
2 The Source of Examples

2.1 The Boltzmann Equation

2.1.1 The Equation

The Boltzmann equation is the first and the most celebrated nonlinear ki-
netic equation introduced by the great Austrian scientist Ludwig Boltzmann
in 1872 [111]. This equation describes the dynamics of a moderately rarefied
gas, taking into account two processes: the free flight of the particles, and
their collisions. In its original version, the Boltzmann equation has been for-
mulated for particles represented by hard spheres. The physical condition of
rarefaction means that only pair collisions are taken into account, a math-
ematical specification of which is given by the Grad–Boltzmann limit [200]:
If N is the number of particles, and σ is the diameter of the hard sphere,
then the Boltzmann equation is expected to hold when N tends to infinity,
σ tends to zero, Nσ3 (the volume occupied by the particles) tends to zero,
while Nσ2 (the total collision cross section) remains constant. The micro-
scopic state of the gas at time t is described by the one-body distribution
function P (x,v, t), where x is the position of the center of the particle, and
v is the velocity of the particle. The distribution function is the probability
density of finding the particle at time t within the infinitesimal phase space
volume centered at the phase point (x,v). The collision mechanism of two
hard spheres is presented by a relation between the velocities of the particles
before [v and w] and after [v′ and w′] their impact:

v′ = v − n(n,v − w) ,
w′ = w + n(n,v − w) ,

where n is the unit vector along v − v′. Transformation of the velocities
conserves the total momentum of the pair of colliding particles (v′ + w′ =
v + w), and the total kinetic energy (v′2 + w′2 = v2 + w2). The Boltzmann
equation reads:

∂P

∂t
+
(

v,
∂P

∂x

)
= Nσ2

∫
R3

∫
B−

(P (x,v′, t)P (x,w′, t)

−P (x,v, t)P (x,w, t)) | (w − v,n) | dw dn , (2.1)
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where integration in w is carried over the whole space R3, while integration in
n is over a hemisphere B− = {n ∈ S2 | (w−v,n) < 0} . This inequality (w−
v,n) < 0 corresponds to the particles entering the collision. The nonlinear
integral operator in the right hand side of (2.1) is nonlocal in the velocity
variable, and local in space. The Boltzmann equation for arbitrary hard-core
interaction is a generalization of the Boltzmann equation for hard spheres
under the proviso that the true infinite-range interaction potential between
the particles is cut off at some distance. This generalization amounts to a
replacement,

σ2 | (w − v,n) | dn → B(θ, | w − v |) dθ dε , (2.2)

where the function B is determined by the interaction potential, and the
vector n is identified with two angles, θ and ε. In particular, for potentials
proportional to the n-th inverse power of the distance, the function B reads

B(θ, | v − w |) = β(θ) | v − w |
n−5
n−1 . (2.3)

In the special case n = 5, function B is independent of the magnitude of the
relative velocity (Maxwell molecules). Maxwell molecules occupy a distinct
place in the theory of the Boltzmann equation: they provide exact results.
Three most important findings for the Maxwell molecules should be men-
tioned: (a) The exact spectrum of the linearized Boltzmann collision inte-
gral, found by Truesdell and Muncaster [261], (b) Exact transport coefficients
found by Maxwell even before the Boltzmann equation was formulated, (c)
Exact solutions to the space-free version of the nonlinear Boltzmann equation.
Galkin [71] found the general solution to the system of moment equations in
a form of a series expansion, Bobylev, Krook and Wu [255,256,262] found an
exact solution of a particular elegant closed form, and Bobylev demonstrated
the complete integrability of this dynamic system [73]. The review of relax-
ation of spatially uniform dilute gases for several types of interaction models,
of exact solutions and related topics was given in [75].

A broad review of the Boltzmann equation and analysis of analytical
solutions to kinetic models is presented in the book of Cercignani [112]. A
modern account of rigorous results on the Boltzmann equation is given in the
book [113]. Proof of the existence theorem for the Boltzmann equation was
given by DiPerna and Lions [119].

It is customary to write the Boltzmann equation using another normal-
ization of the distribution function, f(x,v, t) dx dv, taken in such a way that
the function f is compliant with the definition of the hydrodynamic fields:
the mass density ρ, the momentum density ρu, and the energy density e:

∫
f(x,v, t)mdv = ρ(x, t) ,

∫
f(x,v, t)mv dv = ρu(x, t) , (2.4)
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∫
f(x,v, t)m

v2

2
dv = e(x, t) .

Here m is the particle mass.
The Boltzmann equation for the distribution function f reads,

∂f

∂t
+
(

v,
∂

∂x
f

)
= Q(f, f) , (2.5)

where the nonlinear integral operator at the right hand side is the Boltzmann
collision integral,

Q =
∫

R3

∫
B−

(f(v′)f(w′) − f(v)f(w))B(θ,v) dw dθ dε . (2.6)

Finally, we mention the following form of the Boltzmann collision integral
(sometimes referred to as the scattering or the quasi-chemical representation),

Q =
∫
W (v,w | v′,w′)[(f(v′)f(w′) − f(v)f(w))] dw dw′ dv′ , (2.7)

where W is a generalized function which is called the probability density of
the elementary event,

W = w(v,w | v′,w′)δ(v + w − v′ − w′)δ(v2 + w2 − v′2 − w′2) . (2.8)

2.1.2 The Basic Properties of the Boltzmann Equation

The generalized function W has the following symmetries:

W (v′,w′ | v,w) ≡ W (w′,v′ | v,w)
≡ W (v′,w′ | w,v) ≡ W (v,w | v′,w′) . (2.9)

The first two identities reflect the symmetry of the collision process with
respect to labeling the particles, whereas the last identity is the celebrated
detailed balance condition which is underpinned by the time-reversal symme-
try of the microscopic (Newton’s) equations of motion. The basic properties
of the Boltzmann equation are:

1. Additive invariants of the collision operator:
∫
Q(f, f){1,v, v2}dv = 0 , (2.10)

for any function f , assuming the integrals exist. Equality (2.10) reflects the
fact that the number of particles, the three components of particle’s momen-
tum, and the particle’s energy are conserved in collisions. Conservation laws
(2.10) imply that the local hydrodynamic fields (2.4) can change in time only
due to redistribution over space.
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2. The zero point of the integral (Q = 0) satisfies the equation (which is
also called the detailed balance): For almost all velocities,

f(v′,x, t)f(w′,x, t) = f(v,x, t)f(w,x, t) .

3. Boltzmann’s local entropy production inequality:

σ(x, t) = −kB

∫
Q(f, f) ln f dv ≥ 0 , (2.11)

for any function f , assuming integrals exist. The dimensional Boltzmann’s
constant (kB ≈ 1.3806503 · 10−23J/K) in this expression serves for a recalcu-
lation of the energy units into absolute temperature units. Moreover, equality
holds if ln f is a linear combination of the additive invariants of collision.

Distribution functions f whose logarithm is a linear combination of ad-
ditive collision invariants with coefficients dependent on x, are called local
Maxwell distribution functions fLM,

fLM =
ρ

m

(
2πkBT

m

)−3/2

exp
(
−m(v − u)2

2kBT

)
. (2.12)

Local Maxwellians are parametrized by values of five hydrodynamic vari-
ables, ρ, u and T . This parametrization is consistent with the definitions
of the hydrodynamic fields (2.4),

∫
fLM{m,mv,mv2/2}dv = (ρ, ρu, e), pro-

vided the relation between the energy and the kinetic temperature T holds,
e = 3ρ

2mkBT .
4. Boltzmann’s H theorem: The function

S[f ] = −kB

∫
f ln f dv , (2.13)

is called the entropy density1. The local H theorem for distribution functions
independent of space states that the rate of the entropy density increase is
equal to the nonnegative entropy production,

dS
dt

= σ ≥ 0 . (2.14)

Thus, if no space dependence is considered, the Boltzmann equation de-
scribes relaxation to the unique global Maxwellian (whose parameters are
fixed by initial conditions), and the entropy density grows monotonically
along the solutions. Mathematical specifications of this property has been

1 From the physical point of view the value of the function f can be treated
as dimensional quantity, but if one changes the scale and multiplies f by a
positive number ν then S[f ] transforms into νS[f ] + ν ln ν

∫
f dv. For a closed

system the corresponding transformation of the entropy is an inhomogeneous
linear transformation with constant coefficients.
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initialized by Carleman [259], and many estimations of the entropy growth
were obtained over the past two decades. In the case of space-dependent
distribution functions, the local entropy density obeys the entropy balance
equation:

∂S(x, t)
∂t

+
(

∂

∂x
,Js(x, t)

)
= σ(x, t) ≥ 0 , (2.15)

where Js is the entropy flux, Js(x, t) = −kB

∫
ln f(x, t)vf(x, t) dv. For suit-

able boundary conditions, such as specularly reflecting or at infinity, the
entropy flux gives no contribution to the equation for the total entropy,
Stot =

∫
S(x, t) dx and its rate of changes is then equal to the nonnega-

tive total entropy production σtot =
∫
σ(x, t) dx (the global H theorem). For

more general boundary conditions which maintain the entropy influx, the
global H theorem needs to be modified. A detailed discussion of this ques-
tion is given by Cercignani [112]. The local Maxwellian is also specified as
the maximizer of the Boltzmann entropy function (2.13), subject to fixed
hydrodynamic constraints (2.4). For this reason, the local Maxwellian is also
termed the local equilibrium distribution function.

2.1.3 Linearized Collision Integral

Linearization of the Boltzmann integral around the local equilibrium results
in the linear integral operator,

Lh(v) =
∫
W (v,w | v′,w′)fLM(v)fLM(w)

×
[

h(v′)
fLM(v′)

+
h(w′)
fLM(w′)

− h(v)
fLM(v)

− h(w)
fLM(w)

]
dw′ dv′ dw . (2.16)

The linearized collision integral is symmetric with respect to the scalar prod-
uct defined by the second derivative of the entropy functional,

∫
f−1
LM(v)g(v)Lh(v) dv =

∫
f−1
LM(v)h(v)Lg(v) dv .

The operator L is nonpositive definite,
∫
f−1
LM(v)h(v)Lh(v) dv ≤ 0 ,

where equality holds if the function hf−1
LM is a linear combination of collision

invariants which characterize the null-space of the operator L. The spectrum
of the linearized collision integral is well studied in the case of the small angle
cut-off.
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2.2 Phenomenology and Quasi-Chemical Representation
of the Boltzmann Equation

Boltzmann’s original derivation of his collision integral was based on a phe-
nomenological “bookkeeping” of the gain and loss of probability density in
the collision process. This derivation postulates that the rate of gain G+

equals

G+ =
∫
W+(v,w | v′,w′)f(v′)f(w′) dv′ dw′ dw ,

while the rate of loss L− is

L− =
∫
W−(v,w | v′,w′)f(v)f(w) dv′ dw′ dw .

The form of the gain and of the loss, containing products of one-body
distribution functions in place of the two-body distribution, constitutes the
famous Stosszahlansatz. The Boltzmann collision integral follows now as
(Q = G+ − L−), subject to the detailed balance for the rates of individ-
ual collisions,

W+(v,w | v′,w′) = W−(v,w | v′,w′) .

This representation Q = G+ − L− for interactions different from hard
spheres requires also the cut-off of functions β (2.3) at small angles. The
gain−loss form of the collision integral makes it evident that the detailed
balance for the rates of individual collisions is sufficient to prove the local H
theorem. A weaker condition which is also sufficient to establish the H theo-
rem was first derived by Stueckelberg [114] (so-called semi-detailed balance),
and later generalized to inequalities of concordance [115]:∫

dv′
∫

dw′(W+(v,w | v′,w′) −W−(v,w | v′,w′)) ≥ 0 ,
∫

dv

∫
dw(W+(v,w | v′,w′) −W−(v,w | v′,w′)) ≤ 0 .

The semi-detailed balance follows from these expressions if the inequality
signs are replaced by equalities.

The pattern of Boltzmann’s phenomenological approach is often used
to construct nonlinear kinetic models. In particular, nonlinear equations of
chemical kinetics are based on this idea: If n chemical species Ai participate
in a complex chemical reaction,∑

i

αsiAi ↔
∑

i

βsiAi ,

where αsi and βsi are nonnegative integers (stoichiometric coefficients) then
equations of chemical kinetics for the concentrations of species cj are written
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dci
dt

=
n∑

s=1

(βsi − αsi)


ϕ+

s exp


 n∑

j=1

∂G

∂cj
αsj


− ϕ−

s exp


 n∑

j=1

∂G

∂cj
βsj




 .

Functions ϕ+
s and ϕ−

s are interpreted as constants of the forward and
reverse reactions, respectively, while the function G is an analog of the Boltz-
mann’s H-function.

Modern derivations of the Boltzmann equation, initialized by the seminal
work of Bogoliubov [2], seek a replacement condition for the Stosszahlansatz
which would be more closely related to many-particle dynamics. Different
conditions has been formulated by Zubarev [195], Lewis [281] and others.
The advantage of these formulations is the possibility to systematically find
corrections not included in the Stosszahlansatz.

2.3 Kinetic Models

Mathematical complications caused by the nonlinear Boltzmann collision in-
tegral are traced back to the Stosszahlansatz. Several approaches were devel-
oped in order to simplify the Boltzmann equation. Such simplifications are
termed kinetic models. Various kinetic models preserve only certain features
of the Boltzmann equation, while sacrificing the rest of them. The best known
kinetic model is the nonlinear Bhatnagar–Gross–Krook model (BGK) [116].
The BGK collision integral reads:

QBGK = −1
τ

(f − fLM(f)) .

The time parameter τ > 0 is interpreted as a characteristic relaxation time
to the local Maxwellian. The BGK collision integral is a nonlinear operator:
The parameters of the local Maxwellian (ρ, u and T , see (2.12)) are the
values of the corresponding moments of the distribution function f . This
nonlinearly is of “lower dimension” than in the Boltzmann collision integral
because fLM(f) is a nonlinear function of only the moments of f whereas
the Boltzmann collision integral is nonlinear in the distribution function f
itself. This type of simplification introduced by the BGK approach is closely
related to the family of the so-called mean-field approximations in statistical
mechanics.

By its construction, the BGK collision integral preserves the following
three properties of the Boltzmann equation: additive invariants of collision,
uniqueness of the equilibrium, and the H theorem.

A class of kinetic models which generalized the BGK model to quasi-
equilibrium approximations of a general form is described as follows: The
quasiequilibrium f∗ for the set of linear functionals M(f) is a distribution
function f∗(M)(x,v) which maximizes the entropy under fixed values of the
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functionals M . The quasiequilibrium (QE) models are characterized by the
collision integral [117],

QQE(f) = −1
τ

[f − f∗(M(f))] +Q(f∗(M(f)), f∗(M(f))) . (2.17)

The first term in (2.17) describes the relaxation to the quasiequiulibrium
manifold {f∗(M)(x,v)} (parametrized by the values of the moments M),
and the second term is the quasiequilibrium approximation for the Boltzmann
collision integral, that is, the value of the Boltzmann collision integral on the
quasiequilibrium distribution. If the set of moment M is ρ, u and T then the
quasiequilibrium model (2.17) turns into the BGK model (2.17)

Same as in the case of the BGK collision integral, operator QQE is non-
linear in the moments M only. The QE models preserve the following prop-
erties of the Boltzmann collision operator: additive invariants, uniqueness of
the equilibrium, and the H theorem, provided the relaxation time τ to the
quasiequilibrium is sufficiently small [117].

A different nonlinear model was proposed by Lebowitz, Frisch and Helfand
[118]:

QD = D

(
∂

∂v

∂

∂v
f +

m

kBT

∂

∂v
(v − u(f))f

)
.

The collision integral has the form of the self-consistent Fokker–Planck opera-
tor, describing diffusion (in the velocity space) in the self-consistent potential.
Diffusion coefficient D > 0 may depend on the distribution function f . Op-
erator QD preserves the same properties of the Boltzmann collision operator
as the BGK model.

The kinetic BGK model has been used to obtain exact solutions of gas-
dynamic problems, especially for stationary problems. The linearized BGK
collision model has been extended to model more precisely the linearized
Boltzmann collision integral [112].

2.4 Methods of Reduced Description

One of the major issues raised by the Boltzmann equation is the problem of
the reduced description. The equations of hydrodynamics constitute a closed
set of equations for the hydrodynamic fields (local density, local momentum,
and local temperature). From the standpoint of the Boltzmann equation,
these quantities are low-order moments of the one-body distribution func-
tion, or, in other words, macroscopic variables. The problem of the reduced
description consists in the following questions:

1. What are the conditions under which the macroscopic description is valid?
2. What macroscopic variables are relevant for this description?
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3. How can we derive equations for the macroscopic variables from the kinetic
equations?

The classical methods of reduced description for the Boltzmann equation are
the Hilbert method, the Chapman–Enskog method, and the Grad moment
method.

2.4.1 The Hilbert Method

In 1911, David Hilbert introduced the notion of normal solutions,

fH(v, n(x, t), u(x, t), T (x, t)) ,

that is, solutions to the Boltzmann equation which depend on space and time
only through five hydrodynamic fields [16]∫

f(x,v, t) dv = n(x, t),
∫

vf(x,v, t) dv = n(x, t)u(x, t) ,
∫

mv2

2
f(x,v, t) dv =

3
2
n(x, t)kBT .

The normal solutions are found from a singularly perturbed Boltzmann
equation,

Dtf =
1
ε
Q(f, f) , (2.18)

where ε is a small parameter, and

Dtf ≡ ∂

∂t
f +

(
v,

∂

∂x

)
f .

Physically, parameter ε corresponds to the Knudsen number, the ratio be-
tween the mean free path of the molecules between collisions, and the charac-
teristic scale of variation of the hydrodynamic fields. In the Hilbert method,
one seeks functions n(x, t), u(x, t), T (x, t), such that the normal solution in
the form of the Hilbert expansion,

fH =
∞∑

i=0

εif
(i)
H (2.19)

satisfies (2.18) order by order. Hilbert was able to demonstrate that this is
formally possible. Substituting (2.19) into (2.18), and matching various order
in ε, we obtain the sequence of integral equations

Q(f (0)
H , f

(0)
H ) = 0 , (2.20)

Lf
(1)
H = Dtf

(0)
H , (2.21)

Lf
(2)
H = Dtf

(1)
H − 2Q(f (0)

H , f
(1)
H ) , (2.22)
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and so on for higher orders. Here L is the linearized collision integral. From
(2.20), it follows that f (0)

H is the local Maxwellian with parameters not yet
determined. The Fredholm alternative, as applied to (2.21) results in:

(a) Solvability condition,∫
Dtf

(0)
H {1,v, v2}dv = 0 ,

which is the set of the compressible Euler equations of the non-viscous hy-
drodynamics. The solution of the Euler equation determines the parameters
of the Maxwellian f0

H.
(b) General solution f (1)

H = f
(1)1
H +f

(1)2
H , where f (1)1

H is the special solution
to the linear integral equation (2.21), and f

(1)2
H is a yet undetermined linear

combination of the additive invariants of collision.
(c) Solvability condition to the next equation (2.22) determines coeffi-

cients of the function f
(1)2
H in terms of solutions to linear hyperbolic differ-

ential equations, ∫
Dt(f

(1)1
H + f

(1)2
H ){1,v, v2}dv = 0 .

Hilbert was able to demonstrate that this procedure of constructing the nor-
mal solution can be carried out to arbitrary order n, where the function f

(n)
H

is determined from the solvability condition at the next, (n + 1)-th order.
In order to summarize, implementation of the Hilbert method requires solu-
tions for the functions n(x, t), u(x, t), and T (x, t) obtained from a sequence
of partial differential equations.

2.4.2 The Chapman–Enskog Method

A completely different approach to the reduced description was invented in
1917 by David Enskog [120], and independently by Sidney Chapman [70]. The
key idea was to seek an expansion of the time derivatives of the hydrodynamic
variables rather than seeking the time-space dependence of these functions,
as in the Hilbert method.

The Chapman–Enskog method starts also with the singularly perturbed
Boltzmann equation, and with the expansion

fCE =
∞∑

n=0

εnf
(n)
CE .

However, the procedure of evaluation of the functions f (n)
CE differs from the

Hilbert method:

Q(f (0)
CE, f

(0)
CE) = 0 , (2.23)

Lf
(1)
CE = −Q(f (0)

CE, f
(0)
CE) +

∂(0)

∂t
f

(0)
CE +

(
v,

∂

∂x

)
f

(0)
CE . (2.24)
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The operator ∂(0)/∂t is defined from the expansion of the right hand side of
the hydrodynamic equations,

∂(0)

∂t
{ρ, ρu, e} ≡ −

∫ {
m,mv,

mv2

2

}(
v,

∂

∂x

)
f

(0)
CE dv . (2.25)

From (2.23), function f
(0)
CE is again the local Maxwellian, whereas (2.25) are

the Euler equations, and ∂(0)/∂t acts on various functions g(ρ, ρu, e) accord-
ing to the chain rule,

∂(0)

∂t
g =

∂g

∂ρ

∂(0)

∂t
ρ+

∂g

∂(ρu)
∂(0)

∂t
(ρu) +

∂g

∂e

∂(0)

∂t
e ,

while the time derivatives ∂(0)

∂t of the hydrodynamic fields are expressed using
the right hand side of (2.25).

The result of the Chapman–Enskog definition of the time derivative ∂(0)

∂t ,
is that the Fredholm alternative is satisfied by the right hand side of (2.24).
Finally, the solution to the homogeneous equation is set to zero by the require-
ment that the hydrodynamic variables as defined by the function f (0) + εf (1)

coincide with the parameters of the local Maxwellian f (0):∫
{1,v, v2}f (1)

CE dv = 0 .

The first correction f
(1)
CE of the Chapman–Enskog method adds the terms

∂(1)

∂t
{ρ, ρu, e} = −

∫ {
m,mv,

mv2

2

}(
v,

∂

∂x

)
f

(1)
CE dv

to the time derivatives of the hydrodynamic fields. These terms correspond
to the dissipative hydrodynamics where viscous momentum transfer and heat
transfer are in the Navier–Stokes and Fourier form. The Chapman–Enskog
method was the first true success of the Boltzmann equation since it made
it possible to derive macroscopic equations without a priori guessing (the
generalization of the Boltzmann equation onto mixtures predicted existence of
the thermodiffusion before it has been found experimentally), and to express
transport coefficients in terms of microscopic particles interaction.2

However, higher-order corrections of the Chapman–Enskog method, re-
sulting in hydrodynamic equations with higher derivatives (Burnett hydro-
dynamic equations) face severe difficulties both from the theoretical, as well
as from the practical point of view. In particular, they result in unphysical
instabilities of the equilibrium.
2 For all of the reduction methods many properties of the gas, from the charac-

teristics of the velocity distribution function to the transport coefficients, may
be expressed in terms of functions of the collision integral (kinetic integrals).
Although the evaluation of these functions is conceptually straightforward, tech-
nically it is frequently rather cumbersome. Now the methods for the analytical
evaluation of kinetic integrals using computer algebra are developed [121].
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2.4.3 The Grad Moment Method

In 1949, Harold Grad extended the basic assumption of the Hilbert and the
Chapman–Enskog methods (the space and time dependence of normal so-
lutions is mediated by the five hydrodynamic moments) [201]. A physical
rationale behind the Grad moment method is an assumption of the decom-
position of motions:

1. During the time of order τ , a set of distinguished moments M ′ (which
include the hydrodynamic moments and a subset of higher-order moments)
does not change significantly in comparison to the rest of the moments M ′′

(the fast dynamics).
2. Towards the end of the fast evolution, the values of the moments M ′′

become unambiguously determined by the values of the distinguished mo-
ments M ′.

3. On the time of order θ 	 τ , dynamics of the distribution function is
determined by the dynamics of the distinguished moments while the rest
of the moments remain to be determined by the distinguished moments
(the slow evolution period).

Implementation of this picture requires an ansatz for the distribution
function in order to represent the set of states visited in the course of the
slow evolution. In Grad’s method, these representative sets are finite-order
truncations of an expansion of the distribution functions in terms of Hermite
velocity tensors:

fG(M ′,v) = fLM(ρ,u, e,v)


1 +

N∑
(α)

a(α)(M ′)H(α)(v − u)


 , (2.26)

where H(α)(v − u) are Hermite tensor polynomials, orthogonal with the
weight fLM, while coefficient a(α)(M ′) are known functions of the distin-
guished moments M ′. Other moments are assumed to be functions of M ′:
M ′′ = M ′′(fG(M ′)).

Slow evolution of distinguished moments is found upon substitution of
(2.26) into the Boltzmann equation and finding the moments of the result-
ing expression (Grad’s moment equations). Following Grad, this very simple
approximation can be improved by extending the list of distinguished mo-
ments. The best known is Grad’s thirteen-moment approximation where the
set of distinguished moments consists of the five hydrodynamic moments,
the five components of the traceless stress tensor σij =

∫
m[(vi − ui)(vj −

uj)− δij(v−u)2/3]f dv, and of the three components of the heat flux vector
qi =

∫
(vi − ui)m(v − u)2/2f dv.

The decomposition of motions hypothesis cannot be evaluated for its va-
lidity within the framework of Grad’s approach. It is not surprising therefore
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that Grad’s methods failed to work in situations where it was (unmotivat-
edly) supposed to, primarily, in phenomena with sharp time-space depen-
dence such as the strong shock waves. On the other hand, Grad’s method
was quite successful for describing transition between parabolic and hyper-
bolic propagation, in particular, the second sound effect in massive solids at
low temperatures, and, in general, situations slightly deviating from the clas-
sical Navier–Stokes–Fourier domain. Finally, the Grad method has been im-
portant background for the development of phenomenological nonequilibrium
thermodynamics based on a hyperbolic first-order equation, the so-called EIT
(extended irreversible thermodynamics [235,236]).

2.4.4 Special Approximations

Special approximations to the solutions of the Boltzmann equation were
found for several problems, which perform better than the results of “regu-
lar” procedures. The best known is the Tamm–Mott-Smith ansatz introduced
independently by Mott-Smith and Tamm for the strong shock wave problem:
The (stationary) distribution function is represented as

fTMS(a(x)) = (1 − a(x))f+ + a(x)f− , (2.27)

where f± are upstream and downstream Maxwell distribution functions, and
a(x) is an undetermined scalar function of the coordinate along the shock
tube.

Equation for the function a(x) is obtained upon substitution of (2.27)
into the Boltzmann equation, and integration with some velocity-dependent
function ϕ(v). Two general problems arise with the special approximation
thus constructed: which function ϕ(v) should be taken, and how to find a
correction to an ansatz like (2.27)?

2.4.5 The Method of Invariant Manifold

The general problem of reduced description for dissipative system was recog-
nized as the problem of finding stable invariant manifolds in the space of
distribution functions [9,11,12,14]. The notion of invariant manifold general-
izes the normal solution in the Hilbert and in the Chapman–Enskog method,
and the finite-moment sets of distribution function in the Grad method: If Ω
is a smooth manifold in the space of distribution functions, and if fΩ is an
element of Ω, then Ω is invariant with respect to the dynamic system,

df
dt

= J(f) , (2.28)

if J(fΩ) ∈ TfΩ
Ω, for all fΩ ∈ Ω , (2.29)

where TfΩ
Ω is the tangent space of the manifold Ω at the point fΩ . Ap-

plication of the invariant manifold idea to dissipative systems is based on
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iterations, progressively improving the initial approximation, and it involves
the following steps: construction of the thermodynamic projector and itera-
tions for the invariance condition

Thermodynamic Projector

Given a manifold Ω (not obligatory invariant), the macroscopic dynamics on
this manifold is defined by the macroscopic vector field, which is the result of a
projection of vectors J(fΩ) onto the tangent bundle TΩ. The thermodynamic
projector P ∗

fΩ
takes advantage of dissipativity:

kerP ∗
fΩ

⊆ kerDfS |fΩ
, (2.30)

where DfS |fΩ
is the differential of the entropy evaluated in fΩ .

This condition of thermodynamicity means that the projector P ∗
fΩ

deter-
mines a decomposition of motion near Ω: fΩ + kerP ∗

fΩ
is the plane of fast

motion, and imP ∗
fΩ

is the tangent space to fΩ , we assume that the motion
along Ω is slow. Each state of the manifold Ω can be considered as the re-
sult of the fast relaxation. During the fast motion the entropy should grow.
Hence, the state fΩ is the maximum entropy state on the plain of fast motions
fΩ + kerP ∗

fΩ
.

The condition of thermodynamicity (2.30) does not define the projector
completely; rather, it is the condition that should be satisfied by any projector
used to define the macroscopic vector field, J ′

Ω = P ∗
fΩ
J(fΩ). For, once the

condition (2.30) is met, the macroscopic vector field preserves dissipativity
of the original microscopic vector field J(f):

DfS |fΩ
·P ∗

fΩ
(J(fΩ)) ≥ 0 for all fΩ ∈ Ω . (2.31)

Nevertheless, the thermodynamic projector is uniquely defined by the re-
quirement dissipativity preservation (2.31) for all the dissipative vector field
with the given entropy (see Chap. 5 and [10]).

The thermodynamic projector is the formalization of the assumption that
Ω is the manifold of slow motion: If a fast relaxation takes place at least in
a neighborhood of Ω, then the states visited in this process before arriving
at fΩ belong to kerP ∗

fΩ
. In general, P ∗

fΩ
depends in a non-trivial way on fΩ .

Iterations for the Invariance Condition

The invariance condition for the manifold Ω reads,

PΩ(J(fΩ)) − J(fΩ) = 0 ,

here PΩ is arbitrary (not obligatory thermodynamic) projector onto the tan-
gent bundle of Ω. The invariance condition is considered as an equation
which is solved iteratively, starting with an initial approximation Ω0. On the
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(n + 1)−st iteration, the correction f (n+1) = f (n) + δf (n+1) is found from
linear equations,

DfJ
∗
nδf

(n+1) = P ∗
nJ(f (n)) − J(f (n)) ,

P ∗
nδf

(n+1) = 0 , (2.32)

where DfJ
∗
n is the linear self-adjoint operator with respect to the scalar

product by the second differential of the entropy D2
fS |f(n) .

Together with the above-mentioned principle of thermodynamic projec-
tion, the self-adjoint linearization implements the assumption about the de-
composition of motions around the n’th approximation. The self-adjoint lin-
earization of the Boltzmann collision integral Q (2.7) around a distribution
function f is given by the formula,

DfQ
SYMδf =

∫
W (v,w, | v′,w′)

f(v)f(w) + f(v′)f(w′)
2

×
[
δf(v′)
f(v′)

+
δf(w′)
f(w′)

− δf(v)
f(v)

− δf(w)
f(w)

]
dw′ dv′ dw .

(2.33)

If f = fLM, the self-adjoint operator (2.33) becomes the linearized colli-
sion integral.

The method of invariant manifold is the iterative process:

(f (n), P ∗
n) → (f (n+1), P ∗

n) → (f (n+1), P ∗
n+1)

On the each first step of the iteration, the linear equation (2.32) is solved with
the projector known from the previous iteration. On the each second step, the
projector is updated, following the thermodynamic construction. The method
of invariant manifold can be further simplified if smallness parameters are
known.

2.4.6 Quasiequilibrium Approximations

Important generalization of the Grad moment method is the concept of the
quasiequilibrium approximations already mentioned above (we discuss this
approximation in detail in Chap. 5). The quasiequilibrium distribution func-
tion for a set of distinguished moments M = m(f) maximizes the entropy
density S for fixed M . The quasiequilibrium manifold Ω∗(M) is the collec-
tion of the quasiequilibrium distribution functions for all admissible values of
M . The quasiequilibrium approximation is the simplest and extremely useful
(not only in the kinetic theory itself) implementation of the hypothesis about
a decomposition of motions: If M are considered as slow variables, then states
which could be visited in the course of rapid motion in the vicinity of Ω∗(M)
belong to the planes
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ΓM = {f | m(f − f∗(M)) = 0} .

In that respect, the thermodynamic construction in the method of invari-
ant manifold is a generalization of the quasiequilibrium approximation where
the given manifold is equipped with a quasiequilibrium structure by choos-
ing appropriately the macroscopic variables of the slow motion. In contrast
to the quasiequilibrium, the macroscopic variables thus constructed are not
obligatory moments. A textbook example of the quasiequilibrium approx-
imation is the generalized Gaussian function for M = {ρ, ρu, P}, where
Pij =

∫
vivjf dv is the pressure tensor.

The thermodynamic projector P ∗ for a quasiequilibrium approximation
was first introduced by B. Robertson [126] (in a different context of conserv-
ative dynamics and for a special case of the Gibbs–Shannon entropy). It acts
on a function Ψ as follows

P ∗
MΨ =

∑
i

∂f∗

∂Mi

∫
miΨ dv ,

where M =
∫
mif dv. The quasiequilibrium approximation does not exist if

the highest order moment is an odd-order polynomial of velocity (therefore,
there exists no quasiequilibrium for thirteen Grad’s moments), and a regular-
ization is then required. Otherwise, the Grad moment approximation is the
first-order expansion of the quasiequilibrium around the local Maxwellian.

2.5 Discrete Velocity Models

If the number of microscopic velocities is reduced drastically to only a finite
set, the resulting discrete velocity models, continuous in time and in space,
can still mimic gas-dynamic flows. This idea was introduced in Broadwell’s
paper in 1963 to mimic the strong shock wave [122].

Further important development of this idea was due to Cabannes and
Gatignol in the seventies who introduced a systematic class of discrete ve-
locity models [129]. The structure of the collision operators in the discrete
velocity models mimics the polynomial character of the Boltzmann collision
integral. Discrete velocity models are implemented numerically by using the
natural operator splitting in which each update due to free flight is followed
by the collision update, the idea which dates back to Grad. One of the most
important recent results is the proof of convergence of the discrete velocity
models with pair collisions to the Boltzmann collision integral [124].

2.6 Direct Simulation

Besides the analytical approach, direct numerical simulation of Boltzmann-
type nonlinear kinetic equations have been developed since the middle of
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1960’s, beginning with the seminal works of Bird [127, 128]. The basis of
the approach is a representation of the Boltzmann gas by a set of particles
whose dynamics is modeled as a sequence of free propagation and collisions.
The modeling of collisions uses a random choice of pairs of particles inside
the cells of the space, and changing the velocities of these pairs in such a way
as to comply with the conservation laws, and in accordance with the kernel of
the Boltzmann collision integral. At present, there exists a variety of models
based on this scheme known as the Direct Simulation Monte-Carlo method
(DSMC) [127, 128]. The DSMC, in particular, provides data to test various
analytical theories.

2.7 Lattice Gas and Lattice Boltzmann Models

Since the mid 1980’s, the kinetic-theory based approach to simulate com-
plex macroscopic phenomena such as hydrodynamics has been developed.
The main idea of the approach is the construction of a minimal kinetic sys-
tem in such a way that their long-time and large-scale limit matches the
desired macroscopic equations. For this purpose, the fully discrete (in time,
space, and velocity) nonlinear kinetic equations are considered on sufficiently
isotropic lattices, where the links represent the discrete velocities of fictitious
particles. In the earlier version of the lattice methods, the particle–based pic-
ture has been exploited. These models obey the exclusion rule (one or zero
particle per lattice link) (the lattice gas model [130]). Most of the present
versions use the distribution function picture, where populations of the links
are non-integer (the lattice Boltzmann model [131–135]). Discrete-time dy-
namics consists of a propagation step where populations are transmitted to
adjacent links and collision step where populations of the links at each node
of the lattice are equilibrated according a certain simple rule. Many of present
versions use the BGK-type equilibration, where the local equilibrium is con-
structed in such a way as to match desired macroscopic equations. The lattice
Boltzmann method is a useful approach for computational fluid dynamics, ef-
fectively compliant with parallel architectures. The proof of the H theorem
for the Lattice gas models is based on the semi-detailed (or Stueckelberg’s)
balance principle. The proof of the H theorem in the framework of the lat-
tice Boltzmann method has only very recently been achieved [136–141] (see
below).

2.7.1 Discrete Velocity Models for Hydrodynamics

We start with a generic discrete velocity kinetic model. Let fi(x, t) be the
population of D-dimensional discrete velocities ci, i = 1, . . . , nd, at position
x and time t. The hydrodynamic fields are the first few moments of the
populations, namely
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nd∑
i=1

{1, ci, c
2
i }fi = {ρ, ρu, ρDT + ρu2} , (2.34)

where ρ is the mass density of the fluid, ρu is the D-dimensional momentum
density vector, and e = ρDT + ρu2 is the energy density. Below, the index
α = 1, . . . , D, denotes the spatial components. In the case of athermal hydro-
dynamics, the set of independent hydrodynamic fields contains only the mass
and momentum densities. It is convenient to introduce nd-dimensional popu-
lation vectors f , and the standard scalar product, 〈f |g〉 =

∑nd
i=1 xiyi. We will

describe here the construction of the discrete velocity models for the incom-
pressible hydrodynamics (the most important field of applications), and will
present the results for a weakly compressible case below. So, let the locally
conserved fields be density and momentum density,

〈1|f〉 = ρ, 〈cα|f〉 = ρuα . (2.35)

Here 1 = {1}nd
i=1, vα = {ciα}nd

i=1, α = 1, . . . , D. In this case, the construction
of the kinetic simulation scheme begins with finding a convex function of
populations H (entropy function), which satisfies the following condition:
If f eq(ρ,u) (local equilibrium) minimizes H subject to the hydrodynamic
constraints (2.35), then f eq also satisfies certain restrictions on the higher-
order moments. For example, the equilibrium stress tensor must respect the
Galilean invariance,

nd∑
i=1

ciαciβf
eq
i (ρ,u) = ρc2sδαβ + ρuαuβ . (2.36)

Here cs is the speed of sound. The corresponding entropy functions for the
athermal and thermal cases are given below (see Table 2.1 and Table 2.2).
For the time being, assume the convex function H is fixed.

The next step is to write down the set of kinetic equations,

∂tfi + ciα∂αfi = ∆i . (2.37)

Table 2.1. Reconstruction of macroscopic dynamics with the increase of the order
of the Hermite polynomial

Order of Independent Discrete Weights Target Equation
Polynomial Variables Velocities (1D)

2 ρ ±1 1
2

Diffusion

3 ρ, ρu 0, ±
√

3 T0
2
3
, 1

6
Athermal Navier–Stokes, O(u2)

4 ρ, ρu, e ± a, ± b T0
4a2 , T0

4b2
Thermal Navier–Stokes, O(θ2)

Athermal Navier–Stokes, O(u3)
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Table 2.2. Reconstruction of higher-order moments, in comparison to the contin-
uous case. Symbol ∆ denotes the difference from the continuous case

∆ P eq
αβ ∆ Qeq

αβγ ∆ Req
αβ

Athermal case O(u4) O(u3)
Thermal case* O(u8) O(uθ2), O(u3θ), and O(u5) O(θ2), O(u2θ2), and O(u4)

*θ = (T0 − T )/T0 is the deviation of the temperature from the reference value.

For a generic case of nc locally conserved fields Mi = 〈mi|f〉, i = 1, . . . , nc,
nc < nd, the nd-dimensional vector function ∆ (collision integral), must
satisfy the conditions:

〈mi|∆〉 = 0 (local conservation laws) ,

σ = 〈∇H|∆〉 ≤ 0 (entropy production inequality) .

Here ∇H is the row-vector of partial derivatives ∂H/∂fi. Moreover, the local
equilibrium vector f eq must be the only zero point of ∆, that is, ∆(f eq) = 0,
and, finally, f eq must be the only zero point of the local entropy production,
σ(f eq) = 0. Collision integral which satisfies all these requirements is called
admissible. Let us discuss several possibilities of constructing admissible col-
lision integrals.

BGK Model

Suppose the entropy function H known. If, in addition, the local equilib-
rium is also known as an explicit function of locally conserved variables (or
some reliable approximation of this function is known), the simplest option
is to use the Bhatnagar-Gross-Krook (BGK) model. In the case of athermal
hydrodynamics, for example, we write

∆ = −1
τ

(f − f eq(ρ(f),u(f))) . (2.38)

The BGK collision operator is sufficient for many applications. However,
it becomes advantageous only if the local equilibrium is known in a closed
form. In other cases only the entropy function is known but not its minimizer.
For those cases one should construct collision integrals based solely on the
knowledge of the entropy function. We here present two particular realizations
of the collision integral based on the knowledge of the entropy only.

Quasi-Chemical Model

Let m1, . . . ,mnc be the nd-dimensional vectors of locally conserved fields,
Mi = 〈mi|f〉, i = 1, . . . , nc, and let gs, s = 1, . . . , nd − nc, be a basis
of the subspace orthogonal (in the standard scalar product) to vectors of
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conservation laws. For each vector gs, we define a decomposition gs = g+
s −

g−
s , where all components of vectors g±

s are nonnegative, and if g±si �= 0, then
g∓si = 0. Let us consider the collision integral of the form:

∆ =
nd−nc∑

s=1

γsgs

{
exp

[
〈∇H|g−

s 〉
]
− exp

[
〈∇H|g+

s 〉
]}

. (2.39)

Here γs > 0. By the construction, the collision integral (2.39) is admissible.
If the entropy function is Boltzmann–like, and the components of vectors gs

are integers, the collision integral assumes the familiar Boltzmann–like (or
mass action law) form.

Single Relaxation Time Gradient Model

The BGK collision model (2.38) has the important property: linearization of
the operator (2.38) at the local equilibrium point has a very simple spectrum
{0,−1/τ}, where 0 is the nc-times degenerated eigenvalue corresponding to
the conservation laws, while the eigenvalue −1/τ corresponds to all the rest
of the (kinetic) eigenvectors. Nonlinear collision operators which have this
property of their linearizations at equilibrium are called single relaxation
time models (SRTM). They play an important role in modelling because
they allow for the simplest identification of transport coefficients.

The SRTM, based on the given entropy function H, is constructed as
follows (single relaxation time gradient model, SRTGM). For the system with
nc local conservation laws, let es, s = 1, . . . , nd−nc, be an orthonormal basis
in the kinetic subspace, 〈mi|es〉 = 0, and 〈es|ep〉 = δsp. Then the single
relaxation time gradient model is

∆ = −1
τ

nd−nc∑
s,p=1

esKsp(f)〈ep|∇H〉 , (2.40)

where Ksp are elements of a positive definite (nd −nc)× (nd −nc) matrix K,

K(f) = C−1(f) , (2.41)
Csp(f) = 〈es|∇∇H(f)|ep〉 .

Here ∇∇H(f) is the nd × nd matrix of second derivatives, ∂2H/∂fi∂fj .
Linearization of the collision integral at equilibrium results in the form,

L = −1
τ

nd−nc∑
s=1

eses , (2.42)

and is obviously single relaxation time. Use of the SRTGM instead of the
BGK model results in the equivalent hydrodynamics even when the local
equilibrium is not known in a closed form.
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H-Functions of Minimal Kinetic Models

The Boltzmann H-function written in terms of the one-particle distribu-
tion function F (x, c) is H =

∫
F lnF dc, where c is the continuous velocity.

Close to the local equilibrium, this integral can be approximated by using the
Gauss–Hermite quadrature. This gives the entropy functions of the discrete-
velocity models,

H{wi,ci} =
nd∑
i=1

fi ln
(
fi

wi

)
. (2.43)

Here wi is the weight associated with the i-th discrete velocity ci, while the
particles mass and Boltzmann‘s constant kB are set equal to one. The discrete-
velocity distribution functions (populations) fi(x) are related to the values
of the continuous distribution function at the nodes of the quadrature by the
formula,

fi(x) = wi(2π T0)(D/2) exp(c2i /(2T0))F (x, ci) .

The discrete-velocity entropy functions (2.43) for various {wi, ci} is the single
input for all the constructions of the minimal kinetic models. The set of
discrete velocities corresponds to zeroes of the Hermite polynomials.

As the order of the Hermite polynomials used in the quadrature is in-
creased (this corresponds to increasing the number of discrete velocities), the
discrete H-functions H{wi,ci} (2.43) become a better approximation. Thus,
with the increase of the order of the Hermite polynomials, a better approxi-
mation to the hydrodynamics is obtained as demonstrated in Table 2.1, where
a =

√
3 −

√
6(T0)1/2, and b =

√
3 +

√
6(T0)1/2 are the absolute values of

the roots of the fourth-order Hermite polynomial. In higher dimensions, the
discrete velocities are products of the discrete velocities in one dimension,
and the weights are constructed by multiplying the weights associated with
each component direction.

Athermal Hydrodynamics

If the discrete velocities are formed using the roots of the third-order Hermite
polynomials (see Table 2.1), the Navier–Stokes equation is reproduced up to
the order O(u2), and which is sufficient for many hydrodynamic applications.

As the higher-order moments of the local equilibrium are not enforced
by the construction, we need to check their behavior. Relevant higher-
order moments of the equilibrium distribution, required to reproduce the
hydrodynamics in the long-time large-scale limit are the equilibrium pres-
sure tensor, P eq

αβ =
∑

i f
eq
i ciαciβ , the equilibrium third-order moments,

Qeq
αβγ =

∑
i f

eq
i ciαciβciγ , and the equilibrium fourth order moment Req

αβ =∑
i ci αci βc

2f eq
i . For the athermal hydrodynamics, only the equilibrium pres-

sure tensor and the equilibrium third-order moments are required to be
correctly reproduced in order to recover the Navier–Stokes equations. The



42 2 The Source of Examples

deviation of these higher-order moments from the expression for the contin-
uous case is reported in Table 2.2.

2.7.2 Entropic Lattice Boltzmann Method

If the set of discrete velocities forms the links of a Bravais lattice (with
possibly several sub-lattices), then the discretization in time and space of
the discrete velocity kinetic equations is particularly simple, and it leads to
the entropic lattice Boltzmann scheme. This happens in the most important
case of the athermal hydrodynamics. The equation of the entropic lattice
Boltzmann scheme reads

fi(x + viδt, t+ δt) − fi(x, t) = βα(f(x, t))∆i(f(x, t)) . (2.44)

Here δt is the discretization time step, β ∈ [0, 1] is a fixed parameter which
matches the viscosity coefficient in the long-time large-scale dynamics of the
kinetic scheme (2.44), while the function of the population vector α defines
the maximal over-relaxation of the scheme, and is found from the entropy
condition,

H(f(x, t) + α∆(f(x, t)) = H(f(x, t)) . (2.45)

The nontrivial root of this equation is found for populations at each lattice site
at each moment of discrete time. Equation (2.45) ensures the discrete-time
H-theorem, and is required in order to stabilize the scheme if the relaxation
parameter β is close to 1. The latter limit is of particular importance in the
applications of the entropic lattice Boltzmann method because it corresponds
to the vanishing viscosity, and hence to simulations of high Reynolds number
flows. The geometrical sense of the over-relaxation is illustrated in Fig. 2.1.

2.7.3 Entropic Lattice BGK Method (ELBGK)

An important further simplifications happens in the case of athermal hydro-
dynamics when the entropy function is constructed using third-order Hermite
polynomials (see Table 2.1). In this case the local equilibrium populations
vector can be found in a closed form [141]. This enables the simplest en-
tropic scheme – the entropic lattice BGK model – for simulation of athermal
hydrodynamics. We present this model in the dimensionless lattice units.

Let D be the spatial dimension. For D = 1, the three discrete velocities
are

c = {−1, 0, 1} . (2.46)

For D > 1, the discrete velocities are tensor products of the discrete velocities
of the one-dimensional velocities (2.46). Thus, we have the 9-velocity model
for D = 2 and the 27-velocity model for D = 3. The H function is Boltzmann-
like,
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∆
H−

∆

M

f
eq

L

f∗

f

f (β)

Fig. 2.1. Entropic stabilization of the lattice Boltzmann scheme with over-
relaxation. Curves represent entropy levels, surrounding the local equilibrium f eq.
The solid curve L is the entropy level with the value H(f ) = H(f ∗), where f is
the initial, and f ∗ is the maximally over-relaxed population f +α∆. The vector ∆
represents the collision integral, the sharp angle between ∆ and the vector −∇H
reflects the entropy production inequality, while M is the point of minimum of
H on the segment between f and f ∗. The point f ∗ M is the solution to (2.45).
The result of the collision update is represented by the point f (β). The choice of β
shown corresponds to the over-relaxation: H(f (β)) > H(M ) but H(f (β)) < H(f ).
The particular case of the BGK collision (not shown) would be represented by a
vector ∆BGK, pointing from f towards f eq, in which case M = f eq

H =
3D∑
i=1

fi ln
(
fi

wi

)
. (2.47)

The weights wi are associated with the each of the ith discrete velocity ci.
For D = 1, the three-dimensional vector of the weights corresponding to the
velocities (2.46) is

w =
{

1
6
,
2
3
,
1
6

}
. (2.48)

For D > 1, the weights are constructed by multiplying the weights associated
with each component direction.

The local equilibrium minimizes the H-function (2.43) subject to the fixed
density and momentum,

3D∑
i=1

fi = ρ,

3D∑
i=1

ficiα = ρuα, α = 1, . . . , D . (2.49)

The explicit solution to this minimization problem reads,

f eq
i = ρwi

D∏
α=1

(
2 −

√
1 + 3u2

α

)(2uα +
√

1 + 3u2
α

1 − uα

)ciα

. (2.50)
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Note that the exponent, ciα, in (2.50) takes the values ±1, and 0 only. The
speed of sound, cs, in this model is equal to 1/

√
3. The factorization of the

local equilibrium (2.50) over spatial components is quite remarkable, and
resembles the familiar property of the local Maxwellians.

The entropic lattice BGK model for the local equilibrium (2.50) reads,

fi(x + ciδt, t+ δt) − fi(x, t) = −βα(fi(x, t) − f eq
i (ρ(f(x, t)),u(f(x, t))) .

(2.51)
The parameter β is related to the relaxation time τ of the BGK model (2.38)
by the formula,

β =
δt

2τ + δt
. (2.52)

Note that β depends on the discretization interval δt nonlinearly. The value
of the over-relaxation parameter α is computed on each lattice site at every
time from the entropy estimate,

H(f − α(f − f eq(f))) = H(f) . (2.53)

In the hydrodynamic limit, the model (2.51) reconstructs the Navier-Stokes
equations with the viscosity

µ = ρc2s τ = ρc2sδt

(
1
2β

− 1
2

)
. (2.54)

The zero-viscosity limit corresponds to β → 1. It is the maximal over-
relaxation (see Fig. 2.1).

Thermal Hydrodynamics

The minimal entropic kinetic model for the thermal case requires zeroes of
fourth-order Hermite polynomials (see Table 2.1). This is an off-lattice model
(discrete velocities at zeroes of the fourth-order Hermit polynomials do not
form links of any lattice). Therefore, a discretization in space should use other
methods familiar from the discretization of hyperbolic equations. However,
the theory of the entropy estimate for the discretization in the time presented
above is fully applicable in this case too. We here present the local equilibrium
of the thermal model.

In order to evaluate Lagrange multipliers in the formal solution to the
minimization problem,

f eq
i = wi exp

(
A+Bαciα + C c2i

)
,

we note that they can be computed exactly for u = 0 and any temperature
T within the positivity interval, a2 < T < b2:
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Bα = 0, C0 =
1

(b2 − a2)
log

(
wa (T − a2)
wb (b2 − T )

)
,

A0 = log
(

ρ (b2 − T )D

(2wa)D(b2 − a2)D

)
−Da2C0 . (2.55)

With this, the equilibrium at the zero value of the average velocity and the
arbitrary temperature reads

f eq
i =

ρwi

2D(b2 − a2)D

D∏
α=1

(
b2 − T

wa

)( b2−c2iα
b2−a2

) (
T − a2

wb

)( c2iα−a2

b2−a2

)

. (2.56)

The factorization over spatial components is again clearly visible. Once the
exact solution for the zero velocity is found, the extension to u �= 0 is ob-
tained perturbatively. The first few terms of the expansion of the Lagrange
multipliers are:

A = A0 −
T

(T − a2)(b2 − T )
u2 +O(u4) ,

Bα =
uα

T
+

(T − T0)2

2DT 4

(
Duβuθuγδαβγθ − 3u2 uα

)
+O(u5) ,

C = C0 +
a2(b2 − T ) − T (b2 − 3T )
2DT 2(T − a2)(b2 − T )

u2 +O(u4) .

For the numerical implementation, the equilibrium distribution function can
be calculated analytically up to any order of accuracy required. The accuracy
of the relevant higher-order moments in this case is shown in the Table 2.2.
Once the errors in these terms are small, the minimal kinetic models recon-
struct the full thermal hydrodynamic equations.

While in the athermal case the closeness of the resulting macroscopic
equations to the Navier–Stokes equations is controlled solely by the deviations
from zero of the average velocity (low Mach number flows), in the thermal
regime deviations are also due to variations of the temperature away from the
reference value. This means that not only the actual velocity should be much
less than the heat velocity, but also that the temperature deviation from
T0 should be small, |T − T0|/T0 � 1. However, by increasing the reference
temperature, one gets a wider range of validity of the present model. Another
important remark is about the use of the thermal model for the Navier–
Stokes equation. If the temperature is fixed at the reference value T = T0,
the pressure tensor becomes exact to any purposes of simulation, while the
third moment Qeq

αβγ becomes exact to the order O(u5).
In the construction of the discrete velocity model, the focus is on achieving

a good approximation of the Boltzmann H-function. Thus, one can expect
that the correct thermodynamics will be also preserved (within the accuracy
of the discretization) even in the discrete case. Indeed, the local equilibrium
entropy, S = −kBH{wi,c}(f

eq), for the thermal model satisfies the usual
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expression for the entropy of the ideal monatomic gas to the overall order of
approximation of the method,

S = ρ kB ln
(
TD/2/ρ

)
+O(u4, θ2) . (2.57)

2.7.4 Boundary Conditions

The boundary (a solid wall) ∂R is specified at any point x ∈ ∂R by the
inward unit normal n, the wall temperature Tw and the wall velocity uw.
The simplest boundary condition for the minimal kinetic models is obtained
upon evaluation of the diffusive wall boundary condition for the Boltzmann
equation [112] with the help of the Gauss-Hermite quadrature [142]. The
explicit expression for the diffusive wall boundary condition in the discrete
velocity models is

fi =

∑
ξi′ ·n <0 |(ξi′ · n)|fi′∑

ξi′ ·n <0 |(ξi′ · n)|f eq
i′ (ρw,uw)

f eq
i (ρw,uw), (ξi · n > 0) , (2.58)

Here ξi is the discrete velocity in the wall reference frame, ξi = ci − uw.
Implementation of the diffusive wall boundary condition (2.58) in the context
of the fully discrete entropic lattice Boltzmann method is given in the paper
[143].

2.7.5 Numerical Illustrations of the ELBGK

The Kramers problem [112] is a limiting case of the plane Couette flow, where
one of the plates is moved to infinity, while keeping a fixed shear rate. The
analytical solution for the slip-velocity at the wall calculated for the linearized
BGK collision model [112] are compared with the simulation of the entropic
lattice BGK model in Fig. 2.2. This shows that the important feature of the
original Boltzmann equation, the Knudsen number dependent slip at the wall
is retained in the present model.

In another numerical experiment, the ELBGK method was tested in the
setup of the two-dimensional Poiseuille flow. The time evolution of the com-
puted profile as compared to the analytical result obtained from the incom-
pressible Navier–Stokes equations is demonstrated in Fig. 2.3.

2.8 Other Kinetic Equations

2.8.1 The Enskog Equation for Hard Spheres

The Enskog equation for hard spheres is an extension of the Boltzmann equa-
tion to moderately dense gases. The Enskog equation explicitly takes into
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Fig. 2.2. Relative slip at the wall in the simulation of the Kramers problem for
shear rate a = 0.001, box length L = 32, v∞ = a × L = 0.032 (See for details the
paper [142])
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Fig. 2.3. Development of the velocity profile in the Poiseuille flow. Reduced ve-
locity Uy(x) = uy/uymax is shown versus the reduced coordinate across the channel
x. Solid line: Analytical solution. Different lines correspond to different instants of
the reduced time T = (µt)/(4R2), increasing from bottom to top, R is the half-
width of the channel. Symbol: simulation with the ELBGK algorithm. Parameters
used are: viscosity µ = 5.0015 × 10−5(β = 0.9997), steady state maximal veloc-
ity uymax = 1.10217 × 10−2. Reynolds number Re = 1157. (See for details the
paper [140])

account the nonlocality of collisions through a two-fold modification of the
Boltzmann collision integral: First, the one-particle distribution functions
are evaluated at the locations of the centers of spheres, separated by the
nonzero distance at the impact. This makes the collision integral nonlocal in
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space. Second, the equilibrium pair distribution function at the contact of
the spheres enhances the scattering probability.

Enskog’s collision integral for hard spheres of radius r0 is written in the
following form [70]:

Q =
∫

R3

∫
B−

[(v − w) · n] [χ(x,x + r0n)f(x,v′)f(x + 2r0n,w′)

− χ(x,x − r0n)f(x,v)f(x − 2r0n,w)] dw dn , (2.59)

where χ(x,y) is the equilibrium pair-correlation function for given temper-
ature and density, and integration in w is carried over the whole space R3,
while integration in n is over a hemisphere B− = {n ∈ S2 | (w− v,n) < 0}.

The proof of the H theorem for the Enskog equation has posed certain
difficulties, and has led to a modification of the collision integral [145].

Methods of solution of the Enskog equation are immediate generalizations
of those developed for the Boltzmann equation, but there is one additional
difficulty. The Enskog collision integral is nonlocal in space. The Chapman–
Enskog method, when applied to the Enskog equation, is supplemented with
a gradient expansion around the homogeneous equilibrium state.

2.8.2 The Vlasov Equation

The Vlasov equation (or kinetic equation for a self-consistent force) is the
nonlinear equation for the one-body distribution function, which takes into
account a long-range interaction between particles:

∂

∂t
f +

(
v,

∂

∂x
f

)
+
(

F ,
∂

∂v
f

)
= 0 ,

where F =
∫
Φ(| x − x′ |) x−x′

|x−x′|n(x′) dx′ is the self-consistent force. In

this expression Φ(| x − x′ |) x−x′

|x−x′| is the microscopic force between the
two particles, and n(x′) is the density of particles, defined self-consistently,
n(x′) =

∫
f(x′,v) dv.

The Vlasov equation is used for the description of collisionless plasmas
in which case it is complemented by the set of Maxwell equations for the
electromagnetic field [172]. It is also used for the description of gravitating
gas.

The Vlasov equation is an infinite-dimensional Hamiltonian system [146].
Many special and approximate (wave-like) solutions to the Vlasov equation
are known and they describe important physical effects [147]. One of the best
known effects is the Landau damping [172]: The energy of a volume element
dissipates with the rate

Q ≈ − | E |2 ω(k)
k2

df0

dv

∣∣∣∣
v= ω

k

,
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where f0 is the Maxwell distribution function, | E | is the amplitude of the
applied monochromatic electric field with the frequency ω(k), k is the wave
vector. The Landau damping is thermodynamically reversible, and it is not
accompanied with an entropy increase. Thermodynamically reversed to the
Landau damping is the plasma echo effect.

2.8.3 The Fokker–Planck Equation

The Fokker–Planck equation (FPE) is a familiar model in various problems
of nonequilibrium statistical physics [148–150]. We consider the FPE of the
form

∂W (x, t)
∂t

=
∂

∂x

{
D

[
W

∂

∂x
U +

∂

∂x
W

]}
. (2.60)

Here, W (x, t) is the probability density over the configuration space x at time
t, while U(x) and D(x) are the potential and the positively semi-definite
((y,Dy) ≥ 0) diffusion matrix.

The FPE (2.60) is particularly important in studies of polymer solutions
[151–153].

Let us recall the three properties of the FPE (2.60):

1. Conservation of the total probability:
∫
W (x, t) dx ≡ 1 .

2. The equilibrium distribution,

Weq ∝ exp(−U) ,

is the unique stationary solution to the FPE (2.60) for the given total
probability.

3. The entropy,

S[W ] = −
∫
W (x, t) ln

[
W (x, t)
Weq(x)

]
dx , (2.61)

is a monotonically growing function due to the FPE (2.60), and it attaines
the global maximum at equilibrium.

These properties become more elicit when the FPE (2.60) is rewritten as
follows:

∂tW (x, t) = M̂W
δS[W ]
δW (x, t)

, (2.62)

where

M̂W = − ∂

∂x

[
W (x, t)D(x)

∂

∂x

]
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is a positive semi-definite symmetric operator. The form (2.62) is the dissi-
pative part of a structure termed GENERIC (the dissipative vector field is a
metric transform of the entropy gradient) [154,155].

Entropy does not depend on kinetic constants. It is the same for differ-
ent details of kinetics, and depends only on the equilibrium data. Let us call
this property “universality”. It is known that for the Boltzmann equation
there exists only one universal Lyapunov functional: the entropy (we do not
distinguish functionals which are related to each other by monotonic trans-
formations). For the FPE there exists a whole family of universal Lyapunov
functionals. Let h(a) be a convex function of one variable a ≥ 0, h′′(a) > 0,

Sh[W ] = −
∫
Weq(x)h

[
W (x, t)
Weq(x)

]
dx . (2.63)

The density of production of the generalized entropy Sh, σh, is non-
negative:

σh(x) = Weq(x)h′′
[
W (x, t)
Weq(x)

](
∂

∂x

W (x, t)
Weq(x)

,D
∂

∂x

W (x, t)
Weq(x)

)
≥ 0 . (2.64)

The most important variants for the choice of h are:

– h(a) = a ln a, and Sh is the Boltzmann–Gibbs–Shannon entropy (in the
Kullback form [156,157]),

– h(a) = a ln a − ε ln a, ε > 0, and Sε
h is the maximal family of additive

entropies [158–160] (these entropies are additive for the composition of
independent subsystems).

– h(a) = 1−aq

1−q , and Sq
h is the family of Tsallis entropies [161, 162]. These

entropies are not additive, but become additive after a nonlinear monoto-
nous transformation. This property can serve as a definition of the Tsallis
entropies in the class of generalized entropies (2.63) [160].

2.9 Equations of Chemical Kinetics
and Their Reduction

2.9.1 Dissipative Reaction Kinetics

We begin with an outline of reaction kinetics (for details see, for exam-
ple, the book [81]). Let us consider a closed system with n chemical species
A1, . . . ,An, participating in a complex reaction. The mechanism of complex
reaction is represented by the following stoichiometric equations:

αs1A1 + . . .+ αsnAn � βs1A1 + . . .+ βsnAn , (2.65)

where the index s = 1, . . . , r enumerates the reaction steps, and the integers,
αsi and βsi, are the stoichiometric coefficients. For each reaction step s, we
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introduce n-dimensional vectors αs and βs with components αsi and βsi.
The stoichiometric vector, γs, has integer components γsi = βsi − αsi.

For every Ai, an extensive variable Ni, “the number of particles of the
i-th specie”, is introduced. The concentration of Ai is then ci = Ni/V , where
V is the volume of the system.

Given the reaction mechanism (2.65), the kinetic equations read:

Ṅ = V J(c), J(c) =
r∑

s=1

γsWs(c) , (2.66)

where dot denotes the time derivative, and Ws is the reaction rate function of
the sth reaction step. In particular, the mass action law suggests a polynomial
form for the reaction rates:

Ws(c) = W+
s (c) −W−

s (c) = k+
s (T )

n∏
i=1

cαsi
i − k−s (T )

n∏
i=1

cβsi

i , (2.67)

where k+
s (T ) and k−s (T ) are the constants of the forward and reverse reac-

tions, respectively, of the sth reaction step, and T is the temperature. The
(generalized) Arrhenius equation is the most popular expression for k±s (T ):

k±s (T ) = a±s T
b±s exp(S±

s /kB) exp(−H±
s /kBT ) , (2.68)

where a±s , b
±
s are constants, H±

s are activation enthalpies, and S±
s are acti-

vation entropies.
If the stoichiometric vectors {γs} are linearly dependent then the rate

constants are not independent, but related through the principle of detailed
balance gives the following connection between these constants: There exists
a positive vector, ceq(T ), such that

W+
s (ceq) = W−

s (ceq) for all s = 1, . . . , r . (2.69)

The necessary and sufficient conditions for the existence of such a ceq can be
formulated as the system of polynomial equalities for {k±s }, (see, for example,
[81]).

The reaction kinetics equations (2.66) do not form a closed system, be-
cause the dynamics of the volume V is not yet defined. Four classical con-
ditions for closure of this system are well studied: U, V = const (isolated
system, U is the internal energy); H, P = const (thermal isolated isobaric
system, P is the pressure, H = U + PV is the enthalpy), V, T = const (iso-
choric isothermal conditions); P, T = const (isobaric isothermal conditions).
For V, T = const no additional equations and data are needed. Equation
(2.66) can be divided by the constant volume to obtain

ċ =
r∑

s=1

γsWs(c) . (2.70)
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For non-isothermal and non-isochoric conditions addition formulae are
needed to derive T and V . For all four classical conditions, the thermody-
namic Lyapunov functions G• for kinetic equations are known:

U, V = const, GU,V = −S/kB ;
V, T = const, GV,T = F/kBT = U/kBT − S/kB ;
H, P = const, GH,P = −S/kB ;
P, T = const, GP,T = G/kBT = H/kBT − S/kB , (2.71)

where F = U−TS is the free energy (Helmholtz free energy), and G = H−TS
is the free enthalpy (Gibbs free energy). All the thermodynamic Lyapunov
functions are normalized to the dimensionless scale (if the number of particles
is expressed in moles, it is necessary to change kB to R). All these functions
decrease with time. For the classical conditions, the corresponding thermo-
dynamic Lyapunov functions can be written in the form: G•(const,N). The
derivatives ∂G•(const,N)/∂Ni are the same functions of c and T for all
classical conditions:

µi(c, T ) =
∂G•(const,N)

∂Ni
=
µchem

i (c, T )
kBT

, (2.72)

where µchem
i (c, T ) is the chemical potential of species Ai.

Usual G•(const,N) are strictly convex functions of N , and the matrix
∂µi/∂cj is positively definite. The dissipation inequality

1
V

dG•
dt

= (µ,J) ≤ 0 (2.73)

holds. This inequality poses a restriction on possible kinetic laws and on
possible values of the kinetic constants.

One of the most important generalizations of the mass action law (2.67)
is the Marcelin–De Donder kinetic function. This generalization [243, 244]
is based on ideas from the thermodynamic theory of affinity [245]. Within
this approach, the functions Ws are constructed as follows [244]: For a given
µ(c, T ) (2.72), and for a given reaction mechanism (2.65), we define the gain
(+) and the loss (−) rates of the sth reaction step as,

W+
s = ϕ+

s exp(µ,αs), W−
s = ϕ−

s exp(µ,βs) , (2.74)

where ϕ±
s > 0 are kinetic factors, ( , ) is the standard inner product (the sum

of coordinates products).
The Marcelin–De Donder kinetic function reads: Ws = W+

s −W−
s , and

the right hand side of the kinetic equation (2.66) becomes,

J =
r∑

s=1

γs{ϕ+
s exp(µ,αs) − ϕ−

s exp(µ,βs)} . (2.75)
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For the Marcelin–De Donder reaction rate (2.74), the dissipation inequality
(2.73) is particularly elegant:

Ġ =
r∑

s=1

[(µ,βs) − (µ,αs)]
{
ϕ+

s e
(µ,αs) − ϕ−

s e
(µ,βs)

}
≤ 0 . (2.76)

The kinetic factors ϕ±
s should satisfy certain conditions in order to satisfy the

dissipation inequality (2.76). A well known sufficient condition is the detailed
balance:

ϕ+
s = ϕ−

s . (2.77)

Other sufficient conditions are discussed in detail elsewhere [81,115,163].
For ideal systems, the function G• is constructed from the thermody-

namic data of individual species. It is convenient to start from the isochoric
isothermal conditions. The Helmholtz free energy for an ideal system is

F = kBT
∑

i

Ni[ln ci − 1 + µ0i] + constT,V , (2.78)

where the internal energy is assumed to be a linear function of N in a given
interval of c, T :

U =
∑

i

Niui(T ) =
∑

i

Ni(u0i + CV iT ) ,

where ui(T ) is the internal energy of species Ai per particle. It is well known
that S = −(∂F/∂T )V,N=const, U = F+TS = F−T (∂F/∂T )V,N=const, hence,
ui(T ) = −kBT

2dµ0i/dT and

µ0i = δi + u0i/kBT − (CV i/kB) lnT , (2.79)

where δi = const, CV i is the heat capacity at constant volume (per particle)
of species Ai.

In concordance with the form of ideal free energy (2.78) the expression
for µ is:

µi = ln ci + δi + u0i/kBT − (CV i/kB) lnT . (2.80)

For the function µ of the form (2.80), the Marcelin–De Donder equation
obtains the more familiar mass action law form (2.67). Taking into account
the principle of detailed balance (2.77) we get the ideal rate functions:

Ws(c) = W+
s (c) −W−

s (c) ,

W+
s (c) = ϕs(c, T )T−

∑
i αsiCV i/kBe

∑
i αsi(δi+u0i/kBT )

n∏
i=1

cαsi
i ,

W−
s (c) = ϕs(c, T )T−

∑
i βsiCV i/kBe

∑
i βsi(δi+u0i/kBT )

n∏
i=1

cβsi

i . (2.81)



54 2 The Source of Examples

where ϕs(c, T ) is an arbitrary positive function (from the thermodynamic
point of view).

Let us discuss further the vector field J(c) in the concentration space
(2.70). Conservation laws (balances) impose linear constraints on admissible
vectors dc/dt:

(bi, c) = Bi = const,
(

bi,
dc

dt

)
= 0, i = 1, . . . , l , (2.82)

where bi are fixed and linearly independent vectors. Let us denote as B the
set of vectors which satisfy the conservation laws (2.82) for given Bi:

B = {c|(b1, c) = B1, . . . , (bl, c) = Bl} .

The natural phase space X of the system (2.70) is the intersection of the
cone of n-dimensional vectors with nonnegative components, with the set B,
and dimX = d = n − l. In the sequel, we term a vector c ∈ X the state
of the system. In addition, we assume that each of the conservation laws is
supported by each elementary reaction step, that is

(γs, bi) = 0 , (2.83)

for each pair of vectors γs and bi.
Reaction kinetic equations describe variations of the states in time. The

phase space X is positive-invariant for system (2.70): If c(0) ∈ X, then
c(t) ∈ X for all times t > 0.

In the sequel, we assume that the kinetic equations (2.70) describe evo-
lution towards the unique equilibrium state, ceq, in the interior of the phase
space X. Furthermore, we assume that there exists a strictly convex function
G(c) which decreases monotonically in time due to (2.70), ∇G is the vector
of partial derivatives ∂G/∂ci, and the convexity means that the n×n matrix

Hc = ‖∂2G(c)/∂ci∂cj‖ , (2.84)

is positive definite for all c ∈ X. In addition, we assume that the matrix
(2.84) is invertible if c is taken in the interior of the phase space.

Function G is the Lyapunov function for the system (2.66), and ceq is
the point of global minimum of G in the phase space X. Otherwise stated,
the manifold of equilibrium states ceq(B1, . . . , Bl) is the solution to the vari-
ational problem,

G → min for (bi, c) = Bi, i = 1, . . . , l . (2.85)

For each fixed value of the conserved quantities Bi, the solution is unique.
In many cases, however, it is convenient to consider the whole equilibrium
manifold, keeping the conserved quantities as parameters.

For example, for perfect systems in a constant volume system at constant
temperature, the Lyapunov function G reads:
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G =
n∑

i=1

ci[ln(ci/c
eq
i ) − 1] . (2.86)

It is important to stress that ceq in (2.86) is an arbitrary equilibrium of
the system, under arbitrary values of the balances. In order to compute G(c),
it is unnecessary to calculate the specific equilibrium ceq which corresponds
to the initial state c. Let us compare the Lyapunov function G (2.86) with the
classical formula for the free energy (2.78). This comparison gives a possible
choice for ceq:

ln ceqi = −δi − u0i/kBT + (CV i/kB) lnT . (2.87)

2.9.2 The Problem of Reduced Description
in Chemical Kinetics

Reduction of a description of a chemical system means the following:

1. Reduce the number of species. This, in turn, can be achieved in two ways:
– eliminate inessential species, or
– lump some of the species into integrated components.

2. Reduce the number of reactions. This can also be done in several ways:
– eliminate inessential reactions, those which do not significantly influ-

ence the reaction progress;
– assume that some of the reactions “have already been completed”, and

that the equilibrium has been reached along their paths (this leads to
dimensional reduction because the rate constants of the “completed”
reactions are not used thereafter, what one needs are equilibrium con-
stants only).

3. Decompose the motions into fast and slow, into independent (almost-
independent) and slaved etc. As a result of such a decomposition, the
system admits a study “in parts”. At the end, the results are combined
into a joint picture. There are several approaches which fall into this cat-
egory. The famous method of the quasi-steady state (QSS), pioneered by
Bodenstein and Semenov, follows the Chapman–Enskog method. The par-
tial equilibrium approximations are predecessors of Grad’s method and
quasiequilibrium approximations in physical kinetics. These two family of
methods have different physical backgrounds and mathematical forms.

2.9.3 Partial Equilibrium Approximations

Quasiequilibrium with respect to reactions is constructed as follows: From the
list of reactions (2.65), one selects those which are assumed to equilibrate
first. Let these reactions be indexed with the integers s1, . . . , sk. The quasi-
equilibrium manifold is defined by the system of equations,

W+
si

= W−
si
, i = 1, . . . , k . (2.88)



56 2 The Source of Examples

This system looks particularly elegant when written in terms of conjugated
(dual) variables, µ = ∇G:

(γsi
,µ) = 0, i = 1, . . . , k . (2.89)

In terms of the conjugated variables, the quasiequilibrium manifold forms a
linear subspace. This subspace, L⊥, is the orthogonal completement to the
linear envelope of vectors, L = lin{γs1

, . . . ,γsk
}.

Quasiequilibrium with respect to species is constructed practically in the
same way but without selecting the subset of reactions. For a given set of
species, Ai1 , . . . , Aik

, one assumes that their concentrations evolve fast to
equilibrium and remain there. Formally, this means that in the k-dimensional
subspace of the space of concentrations with coordinates ci1 , . . . , cik

, one con-
structs the subspace L which is defined by the balance equations, (bi, c) = 0.
In terms of the conjugated variables, the quasiequilibrium manifold, L⊥, is
defined by the equations,

µ ∈ L⊥, (µ = (µ1, . . . , µn)) . (2.90)

The same quasiequilibrium manifold can also be defined with the help of fic-
titious reactions: Let g1, . . . , gq be a basis in L. Then (2.90) may be rewritten
as follows:

(gi,µ) = 0, i = 1, . . . , q . (2.91)

Illustration: Quasiequilibrium with respect to reactions in hydrogen oxi-
dation: Let us assume equilibrium with respect to the dissociation reactions,
H2 � 2H, and, O2 � 2O, in some subdomain of reaction conditions. This
gives:

k+
1 cH2 = k−1 c

2
H, k

+
2 cO2 = k−2 c

2
O .

Quasiequilibrium with respect to species: For the same reactions, let us as-
sume equilibrium over H, O, OH, and H2O2, in a subdomain of reaction
conditions. The subspace L is defined by the balance constraints:

cH + cOH + 2cH2O2 = 0, cO + cOH + 2cH2O2 = 0 .

The subspace L is twodimensional. Its basis, {g1, g2}, in the coordinates cH,
cO, cOH, and cH2O2 reads:

g1 = (1, 1,−1, 0), g2 = (2, 2, 0,−1) .

Correspondingly (2.91) becomes:

µH + µO = µOH, 2µH + 2µO = µH2O2 .

General construction of the quasiequilibrium manifold: In the space of con-
centrations, one defines a subspace L which satisfies the balance constraints:

(bi, L) ≡ 0 .
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The orthogonal complement of L in the space with coordinates µ = ∇G
defines then the quasiequilibrium manifold ΩL. For the actual computations,
one requires the inversion from µ to c. The duality structure µ ↔ c is well
studied by many authors [163,164].

Quasiequilibrium projector. It is not sufficient to just derive the manifold,
it is also required to define a projector which transforms the vector field
defined on the space of concentrations into a vector field on the manifold.
The quasiequilibrium manifold consists of points which minimize G in affine
spaces of the form c + L. These affine planes are hypothetical planes of fast
motions (G is decreasing in the course of the fast motions). Therefore, the
quasiequilibrium projector maps the whole space of concentrations on ΩL

parallel to L. The vector field is also projected onto the tangent space of ΩL

parallel to L.
Thus, the quasiequilibrium approximation assumes the decomposition of

motions into fast – parallel to L, and slow – along the quasiequilibrium mani-
fold. In order to construct the quasiequilibrium approximation, the knowledge
of reaction rate constants of “fast” reactions is not required (stoichiometric
vectors of all these fast reaction are in L, γfast ∈ L, thus, the knowledge of
L suffices), one only needs some confidence in that they all are sufficiently
fast [165]. The quasiequilibrium manifold itself is constructed based on the
knowledge of L and G. The dynamics on the quasiequilibrium manifold is
defined as the quasiequilibrium projection of the “slow component” of the
kinetic equations (2.66).

2.9.4 Model Equations

The assumption behind quasiequilibrium is the hypothesis of the decomposi-
tion of motions into fast and slow. The quasiequilibrium approximation itself
describes slow motions. However, sometimes it becomes necessary to restore
the state of the whole system, and take into account the fast motions as well.
With this, it is desirable to keep intact one of the important advantages of the
quasiequilibrium approximation – its independence from the rate constants
of the fast reactions. For this purpose, the detailed fast kinetics is replaced
by a model equation (single relaxation time approximation).

Quasiequilibrium models (QEM) are constructed as follows: For each con-
centration vector c, consider the affine manifold, c + L. It intersects the
quasiequilibrium manifold ΩL at a single point. This point delivers the min-
imum to G on c + L. Let us denote this point as c∗L(c). The equation of the
quasiequilibrium model reads:

ċ = −1
τ

[c − c∗L(c)] +
∑
slow

γsWs(c∗L(c)) , (2.92)

where τ > 0 is the relaxation time of the fast subsystem. Rates of slow
reactions are computed at the points c∗L(c) (the second term in the right
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hand side of (2.92), whereas the rapid motion is taken into account by a
simple relaxational term (the first term in the right hand side of (2.92). The
most famous model kinetic equation is the BGK equation in the theory of the
Boltzmann equation [116]. The general theory of the quasiequilibrium models,
including proofs of their thermodynamic consistency, was constructed in the
paper [117].

Single relaxation time gradient models (SRTGM) were introduced in the
context of the lattice Boltzmann method for hydrodynamics [140,166]. These
models are aimed at improving the obvious drawback of the quasiequilibrium
model (2.92): In order to construct the QEM, one needs to compute the
function,

c∗L(c) = arg min
x∈c+L, x>0

G(x) . (2.93)

This is a convex programming problem, which does not always have a closed-
form solution.

Let g1, . . . , gk be some orthonormal basis of L. We denote as D(c) the
k × k matrix with elements (gi,Hcgj), where Hc is the matrix of second
derivatives of G (2.84). Let C(c) be the inverse of D(c). The single relaxation
time gradient model has the form:

ċ = −1
τ

k∑
i,j=1

giC(c)ij(gj ,∇G) +
∑
slow

γsWs(c) . (2.94)

The first term drives the system to the minimum of G on c + L, does not
require solving problem (2.93), and its spectrum at quasiequilibrium is the
same as in the quasiequilibrium model (2.92). Note that the slow component
is evaluated at the “current” state c.

The first term of equation (2.94) has a simple form

ċ = −1
τ

gradG+
∑
slow

γsWs(c) , (2.95)

if one calculates the gradient gradG ∈ L on the plane of fast motions c + L
with the entropic scalar product3 〈x,y〉 = (x,Hcy).

The models (2.92) and (2.94) lift the quasiequilibrium approximation to a
kinetic equation by approximating the fast dynamics with a single “reaction
rate constant” – the relaxation time τ .
3 Let us remind that gradG is the Riesz representation of the differential of G in

the phase space X : G(c+∆c) = G(c)+〈gradG(c), ∆c〉+o(∆c). It belongs to the
tangent space of X and depends on the scalar product. From the thermodynamic
point of view, there is only one distinguished scalar product in the concentration
space, the entropic scalar product. The usual definition of gradG as the vector
of partial derivatives (∇G) corresponds to the standard scalar product (•, •)
and to the choice X being the whole concentration space. In equation (2.95),
X = c + L and we use the entropic scalar product.
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2.9.5 Quasi-Steady State Approximation

The quasi-steady state approximation (QSS) is a tool used in a large number
of works. Let us split the species in two groups: The basic and the interme-
diate (radicals etc). Concentration vectors are denoted accordingly, cs (slow,
basic species), and cf (fast, intermediate species). The concentration vector
c is the direct sum, c = cs ⊕ cf . The fast subsystem is (2.66) for the con-
centrations cf at fixed values of cs. If it happens that the so-defined fast
subsystem relaxes to a stationary state, cf → cf

qss(c
s), then the assumption

that cf = cf
qss(c) is precisely the QSS assumption. The slow subsystem is the

part of system (2.66) for cs, in the right hand side of which the component
cf is replaced with cf

qss(c). Thus, J = J s ⊕ J f , where

ċf = J f(cs ⊕ cf), cs = const; cf → cf
qss(c

s) ; (2.96)

ċs = J s(cs ⊕ cf
qss(c

s)) . (2.97)

Bifurcations of the system (2.96) under variation of cs correspond to kinetic
critical phenomena. Studies of more complicated dynamic phenomena in the
fast subsystem (2.96) require various techniques of averaging, stability analy-
sis of the averaged quantities etc.

Various versions of the QSS method are possible, and are actually used
widely, for example, the hierarchical QSS method. There, one defines not a
single fast subsystem but a hierarchy of them, cf1 , . . . , cfk . Each subsystem
cfi is regarded as a slow system for all the foregoing subsystems, and it is
regarded as a fast subsystem for the following members of the hierarchy.
Instead of one system of equations (2.96), a hierarchy of systems of lower-
dimensional equations is considered, each of these subsystem being easier to
study analytically.

The theory of singularly perturbed systems of ordinary differential equa-
tions provides the mathematical background and refinements of the QSS
approximation. In spite of a broad literature on this subject, it remains, in
general, unclear, what is the smallness parameter that separates the inter-
mediate (fast) species from the basic (slow). Reaction rate constants cannot
be such a parameter (unlike in the case of quasiequilibrium). Indeed, inter-
mediate species participate in the same reactions, as the basic species (for
example, H2 � 2H, H + O2 � OH + O). It is therefore incorrect to state
that cf evolves faster than cs. In the sense of reaction rate constants, cf is
not faster.

For catalytic reactions, it is not difficult to figure out what is the smallness
parameter that separates the intermediate species from the basic, and which
allows to upgrade the QSS assumption to a singular perturbation theory
rigorously [81]. This smallness parameter is the ratio of balances: Intermedi-
ate species include a catalyst, and their total amount is simply significantly
smaler than the amount of all the ci’s. After renormalizing to the variables of
one order of magnitude, the small parameter appears explicitly. The simplest
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example is provided by the catalytic reaction A + Z � AZ � P + Z (here
Z is a catalyst, A and P are an initial substrate and a product). The kinetic
equations are (in obvious notations):

ċA = −k+
1 cAcZ + k−1 cAZ ,

ċZ = −k+
1 cAcZ + k−1 cAZ + k+

2 cAZ − k−2 cZcP ,

ċAZ = k+
1 cAcZ − k−1 cAZ − k+

2 cAZ + k−2 cZcP ,

ċP = k+
2 cAZ − k−2 cZcP . (2.98)

The constants and the reactions rates are the same for concentrations cA, cP ,
and for cZ , cAZ , and they cannot be a reason for the relative slowness of
cA, cP in comparison with cZ , cAZ . However, there may be another source
of slowness. There are two balances for this kinetics: cA + cP + cAZ = BA,
cZ + cAZ = BZ . Let us switch to the dimensionless variables:

ςA = cA/BA, ςP = cP /BA, ςZ = cZ/BZ , ςAZ = cAZ/BZ .

The kinetic system (2.98) is then rewritten as

˙ςA = BZ

[
−k+

1 ςAςZ +
k−1
BA

ςAZ

]
,

˙ςZ = BA

[
−k+

1 ςAςZ +
k−1
BA

ςAZ +
k+
2

BA
ςAZ − k−2 ςZςP

]
,

ςA + ςP +
BZ

BA
ςAZ = 1, ςZ + ςAZ = 1; ς• ≥ 0 . (2.99)

For BZ � BA (the total amount of the catalyst is much smaller than the
total amount of the substrate) the slowness of ςA, ςP is evident from these
equations (2.99).

For usual radicals, the origin of the smallness parameter is quite similar.
There are much less radicals than basic species (otherwise, the QSS assump-
tion is inapplicable). In the case of radicals, however, the smallness parameter
cannot be extracted directly from the balances Bi (2.82). Instead, one can
come up with a thermodynamic estimate: Function G decreases in the course
of reactions, whereupon we obtain the limiting estimate of concentrations of
any species:

ci ≤ max
G(c)≤G(c(0))

ci , (2.100)

where c(0) is the initial composition. If the concentration cR of the radical
R is small both initially and at equilibrium, then it should also remain small
along the path to equilibrium. For example, in the case of ideal G (2.86)
under relevant conditions, for any t > 0, the following inequality is valid:

cR[ln(cR(t)/ceqR ) − 1] ≤ G(c(0)) . (2.101)
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Inequality (2.101) provides the simplest (but rather crude) thermodynamic
estimate of cR(t) in terms of G(c(0)) and ceqR uniformly for t > 0. The com-
plete theory of thermodynamic estimates of reaction kinetics has been devel-
oped in the book [115].

One can also do computations without a priori estimations, if one accepts
the QSS assumption as long as the values cf stay sufficiently small. It is the
simplest way to operate with QSS: Just use it as long as cf are small!

Let us assume that an a priori estimate has been found, ci(t) ≤ ci max,
for each ci. These estimates may depend on the initial conditions, thermody-
namic data etc. With these estimates, we are able to renormalize the variables
in the kinetic equations (2.66) in such a way that the renormalized variables
take their values from the unit interval [0, 1]: c̃i = ci/ci max. Then the system
(2.66) can be written as follows:

dc̃i
dt

=
1

ci max
Ji(c) . (2.102)

The system of dimensionless parameters, εi = ci max/maxi ci max defines a
hierarchy of relaxation times, and with its help one can establish various
realizations of the QSS approximation. The simplest version is the standard
QSS assumption: Parameters εi are separated in two groups, the smaller ones,
and those of order 1. Accordingly, the concentration vector is split into cs⊕cf .
Various hierarchical QSS are possible, rendering the problem more tractable
analytically.

There exists a variety of ways to introduce the smallness parameter into
kinetic equations, and one can find applications to each of the realizations.
However, two particular realizations remain basic for chemical kinetics:

– Fast reactions (under a given thermodynamic data);
– Small concentrations.

In the first case, one is led to the quasiequilibrium approximation, in the
second, to the classical QSS assumption. Both of these approximations allow
for hierarchical realizations, those which include not just two but many relax-
ation time scales. Such a multi-scale approach essentially simplifies analytical
studies of the problem.

2.9.6 Thermodynamic Criteria
for the Selection of Important Reactions

One of the problems addressed by sensitivity analysis is the selection of the
important and unimportant reactions. In the paper [167] a simple idea was
suggested to compare the importance of different reactions according to their
contribution to the entropy production (or, which is the same, according
to their contribution to dG/dt). Based on this principle, Dimitrov [170] de-
scribed domains of parameters in which the reaction of hydrogen oxidation,
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H2+O2+M, proceeds due to different mechanisms. For each elementary reac-
tion, he has derived the domain inside which the contribution of this reaction
cannot be neglected. Due to its simplicity, this entropy production principle is
especially well suited for the analysis of complex problems. In particular, re-
cently, a version of the entropy production principle was used in the problem
of selection of boundary conditions for Grad’s moment equations [168, 169].
For ideal systems (2.86), as well, as for the Marcelin–De Donder kinetics
(2.76) the contribution of the sth reaction to Ġ has a particularly simple
form:

Ġs = −Ws ln
(
W+

s

W−
s

)
, Ġ =

r∑
s=1

Ġs . (2.103)

2.9.7 Opening

One of the problems to focus on when studying closed systems is to extend
the result for open or driven by flows systems. External flows are usually
taken into account by additional terms in the kinetic equations (2.66):

Ṅ = V J(c) + Π(c, t) . (2.104)

It is important to stress here that the vector field J(c) in equations (2.104)
is the same as for the closed system, with thermodynamic restrictions, Lya-
punov functions, etc. The thermodynamic structures are important for the
analysis of open systems (2.104), if the external flow Π is small in some
sense, for example, if it is a linear function of c, has small time derivatives,
etc. There are some general results for such “weakly open” systems, for ex-
ample, the Prigogine minimum entropy production theorem [171] and the
estimations of possible steady states and limit sets for open systems, based
on thermodynamic functions and stoihiometric equations [115].

There are general results for another limiting case: for very intensive flows
the dynamics becomes very simple again [81]. Let the flow have a natural
structure: Π(c, t) = vin(t)cin(t) − vout(t)c(t), where vin and vout are the
rates of inflow and outflow, cin(t) is the concentration vector for inflow. If
vout is sufficiently large, vout(t) > v0 for some critical value v0 and all t > 0,
then for the open system (2.104) the Lyapunov norm exists: for any two
solutions c1(t) and c2(t) the function ‖c1(t)−c2(t)‖ monotonically decreases
in time. Such a critical value v0 exists for any norm, for example, for usual
Euclidian norm ‖ • ‖2 = (•, •).

For an arbitrary form of Π, the system (2.104) can loose all signs of
being a thermodynamic one. Nevertheless, thermodynamic structures can
often help in the study of open systems.

The crucial questions are: What happens with slow/fast motion separa-
tion after opening? Which slow invariant manifolds for the closed system can
be deformed to the slow invariant manifolds of the open system? Which slow
invariant manifold for the closed system can be used as approximate slow
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invariant manifold for the open system? There exists a more or less useful
technique to seek answers for specific systems under consideration. We shall
return to this question in Chap. 13.

The way to study an open system as the result of opening a closed system
may be fruitful. Out of this way we have a general dynamical system (2.104)
and no hints what to do with it.

***
The basic introductory textbook on physical kinetics of the Landau and

Lifshitz Course of Theoretical Physics [172] contains many further examples
and their applications.

Modern development of kinetics follows the route of specific numerical
methods, such as direct simulations. An opposite tendency is also clearly
observed, and kinetic theory based schemes are increasingly often used for
the development of numerical methods and models in mechanics of continuous
media.
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