the moment expansions. Major steps of the computation
will be presented below.

5.7.2 Linearization

To complete the step (i), we represent f as f0(1 + ϕ), where f0 is the local
Maxwellian, and we linearize the scattering rates (5.212) with respect to ϕ:

∆MQ i1i2i3(ϕ) =
∫
∆µQ i1i2i3f0ϕdv ; (5.213)

∆µQ i1i2i3 = LQ(µi1i2i3) .

Here LQ is the usual linearized collision integral, divided by f0. Though
∆MQ are linear in ϕ, they are not moments because their microscopic den-
sities, ∆µQ, are not velocity polynomials for a general case of w.

It is not difficult to derive the corresponding hierarchy of transport equa-
tions for variables ∆MQ i1i2i3 , ρ, u, and P (we refer further to this hierarchy
as to the alternative chain): one has to calculate the time derivative of the
scattering rates (5.212) due to the Boltzmann equation, in the linear approx-
imation (5.213), and to complete the system with the five known balance
equations for the hydrodynamic moments (scattering rates of the hydrody-
namic moments are equal to zero due to conservation laws). The structure of
the alternative chain is quite similar to that of the usual moment transport
chain, and for this reason we do not reproduce it here (details of calculations
can be found in [237]). One should only keep in mind that the stress tensor
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and the heat flux vector in the balance equations for u and P are no more
independent variables, and they are expressed in terms of ∆MQ i1i2i3 , ρ, u,
and P .

5.7.3 Truncating the Chain

To truncate the alternative chain (step (ii)), we have, first, to choose a finite
set of “essential” scattering rates (5.213), and, second, to obtain the distri-
bution functions which depend parametrically only on ρ, u, P , and on the
chosen set of scattering rates. We will restrict our consideration to a sin-
gle non-hydrodynamic variable, σQ ij , which is the counterpart of the stress
tensor σij . This choice corresponds to the polynomial mvivj in the expres-
sions (5.212) and (5.213), and the resulting equations will be alternative to
the 10 moment Grad system2. For a spherically symmetric interaction, the
expression for σQ ij may be written:

σQ ij(ϕ) =
∫
∆µQ ijf0ϕdv ; (5.214)

∆µQ ij = LQ(mvivj) =
P

ηQ 0(T )
SQ(c2)

{
cicj −

1
3
δijc

2

}
.

Here ηQ 0(T ) is the first Sonine polynomial approximation of the Chap-
man-Enskog viscosity coefficient (VC) [70], and, as usual, c =

√
m

2kT (v −
u). The scalar dimensionless function SQ depends only on c2, and its form
depends on the choice of interaction w.

5.7.4 Entropy Maximization

Next, we find the functions

f∗(ρ,u, P, σQ ij) = f0(ρ,u, P )(1 + ϕ∗(ρ,u, P, σQ ij))

which maximize the Boltzmann entropy S(f) in a neighborhood of f0 (the
quadratic approximation to the entropy is valid within the accuracy of our
consideration), for fixed values of σQ ij . That is, ϕ∗ is a solution to the fol-
lowing conditional variational problem:

∆S(ϕ) = −kB

2

∫
f0ϕ

2 dv → max , (5.215)

i)
∫
∆µQ ijf0ϕdv = σQ ij ; ii)

∫ {
1,v, v2

}
f0ϕdv = 0 .

2 To get the alternative to the 13 moment Grad equations, one should take into

account the scattering counterpart of the heat flux, qQ i = m
∫

vi
v2

2
Q(f, f) dv.
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The second (homogeneous) condition in (5.215) reflects that a deviation ϕ
from the state f0 is due only to non-hydrodynamic degrees of freedom, and
it is straightforwardly satisfied for ∆µQ ij (5.214).

Notice, that if we turn to the usual moment description, then condition
(i) in (5.215) would fix the stress tensor σij instead of its scattering counter-
part σQ ij . Then the resulting function f∗(ρ,u, P, σij) will be exactly the 10
moment Grad approximation. It can be shown that a choice of any finite set
of higher moments as the constraint (i) in (5.215) results in the corresponding
Grad approximation. In that sense our method of constructing f∗ is a direct
generalization of the Grad method onto the alternative description.

The Lagrange multipliers method gives straightforwardly the solution to
the problem (5.215). After the alternative chain is closed with the functions
f∗(ρ,u, P, σQ ij), the step (ii) is completed, and we arrive at a set of equations
with respect to the variables ρ, u, P , and σQ ij . Switching to the variables
ζij = n−1σQ ij , we have:

∂tn+ ∂i(nui) = 0 ; (5.216)

ρ(∂tuk + ui∂iuk) + ∂kP + ∂i

{
ηQ 0(T )n

2rQP
ζik

}
= 0 ; (5.217)

3
2
(∂tP + ui∂iP ) +

5
2
P∂iui +

{
ηQ 0(T )n

2rQP
ζik

}
∂iuk = 0 ; (5.218)

∂tζik + ∂s(usζik) + {ζks∂sui + ζis∂suk − 2
3
δikζrs∂sur} (5.219)

+
{
γQ − 2βQ

rQ

}
ζik∂sus −

P 2

ηQ 0(T )n
(∂iuk + ∂kui −

2
3
δik∂sus)

− αQP

rQηQ 0(T )
ζik = 0 .

Here ∂t = ∂/∂t, ∂i = ∂/∂xi, summation in two repeated indices is assumed,
and the coefficients rQ, βQ, and αQ are defined with the help of the function
SQ (5.214) as follows:

rQ =
8

15
√
π

∫ ∞

0

e−c2
c6
(
SQ(c2)

)2
dc ;

βQ =
8

15
√
π

∫ ∞

0

e−c2
c6SQ(c2)

dSQ(c2)
d(c2)

dc ;

αQ =
8

15
√
π

∫ ∞

0

e−c2
c6SQ(c2)RQ(c2) dc . (5.220)

The function RQ(c2) in the last expression is defined due to the action of the
operator LQ on the function SQ(c2)(cicj − 1

3δijc
2):

P

ηQ 0
RQ(c2)(cicj −

1
3
δijc

2) = LQ(SQ(c2)(cicj −
1
3
δijc

2)) . (5.221)
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Finally, the parameter γQ in (5.216–5.220) reflects the temperature depen-
dence of the VC:

γQ =
2
3

(
1 − T

ηQ 0(T )

(
dηQ 0(T )

dT

))
.

The set of ten equations (5.216–5.220) is alternative to the 10 moment Grad
equations.

5.7.5 A New Determination of Molecular Dimensions (Revisited)

The observation already made is that for Maxwell molecules we have:
SM.M. ≡ 1, and ηM.M.

0 ∝ T ; thus γM.M. = βM.M. = 0, rM.M. = αM.M. = 1
2 , and

(5.216–5.220) becomes the 10 moment Grad system under a simple change
of variables λζij = σij , where λ is the proportionality coefficient in the tem-
perature dependence of ηM.M.

0 .
These properties (the function SQ is a constant, and the VC is propor-

tional to T ) are true only for Maxwell molecules. For all other interactions,
the function SQ is not identical to one, and the VC ηQ 0(T ) is not propor-
tional to T . Thus, the shortened alternative description is not equivalent
indeed to the Grad moment description. In particular, for hard spheres, the
exact expression for the function SH.S. (5.214) reads:

SH.S. =
5
√

2
16

∫ 1

0

exp(−c2t2)(1 − t4)
(
c2(1 − t2) + 2

)
dt ; (5.222)

ηH.S.
0 ∝

√
T .

Thus, γH.S. = 1
3 , and βH.S.

rH.S. ≈ 0.07, and the equation for the function ζik
(5.220) contains a nonlinear term,

θH.S.ζik∂sus , (5.223)

where θH.S. ≈ 0.19. This term is missing in the Grad 10 moment equation.
Finally, let us evaluate the VC which results from the alternative descrip-

tion (5.216–5.220). Following Grad’s arguments [201], we see that, if the re-
laxation of ζik is fast compared to the hydrodynamic variables, then the two
last terms in the equation for ζik (5.216–5.220) become dominant, and the
equation for u casts into the standard Navier-Stokes form with an effective
VC ηQ eff :

ηQ eff =
1

2αQ
ηQ 0 . (5.224)

For Maxwell molecules, we easily derive that the coefficient αQ in (5.224)
is equal to 1

2 . Thus, as one expects, the effective VC (5.224) is equal to the
Grad value, which, in turn, is equal to the exact value in the frames of the
Chapman-Enskog method for this model.
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Fig. 5.1. Approximations for hard spheres: bold line – function SH.S., solid line –
approximation SH.S.

a , dotted line – Grad moment approximation

For all interactions different from the Maxwell molecules, the VC ηQ eff

(5.224) is not equal to ηQ 0. For hard spheres, in particular, a computation of
the VC (5.224) requires information about the function RH.S. (5.221). This
is achieved upon a substitution of the function SH.S. (5.222) into (5.221).
Further, we have to compute the action of the operator LH.S. on the function
SH.S.(cicj − 1

3δijc
2), which is rather complicated. However, the VC ηH.S.

eff can
be relatively easily estimated by using a function SH.S.

a = 1√
2
(1+ 1

7c
2), instead

of the function SH.S., in (5.221). Indeed, the function SH.S.
a is tangent to the

function SH.S. at c2 = 0, and is its majorant (see Fig. 5.1). Substituting SH.S.
a

into (5.221), and computing the action of the collision integral, we find the
approximation RH.S.

a ; thereafter we evaluate the integral αH.S. (5.220), and
finally come to the following expression:

ηH.S.
eff ≥ 75264

67237
ηH.S.
0 ≈ 1.12ηH.S.

0 . (5.225)

Thus, for hard spheres, the description in terms of scattering rates results
in the VC of more than 10% higher than in the Grad moment description.

A discussion of the results concerns the following two items.
1. Having two not equivalent descriptions which were obtained within

one method, we may ask: which is more relevant? A simple test is to com-
pare characteristic times of an approach to hydrodynamic regime. We have
τG ∼ ηH.S.

0 /P for 10-moment description, and τa ∼ ηH.S.
eff /P for alternative

description. As τa > τG, we see that scattering rate decay slower than corre-
sponding moment, hence, at least for rigid spheres, the alternative description
is more relevant. For Maxwell molecules both the descriptions are, of course,
equivalent.
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2. The VC ηH.S.
eff (5.225) has the same temperature dependence as ηH.S.

0 ,
and also the same dependence on a scaling parameter (a diameter of the
sphere). In the classical book [70] (pp. 228–229), “sizes” of molecules are
presented, assuming that a molecule is represented with an equivalent sphere
and VC is estimated as ηH.S.

0 . Since our estimation of VC differs only by a
dimensionless factor from ηH.S.

0 , it is straightforward to conclude that effective
sizes of molecules will be reduced by the factor b, where

b =
√
ηH.S.
0 /ηH.S.

eff ≈ 0.94 .

Further, it is well known that sizes of molecules estimated via viscosity in [70]
disagree with the estimation via the virial expansion of the equation of state.
In particular, in book [238], p. 5, the measured second virial coefficient Bexp

was compared with the calculated B0, in which the diameter of the sphere
was taken from the viscosity data. The reduction of the diameter by factor b
gives Beff = b3B0. The values Bexp and B0 [238] are compared with Beff in
the Table 5.1 for three gases at T = 500K. The results for argon and helium
are better for Beff , while for nitrogen Beff is worth than B0. However, both
B0 and Beff are far from the experimental values.

Table 5.1. Three virial coefficients: experimental Bexp, classical B0 [238], and
reduced Beff for three gases at T = 500 K

Bexp B0 Beff

Argon 8.4 60.9 50.5
Helium 10.8 21.9 18.2
Nitrogen 168 66.5 55.2

Hard spheres is, of course, an oversimplified model of interaction, and the
comparison presented does not allow for a decision between ηH.S.

0 and ηH.S.
eff .

However, this simple example illustrates to what extend the correction to the
VC can affect a comparison with experiment. Indeed, as it is well known,
the first-order Sonine polynomial computation for the Lennard-Jones (LJ)
potential gives a very good fit of the temperature dependence of the VC for
all noble gases [239], subject to a proper choice of the two unknown scaling
parameters of the LJ potential3. We may expect that a dimensionless correc-
tion of the VC for the LJ potential might be of the same order as above for
rigid spheres. However, the functional character of the temperature depen-
dence will not be affected, and a fit will be obtained subject to a different
choice of the molecular parameters of the LJ potential.
3 A comparison of molecular parameters of the LJ potential, as derived from the

viscosity data, to those obtained from independent sources, can be found else-
where, e.g. in [70], p. 237.
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