
15 Accuracy Estimation and Post-Processing
in Invariant Manifolds Construction

The post-processing algorithms are developed for the accuracy control and
enhancement of approximate invariant manifold.

15.1 Formulas for Dynamic and Static Post-Processing

Assume that for the dynamical system (3.1)

dx
dt

= J(x)

an approximate invariant manifold is constructed and the slow motion equa-
tions are derived:

dxsl

dt
= Pxsl(J(xsl)), xsl ∈ Ωsl . (15.1)

Here, Pxsl is the projector onto the tangent space Txsl of Ωsl parallel to the
plain of fast motions. Suppose that we have solved the system (15.1) and
have obtained xsl(t). Let us consider the following two questions:

– How well this solution approximates the true solution x(t) with the same
initial condition?

– Is it possible to use the solution xsl(t) for its refinement?

It should be stressed that these questions can be asked only if the slow
system (15.1) is obtained as a result of reduction, that is, with the help of
the projector Pxsl that identifies fast fibers (kerPxsl). These question are
meaningless if “some” closure approximation is used without a specification
what means “fast” and “slow” in this approximation. In the latter case one
can only hope that the closure is a good guess, that it is thermodynamically
consistent, etc, but nothing can be done on its refinement.

These two questions are interconnected. The first question states the
problem of the accuracy estimation. The second states the problem of post-
processing [348–351].

The simplest (“naive”) estimation is given by the “invariance defect”:

∆xsl = (1 − Pxsl)J(xsl) , (15.2)
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which can be compared with J(xsl). For example, this estimate is given by
ε = ‖∆xsl‖/‖J(xsl)‖ using some appropriate norm.

Probably, the most comprehensive answer to the above questions can be
given by solving the following equation:

d(δx)
dt

= ∆xsl(t) +DxJ(x)|xsl(t)δx . (15.3)

This linear equation describes the dynamics of the variation δx(t) = x(t) −
xsl(t) in the linear approximation. The solution with zero initial condition
δx(0) = 0 allows to estimate the robustness of xsl, as well as the error. Using
xsl(t) + δx(t) instead of xsl(t) gives the required solution refinement. This
dynamical post-processing [350] allows to refine the solution substantially.
However, the price for this is solving equation (15.3) with variable coeffi-
cients. The dynamical post-processing can be addressed by a whole hierarchy
of simplifications, both dynamic and static. Let us mention some of them,
starting from the dynamic ones.

(1) Freezing coefficients. In the equation (15.3) the linear operator
DxJ(x)|xsl(t) is replaced by its value in some distinguished point x∗ (for
example, in the equilibrium) or it is frozen somehow else. As a result, one gets
the equation with constant coefficients and the explicit integration formula:

δx(t) =
∫ t

0

exp(D∗(t− τ))∆xsl(τ) dτ , (15.4)

where D∗ is the “frozen” operator and δx(0) = 0.
Another important way of freezing is to replace (15.3) by some model

equation, i.e. substituting − 1
τ∗ instead of DxJ(x), where τ∗ is the relaxation

time. In this case the formula for δx(t) has a very simple form:

δx(t) =
∫ t

0

e
τ−t
τ∗ ∆xsl(τ) dτ . (15.5)

(2) One-dimensional Galerkin-type approximation. Another “sca-
lar” approximation is given by projecting (15.3) on ∆(t) = ∆xsl(t). Using the
ansatz

δx(t) = δ(t)∆(t) , (15.6)

substituting it into (15.3), and projecting the result orthogonally on ∆(t) we
obtain

dδ
dt

= 1 + δ
〈∆|D∆〉 − 〈∆|∆̇〉

〈∆|∆〉 , (15.7)

where 〈|〉 is an appropriate scalar product, which can depend on the point
xsl (for example, the entropic scalar product), D = DxJ(x)|xsl(t) or the self-
adjoint linearizarion of this operator, or some approximation of it, and ∆̇ =
d∆(t)/dt.
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A “hybrid” between equations (15.7) and (15.3) has a rather simple form
(but it is more difficult for computations than (15.7)):

d(δx)
dt

= ∆(t) +
〈∆|D∆〉
〈∆|∆〉 δx . (15.8)

Here one uses the normalized matrix element 〈∆|D∆〉
〈∆|∆〉 instead of the linear

operator D = DxJ(x)|xsl(t).
Both equations (15.7) and (15.8) can be solved explicitly:

δ(t) =
∫ t

0

dτ exp
(∫ t

τ

k(θ) dθ
)
, (15.9)

δx(t) =
∫ t

0

∆(τ)dτ exp
(∫ t

τ

k1(θ) dθ
)
, (15.10)

where k(t) = 〈∆|D∆〉−〈∆|∆̇〉
〈∆|∆〉 , k1(t) = 〈∆|D∆〉

〈∆|∆〉 .

The projection of∆xsl(t) on the slow motion is equal to zero, hence, for the
post-processing of the slow motion, the one-dimensional model (15.7) should
be supplemented by one more iteration in order to find the first non-vanishing
term in δxsl(t):

d(δxsl(t))
dt

= δ(t)Pxsl(t)(DxJ(x)|xsl(τ))(∆(t)) ;

δxsl(t) =
∫ t

0

δ(τ)Pxsl(τ)(DxJ(x)|xsl(τ))(∆(τ)) dτ . (15.11)

where δ(t) is the solution of (15.7).
(3) For a static post-processing, one uses stationary points of dynamic

equations (15.3), or of their simplified versions (15.4),(15.7). Instead of (15.3)
one gets:

DxJ(x)|xsl(t)δx = −∆xsl(t) (15.12)

with the additional condition Pxslδx = 0. This is exactly the iteration equa-
tion of the Newton method for solving the invariance equation. A clarification
is in order here. Static post-processing (15.12) as well as other post-processing
formulas should not be confused with the Newton method and others for cor-
recting the approximately invariant manifold. Here, only the single trajectory
xsl(t) on the manifold is corrected, not the whole manifold.

The corresponding stationary problems for the model equations and for
the projections of (15.3) on ∆ are obvious. We only mention that in the
projection on ∆ one gets a step of the relaxation method for the invariant
manifold construction.

In the following Example it will be demonstrated how one can use function
∆(xsl(t)) in the accuracy estimation of macroscopic equations in the dynamics
of polymer solution.
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15.2 Example: Defect of Invariance Estimation
and Switching from the Microscopic Simulations
to Macroscopic Equations

A method which recognizes the onset and breakdown of the macroscopic
description in microscopic simulations was developed in [29, 268, 414]. The
method is based on the invariance of the macroscopic dynamics relative to
the microscopic dynamics, and it is demonstrated for a model of dilute poly-
meric solutions where it decides switching between Direct Brownian Dynam-
ics simulations and integration of constitutive equations.

15.2.1 Invariance Principle and Micro-Macro Computations

Derivation of reduced (macroscopic) dynamics from the microscopic dynam-
ics is the dominant theme of non-equilibrium statistical mechanics. At the
present time, this very old theme demonstrates new facets in view of a mas-
sive use of simulation techniques on various levels of description. A two-side
benefit of this use is expected: On the one hand, simulations provide data on
molecular systems which can be used to test various theoretical constructions
about the transition from micro to macro description. On the other hand,
while the microscopic simulations in many cases are based on limit theo-
rems [such as, for example, the central limit theorem underlying the Direct
Brownian Dynamics simulations (BD)] they are extremely time-consuming
in any real situation, and a timely recognition of the onset of a macroscopic
description may considerably reduce computational efforts.

In this subsection, we aim at developing a ‘device’ which is able to recog-
nize the onset and the breakdown of a macroscopic description in the course
of microscopic computations.

Let us first present the main ideas of the construction in an abstract
setting. We assume that the microscopic description is set up in terms of
microscopic variables ξ. In the examples considered below, microscopic vari-
ables are distribution functions over the configuration space of polymers. The
microscopic dynamics of variables ξ is given by the microscopic time deriv-
ative dξ/dt = ξ̇(ξ). We also assume that the set of macroscopic variables
M is chosen. Typically, the macroscopic variables are some lower-order mo-
ments if the microscopic variables are distribution functions. The reduced
(macroscopic) description assumes (a) The dependence ξ(M), and (b) The
macroscopic dynamics dM/dt = Ṁ(M). We do not discuss here in any de-
tail the way one gets the dependence ξ(M), however, we should remark that,
typically, it is based on some (explicit or implicit) idea about decomposition
of motions into slow and fast, with M as slow variables. With this, such tools
as maximum entropy principle, quasi-stationarity, cumulant expansion etc.
become available for constructing the dependence ξ(M).

Let us compare the microscopic time derivative of the function ξ(M) with
its macroscopic time derivative due to the macroscopic dynamics:
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∆(M) =
∂ξ(M)
∂M

· Ṁ(M) − ξ̇(ξ(M)) . (15.13)

If the defect of invariance ∆(M) (15.13) is equal to zero on the set of ad-
missible values of the macroscopic variables M , it is said that the reduced
description ξ(M) is invariant. Then the function ξ(M) represents the invari-
ant manifold in the space of microscopic variables. The invariant manifold is
relevant if it is stable. Exact invariant manifolds are known in a very few cases
(for example, the exact hydrodynamic description in the kinetic Lorentz gas
model [202], in Grad’s systems [40, 42], and one more example will be men-
tioned below). Corrections to the approximate reduced description through
minimization of the defect of invariance is a part of the so-called method
of invariant manifolds [11]. We here consider a different application of the
invariance principle for the purpose mentioned above.

The time dependence of the macroscopic variables can be obtained in two
different ways: First, if the solution of the microscopic dynamics at time t
with initial data at t0 is ξt,t0 , then evaluation of the macroscopic variables on
this solution gives Mmicro

t,t0 . On the other hand, solving dynamic equations of
the reduced description with initial data at t0 gives Mmacro

t,t0 . Let ‖∆‖ be a
value of defect of invariance with respect to some norm, and ε > 0 is a fixed
tolerance level. Then, if at the time t the following inequality is valid,

‖∆(Mmicro
t,t0 )‖ < ε , (15.14)

this indicates that the accuracy provided by the reduced description is not
worse than the true microscopic dynamics (the macroscopic description sets
on). On the other hand, if

‖∆(Mmacro
t,t0 )‖ > ε , (15.15)

then the accuracy of the reduced description is insufficient (the reduced de-
scription breaks down), and we must use the microscopic dynamics.

Thus, evaluating the defect of invariance (15.13) on the current solution
to macroscopic equations, and checking the inequality (15.15), we are able to
answer the question whether we can trust the solution without looking at the
microscopic solution. If the tolerance level is not exceeded then we can safely
integrate the macroscopic equation. We now proceed to a specific example
of this approach. We consider a well-known class of microscopic models of
dilute polymeric solutions

15.2.2 Application to Dynamics of Dilute Polymer Solution

A well-known problem of the non-Newtonian fluids is the problem of estab-
lishing constitutive equations on the basis of microscopic kinetic equations.
We here consider a model introduced by Lielens et al. [410]:
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ḟ(q, t) = −∂q

{
κ(t)qf − 1

2
f∂qU(q2)

}
+

1
2
∂2

qf . (15.16)

With the potential U(x) = −(b/2) ln(1 − x/b) equation (15.16) becomes the
one-dimensional version of the FENE dumbbell model which is used to de-
scribe the elongational behavior of dilute polymer solutions.

The reduced description seeks a closed time evolution equation for the
stress τ = 〈q∂qU(q2)〉−1. Due to its non-polynomial character, the stress τ for
the FENE potential depends on all moments of f . We have shown in [411] how
such potentials can be approximated systematically by a set of polynomial
potentials Un(x) =

∑n
j=1

1
2j cjx

j of degree n with coefficients cj depending
on the even moments Mj = 〈q2j〉 of f up to order n, with n = 1, 2, . . .,
formally converging to the original potential as n tends to infinity. In this
approximation, the stress τ becomes a function of the first n even moments
of f , τ(M) =

∑n
j=1 cjMj − 1, where the set of macroscopic variables is

denoted by M = {M1, . . . ,Mn}.
The first two potentials approximating the FENE potential are:

U1(q2) = U ′(M1)q2 (15.17)

U2(q2) =
1
2
(q4 − 2M1q

2)U ′′(M1) +
1
2
(M2 −M2

1 )q2U ′′′(M1) , (15.18)

where U ′, U ′′ and U ′′′ denote the first, second and third derivative of the
potential U, respectively. The potential U1 corresponds to the well-known
FENE–P model. The kinetic equation (15.16) with the potential U2 (15.18)
will be termed the FENE–P+1 model below. Direct Brownian Dynamics sim-
ulation (BD) of the kinetic equation (15.16) with the potential U2 for the flow
situations studied in [410] demonstrates that it is a reasonable approximation
to the true FENE dynamics whereas the corresponding moment chain is of a
simpler structure. In [29] this was shown for a periodic flow, while Fig. 15.1
shows results for the flow

κ(t) =
{

100t(1 − t)e−4t 0 ≤ t ≤ 1 ;
0 else . (15.19)

The quality of the approximation indeed increases with the order of the poly-
nomial.

For any potential Un, the invariance equation can be studied directly in
terms of the full set of the moments, which is equivalent to studying the distri-
bution functions. The kinetic equation (15.16) can be rewritten equivalently
in terms of moment equations,

Ṁk = Fk(M1, . . . ,Mk+n−1) ; (15.20)

Fk = 2kκ(t)Mk + k(2k − 1)Mk−1 − k

n∑
j=1

cjMk+j−1 .
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Fig. 15.1. Stress τ versus time from direct Brownian dynamics simulation: sym-
bols – FENE, dashed line – FENE–P, solid line – FENE-P+1

We seek functions Mmacro
k (M), k = n+1, . . . which are form-invariant under

the dynamics:

n∑
j=1

∂Mmacro
k (M)
∂Mj

Fj(M) = Fk(M1, . . . ,Mn,Mn+1(M), . . . ,Mn+k(M)) .

(15.21)
This set of invariance equations states the following: The time derivative of
the form Mmacro

k (M) when computed due to the closed equation for M (the
first contribution on the left hand side of (15.21), or the ‘macroscopic’ time
derivative) equals the time derivative of Mk as computed by true moment
equation with the same form Mk(M) (the second contribution, or the ‘mi-
croscopic’ time derivative), and this equality should hold whatsoever values
of the moments M are.

Equations (15.21) in case n = 1 (FENE–P) are solvable exactly with the
result

Mmacro
k = akM

k
1 , with ak = (2k − 1)ak−1, a0 = 1 .

This dependence corresponds to the Gaussian solution in terms of the dis-
tribution functions. As expected, the invariance principle give just the same
result as the usual method of solving the FENE–P model.

Let us briefly discuss the potential U2, considering a simple closure ap-
proximation

Mmacro
k (M1,M2) = akM

k
1 + bkM2M

k−2
1 , (15.22)
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Fig. 15.2. Defect of invariance ∆3/b3, (15.23), versus time extracted from BD
simulation (the FENE–P+1 model) for the flow situation of (15.19)

where ak = 1−k(k−1)/2 and bk = k(k−1)/2. The function Mmacro
3 closes the

moment equations for the two independent moments M1 and M2. Note, that
Mmacro

3 differs from the corresponding moment M3 of the actual distribution
function by the neglect of the 6-th cumulant. The defect of invariance of this
approximation is a set of functions ∆k where

∆3(M1,M2) =
∂Mmacro

3

∂M1
F1 +

∂Mmacro
3

∂M2
F2 − F3 , (15.23)

and analogously for k ≥ 3. In the sequel, we make all conclusions based on
the defect of invariance ∆3 (15.23).

It is instructive to plot the defect of invariance ∆3 versus time, assum-
ing the functions M1 and M2 are extracted from the BD simulation (see
Fig. 15.2). We observe that the defect of invariance is a nonmonotonic func-
tion of the time, and that there are three pronounced domains: From t0 = 0
to t1 the defect of invariance is almost zero which means that the ansatz
is reasonable. In the intermediate domain, the defect of invariance jumps to
high values (so the quality of approximation is poor). However, after some
time t = t∗, the defect of invariance again becomes negligible, and remains
so for later times. Such behavior is typical of so-called “kinetic layer”.

Instead of attempting to improve the closure, the invariance principle can
be used directly to switch from the BD simulation to the solution of the
macroscopic equation without loosing the accuracy to a given tolerance. In-
deed, the defect of invariance is a function of M1 and M2, and it can be easily
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Fig. 15.3. Switching from the BD simulations to macroscopic equations after the
defect of invariance has reached the given tolerance level (the FENE–P+1 model):
symbols – the BD simulation, solid line – the BD simulation from time t = 0 up to
time t = t∗, dashed line – integration of the macroscopic dynamics with initial data
from BD simulation at time t = t∗. For comparison, the dot-dashed line gives the
result for the integration of the macroscopic dynamics with equilibrium conditions
from t = 0. Inset: Transient dynamics at the switching from BD to macroscopic
dynamics on a finer time scale

evaluated both on the data from the solution to the macroscopic equation,
and the BD data. If the defect of invariance exceeds some given tolerance on
the macroscopic solution this signals to switch to the BD integration. On the
other hand, if the defect of invariance becomes less than the tolerance level
on the BD data signals that the BD simulation is not necessary anymore,
and one can continue with the integration of the macroscopic equations. This
reduces the necessity of using BD simulations only to get through the kinetic
layers. A realization of this hybrid approach is demonstrated in Fig. 15.3:
For the same flow we have used the BD dynamics only for the first period
of the flow while integrated the macroscopic equations in all the later times.
The quality of the result is comparable to the BD simulation whereas the
total integration time is much shorter. The transient dynamics at the point
of switching from the BD scheme to the integration of the macroscopic equa-
tions (shown in the inset in Fig. 15.3) deserves a special comment: The initial
conditions at t∗ are taken from the BD data. Therefore, we cannot expect
that at the time t∗ the solution is already on the invariant manifold, rather,
at best, close to it. Transient dynamics therefore signals the stability of the
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invariant manifold we expect: Even though the macroscopic solution starts
not on this manifold, it nevertheless attracts to it. The transient dynam-
ics becomes progressively less pronounced if the switching is done at later
times. The stability of the invariant manifold in case of the FENE–P model
is studied in detail in [109].

The present approach of combined microscopic and macroscopic simu-
lations can be realized on the level of moment closures (which then needs
reconstruction of the distribution function from the moments at the switch-
ing from macroscopic integration to BD procedures), or for parametric sets of
distribution functions if they are available [410]. It can be used for a rigorous
construction of domain decomposition methods in various kinetic problems.
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