
4 Film Extension of the Dynamics:
Slowness as Stability

4.1 Equation for the Film Motion

One of the difficulties in the problem of reducing the description is caused by
the fact that there exists no commonly accepted formal definition of slow (and
stable) positively invariant manifolds. Classical definitions of stability and
asymptotic stability of the invariant sets sound as follows: Let a dynamical
system be defined in some metric space (so that we can measure distances
between points), and let x(t, x0) be a motion of this system at time t with
the initial condition x(0) = x0 at time t = 0. The subset S of the phase space
is called invariant if it is made of whole trajectories, that is, if x0 ∈ S then
x(t, x0) ∈ S for all t ∈ (−∞,∞).

Let us denote as ρ(x, y) the distance between the points x and y. The
distance from x to a closed set S is defined as usual: ρ(x, S) = inf{ρ(x, y)|y ∈
S}. The closed invariant subset S is called stable, if for every ε > 0 there exists
δ > 0 such that if ρ(x0, S) < δ, then for every t > 0 it holds ρ(x(t, x0), S) <
ε. A closed invariant subset S is called asymptotically stable if it is stable
and attractive, that is, there exists ε > 0 such that if ρ(x0, S) < ε, then
ρ(x(t, x0), S) → 0 as t → ∞.

Formally, one can reiterate the definitions of stability and of the asymp-
totic stability for positively invariant subsets. Moreover, since in the defin-
itions mentioned above it goes only about t ≥ 0 or t → ∞, it might seem
that positively invariant subsets can be a natural object of study concern-
ing stability issues. Such conclusion is misleading, however. The study of the
classical stability of the positively invariant subsets reduces essentially to the
notion of stability of invariant sets – maximal attractors.

Let Y be a closed positively invariant subset of the phase space. The
maximal attractor for Y is the set MY ,

MY =
⋂
t≥0

Tt(Y ) , (4.1)

where Tt is the shift operator for the time t:

Tt(x0) = x(t, x0) .
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The maximal attractor MY is invariant, and the stability of Y defined clas-
sically is equivalent to the stability of MY under any sensible assumption
about uniform continuity (for example, it is so for a compact phase space).

For systems which relax to a stable equilibrium, the maximal attractor is
simply one and the same for any bounded positively invariant subset, and it
consists of a single stable point.

It is important to note that in the definition (4.1) one considers motions
of a positively invariant subset to equilibrium along itself : TtY ⊂ Y for t ≥ 0.
It is precisely this motion which is uninteresting from the perspective of the
comparison of stability of positively invariant subsets. If one subtracts this
motion along itself out of the vector field J(x) (3.1), one obtains a less trivial
picture.

We again assume submanifolds in U parameterized with a single parame-
ter set F : W → U . Note that there exists a wide class of transformations
which do not alter the geometric picture of motion: For a smooth diffeomor-
phism ϕ : W → W (a smooth coordinate transform), maps F and F ◦ ϕ
define the same geometric pattern in the phase space.

Let us consider motions of the manifold F (W ) along solutions of equation
(3.1). Denote as Ft the time-dependent map, and write equation of motion
for this map:

dFt(y)
dt

= J(Ft(y)) . (4.2)

Let us now subtract the component of the vector field responsible for the
motion of the map Ft(y) along itself from the right hand side of equation
(4.2). In order to do this, we decompose the vector field J(x) in each point
x = Ft(y) as

J(x) = J‖(x) + J⊥(x) , (4.3)

where J‖(x) ∈ Tt,y (Tt,y = (DyFt(y)(L)). If projectors are well defined, Pt,y =
P (Ft(y), Tt,y), then decomposition (4.3) has the form:

J(x) = Pt,yJ(x) + (1 − Pt,y)J(x) . (4.4)

Subtracting the component J‖ from the right hand side of equation (4.2), we
obtain,

dFt(y)
dt

= (1 − Pt,y)J(Ft(y)) . (4.5)

Note that the geometric pictures of motion corresponding to equations
(4.2) and (4.5) are identical locally in y and t. Indeed, the infinitesimal shift
of the manifold W along the vector field is easily computed:

(DyFt(y))−1J‖(Ft(y)) = (DyFt(y))−1(Pt,yJ(Ft(y))) . (4.6)

This defines a smooth change of the coordinate system (assuming all solutions
exist). In other words, the component J⊥ defines the motion of the manifold
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in U , while we can consider (locally) the component J‖ as a component which
locally defines motions in W (a coordinate transform).

The positive semi-trajectory of motion (for t > 0) of any submanifold in
the phase space along the solutions of initial differential equation (3.1) (with-
out subtraction of J‖(x)) is the positively invariant manifold. The closure of
such semi-trajectory is an invariant subset. The construction of the invari-
ant manifold as a trajectory of an appropriate initial edge may be useful for
producing invariant exponentially attracting set [173,174]. Very recently, the
notion of exponential stability of invariants manifold for ODEs was revised
by splitting motions into tangent and transversal (orthogonal) components
in [175].

We further refer to equation (4.5) as the film extension of the dynamical
system (3.1). The phase space of the dynamical system (4.5) is the set of
maps F (films). Fixed points of equation (4.5) are solutions to the invari-
ance equation in the differential form (3.3). These include, in particular, all
positively invariant manifolds. Stable or asymptotically stable fixed points of
equation (4.5) are the slow manifolds we are interested in. It is the notion of
stability associated with the film extension of the dynamics which is relevant
to our study. In Chap. 9, we consider relaxation methods for constructing
slow positively invariant manifolds on the basis of the film extension (4.5).

4.2 Stability of Analytical Solutions

When studying the Cauchy problem for equation (4.5), one should ask a
question of how to choose the boundary conditions the function F must
satisfy at the boundary of W . Without fixing the boundary conditions, the
general solution of the Cauchy problem for the film extension equations (4.5)
in the class of smooth functions on W is essentially ambiguous.

The boundary of W , ∂W , splits in two pieces: ∂W = ∂W+

⋃
∂W−. For a

smooth boundary these parts can be defined as

∂W+ = {y ∈ ∂W |(ν(y), (DF (y))−1(PyJ(F (y)))) < 0} ,
∂W− = {y ∈ ∂W |(ν(y), (DF (y))−1(PyJ(F (y)))) ≥ 0} . (4.7)

where ν(y) denotes the unit outer normal vector at the boundary point y, and
(DF (y))−1 is the isomorphism of the tangent space Ty on the linear space of
parameters L.

One can understand the boundary splitting (4.7) in such a way: The
projected vector field PyJ(F (y)) defines dynamics on the manifold F (W ), this
dynamics is the image of some dynamics on W . The corresponding vector field
on W is v(y) = (DF (y))−1(PyJ(F (y))). The boundary part ∂W+ consists of
points y, where the velocity vector v(y) points inside W , while for y ∈ ∂W−
this vector v(y) is directed outside of W (or is tangent to ∂W ). The splitting
∂W = ∂W+

⋃
∂W− depends on t with the vector field v(y):
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vt(y) = (DFt(y))−1(PyJ(Ft(y))) ,

and the dynamics of Ft(y) is determined by (4.5).
If we would like to derive a solution of the film extension (4.5) F (y, t)

for (y, t) ∈ W × [0, τ ] for some time τ > 0, then it is necessary to fix some
boundary conditions on ∂W+ (for the “incoming from abroad” part of the
function F (y)).

Nevertheless, there is a way to study equation (4.5) in W without intro-
ducing any boundary condition. It is in the spirit of the classical Cauchy-
Kovalevskaya theorem [176–178] about analytical Cauchy problem solutions
with analytical data, as well as in the spirit of the classical Lyapunov auxil-
iary theorem about analytical invariant manifolds in the neighborhood of a
fixed point [3,52] and the Poincaré theorem [50] about analytical linearization
of analytical non-resonant contractions (see [181]).

We note in passing that recently the interest to the classical analytical
Cauchy problem is revived in the mathematical physics literature [179,180]. In
particular, analogs of the Cauchy-Kovalevskaya theorem were obtained for the
generalized Euler equations [179]. A technique to estimate the convergence
radii of the series emerging therein was also developed.

Analytical solutions to equation (4.5) do not require boundary condi-
tions on the boundary of W . The analyticity condition itself allows finding
unique analytical solutions of the equation (4.5) with the analytical right
hand side (1 − P )J for analytical initial conditions F0 in W (assuming that
such solutions exist). Of course, the analytical continuation without addi-
tional regularity conditions is an ill-posed problem. However, it may be useful
to switch from functions to germs1: we can solve chains of ordinary differen-
tial equations for Taylor coefficients instead of partial differential equations
for functions (4.5), and it may be possible to prove the convergence of the
Taylor series thus obtained. This is the way to prove the Lyapunov auxiliary
theorem [3], and one of the known ways to prove the Cauchy-Kovalevskaya
theorem.

Let us consider the system (3.1) with stable equilibrium point x∗, real
analytical right hand side J , and real analytical projector field P (x, T ): E →
T . We shall study real analytical sub-manifolds, which include the equilibrium
point point x∗ (0 ∈ W,F (0) = x∗). Let us expand F in a Taylor series in the
neighborhood of zero:

F (y) = x∗ +A1(y) +A2(y, y) + . . .+Ak(y, y, . . . , y) + . . . , (4.8)

where Ak(y, y, . . . , y) is a symmetric k-linear operator (k = 1, 2, . . .).
Let us expand also the right hand side of the film equation (4.5). Match-

ing operators of the same order, we obtain a hierarchy of equations for
A1, . . . , Ak, . . .:
1 The germ is the sequences of Taylor coefficients that represent an analytical

function near a given point.
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dAk

dt
= Ψk(A1, . . . , Ak) . (4.9)

It is crucially important, that the dynamics of Ak does not depend on
Ak+1, . . ., and equations (4.9) can be studied in the following order: we first
study the dynamics of A1, then the dynamics of A2 with the A1 motion
already given, then A3 and so on.

Let the projector Py in equation (4.5) be an analytical function of the
derivative DyF (y) and of the deviation x−x∗. Let the corresponding Taylor
series expansion at the point (A0

1(•), x∗) have the form:

DyF (y)(•) = A1(•) +
∞∑

k=2

kAk(y, . . . , •) , (4.10)

Py =
∞∑

k,m=0

Pk,m(DyF (y)(•) −A0
1(•), . . . , DyF (y)(•) −A0

1(•)︸ ︷︷ ︸
k

;

F (y) − x∗, . . . , F (y) − x∗︸ ︷︷ ︸
m

) ,

where A0
1(•), A1(•), Ak(y, . . . , •) are linear operators. Pk,m is a k+m-linear

operator (k,m = 0, 1, 2, . . .) with values in the space of linear operators E →
E. The operators Pk,m depend on the operator A0

1(•) as on a parameter. Let
the point of expansion A0

1(•) be the linear part of F : A0
1(•) = A1(•).

Let us represent the analytical vector field J(x) as a power series:

J(x) =
∞∑

k=1

Jk(x− x∗, . . . , x− x∗) , (4.11)

where Jk is a symmetric k-linear operator (k = 1, 2, . . .).
Let us write, for example, the first two equations of the equation chain

(4.9):

dA1(y)
dt

= (1 − P0,0)J1(A1(y)) ,

dA2(y, y)
dt

= (1 − P0,0)[J1(A2(y, y)) + J2(A1(y), A1(y))]

−[2P1,0(A2(y, •)) + P0,1(A1(y))]J1(A1(y)) . (4.12)

Here, operators P0,0, P1,0(A2(y, •)), P0,1(A1(y)) parametrically depend on
the operator A1(•); hence, the first equation is nonlinear, and the second is
linear with respect to A2(y, y). The leading term in the right hand side has
the same form for all equations of the sequence (4.9):

dAn(y, . . . , y)
dt

(4.13)

= (1 − P0,0)J1(An(y, . . . , y)) − nP1,0(An(y, . . . , y︸ ︷︷ ︸
n−1

, •))J1(A1(y)) + . . . .
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There are two important conditions on Py and DyF (y): P 2
y = Py, because

Py is a projector, and imPy = imDyF (y), because Py projects on the image
of DyF (y). If we expand these conditions in the power series, then we get the
conditions on the coefficients. For example, from the first condition we get:

P 2
0,0 = P0,0 ,

P0,0[2P1,0(A2(y, •)) + P0,1(A1(y))] + [2P1,0(A2(y, •)) + P0,1(A1(y))]P0,0

= 2P1,0(A2(y, •)) + P0,1(A1(y)), . . . . (4.14)

After multiplication of the second equation in (4.14) with P0,0 we get

P0,0[2P1,0(A2(y, •)) + P0,1(A1(y))]P0,0 = 0 . (4.15)

Similar identities can be obtained for any oder of the expansion. These equal-
ities allow us to simplify the stationary equation for the sequence (4.9). For
example, for the first two equations of the sequence (4.12) we obtain the
following stationary equations:

(1 − P0,0)J1(A1(y)) = 0 ,
(1 − P0,0)[J1(A2(y, y)) + J2(A1(y), A1(y))]
−[2P1,0(A2(y, •)) + P0,1(A1(y))]J1(A1(y)) = 0 . (4.16)

The operator P0,0 is the projector on the space imA1 (the image of A1),
hence, from the first equation in (4.16) it follows: J1(imA1) ⊆ imA1. So,
imA1 is a J1-invariant subspace in E (J1 = DxJ(x)|x∗) and P0,0(J1(A1(y)) ≡
J1(A1(y). It is equivalent to the first equation of (4.16). Let us multiply the
second equation of (4.16) with P0,0 from the left. As a result we obtain the
condition:

P0,0[2P1,0(A2(y, •)) + P0,1(A1(y))]J1(A1(y)) = 0 ,

for solution of equations (4.16), because P0,0(1 − P0,0) ≡ 0. If A1(y) is a so-
lution of the first equation of (4.16), then this condition becomes an identity,
and we can write the second equation of (4.16) in the form

(1 − P0,0)[J1(A2(y, y)) + J2(A1(y), A1(y)) − (2P1,0(A2(y, •))
+P0,1(A1(y)))J1(A1(y))] = 0 . (4.17)

It should be stressed, that the choice of the projector field Py (4.10) has
impact only on the F (y) parametrization, whereas the invariant geometrical
properties of the solutions of (4.5) do not depend on the projector field if some
transversality and analyticity conditions hold. The conditions of thermody-
namic structures preservation significantly reduce ambiguity of the projector
choice. One of the most important condition is kerPy ⊂ kerDxS, where
x = F (y) and S is the entropy (see Chap. 5 about the entropy below). The
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thermodynamic projector is the unique operator which transforms the arbi-
trary vector field equipped with the given Lyapunov function into a vector
field with the same Lyapunov function on the arbitrary submanifold which
is not tangent to the level of the Lyapunov function. For the thermodynamic
projectors Py the entropy S(F (y)) is conserved on the solutions F (y, t) of the
equation (4.5) for any y ∈ W .

If the projectors Py in equations (4.10)–(4.17) are thermodynamic, then
P0,0 is the orthogonal projector with respect to the entropic scalar product2.
For orthogonal projectors the operator P1,0 has a simple explicit form. Let
A : L → E be an isomorphic injection (an isomorphism on the image), and
P : E → E be the orthogonal projector on the image of A. The orthogonal
projector on the image of the perturbed operator A+ δA is P + δP ,

δP = (1 − P )δAA−1P + (δAA−1P )+(1 − P ) + o(δA),
P1,0(δA(•)) = (1 − P )δA(•)A−1P + (δA(•)A−1P )+(1 − P ) . (4.18)

In (4.18), the operator A−1 is defined on imA, imA = imP , and the operator
A−1P acts on E.

Equation (4.18) for δP follows from the three conditions:

(P+δP )(A+δA) = A+δA, (P+δP )2 = P+δP, (P+δP )+ = P+δP . (4.19)

Every Ak is driven by A1, . . . , Ak−1. Stability of the germ of the posi-
tively invariant analytical manifold F (W ) at point 0 (F (0) = x∗) is defined
as stability of the solution of the corresponding equations sequence (4.9).
Moreover, the notion of the k-jet stability can be useful: let us call k-jet
stable such a germ of a positively invariant manifold F (M) at the point 0
(F (0) = x∗), if the corresponding solution of the equation sequence (4.9) is
stable for k = 1, . . . , n. The simple “triangle” structure of the equation se-
quence (4.9) with the form (4.13) of principal linear part makes the problem
of jets stability very similar for all orders n > 1.

Let us demonstrate the stability conditions for the 1-jets in a n-dimensio-
nal space E. Let the Jacobian matrix J1 = DxJ(x)|x∗ be selfadjoint with
a simple spectrum λ1, . . . , λn, and the projector P0,0 be orthogonal (this is
a typical “thermodynamic” situation). The eigenvectors of J1 form a basis
in E: {ei}n

i=1. Let a linear space of parameters L be the k-dimensional real
space, k < n. We shall study the stability of operator A0

1 which is a fixed
point for the first equation of the sequence (4.9). The operator A0

1 is a fixed
point of this equation, if imA0

1 is a J1-invariant subspace in E. We discuss
full-rank operators, so, for some order of {ei}n

i=1 numbering, the matrix of
A0

1 should have a form: a0
1ij = 0, if i > k. Let us choose the basis in L:

lj = (A0
1)

−1ej , (j = 1, . . . , k). For this basis a0
1ij = δij , (i = 1, . . . , n, j =

2 This scalar product is the bilinear form defined by the negative second differential
of the entropy at the point x∗, −D2S(x).
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1, . . . , k, where δij is the Kronecker symbol). The corresponding projectors
P and 1 − P have the matrices:

P = diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

), 1 − P = diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

) , (4.20)

where diag(α1, . . . , αn) is the n×n diagonal matrix with numbers α1, . . . , αn

on the diagonal.
The equations of the linear approximation for the dynamics of the varia-

tion δA read:

dδA
dt

= diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

)[diag(λ1, . . . , λn)δA− δAdiag(λ1, . . . , λk︸ ︷︷ ︸
k

)] .

(4.21)
The time derivative of A is orthogonal to A: for any y, z ∈ L the equality

(Ȧ(y), A(x)) = 0 holds, hence, for the stability analysis it is necessary and
sufficient to study δA with imδA0

1 ⊥ imA. The matrix for such a δA has the
form:

δaij = 0, if i ≤ k .

For i = k + 1, . . . , n, j = 1, . . . , k equation (4.21) gives:

dδaij

dt
= (λi − λj)δaij . (4.22)

Therefore, the stability condition becomes:

λi − λj < 0 for all i > k, j ≤ k . (4.23)

This means that the relaxation towards imA (with the spectrum of relaxation
times |λi|−1 (i = k+1, . . . , n)) is faster, than the relaxation along imA (with
the spectrum of relaxation times |λj |−1 (j = 1, . . . , k)).

Let the condition (4.23) hold. For negative λ, it means that the relaxation
time for the film (in the first approximation) is:

τ = 1/(min
i>k

|λi| − max
j≤k

|λj |) ,

thus it depends on the spectral gap in the spectrum of the operator J1 =
DxJ(x)|x∗ .

It is the gap between spectra of two restrictions of the operator J1, J
‖
1 and

J⊥
1 , respectively. The operator J‖

1 is the restriction of J1 on the J1-invariant
subspace imA0

1 (it is the tangent space to the slow invariant manifold at point
x∗). The operator J⊥

1 is the restriction of J1 on the orthogonal complement to
imA0

1. This subspace is also J1-invariant, because J1 is selfadjoint. The spec-
tral gap between spectra of these two operators is the spectral gap between
relaxation towards the slow manifold and relaxation along this manifold.
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The stability condition (4.23) demonstrates that our formalization of the
slowness of manifolds as the stability of fixed points for the film extension
(4.5) of initial dynamics meets the intuitive expectations.

For the analysis of system (4.9) in the neighborhood of some manifold
F0 (F0(0) = x∗), the following parametrization can be convenient. Let us
consider

F0(y) = A1(y) + . . . , T0 = A1(L)

to be a tangent space to F0(W ) at point x∗, E = T0 ⊕H is the direct sum
decomposition.

We shall consider analytical sub-manifolds in the form

x = x∗ + (y, Φ(y)) , (4.24)

where y ∈ W0 ⊂ T0, W0 is a neighborhood of zero in T0, Φ(y) is an analytical
map of W0 in H, and Φ(0) = 0. Any analytical manifold close to F0 can be
represented in this form.

Let us define the projector Py that corresponds to the decomposition
(4.24), as the projector on Ty parallel to H. Furthermore, let us introduce the
corresponding decomposition of the vector field J = Jy⊕Jz, Jy ∈ T0, Jz ∈ H.
Then

Py(J) = (Jy, (DyΦ(y))Jy) . (4.25)

The corresponding equation of motion of the film (4.5) has the following
form:

dΦ(y)
dt

= Jz(y, Φ(y)) − (DyΦ(y))Jy(y, Φ(y)) . (4.26)

If Jy and Jz depend analytically on their arguments, then from (4.26)
one can easily obtain a hierarchy of equations of the form (4.9) (of course,
Jy(x∗) = 0, Jz(x∗) = 0).

Using these notions, it is convenient to formulate the Lyapunov auxiliary
theorem [3]. Let T0 = Rm,H = Rp, and in U an analytical vector field be
defined J(y, z) = Jy(y, z) ⊕ Jz(y, z), (y ∈ T0, z ∈ H). Assume the following
conditions are satisfied:

1. J(0, 0) = 0;
2. DzJy(y, z)

∣∣
(0,0)

= 0;
3. 0 /∈ conv{k1, . . . , km},

where k1, . . . , km are the eigenvalues of the operator DyJy(y, z)
∣∣
(0.0)

, and
conv{k1, . . . , km} is the convex hull of {k1, . . . , km};

4. the numbers ki and λj are not related by any equation of the form

m∑
i=1

miki = λj , (4.27)

where λj (j = 1, . . . , p) are eigenvalues of DzJz(y, z)
∣∣
(0,0)

, and mi ≥ 0 are
integers,

∑m
i=1 mi > 0.
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Let us also consider an analytical manifold (y, Φ(y)) in U in the neighborhood
of zero (Φ(0) = 0) and write for it the differential invariance equation with
the projector (4.25):

(DyΦ(y))Jy(y, Φ(y)) = Jz(y, Φ(y)) . (4.28)

Lyapunov auxiliary theorem. Given conditions 1-4, equation (4.24)
has the unique analytical solution in the neighborhood of zero, satisfying the
condition Φ(0) = 0.

Recently, various new applications of this theorem were developed [52,
184–186].

In order to weaken the non-resonance condition in [49] the existence of
invariant manifolds near fixed points tangent to invariant subspaces of the
linearization was proved without assumption that the corresponding space
for the linear map is a spectral subspace. (This proof was based on the graph
transform method [46].)

Studying germs of invariant manifolds using Taylor series expansion in
a neighborhood of a fixed point is definitely useful from the theoretical as
well as from the practical perspective. But the well known difficulties perti-
nent to this approach, of convergence, of small denominators (connected with
proximity to the resonances (4.27)) and others call for development of differ-
ent methods. A hint can be found in the famous KAM theory: one should
use iterative methods instead of the Taylor series expansion [4–6]. Below we
present two such methods:

– The Newton method subject to incomplete linearization;
– The relaxation method which is the Galerkin-type approximation to New-

ton’s method with projection on the defect of invariance (3.3), i.e. on the
right hand side of equation (4.5).
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