
14 Dimension of Attractors Estimation

How can we prove that all the attractors of an infinite-dimensional system
belong to a finite-dimensional manifold? How can we estimate the dimensions
of attractor? There exist two methods to obtain such estimations.

First, if we find that k-dimensional volumes are contracted due to dy-
namics, then (after some additional technical steps) we can claim that the
Hausdorff dimension of the maximal attractor is less than k.

Second, if we find a representation of our system as a nonlinear ki-
netic system with conservation of supports of distributions, then (again, af-
ter some additional technical steps) we can state that the asymptotics is
finite-dimensional. This conservation of support has a quasi-biological inter-
pretation, inheritance (if a gene was not presented initially in an isolated
population without mutations, then it cannot appear at later time). The
finite-dimensional asymptotic demonstrates effects of “natural” selection.

In this chapter we describe these approaches.

14.1 Lyapunov Norms, Finite-Dimensional Asymptotics
and Volume Contraction

In a general case, it is impossible to prove the existence of a global Lyapunov
function on the basis of local data. We can only verify or falsify the hypothesis
about a given function, is it a global Lyapunov function, or is it not. On the
other hand, there exists a more strict stability property which can be verified
or falsified (in principle) with local data analysis. This is a Lyapunov norm
existence.

A norm ‖•‖ is the Lyapunov norm for the system (13.1), if for any two so-
lutions x(1)(t), x(2)(t), t ≥ 0, the function ‖x(1)(t)−x(2)(t)‖ is non-increasing
in time.

A linear operator A is dissipative with respect to a norm ‖ • ‖, if exp(At)
(t ≥ 0) is a semigroup of contractions: ‖ exp(At)x‖ ≤ ‖x‖ for any x and
t ≥ 0. A family of linear operators {Aα}α∈K is simultaneously dissipative, if
all operators Aα are dissipative with respect to some norm ‖ • ‖ (it should
be stressed that in this definition one requires one norm for all Aα, α ∈ K).
The mathematical theory of simultaneously dissipative operators for finite-
dimensional spaces was developed in [299–303].
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Let the system (13.1)

dx
dt

= J(x) + Jex(x, t), x ⊂ U

be defined in a convex set U ⊂ E, and Ax be Jacobi operator at the point
x: Ax = Dx(J(x) + Jex(x)). This system has a Lyapunov norm, if the family
of operators {Ax}x∈U is simultaneously dissipative. If one can choose such
ε > 0 that for all Ax, t > 0, any vector z, and this Lyapunov norm

‖ exp(Axt)z‖ ≤ exp(−εt)‖z‖ ,

then for any two solutions x(1)(t), x(2)(t), t ≥ 0 of equations (13.1)

‖x(1)(t) − x(2)(t)‖ ≤ exp(−εt)‖x(1)(0) − x(2)(0)‖ .

The existence of the Lyapunov norm is a very strong restriction on non-
linear systems, and such systems are not widespread in applications. But if
we go from the distance contraction to the contraction of the k-dimensional
volumes (k = 2, 3, . . .) [311], the situation changes dramatically. There exist
many kinetic systems with a monotonous contraction of the k-dimensional
volumes for sufficiently large k (see, for example, [173, 317, 318, 334]). Let
x(t), t ≥ 0 be a solution of equation (13.1). Let us write the first approxima-
tion equation for small variation of x(t):

d∆x
dt

= Ax(t)∆x . (14.1)

This is a linear system with coefficients dependent on t. Let us study how
the system (14.1) changes the k-dimensional volumes. For k-dimensional par-
allelepiped with the edges x(1), x(2), . . . x(k) we can define an element of the
kth exterior power, the oriented volume:

x(1) ∧ x(2) ∧ . . . ∧ x(k) ∈ E ∧ E ∧ . . . ∧ E︸ ︷︷ ︸
k

= ∧kE ,

(this is an antisymmetric tensor or k-vector). A norm in the kth exterior
power of the space E is a measure of the k-dimensional volumes (one of the
possible measures). Dynamics of volumes induced by the system (14.1) is
given by equations

d
dt

(∆x(1) ∧∆x(2) ∧ . . . ∧∆x(k)) = (Ax(t)∆x
(1)) ∧∆x(2) ∧ . . . ∧∆x(k)

+∆x(1) ∧ (Ax(t)∆x
(2)) ∧ . . . ∧∆x(k) + . . .

+∆x(1) ∧∆x(2) ∧ . . . ∧ (Ax(t)∆x
(k))

= (∧k
DAx(t))(∆x(1) ∧∆x(2) ∧ . . . ∧∆x(k)) . (14.2)
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Here ∧k
DAx(t) are operators of the induced differential action of Ax(t) on

the kth exterior power of E. Again, a decrease of ‖∆x(1)∧∆x(2)∧. . .∧∆x(k)‖
in time is equivalent to dissipativity of all the operators ∧k

DAx(t), t ≥ 0 in the
norm ‖•‖. Existence of such a norm for all ∧k

DAx(t)(x ∈ U) is equivalent to the
contraction of the volumes of all parallelepipeds due to first approximation
system (14.1) for any solution x(t) of equations (13.1). We shall call such a
system the k-contraction. If one can choose such ε > 0 that for all Ax (x ∈ U),
any vector z ∈ E ∧ E ∧ . . . ∧ E, and this norm,

‖ exp
(
∧k

DAx(t)t
)
z‖ ≤ exp(−εt)‖z‖ ,

then the volumes of the parallelepipeds contract exponentially as exp(−εt).
For such systems we can estimate the Hausdorff dimension of the attractor

(under some additional technical conditions about solutions boundedness): it
cannot exceed k. It is necessary to stress here that this estimation of the
Hausdorff dimension does not solve the problem of construction of the in-
variant manifold containing this attractor, and one needs special technique
and additional restriction on the system in order to obtain this manifold
(see [318,342,346,347]).

Let us remind here the definition of the Hausdorff dimension of metric
space (subset of a normed space, for example). Let X be a metric space, and
d be a number. The d-dimensional Hausdorff measure of X, Hd(X), is the
infimum of positive numbers y such that for every r > 0, X can be covered by
a countable family of closed balls, each of diameter less than r, such that the
sum of the dth powers of their diameters is less than y. Note that Hd(X) may
be infinite, and d need not be an integer. The Hausdorff dimension DH(X)
of X is the infimum of such d ≥ 0 that the Hd(X) = 0:

DH(X) = inf{d ≥ 0|Hd(X) = 0} .

The simplest way for construction of the slow invariant manifold becomes
available for systems with a dominance of the linear part in higher dimensions.
Let an infinite-dimensional system have a form: u̇ + Au = R(u), where the
operator A is self-adjoint, and has discrete spectrum λi (λ1 < λ2 < . . . ,
λi → ∞) with sufficiently big gaps between the eigenvalues λi, and R(u) is
continuous. Let Ei be the eigenspace of A for the eigenvalue λi, and all the Ei

are finite-dimensional spaces. One can build the slow manifold as the graph
over the space ⊕k

i=1Ei for some k. Indeed, let the basis consists of eigenvectors
of A. In this basis u̇i = −λiui + Ri(u), and it seems plausible that, for
some k and sufficiently big i, the functions ui(t) exponentially fast tend to
ui(u1(t), . . . uk(t)), if Ri(u) are bounded and continuous in a suitable sense.
Here ui(u1, . . . uk) are some smooth functions that describe the manifold with
internal coordinates u1, . . . uk.

Variants of rigorous theorems about systems with such a dominance of
the linear part in higher dimensions may be found in literature (see, for ex-
ample, the textbook [100]). Even if all the sufficient conditions hold, efficient
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computation of these manifold remains the problem, and various strategies
of calculations are proposed: from the Euler method for the manifold correc-
tion [25] to various algorithms of discretization [13,105,343].

The simplest condition of simultaneous dissipativity for the family of op-
erators {Ax} can be obtained in a following way: let us take a norm ‖•‖. If all
operators Ax are dissipative with respect to this norm, then the family Ax

is (obviously) simultaneously dissipative in this norm. So, we can verify or
falsify a hypothesis about the simultaneous dissipativity for a given norm.
Simplest examples are provided by the quadratic and l1 norms.

For the quadratic norm associated with a scalar product 〈|〉 the dissipa-
tivity of the operator A is equivalent to nonpositivity of the spectrum of the
operator A+A+, where A+ is the adjoint to A operator with respect to scalar
product 〈|〉.

For the l1 norm with weights ‖x‖ =
∑

i wi|xi|, wi > 0, the condition of the
operator’s A dissipativity in this norm is the weighted diagonal dominance
for columns of the matrix A = (aij):

aii < 0, wi|aii| ≥
∑

j, j =i

wj |aji| .

For the exponential contraction, it is necessary and sufficient that some
gap exists in the dissipativity inequalities:

– For the quadratic norm,

σ(A+A+) < ε < 0 ,

where σ(A+A+) is the spectrum of A+A+;
– For the l1 norm with weights,

aii < 0, wi|aii| ≥
∑

j, j =i

wj |aji| + ε, ε > 0 .

Sufficient conditions of simultaneous dissipativity can have a different form
(not only the form of dissipativity checking with respect to a given norm)
[300–303], but the problem of necessary and sufficient conditions in a general
case remains open.

The dissipativity conditions for operators ∧k
DAx of the differential induced

action of Ax on the kth exterior power of E have a similar form. If we know the
spectrum of Ax+A+

x , then it is easy to find the spectrum of ∧k
DAx+(∧k

DAx)+.
For example, for simple discrete spectrum each eigenvalue of this operator is
a sum of k distinct eigenvalues of Ax +A+

x .
A basis of the kth exterior power of E can be constructed from the basis

{ei} of E: it is

{ei1i2...ik
} = {ei1 ∧ ei2 ∧ . . . ∧ eik

}, i1 < i2 < . . . < ik .
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For the l1 norm with weights in the kth exterior power of E the set of weights
is {wi1i2...ik

> 0, i1 < i2 < . . . < ik}. The norm of a vector z is

‖z‖ =
∑

i1<i2<...<ik

wi1i2...ik
|zi1i2...ik

| .

The dissipativity conditions for operators ∧k
DAx(t) of the induced differential

action of A in the l1 norm with weights have the form:

ai1i1 + ai2i2 + . . .+ aikik
< 0 ,

wi1i2...ik
|ai1i1 + ai2i2 + . . .+ aikik

| ≥
k∑

l=1

∑
j, j =i1,i2,...ik

wl,j
i1i2...ik

|ajil
|

for any i1 < i2 < . . . < ik , (14.3)

where wl,j
i1i2...ik

= wI , the multiindex I consists of indexes ip (p �= l), and j.
For infinite-dimensional systems the problem of volume contraction and

Lyapunov norms for exterior powers of E consists of three parts: the geo-
metrical part that concerns the choice of norm for simultaneous dissipativity
of operator families, the topological part that concerns the topological non-
equivalence of the constructed norms, and estimation of the bounded set
(the so-called absorbing set) containing a compact attractor. This appropri-
ate apriori estimations of the bounded convex positively invariant set V ⊂ U
where the compact attractor is situated may become a difficult problem.

The estimation of the attractor dimension based on Lyapunov norms in
the exterior powers is rather rough. This is a local estimation. Refined es-
timations are based on global Lyapunov exponents (Lyapunov or Kaplan-
Yorke dimension [308, 309]). There are many different measures of the di-
mension [307, 310], and much effort is invested towards better estimates of
various dimensions [345].

Estimations of the dimension of attractors was given for various systems:
from the Navier-Stokes hydrodynamics [316] to the climate dynamics [312].
An introduction and a review of many results is presented in the book [318].
The local estimations remain the main tool for the estimation of the attrac-
tors dimension, because global estimations for complex systems are much
more complicated and often just unattainable because of the computational
complexity.

14.2 Examples: Lyapunov Norms for Reaction Kinetics

In this section we consider the reaction kinetics systems which obey the
mass action law. The direct and reverse reactions will be represented in the
stoichiometric equations separately, and the reaction mechanisms under con-
sideration can include an elementary reaction without its reverse reaction.
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Neither detailed balance, nor other dissipation requirements are presumed.
Such schemes appear, for example, in modeling of catalytic reactions, where
only part of the components are included into equations, and concentrations
of other components are used as parameters [81].

The simplest class of nonlinear kinetic (open) systems with Lyapunov
norms was described in the paper [304]. These are reaction systems with-
out interactions of various substances. The stoichiometric equation of each
elementary reaction has a form

αrAir
→
∑

j

βrjAj , (14.4)

where r enumerates reactions, ir is defined for each reaction αr, βrj are non-
negative stoichiometric coefficients (usually they are integer), Ai are symbols
of substances.

In the left hand part of equation (14.4) there is one initial reagent, though
αr > 1 is possible (there may be several copies of Air

, for example 3A →
2B + C). This explains the notion of the reaction without interaction of
different substances.

For the mass action law (2.67) kinetic equations for the kinetic scheme
(14.4) have a form

dci
dt

= −
∑

r: i=ir

αrkrc
αr
i +

∑
r

βrikrc
αr
ir

, kr > 0 . (14.5)

Let there exist a positive balance for the reaction scheme (14.4):

bir
αr =

∑
j

bjβrj

for some bi > 0 and all r. In this case kinetic equations for the reaction
system (14.4) have a Lyapunov norm [304]. This is the weighted l1 norm:
‖x‖ =

∑
i bi|xi|, where bi > 0 are the coefficients from the linear conservation

law
∑

i bici = const. There exists no quadratic Lyapunov norm for general
reaction systems without interaction of different substances.

Let us call a reaction mechanism dissipative, if it allows a universal Lya-
punov norm1, that is, the Lyapunov norm which is independent of reaction
rate constants.

The reaction mechanism with only one elementary reaction,
∑

i

αiAi →
∑

i

βiAi , (14.6)

is dissipative if and only if for any i if αi > 0, then αi > βi.

1 For the motion on the planes with given values of the linear conservation laws.
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The reaction mechanism with two elementary reaction without autocatal-
ysis (αri × βri ≡ 0),

∑
i

αriAi →
∑

i

βriAi, (r = 1, 2) (14.7)

is not dissipative if and only if for two of components Ai, Aj at least one of
the following conditions holds:

1. Branching

α1i, β1j , α2j , β2i > 0,
β1j

α1i

β2i

α2j
> 1 , (14.8)

2. Loss disproportion

α1i, α1j , α2i, α2j > 0,
α1i

α1j
�= α2i

α2j
, (14.9)

3. Gain–loss connection

α1i, α1j , α2i, β2j > 0,
α1i

α1j

β2j

α2i
> 1 . (14.10)

These elementary obstacles to dissipativity alow to prove the non-dissipativity
of many reaction mechanisms.

It is possible to describe all the dissipative reaction mechanisms. For
example, for three components A1, A2, A3 with the linear conservation law
c1 + c2 + c3 = const, for bounded stoichiometric numbers (αri, βri ≤ 3), and
without autocatalysis (αri × βri ≡ 0) there are three such maximal mecha-
nisms, and any other dissipative mechanism is a subset of one of these max-
imal schemes (may be after permutation of the components) [305]. The first
maximal scheme consists of all the reactions without interaction of different
substances and with given conservation law:

αrAir
→ βr1A1 + βr2A2 + βr3A3, αr ≤ 3, βr1 + βr2 + βr3 = αr . (14.11)

The corresponding Lyapunov norm is ‖c‖ = |c1| + |c2| + |c3|.
The second maximal scheme includes a reaction with interaction of dif-

ferent substances, A1 +A2 → 2A3:

A1 → A2, A1 → A3, A2 → A1, A2 → A3 ,

2A1 → A2 +A3, 2A2 → A1 +A3, 2A3 → A1 +A2 ,

3A1 → A2 + 2A3, 3A1 → 2A2 +A3, 3A2 → A1 + 2A3, 3A2 → 2A1 +A3 ,

A1 +A2 → 2A3 . (14.12)

The corresponding norm is ‖c‖ = |c1| + |c2| + |c1 + c2 + c3|.
The third maximal scheme includes another reaction with interaction of

different substances, A1 + 2A2 → 3A3:
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A1 → A2, A1 → A3, A2 → A3 ,

2A1 → A2 +A3, 2A2 → A1 +A3 ,

3A1 → A2 + 2A3, 3A1 → 2A2 +A3, 3A2 → A1 + 2A3, 3A3 → A1 + 2A2 ,

A1 + 2A2 → 3A3 . (14.13)

The corresponding norm is ‖c‖ = 2|c1| + |c2| + |c1 + c2 + c3|.

14.3 Examples: Infinite-Dimensional Systems
With Finite-Dimensional Attractors

In this section we list some of known examples of infinite-dimensional systems
that are k-contractions (that is, they contract k-dimensional volume for some
k) and have finite-dimensional attractors.

The most celebrated example are the Navier–Stokes equations for incom-
pressible fluid in a bounded domain Ω of R3 or R2:

divu = 0 ,
∂u

∂t
+ (u,∇)u − ν�u + ∇p = f , (14.14)

where u(x, t) is the velocity field, ν is the kinematic viscosity, � = ∇2 is the
Laplace operator, ( , ) is the standard inner product, p is the pressure, f is
the volume force (normalized to unit density).

The two main cases are studied, the flow with the Dirichlet boundary
conditions u = 0 on ∂Ω, or the flow with periodic boundary conditions.

For three-dimensional flows it is possible to prove conditional theorems
of such a kind [313]: If X is a bounded attractor, then

DH(X) ≤ const Re3 , (14.15)

where const is an universal constant and Re is the Reynolds number. The
usual definition of Re is

Re =
LU

ν
, (14.16)

where L and U are the reference length and reference velocity.
There is no natural “typical velocity” in a turbulent flow and therefore

there is no obvious unique choice of the Reynolds number. The different
versions of the Reynolds numbers are discussed, for instance, in [313,314].

The classical physical estimate of the number of degrees of freedom for
flows with large Reynolds numbers is ∼Re9/4 [315]. This estimate was ob-
tained mathematically rigorously for the homogeneous decaying turbulence
[316]. That is, for the Navier–Stokes equations without a forse f and after a
special time-dependent transformation of space and time scales.
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For two-dimensional flows it is possible to prove the existence of attrac-
tors, because in this case the situation with existence and uniqueness of so-
lutions is much more clear. There is a family of estimates of attractor dimen-
sion [318]. The simplest and at the same time most important form of such
an estimate is

DH(X) ≤ const (G+ 1) , (14.17)

where G is the generalized Grashof number:

G =
L2‖f‖
ν2

, (14.18)

‖f‖ is the L2-norm of f in Ω, L is the reference length. Of course, this
definition allows some useful variations, as well, as the Reynolds number.

For special classes of solutions these estimates could be made more precise.
For example, for the boundary and pressure-gradient driven incompressible
fluid flows in elongated two-dimensional channels the following estimates of
the dimension of the attractor for the solutions of the Navier–Stokes equations
are obtained [320]. For boundary driven shear flows and flux driven channel
flows the upper bounds for the degrees of freedom was found in the form
cαRe3/2 where c is a universal constant, α denotes the aspect ratio of the
channel (length/width), and Re is the Reynolds number based on the channel
width and the imposed “outer” velocity scale. For fixed pressure gradient
driven channel flows an upper bound of form c′ Re2 was obtained, where c′

is another universal positive constant and the Reynolds number is based on
a velocity defined by the infimum, over all possible trajectories, of the time
averaged mass flux per unit channel width.

The estimates of the global attractor dimension were obtained for so-called
generalized Navier–Stokes equations characterized by polynomial dependence
between the stress tensor and the symmetric velocity gradient [319].

The maximal attractor X for the complex Ginzburg–Landau equation pe-
riodic on the interval [0, 1]

∂A

∂t
= RA+ (1 + iν)

∂2A

∂x2
− (1 + iµ)A|A|2 (14.19)

has a finite dimension [321,322]:

– For |µ| ≤
√

3
DH(X) < 2

√
3(R1/2/2π) + 1 ;

– For |µ| >
√

3

DH(X) < (
√

3/π)|µ|R + 3|µ|1/2R1/2/2π + 2 .

The Kuramoto–Sivashinsky equation was invented in order to describe
waves in chemically reacting media:
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∂c

∂t
= −ν�2c−�c− 1

2
(∇c)2 . (14.20)

where ν > 0 and � is the Laplace operator. The term −�c in the right
hand side of this equation describes the negative diffusion, and the solutions
remain regular due to the term −ν�2c.

The global dynamical properties of the Kuramoto–Sivashinsky equation
were studied in [323]. In particular, in the one-dimensional case for even
solutions with the L-periodic boundary conditions, the following estimate for
the dimension of the attractor X which includes all bounded attractors was
obtained:

DH(X) ≤ 5.4L̃13/8 , (14.21)

where L̃ = L/(2π
√
ν) is the dimensionless size of the box (or of the “pattern

cell”).
For the two- and three-dimensional cases the estimations of attractor

dimension include an a priori estimate of the L2 norm of the c gradient
R = limt→∞‖∇c(t)‖ [323].

Dynamics of the nonlocal Kuramoto–Sivashinsky equation (in the one-
dimensional case) was studied in [324]

∂c

∂t
= − ∂4c

∂x4
− ∂2c

∂x2
− c

∂c

∂x
− αH

(
∂3c

∂x3

)
, (14.22)

where α > 0, and

H(f) =
1
π

∫ ∞

−∞

f(ξ)
x− ξ

dξ , (14.23)

(the integral is understood in the sense of the Cauchy principle value). This
equation arises in the modeling of the flow of a thin film of viscous liquid
down an inclined plane in electric field.

For large α and l the obtained attractor dimension estimate is

DH(X) ≤ O(α3/2L̃3/2 + L̃2) . (14.24)

The Cahn–Hilliard equation describes the evolution of a conserved con-
centration field during phase separation:

∂c

∂t
= �(−ν�c+ f(c)) , (14.25)

where f(c) is a polynomial of an odd order. Usually, f(c) = −αc + βc3,
α, β > 0. Like the Kuramoto–Sivashinsky equation, the Cahn–Hilliard equa-
tion contains the regularizing term −ν�2c and the negative diffusion term
−α�c in the right hand side. The operator −ν�2 effectively suppresses the
short waves (with the logarithmic decrement ∼k4 for the wave vector k);
it allows to prove the existence of the finite-dimensional attractors and to
estimate their dimensions for various hypothesis about f and boundary con-
ditions [325–329]. The Cahn–Hilliard equation can be presented as a gradient
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system that minimizes the free energy (possibly, to a local minimum). Hence,
the limiting behavior of this system is rather simple; it always tends to a
stationary point (to the stable or metastable equilibrium).

It should be stressed that the maximal attractor (4.1)

X =
⋂
t≥0

Tt(Y ) ,

where Y is the positively invariant absorbing set, and Tt is the map of the
phase flow (the shift operator for the time t), estimates the limit behavior
from above and often does not satisfy the intuitive expectation (that is, it is
too large). For example, if the absorbing set Y includes a saddle point then
the corresponding maximal attractor X includes the whole unstable manifold
of this point, and the dimension of X is not less than the dimension of this
unstable manifold. For instance, when all the solutions tend to fixed points
from a finite set, the dimension of maximal attractor might be nonzero and
rather large. Therefore, the study of the structure of the attractor becomes
important. For the viscous Cahn–Hilliard equation

(1 − α)
∂c

∂t
= �

(
−ν�c+ f(c) + α

∂c

∂t

)
, (14.26)

with usual no-flow boundary conditions the structure of the global attractor
was studied in [330] (for the one-dimensional case). The dimension of the
unstable manifolds was calculated for all stationary states. In the unstable
case, the flow on the global attractor is shown to be semi-conjugate to the
flow of the global attractor of the Chaffee–Infante equation

∂c

∂t
=

∂2c

∂x2
+ λ2(c− c3) (14.27)

with zero boundary conditions. The connection between these equations is in
accordance with their physical sense [331,332].

In the reaction–diffusion equations the only source of instabilities can be
the reaction part. The diffusion suppresses short waves (with the logarithmic
decrement ∼k2 for wave vector k). Let us consider the following system in
a bounded domain Ω ⊂ Rn with the zero or non-flow boundary conditions
[333,335]:

∂c

∂t
= νd�c− f(c) + g(x) , (14.28)

where c(x, t) = (c1, . . . , cN ), ν > 0, d = dij is a real N × N matrix with
positive symmetric part (d+d+)/2 ≥ 1, f(c) = (f1(c), . . . , fN (c)), and g(x) =
(g1(x), . . . , gN (x)). Here, f(c) is the reaction part, and g(x) describes the
external sources and sinks.

Let f(c) be a smooth map, Dcf(c) = (∂f i/∂cj), and the following condi-
tions hold
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∑
i

γi|ci|pi − C1 ≤ (c, f(c)) ; (14.29)

∑
i

|f i(c)|qi ≤ C2

(∑
i

|ci|pi + 1

)
; (14.30)

(Dcf(c)w,w) ≥ −C3|w|2 , (14.31)

for some C1, C2, C3 > 0, γi > 0 pi ≥ 2, 1/pi + 1/qi = 1, any c and all
w ∈ RN . Then the dimension of the attractor X for (14.28) admits the
following estimate:

DH(X) ≤ N |Ω|
(

C3

νc0(Ω)

)n/2

, (14.32)

where n is the space dimension, |Ω| is the measure of Ω ⊂ Rn, and c0(Ω)
depends on the shape of Ω only, that is, c0(λΩ) = c0(Ω) for all λ > 0.
The constant C3 estimates the possible increment of the kinetic trajectories
instability from above.

The reaction–diffusion systems remain the basic example of the finite-
dimension volumes contractions, because of transparent structure: the dif-
fusion generates contraction (with the logarithmic decrement ∼k2 for wave
vector k), and the reaction can cause finite-dimensional instabilities. It is
well-studied, see, for instance, [318,333–336].

For the dissipative wave equations the estimates of attractor dimensions
were found in [333, 337–339] and discussed in [318, 335]. Let us consider the
following equation in a bounded domain Ω ⊂ Rn

∂2u

∂t2
+ γ

∂u

∂t
= �u− f(u) + g(x) (14.33)

with zero boundary conditions. This equation contains the damping term
γ ∂u

∂t with γ > 0. The essential difference between (14.33) and the reaction–
diffusion equations (14.28) is in the character of dissipation. According to the
dissipative wave equations short waves decay as exp(−γt), the logarithmic
decrement has the constant limit for k2 → ∞. It is the same situation, as
for the Grad equations (see Chap. 8), or for the model kinetic equations (see
Chap. 2).

Let 0 < λ1 ≤ λ3 ≤ λ4 ≤ . . . be the eigenvalues of the operator −� in
Ω with zero boundary conditions (in the order of their values). Assume that
g ∈ L2(Ω) and the smooth function f(u) satisfies the following conditions for
any u

F (u) ≥ −mu2 − Cm ; (14.34)
f(u)u− ςF (u) +mu2 ≥ −Cm ; (14.35)
|f ′

u(u)| ≤ C0(1 + |u|ρ) , (14.36)
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where F (u) =
∫ u

0
f(v) dv, λ1 > m > 0, ς > 0, Cm and C0 are some constants,

2/(n − 2) > ρ > 0 for n ≥ 3, and ρ > 0 is an arbitrary positive number for
n = 1, 2.

The important examples of (14.33) give the nonlinearities

f(u) = β sinu

and
f(u) = β|u|ρu .

In order to present more explicit expressions for dimension estimates let
us restrict ourselves by the sin-Gordon equation with f(u) = β sinu. More
general consideration can be found elsewhere (see, for example, [318,335]).

Let us introduce the following dimensionless numbers:

J =
β2

λ1γ2
, D =

γ2

λ1
(14.37)

For the sin-Gordon equation the dimension estimate of the attractor is
DH(X) ≤ m, where the number m (see [318], p. 364) is the first integer such
that

m ≥ 27λ1

m∑
i=1

λ−1
i J(1 +D2) . (14.38)

For large i, λi ∼ constλ1i
2/n, hence, for all i, λ1/λi < const i−2/n,

λ1

m∑
i=1

λ−1
i < Cm1− 2

n (14.39)

for n > 2,

λ1

m∑
i=1

λ−1
i < C lnm (14.40)

for n = 2, and

λ1

m∑
i=1

λ−1
i < C (14.41)

for n = 1. Here, in (14.39)–(14.40) constants depend only on the shape of Ω.
Following these inequalities we can take as the upper dimension estimate the
first integer m such that

m ≥ (27CJ(1 +D2))n/2 (14.42)

for n > 2,
m ≥ 27CJ(1 +D2) lnm (14.43)

for n = 2, and
m ≥ 27CJ(1 +D2) (14.44)

for n = 1.
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The estimates for attractor dimension were also obtained for some other
systems: thermohydraulics (including the Boussinesq equation), magnetohy-
drodynamics (see [318]), the Smoluchowski equation arising in the modeling
of nematic liquid crystalline polymers [340], and others. Various dimensions
(not only the Hausdorff dimension) were estimated.

14.4 Systems with Inheritance:
Dynamics of Distributions with Conservation
of Support, Natural Selection
and Finite-Dimensional Asymptotics

14.4.1 Introduction: Unusual Conservation Law

In the 1970th-1980th years, theoretical studies developed one more “com-
mon” field belonging simultaneously to physics, biology and mathematics.
For physics it is (so far) a part of the theory of approximations of a special
kind, demonstrating, in particular, interesting mechanisms of discreteness in
the course of evolution of distributions with initially smooth densities. But
what for physics is merely a convenient approximation, is a fundamental law
in biology (inheritance), whose consequences comprehended informally (se-
lection theory [115,377–380,383,384])2 permeate most of the sections of this
science.

Consider a community of animals. Let it be biologically isolated. Muta-
tions can be neglected in the first approximation. In this case new genes do
not emerge.

And here is an example is from physics. Let waves with wave vectors k be
excited in some system. Denote K a set of wave vectors k of excited waves.
Let the waves interaction do not lead to generation of waves with new k /∈ K.
Such an approximation is applicable to a variety of situations. For the wave
turbulence it was described in detail in [385,386].

What is common in these examples is the evolution of a distribution with
a support not increasing in time.

What does not increase must, as a rule, decrease, if the decrease is not
prohibited. This naive thesis can be converted into rigorous theorems for the
case under consideration [115]. The support is proved to decrease in the
limit t → ∞, if it was sufficiently large initially. Considered usually are such
system, for which at finite times the distributions support conserves and
decrease only in the limit t → ∞. Conservation of the support usually results
in the following effect: dynamics of initially infinite-dimensional system at
t → ∞ can be described by finite-dimensional systems.

2 We do not try to review the scientific literature about the evolution, and mention
here only the references that are especially important for our understanding of
the selection theory and applications.
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The simplest and most common in applications class of equations for
which the distributions support does not grow in time, is constructed as
follows. To each distribution µ is assigned a function kµ by which the distri-
bution can be multiplied. Written down is equation

dµ
dt

= kµ × µ . (14.45)

The multiplier kµ is called a reproduction coefficient. The right-hand side
is the product of the function kµ with the distribution µ, hence dµ/dt should
be zero where µ is equal to zero, therefore the support of µ is conserved in
time (over the finite times).

Let us remind the definition of the support. Each distribution on a com-
pact space X is a continuous linear functional on the space of continuous
functions C(X)3. The space C(X) is the Banach space endowed with the
norm

‖f‖ = max
x∈X

|f(x)| . (14.46)

Usually, when X is a bounded closed subset of a finite-dimensional space, we
represent this functional as the integral

µ[f ] =
∫
µ(x)f(x) dx ,

where µ(x) is the (generalized) density function of the distribution µ. The
support of µ, suppµ, is the smallest closed subset of X with the following
property: if f(x) = 0 on suppµ, then µ[f ] = 0, i.e. µ(x) = 0 outside suppµ.

Strictly speaking, the space on which µ is defined and the distribution
class it belongs to, should be specified. One should also specify are properties
of the mapping µ �→ kµ and answer the question of existence and uniqueness
of solutions of (14.45) under given initial conditions. In specific situations the
answers to these questions are not difficult.

Let us start with the simplest example

∂µ(x, t)
∂t

=

[
f0(x) −

∫ b

a

f1(x)µ(x, t) dx

]
µ(x, t) , (14.47)

where the functions f0(x) and f1(x) are positive and continuous on the closed
segment [a, b]. Let the function f0(x) reaches the global maximum on the
segment [a, b] at a single point x0. If x0 ∈ suppµ(x, 0), then

µ(x, t) → f0(x0)
f1(x0)

δ(x− x0), when t → ∞ , (14.48)

3 We follow the Bourbaki approach [393]: a measure is a continuous functional, an
integral. The book [393] contains all the necessary notions and theorems (and
much more material than we need here).
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where δ(x− x0) is the δ-function.
We use in the space of measures the weak convergence, i.e. the convergence

of averages:

µi → µ∗ if and only if
∫
µiϕ(x) dx →

∫
µ∗ϕ(x) dx (14.49)

for all continuous functions ϕ(x). This weak convergence of measures gen-
erates the weak topology on the space of measures (the weak topology of
conjugated space).

If f0(x) has several global maxima, then the right-hand side of (14.48) can
be a sum of a finite number of δ-functions. Here a natural question arises: is it
worth to pay attention to such a possibility? Should not we deem improbable
for f0(x) to have more than one global maximum? Indeed, such a case seems
to be very unlikely to occur. More details about this are given below.

Equations in the form (14.45) allow the following biological interpretation:
µ is the distribution of the number (or of a biomass, or of another extensive
variable) over inherited units: species, varieties, supergenes, genes. Whatever
is considered as the inherited unit depends on the context, on a specific prob-
lem. The value of kµ(x) is the reproduction coefficient of the inherited unit
x under given conditions. The notion of “given conditions” includes the dis-
tribution µ, the reproduction coefficient depends on µ. Equation (14.47) can
be interpreted as follows: f0(x) is the specific birth-rate of the inherited unit
x (below, for the sake of definiteness, x is a variety, following the spirit of
the famous Darwin’s book [377]), the death rate for the representatives of
all inherited units (varieties) is determined by one common factor depending
on the density

∫ b

a
f1(x)µ(x, t) dx; f1(x) is the individual contribution of the

variety x into this death-rate.
On the other hand, for systems of waves with a parametric interac-

tion, kµ(x) can be the amplification (decay) rate of the wave with the wave
vector x.

The first step in the routine of a dynamical system investigation is the
question about fixed points and their stability. And the first observation
concerning the system (14.45) is that asymptotically stable can be only
the steady-state distributions, whose support is discrete (i.e. the sums of
δ-functions). This can be proved for all the consistent formalizations, and
can be understood as follows.

Let the “total amount” (integral of |µ| over U) be less than ε > 0 but
not equal to zero in some domain U . Substitute distribution µ by zero on
U , the rest remains as it is. It is natural to consider this disturbance of µ
as ε-small. However, if the dynamics is described by (14.45), there is no way
back to the undisturbed distribution, because the support cannot increase. If
the steady state distribution µ∗ is asymptotically stable, then for some ε > 0
any ε-small perturbation of µ∗ relaxes back to µ∗. This is possible only in
the case if for any domain U the integral of |µ∗| over U is either 0 or greater
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than ε. Hence, this asymptotically stable distribution µ∗ is the sum of the
finite number of δ-functions:

µ∗(x) =
q∑

i=1

Niδ(x− xi) (14.50)

with |Ni| > ε for all i.
So we have: the support of asymptotically stable distributions for the

system (14.45) is always discrete. This simple observation has many strong
generalizations to general ω-limit points, to equations for vector measures,
etc.

Dynamic systems where the phase variable is a distribution µ, and the
distribution support is the integral of motion, frequently occur both in physics
and in biology. Because of their attractive properties they are frequently used
as approximations: we try to find the “main part” of the system in the form
(14.45), and represent the rest as a small perturbation of the main part.

In biology such an approximation is essentially all the classical genetics,
and also the formal contents of the theory of natural selection. The initial
diversity is “thinned out” in time, and the limit distribution supports are
described by some extremal principles (principles of optimality).

Conservation of the support in equation (14.45) can be considered as
inheritance, and, consequently, we call the system (14.45) and its nearest
generalizations “systems with inheritance”. Traditional division of the process
of transferring biological information into inheritance and mutations, small
in any admissible sense, can be compared to the description according to
the following pattern: system (14.45) (or its nearest generalizations) plus
small disturbances. Beyond the limits of such a description, talking about
inheritance loses the conventional sense.

The first study of the dynamics systems with inheritance was due to
J.B.S. Haldane. He used the simplest examples, studied steady-state distri-
butions, and obtained the extremal principle for them. His pioneering book
“The Causes of Evolution” (1932) [378] gives the clear explanation of the con-
nections between the inheritance (the conservation of distributions support)
and the optimality of selected varieties.

Haldane’s work was followed by entirely independent series of works on the
S-approximation in the spin wave theory and on the wave turbulence [385–
387], which studied wave configurations in the approximation of “inherited”
wave vector, and by “Synergetics” [392], where the “natural selections” of
modes is one of the basic concepts.

At the same time, a series of works on biological kinetics was done (see, for
example, [115, 381–383]). The studies addressed not only steady-states, but
also common limit distributions [115,382] and waves in the space of inherited
units [381]. For the steady-states a new type of stability was described – the
stable realizability (see below).
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The purpose of this paper is to present general results of the theory of
systems with inheritance: optimality principles the for limit distributions,
theorems about selection, and estimations of the limit diversity (estimates of
number of points in the supports of the limit distributions), drift effect and
drift equations. Some of these result were published in preprints in Russian
[382] (and, partially, in the Russian book [115]).

14.4.2 Optimality Principle for Limit Diversity

Description of the limit behavior of a dynamical system does not necessarily
reduce to enumerating stable fixed points and limit cycles. The possibility
of stochastic oscillations is common knowledge, while the domains of struc-
turally unstable (non coarse) systems discovered by S. Smale [394]4 have so
far not been mastered in applied and natural sciences).

The leading rival to adequately formalize the limit behavior is the concept
of the “ω-limit set”. It was discussed in detail in the classical monograph [395].
The fundamental textbook on dynamical systems [396] and the introductory
review [397] are also available.

If f(t) is the dependence of the position of point in the phase space on
time t (i.e. the motion of the dynamical system), then the ω-limit points are
such points y, for which there exist such sequences of times ti → ∞, that
f(ti) → y.

The set of all ω-limit points for the given motion f(t) is called the ω-
limit set. If, for example, f(t) tends to the equilibrium point y∗ then the
corresponding ω-limit set consists of this equilibrium point. If f(t) is winding
onto a closed trajectory (the limit cycle), then the corresponding ω-limit set
consists of the points of the, cycle and so on.

General ω-limit sets are not encountered oft in specific situations. This
is because of the lack of efficient methods to find them in a general situa-
tion. Systems with inheritance is a case, where there are efficient methods to
estimate the limit sets from above. This is done by the optimality principle.

Let µ(t) be a solution of (14.45). Note that

µ(t) = µ(0) exp
∫ t

0

kµ(τ) dτ . (14.51)

4 “Structurally stable systems are not dense”. Without exaggeration we can say
that so entitled work [394] opened a new era in the understanding of dynam-
ics. Structurally stable (rough) systems are those whose phase portraits do not
change qualitatively under small perturbations. Smale constructed such struc-
turally unstable system that any other system close enough to it is also struc-
turally unstable. This result defeated hopes for a classification if not all, but
at least “almost all” dynamical systems. Such hopes were associated with the
success of the classification of two-dimensional dynamical systems, among which
structurally stable systems are dense.
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Here and below we do not display the dependence of distributions µ and of
the reproduction coefficients k on x when it is not necessary. Fix the notation
for the average value of kµ(τ) on the segment [0, t]

〈kµ(t)〉t =
1
t

∫ t

0

kµ(τ) dτ . (14.52)

Then the expression (14.51) can be rewritten as

µ(t) = µ(0) exp(t〈kµ(t)〉t) . (14.53)

If µ∗ is the ω-limit point of the solution µ(t), then there exists such a
sequence of times ti → ∞, that µ(ti) → µ∗. Let it be possible to chose a
convergent subsequence of the sequence of the average reproduction coeffi-
cients 〈kµ(t)〉t, which corresponds to times ti. We denote as k∗ the limit of
this subsequence. Then, the following statement is valid: on the support of
µ∗ the function k∗ vanishes and on the support of µ(0) it is non-positive:

k∗(x) = 0 if x ∈ suppµ∗ ,

k∗(x) ≤ 0 if x ∈ suppµ(0) . (14.54)

Taking into account the fact that suppµ∗ ⊆ suppµ(0), we come to the
formulation of the optimality principle (14.54): The support of limit dis-
tribution consists of points of the global maximum of the average reproduction
coefficient on the initial distribution support. The corresponding maximum
value is zero.

We should also note that not necessarily all points of maximum of k∗

on suppµ(0) belong to suppµ∗, but all points of suppµ∗ are the points of
maximum of k∗ on suppµ(0).

If µ(t) tends to the fixed point µ∗, then 〈kµ(t)〉t → kµ∗ as t → ∞, and
suppµ∗ consists of the points of the global maximum of the corresponding re-
production coefficient kµ∗ on the support of µ∗. The corresponding maximum
value is zero.

If µ(t) tends to the limit cycle µ∗(t) (µ∗(t + T ) = µ∗(t)), then all the
distributions µ∗(t) have the same support. The points of this support are the
points of maximum (global, zero) of the averaged over the cycle reproduction
coefficient

k∗ = 〈kµ∗(t)〉T =
1
T

∫ T

0

kµ∗(τ) dτ , (14.55)

on the support of µ(0).
The supports of the ω-limit distributions are specified by the functions

k∗. It is obvious where to get these functions from for the cases of fixed
points and limit cycles. There are at least two questions: what ensures the
existence of average reproduction coefficients at t → ∞, and how to use the
described extremal principle (and how efficient is it). The latter question is
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the subject to be considered in the following sections. In the situation to
follow the answers to these questions have the validity of theorems. Let X be
a space on which the distributions are defined. Assume it to be a compact
metric space (for example, a closed bounded subset of Euclidian space). The
distribution µ is identified with the Radon measure, that is the continuous
linear functional on the space of continuous functions on X, C(X). We use the
conventional notation for this linear functional as the integral of the function
ϕ as

∫
ϕ(x)µ(x) dx. Here µ(x) is acting as the distribution density, although,

of course, the arbitrary X has no initial (Lebesgue, for example) dx.
The sequence of continuous functions ki(x) is considered to be convergent

if it converges uniformly. The sequence of measures µi is called convergent
if for any continuous function ϕ(x) the integrals

∫
ϕ(x)µi(x) dx converge

(weak convergence (14.49)). The mapping µ �→ kµ assigning the reproduction
coefficient kµ to the measure µ is assumed to be continuous. And, finally, the
space of measures is assumed to have a bounded5 set M which is positively
invariant relative to system (14.45): if µ(0) ∈ M , then µ(t) ∈ M (and is
non-trivial). This M will serve as the phase space of system (14.45).

Most of the results about systems with inheritance use the theorem
about weak compactness: The bounded set of measures is precompact with
respect to the the weak convergence (i.e., its closure is compact). Therefore,
the set of corresponding reproduction coefficients kM = {kµ|µ ∈ M} is pre-
compact, the set of averages (14.52) is precompact, because it is the subset
of the closed convex hull conv(kM ) of the compact set. This compactness
allows us to claim the existence of the average reproduction coefficient k∗ for
the description of the ω-limit distribution µ∗ with the optimality principle
(14.54).

14.4.3 How Many Points
Does the Limit Distribution Support Hold?

The limit distribution is concentrated in the points of (zero) global maxi-
mum of the average reproduction coefficient. The average is taken along the
solution, but the solution is not known beforehand. With the convergence
towards a fixed point or to a limit cycle this difficulty can be circumvented.
In the general case the extremal principle can be used without knowing the
solution, in the following way [115]. Considered is a set of all dependencies
µ(t) where µ belongs to the phase space, the bounded set M . The set of all
averages over t is {〈kµ(t)〉t}. Further, taken are all limits of sequences formed
by these averages – the set of averages is closed. The result is the closed
convex hull conv(kM ) of the compact set kM . This set involves all possible
averages (14.52) and all their limits. In order to construct it, the true solution
µ(t) is not needed.

5 The set of measures M is bounded, if the sets of integrals {µ[f ]|µ ∈ M, ‖f‖ ≤ 1}
is bounded, where ‖f‖ is the norm (14.46).
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The weak optimality principle is expressed as follows. Let µ(t) be a solu-
tion of (14.45) in M , µ∗ is any of its ω-limit distributions. Then in the set
conv(kM ) there is such a function k∗ that its maximum value on the support
suppµ0 of the initial distribution µ0 equals to zero, and suppµ∗ consists of
the points of the global maximum of k∗ on suppµ0 only (14.54).

Of course, in the set conv(kM ) usually there are many functions that are
irrelevant to the time average reproduction coefficients for the given motion
µ(t). Therefore, the weak extremal principle is really weak – it gives too
many possible supports of µ∗. However, even such a principle can help to
obtain useful estimates of the number of points in the supports of ω-limit
distributions.

It is not difficult to suggest systems of the form (14.45), in which any
set can be the limit distribution support. The simplest example: kµ ≡ 0.
Here ω-limit (fixed) is any distribution. However, almost any arbitrary small
perturbation of the system destroys this pathological property.

In the realistic systems, especially in biology, the coefficients fluctuate and
are never known exactly. Moreover, the models are in advance known to have
a finite error which cannot be exterminated by the choice of the parameters
values. This gives rise to an idea to consider not individual systems (14.45),
but ensembles of similar systems [115].

Having posed the questions of how many points can the support of ω-limit
distributions have, estimate the maximum for each individual system from
the ensemble (in its ω-limit distributions), and then, estimate the minimum
of these maxima over the whole ensemble – (the minimax estimation). The
latter is motivated by the fact, that if the inherited unit has gone extinct
under some conditions, it will not appear even under the change of conditions.

Let us consider an ensemble that is simply the ε-neighborhood of the given
system (14.45). The minimax estimates of the number of points in the support
of ω-limit distribution are constructed by approximating the dependencies kµ

by finite sums

kµ = ϕ0(x) +
n∑

i=1

ϕi(x)ψi(µ) . (14.56)

Here ϕi depend on x only, and ψi depend on µ only. Let εn > 0 be the
distance from kµ to the nearest sum (14.56) (the “distance” is understood
in the suitable rigorous sense, which depends on the specific problem). So,
we reduced the problem to the estimation of the diameters εn > 0 of the set
conv(kM ).

The minimax estimation of the number of points in the limit
distribution support gives the answer to the question, “How many points
does the limit distribution support hold”: If ε > εn then, in the ε-vicinity
of kµ, the minimum of the maxima of the number of points in the ω-limit
distribution support does not exceed n.

In order to understand this estimate it is sufficient to consider system
(14.45) with kµ of the form (14.56). The averages (14.52) for any dependence
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µ(t) in this case have the form

〈kµ(t)〉t =
1
t

∫ t

0

kµ(τ) dτ = ϕ0(x) +
n∑

i=1

ϕi(x)ai . (14.57)

where ai are some numbers. The ensemble of the functions (14.57) for various
ai forms a n-dimensional linear manifold. How many of points of the global
maximum (equal to zero) could a function of this family have?

Generally speaking, it can have any number of maxima. However, it seems
obvious, that “usually” one function has only one point of global maximum,
while it is “improbable” the maximum value is zero. At least, with an arbi-
trary small perturbation of the given function, we can achieve for the point
of the global maximum to be unique and the maximum value be non-zero.

In a one-parametric family of functions there may occur zero value of the
global maximum, which cannot be eliminated by a small perturbation, and
individual functions of the family may have two global maxima.

In the general case we can state, that “usually” each function of the
n-parametric family (14.57) can have not more than n − 1 points of the
zero global maximum (of course, there may be less, and for the majority of
functions of the family the global maximum, as a rule, is not equal to zero at
all). What “usually” means here requires a special explanation given in the
next section.

In application kµ is often represented by an integral operator, linear or
nonlinear. In this case the form (14.56) corresponds to the kernels of inte-
gral operators, represented in a form of the sums of functions’ products. For
example, the reproduction coefficient of the following form

kµ = ϕ0(x) +
∫
K(x, y)µ(y) dy ,

where K(x, y) =
n∑

i=1

ϕi(x)gi(y) , (14.58)

has also the form (14.56) with ψi(µ) =
∫
gi(y)µ(y) dy.

The linear reproduction coefficients occur in applications rather fre-
quently. For them the problem of the minimax estimation of the number
of points in the ω-limit distribution support is reduced to the question of
the accuracy of approximation of the linear integral operator by the sums of
kernels-products (14.58).

14.4.4 Selection Efficiency

The first application of the extremal principle for the ω-limit sets is the
theorem of the selection efficiency. The dynamics of a system with inheritance
indeed leads in the limit t → ∞ to a selection. In the typical situation, a
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diversity in the limit t → ∞ becomes less than the initial diversity. There is an
efficient selection for the “best”. The basic effects of selection are formulated
below.

Theorem of Selection Efficiency

1. Almost always the support of any ω-limit distribution is nowhere dense in
X (and it has the Lebesgue measure zero for Euclidean space).

2. Let εn > 0, εn → 0 be an arbitrary chosen sequence. The following state-
ment is almost always true for system (14.45). Let the support of the initial
distribution be the whole X. Then the support of any ω-limit distribution
µ∗ is almost finite. This means that it is approximated by finite sets faster
than εn → 0: for any δ > 0 there is such a number N that for any ω-
limit distribution µ∗ there exists a finite set SN of N elements such that
dist(SN , suppµ∗) < δεN , where dist is the Hausdorff distance:

dist(A,B) = max{sup
x∈A

inf
x∈B

ρ(x, y), sup
x∈B

inf
x∈A

ρ(x, y)} , (14.59)

where ρ(x, y) is the distance between points.
3. In the previous statement for any chosen sequence εn > 0, εn → 0, almost

all systems (14.45) have ω-limit distributions with supports that can be
approximated by finite sets faster than εn → 0. The order is important:
“for any sequence almost all systems. . . ” But if we use only the recursive
(algorithmic) analogue of sequences, then we can easily prove the state-
ment with the reverse order: “almost all systems for any sequence. . . ”
This is possible because the set of all recursive enumerable countable sets
is also countable and not continuum. This observation is very important
for algorithmic foundations of probability theory [398]. Let L be a set of
all sequences of real numbers εn > 0, εn → 0 with the property: for each
{εn} ∈ L the rational subgraph {(n, r) : εn > r ∈ Q} is recursively enu-
merable. For almost all systems (14.45) and any {εn} ∈ L the support
of any ω-limit distribution µ∗ is approximated by finite sets faster than
εn → 0.

These properties hold for the continuous reproduction coefficients. It is
well-known, that it is dangerous to rely on the genericity among continuous
functions. For example, almost all continuous functions are nowhere differ-
entiable. But the properties 1 and 2 hold also for the smooth reproduction
coefficients on the manifolds and sometimes allow to replace the “almost
finiteness” by simply finiteness. In order to appreciate this theorem, note
that:

1. Support of an arbitrary ω-limit distribution µ∗ consist of points of global
maximum of the average reproduction coefficient on a support of the initial
distribution. The corresponding maximum value is zero.

2. Almost always a function has only one point of global maximum, and
corresponding maximum value is not 0.
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3. In a one-parametric family of functions almost always there may occur zero
values of the global maximum (at one point), which cannot be eliminated
by a small perturbation, and individual functions of the family may stably
have two global maximum points.

4. For a generic n-parameter family of functions, there may exist stably a
function with n− 1 points of global maximum and with zero value of this
maximum.

5. Our phase space M is compact. The set of corresponding reproduction
coefficients kM in C(X) for the given map µ → kµ is compact too. The
average reproduction coefficients belong to the closed convex hull of this
set conv(kM ). And it is compact too.

6. A compact set in a Banach space can be approximated by its projection
on an appropriate finite-dimensional linear manifold with an arbitrary
accuracy. Almost always the function on such a manifold may have only
n−1 points of global maximum with zero value, where n is the dimension
of the manifold.

The rest of the proof is purely technical. The easiest demonstration of the
“natural” character of these properties is the demonstration of instability of
exclusions: If, for example, a function has several points of global maxima
then with an arbitrary small perturbation (for all usually used norms) it can
be transformed into a function with the unique point of global maximum.
However “stable” does not always mean “dense”. In what sense the discussed
properties of the system (14.45) are usually valid? “Almost always”, “typi-
cally”, “generically” a function has only one point of global maximum. This
sentence should be given an rigorous meaning. Formally it is not difficult,
but haste is dangerous when defining “genericity”.

Here are some examples of correct but useless statements about “generic”
properties of function: Almost every continuous function is not differentiable;
Almost every C1 -function is not convex. Their meaning for applications is
most probably this: the genericity used above for continuous functions or for
C1 -function is irrelevant to the subject.

Most frequently the motivation for definitions of genericity is found in such
a situation: given n equations with m unknowns, what can we say about the
solutions? The answer is: in a typical situation, if there are more equations,
than the unknowns (n > m), there are no solutions at all, but if n ≤ m (n
is less or equal to m), then, either there is a (m − n)-parametric family of
solutions, or there are no solutions.

The best known example of using this reasoning is the Gibbs phase rule
in classical chemical thermodynamics. It limits the number of co-existing
phases. There exists a well-known example of such reasoning in mathemat-
ical biophysics too. Let us consider a medium where n species coexist. The
medium is assumed to be described by m parameters. In the simplest case,
the medium is a well-mixed solution of m substances. Let the organisms in-
teract through the medium, changing its parameters – concentrations of m
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substances. Then, in a steady state, for each of the coexisting species we have
an equation with respect to the state of the medium. So, the number of such
species cannot exceed the number of parameters of the medium. In a typical
situation, in the m-parametric medium in a steady state there can exist not
more than m species. This is the Gause concurrent exclusion principle [399].
This fact allows numerous generalizations. Theorem of the natural selection
efficiency may be considered as its generalization too.

Analogous assertion for a non-steady state coexistence of species in the
case of equations (11) is not true. It is not difficult to give an example of sta-
ble coexistence under oscillating conditions of n species in the m-parametric
medium at n > m. But, if kµ are linear functions of µ, then for non-stable
conditions we have the concurrent exclusion principle, too. In that case, the
average in time of reproduction coefficient kµ(t) is the reproduction coeffi-
cient for the average µ(t) because of linearity. Therefore, the equation for the
average reproduction coefficient,

k∗(x) = 0 for x ∈ suppµ∗ , (14.60)

transforms into the following equation for the reproduction coefficient of the
average distribution

k∗(〈µ〉) = 0 for x ∈ suppµ∗ (14.61)

(the Volterra averaging principle [400]). This system has as many linear equa-
tions as it has coexisting species. The averages can be non-unique. Then all of
them satisfy this system, and we obtain the non-stationary Gause principle.
And again, it is valid “almost always”.

Formally, various definitions of genericity are constructed as follows. All
systems (or cases, or situations and so on) under consideration are somehow
parameterized – by sets of vectors, functions, matrices etc. Thus, the “space
of systems” Q can be described. Then the “thin sets” are introduced into Q,
i.e. the sets, which we shall later neglect. The union of a finite or countable
number of thin sets, as well as the intersection of any number of them should
be thin again, while the whole Q is not thin. There are two traditional ways
to determine thinness.

1. A set is considered thin when it has measure zero. This is good for a
finite-dimensional case, when there is the standard Lebesgue measure –
the length, the area, the volume.

2. But most frequently we deal with the functional parameters. In that case
it is common to restore to the second definition, according to which the
sets of first category are negligible. The construction begins with nowhere
dense sets. The set Y is nowhere dense in Q, if in any nonempty open
set V ⊂ Q (for example, in a ball) there exists a nonempty open subset
W ⊂ V (for example, a ball), which does not intersect with Y . Roughly
speaking, Y is “full of holes” – in any neighborhood of any point of the set
Y there is an open hole. Countable union of nowhere dense sets is called
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the set of the first category. The second usual way is to define thin sets as
the sets of the first category.

But even the real line R can be divided into two sets, one of which has
zero measure, the other is of the first category. The genericity in the sense
of measure and the genericity in the sense of category considerably differ
in the applications where both of these concepts can be used. The conflict
between the two main views on genericity stimulated efforts to invent new
and stronger approaches.

In Theorem of selection efficiency a very strong genericity was used. Sys-
tems (14.45) were parameterized by continuous maps µ �→ kµ. Denote by Q
the space of these maps M → C(X) with the topology of uniform convergence
on M . So, it is a Banach space. We shall call the set Y in the Banach space
Q completely thin, if for any compact set K in Q and arbitrary positive ε > 0
there exists a vector q ∈ Q, such that ‖q‖ < ε and K+q does not intersect Y .
So, a set, which can be moved out of intersection with any compact by an arbi-
trary small translation, is completely negligible. In a finite-dimensional space
there is only one such set – the empty one. In an infinite-dimensional Ba-
nach space compacts and closed subspaces with infinite codimension provide
us examples of completely negligible sets. In Theorem of selection efficiency
“usually” means “the set of exceptions is completely thin”.

14.4.5 Gromov’s Interpretation of Selection Theorems

In his talk [401], M. Gromov offered a geometric interpretation of the selection
theorems. Let us consider dynamical systems in the standard m-simplex σm

in m+ 1-dimensional space Rm+1:

σm = {x ∈ Rm+1|xi ≥ 0,
m+1∑
i=1

xi = 1} .

We assume that simplex σm is positively invariant with respect to these
dynamical systems: if the motion starts in σm at some time t0 then it remains
in σm for t > t0. Let us consider the motions that start in the simplex σm at
t = 0 and are defined for t > 0.

For large m, almost all volume of the simplex σm is concentrated in a
small neighborhood of the center of σm, near the point c =

(
1
m , 1

m , . . . , 1
m

)
.

Hence, one can expect that a typical motion of a general dynamical system in
σm for sufficiently large m spends almost all the time in a small neighborhood
of c.

Let us consider dynamical systems with an additional property (“inher-
itance”): all the faces of the simplex σm are also positively invariant with
respect to the systems with inheritance. It means that if some xi = 0 ini-
tially at the time t = 0 then xi = 0 for t > 0 for all motions in σm. The essence
of selection theorems is as follows: a typical motion of a typical dynamical
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system with inheritance spends almost all the time in a small neighborhood
of low-dimensional faces, even if it starts near the center of the simplex.

Let us denote by ∂rσm the union of all r-dimensional faces of σm. Due to
the selection theorems, a typical motion of a typical dynamical system with
inheritance spends almost all time in a small neighborhood of ∂rσm with
r � m. It should not obligatory reside near just one face from ∂rσm, but can
travel in neighborhood of different faces from ∂rσm (the drift effect). The
minimax estimation of the number of points in ω-limit distributions through
the diameters εn > 0 of the set conv(kM ) is the estimation of r.

14.4.6 Drift Equations

To this end, we talked about the support of an individual ω-limit distribution.
Almost always it is small. But this does not mean, that the union of these
supports is small even for one solution µ(t). It is possible that a solution is
a finite set of narrow peaks getting in time more and more narrow, moving
slower and slower, but not tending to fixed positions, rather continuing to
move along its trajectory, and the path covered tends to infinity as t → ∞.

This effect was not discovered for a long time because the slowing down of
the peaks was thought as their tendency to fixed positions. There are other
difficulties related to the typical properties of continuous functions, which are
not typical for the smooth ones. Let us illustrate them for the distributions
over a straight line segment. Add to the reproduction coefficients kµ the sum
of small and narrow peaks located on a straight line distant from each other
much more than the peak width (although it is ε-small). However small is
chosen the peak’s height, one can choose their width and frequency on the
straight line in such a way that from any initial distribution µ0 whose support
is the whole segment, at t → ∞ we obtain ω-limit distributions, concentrated
at the points of maximum of the added peaks.

Such a model perturbation is small in the space of continuous functions.
Therefore, it can be put as follows: by small continuous perturbation the
limit behavior of system (14.45) can be reduced onto a ε-net for sufficiently
small ε. But this can not be done with the small smooth perturbations (with
small values of the first and the second derivatives) in the general case. The
discreteness of the net, onto which the limit behavior is reduced by small
continuous perturbations, differs from the discreteness of the support of the
individual ω-limit distribution. For an individual distribution the number of
points is estimated, roughly speaking, by the number of essential parameters
(14.56), while for the conjunction of limit supports – by the number of stages
in approximation of kµ by piece-wise constant functions.

Thus, in a typical case the dynamics of systems (14.45) with smooth
reproduction coefficients transforms a smooth initial distributions into the
ensemble of narrow peaks. The peaks become more narrow, their motion
slows down, but not always they tend to fixed positions.
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The equations of motion for these peaks can be obtained in the following
way [115]. Let X be a domain in the n-dimensional real space, and the initial
distributions µ0 be assumed to have smooth density. Then, after sufficiently
large time t, the position of distribution peaks are the points of the aver-
age reproduction coefficient maximum 〈kµ〉t (14.52) to any accuracy set in
advance. Let these points of maximum be xα, and

qα
ij = −t∂

2〈kµ〉t
∂xi∂xj

∣∣∣∣
x=xα

.

It is easy to derive the following differential relations

∑
j

qα
ij

dxα
j

dt
=

∂kµ(t)

∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −

∂2kµ(t)

∂xi∂xj

∣∣∣∣
x=xα

. (14.62)

These relations do not form a closed system of equations, because the right-
hand parts are not functions of xα

i and qα
ij . For sufficiently narrow peaks

there should be separation of the relaxation times between the dynamics
on the support and the dynamics of the support: the relaxation of peak
amplitudes (it can be approximated by the relaxation of the distribution
with the finite support, {xα}) should be significantly faster than the motion
of the locations of the peaks, the dynamics of {xα}. Let us write the first
term of the corresponding asymptotics [115].

For the finite support {xα} the distribution is µ =
∑

α Nαδ(x − xα).
Dynamics of the finite number of variables, Nα obeys the system of ordinary
differential equations

dNα

dt
= kα(N)Nα , (14.63)

where N is vector with components Nα, kα(N) is the value of the reproduc-
tion coefficient kµ at the point xα:

kα(N) = kµ(xα) for µ =
∑
α

Nαδ(x− xα) .

Let the dynamics of the system (14.63) for a given set of initial conditions
be simple: the motion N(t) goes to the stable fixed point N = N∗({xα}).
Then we can take in the right hand side of (14.62)

µ(t) = µ∗({xα(t)}) =
∑
α

N∗
αδ(x− xα(t)) . (14.64)

Because of the time separation we can assume that (i) relaxation of the
amplitudes of peaks is completed and (ii) peaks are sufficiently narrow, hence,
the difference between true kµ(t) and the reproduction coefficient for the
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measure (14.64) with the finite support {xα} is negligible. Let us use the
notation k∗({xα})(x) for this reproduction coefficient. The relations (14.62)
transform into the ordinary differential equations

∑
j

qα
ij

dxα
j

dt
=

∂k∗({xβ})(x)
∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂2k∗({xβ})(x)

∂xi∂xj

∣∣∣∣
x=xα

. (14.65)

For many purposes it may be useful to switch to the logarithmic time τ = ln t
and to new variables

bαij =
1
t
qα
ij = −∂2〈k(µ)〉t

∂xi∂xj

∣∣∣∣
x=xα

.

For large t we obtain from (14.65)

∑
j

bαij
dxα

j

dτ
=

∂k∗({xβ})(x)
∂xi

∣∣∣∣
x=xα

;

dbαij
dτ

= −∂2k∗({xα})(x)
∂xi∂xj

∣∣∣∣
x=xβ

− bαij . (14.66)

The way of constructing the drift equations (14.65,14.66) for a specific system
(14.45) is as follows:

1. For finite sets {xα} one studies systems (14.63) and finds the equilibrium
solutions N∗({xα});

2. For given measures µ∗({xα(t)}) (14.64) one calculates the reproduction
coefficients kµ(x) = k∗({xα})(x) and first derivatives of these functions in
x at points xα. That is all, the drift equations (14.65,14.66) are set up.

The drift equations (14.65,14.66) describe the dynamics of the peaks posi-
tions xα and of the coefficients qα

ij . For given xα, qα
ij and N∗

α the distribution
density µ can be approximated as the sum of narrow Gaussian peaks:

µ =
∑
α

N∗
α

√
detQα

(2π)n
exp


−1

2

∑
ij

qα
ij(xi − xα

i )(xj − xα
j )


 , (14.67)

where Qα is the inverse covariance matrix (qα
ij).

If the limit dynamics of the system (14.63) for finite supports at t → ∞
can be described by a more complicated attractor, then instead of reproduc-
tion coefficient k∗({xα})(x) = kµ∗ for the stationary measures µ∗ (14.64) one
can use the average reproduction coefficient with respect to the corresponding
Sinai–Ruelle–Bowen measure [396,397]. If finite systems (14.63) have several
attractors for given {xα}, then the dependence k∗({xα}) is multi-valued, and
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there may be bifurcations and hysteresis with the function k∗({xα}) transi-
tion from one sheet to another. There are many interesting effects concerning
peaks’ birth, desintegration, divergence, and death, and the drift equations
(14.65,14.66) describe the motion in a non-critical domain, between these
critical effects.

Inheritance (conservation of support) is never absolutely exact. Small
variations, mutations, immigration in biological systems are very important.
Excitation of new degrees of freedom, modes diffusion, noise are present in
physical systems. How does small perturbation in the inheritance affect the
effects of selection? The answer is usually as follows: there is such a value of
perturbation of the right-hand side of (14.45), at which they would change
nearly nothing, just the limit δ-shaped peaks transform into sufficiently nar-
row peaks, and zero limit of the velocity of their drift at t → ∞ substitutes
by a small finite one.

The simplest model for “inheritance + small variability” is given by a
perturbation of (14.45) with diffusion term

∂µ(x, t)
∂t

= kµ(x,t) × µ(x, t) + ε
∑
ij

dij(x)
∂2µ(x, t)
∂xi∂xj

. (14.68)

where ε > 0 and the matrix of diffusion coefficients dij is symmetric and
positively definite.

There are almost always no qualitative changes in the asymptotic behav-
iour, if ε is sufficiently small. With this the asymptotics is again described
by the drift equations (14.65, 14.66), modified by taking into account the
diffusion as follows:

∑
j

qα
ij

dxα
j

dt
=

∂k∗({xβ})(x)
∂xi

∣∣∣∣
x=xα

;

dqα
ij

dt
= −∂2k∗({xβ})(x)

∂xi∂xj

∣∣∣∣
x=xα

− 2ε
∑
kl

qα
ikdkl(xα)qα

lj . (14.69)

Now, as distinct from (14.65), the eigenvalues of the matrices Qα = (qα
ij)

cannot grow infinitely. This is prevented by the quadratic terms in the right-
hand side of the second equation (14.69).

Dynamics of (14.69) does not depend on the value ε > 0 qualitatively,
because of the obvious scaling property. If ε is multiplied by a positive number
ν, then, upon rescalling t′ = ν−1/2t and qα

ij
′ = ν−1/2qα

ij , we have the same
system again. Multiplying ε > 0 by ν > 0 changes only peak’s velocity values
by a factor ν1/2, and their width by a factor ν1/4. The paths of peaks’ motion
do not change at this for the drift approximation (14.69) (but the applicability
of this approximation may, of course, change).
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14.4.7 Three Main Types of Stability

Stable steady-state solutions of equations of the form (14.45) may be only the
sums of δ-functions – this was already mentioned. There is a set of specific
conditions of stability, determined by the form of equations.

Consider a stationary distribution for (14.45) with a finite support

µ∗(x) =
∑
α

N∗
αδ(x− x∗α) .

Steady state of µ∗ means, that

kµ∗(x∗α) = 0 for all α . (14.70)

The internal stability means, that this distribution is stable with respect
to perturbations not increasing the support of µ∗. That is, the vector N∗

α

is the stable fixed point for the dynamical system (14.63). Here, as usual,
it is possible to distinguish between the Lyapunov stability, the asymptotic
stability and the first approximation stability (negativeness of real parts for
the eigenvalues of the matrix ∂Ṅ∗

α/∂N
∗
α at the stationary points).

The external stability means stability to an expansion of the support, i.e.
to adding to µ∗ of a small distribution whose support contains points not be-
longing to suppµ∗. It makes sense to speak about the external stability only
if there is internal stability. In this case it is sufficient to restrict ourselves
with δ-functional perturbations. The external stability has a very transpar-
ent physical and biological sense. It is stability with respect to introduction
into the systems of a new inherited unit (gene, variety, specie. . . ) in a small
amount.

The necessary condition for the external stability is: the points {x∗α} are
points of the global maximum of the reproduction coefficient kµ∗(x). It can
be formulated as the optimality principle

kµ∗(x) ≤ 0 for all x; kµ∗(x∗α) = 0 . (14.71)

The sufficient condition for the external stability is: the points {x∗α} and only
these points are points of the global maximum of the reproduction coefficient
kµ∗(x∗α). At the same time it is the condition of the external stability in the
first approximation and the optimality principle

kµ∗(x) < 0 for x /∈ {x∗α}; kµ∗(x∗α) = 0 . (14.72)

The only difference from (14.71) is the change of the inequality sign from
kµ∗(x) ≤ 0 to kµ∗(x) < 0 for x /∈ {x∗α}. The necessary condition (14.71)
means, that the small δ-functional addition will not grow in the first approx-
imation. According to the sufficient condition (14.72) such a small addition
will exponentially decrease.
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If X is a finite set then the combination of the external and the inter-
nal stability is equivalent to the standard stability for a system of ordinary
differential equations.

For the continuous X there is one more kind of stability important from
the applications viewpoint. Substitute δ-shaped peaks at the points {x∗α} by
narrow Gaussians and shift slightly the positions of their maxima away from
the points x∗α. How will the distribution from such initial conditions evolve?
If it tends to µ without getting too distant from this steady state distribution,
then we can say that the third type of stability – stable realizability – takes
place. It is worth mentioning that the perturbation of this type is only weakly
small, in contrast to perturbations considered in the theory of internal and
external stability. Those perturbations are small by their norms6.

In order to formalize the condition of stable realizability it is convenient
to use the drift equations in the form (14.66). Let the distribution µ∗ be
internally and externally stable in the first approximations. Let the points x∗α

of global maxima of kµ∗(x) be non-degenerate in the second approximation.
This means that the matrices

b∗α
ij = −

(
∂2kµ∗(x)
∂xi∂xj

)
x=x∗α

(14.73)

are strictly positively definite for all α.
Under these conditions of stability and non-degeneracy the coefficients of

(14.66) can be easily calculated using Taylor series expansion in powers of
(xα − x∗α). The stable realizability of µ∗ in the first approximation means
that the fixed point of the drift equations (14.66) with the coordinates

xα = x∗α , bαij = b∗α
ij (14.74)

is stable in the first approximation. It is the usual stability for the system
(14.66) of ordinary differential equations.

14.4.8 Main Results About Systems with Inheritance

1. If a kinetic equation has the quasi-biological form (14.45) then it has a
rich system of invariant manifolds: for any closed subset A ⊂ X the set
of distributions MA = {µ | suppµ ⊆ A} is invariant with respect to
the system (14.45). These invariant manifolds form important algebraic
structure, the summation of manifolds is possible:

MA ⊕ MB = MA∪B .

(Of course, MA∩B = MA ∩ MB).
6 Let us remind that the norm of the measure µ is ‖µ‖ = sup|f |≤1 µ[f ]. If one shifts

the δ-measure of unite mass by any nonzero distance ε, then the norm of the
perturbation is 2. Nevertheless, this perturbation weakly tends to 0 with ε → 0.
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2. Typically, all the ω-limit points belong to invariant manifolds MA with
finite A. The finite-dimensional approximations of the reproduction coef-
ficient (14.56) provides the minimax estimation of the number of points
in A.

3. For systems with inheritance (14.45) a solution typically tends to be a
finite set of narrow peaks getting in time more and more narrow, moving
slower and slower. It is possible that these peaks do not tend to fixed
positions, rather they continue moving, and the path covered tends to
infinity at t → ∞. This is the drift effect.

4. The equations for peak dynamics, the drift equations, (14.65,14.66,14.69)
describe dynamics of the shapes of the peaks and their positions. For sys-
tems with small variability (“mutations”) the drift equations (14.69) has
the scaling property: the change of the intensity of mutations is equivalent
to the change of the time scale.

5. Three specific types of stability are important for the systems with inher-
itance: internal stability (stability with respect to perturbations without
extension of distribution support), external stability (stability with re-
spect to small one-point extension of distribution support), and stable
realizability (stability with respect to weakly small7 perturbations: small
extensions and small shifts of the peaks).

Some exact results of the mathematical selection theory can be found
in [402,403]. There exist many physical examples of systems with inheritance
[385–391]. A wide field of ecological applications was described in the book
[383]. An introduction into adaptive dynamics was given in notes [404] that
illustrate largely by way of examples, how standard ecological models can
be put into an evolutionary perspective in order to gain insight in the role
of natural selection in shaping life history characteristics. The cell division
self-synchronization below demonstrates effects of unusual inherited unit, it
is the example of a “phase selection”.

14.5 Example: Cell Division Self-Synchronization

The results described above admit for a whole family of generalizations. In
particular, it seems to be important to extend the theorems of selection to
the case of vector distributions, when kµ(x) is a linear operator at each µ, x.
It is possible also to make generalizations for some classes of non-autonomous
equations with explicit dependencies of kµ(x) on t.

Availability of such a network of generalizations allows to construct the
reasoning as follows: what is inherited (i.e. for what the law of conservation of
support holds) is the subject of selection (i.e. with respect to these variables
at t → ∞ the distribution becomes discrete and the limit support can be
described by the optimality principles).
7 That is, small in the weak topology.
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This section gives a somewhat unconventional example of inheritance and
selection, when the reproduction coefficients are subject additional conditions
of symmetry.

Consider a culture of microorganisms in a certain medium (for example,
pathogenous microbes in the organism of a host). Assume, for simplicity, the
following: let the time period spent by these microorganisms for the whole life
cycle be identical.

At the end of the life cycle the microorganism disappears and new several
microorganisms appear in the initial phase. Let T be the time of the life
cycle. Each microorganism holds the value of the inherited variable, it is “the
moment of its appearance (mod T )”. Indeed, if the given microorganism
emerges at time τ (0 < τ ≤ T ), then its first descendants appear at time
T + τ , the next generation – at the moment 2T + τ , then 3T + τ and so on.

It is natural to assume that the phase τ (mod T ) is the inherited vari-
able. This implies selection of phases and, therefore, survival of their discrete
number τ1, . . . τm, only. But results of the preceding sections cannot be ap-
plied directly to this problem. The reason is the additional symmetry of the
system with respect to the phase shift. But the typicalness of selection and
the instability of the uniform distribution over the phases τ (mod T ) can be
shown for this case, too. Let us illustrate it with the simplest model.

Let the difference between the microorganisms at each time moment be
related to the difference in the development phases only. Let us also assume
that the state of the medium can be considered as a function of the distribu-
tion µ(τ) of microorganisms over the phases τ ∈]0, T ] (the quasi-steady state
approximation for the medium). Consider the system at discrete times nT
and assume the coefficient connecting µ at moments nT and nT + T to be
the exponent of the linear integral operator value:

µn+1(τ) = µn(τ) exp

[
k0 −

∫ T

0

k1(τ − τ ′)µn(τ ′) dτ ′
]
. (14.75)

Here, µn(τ) is the distribution at the moment nT , k0 = const, k1(τ) is a
periodic function of period T .

The uniform steady-state µ∗ ≡ n∗ = const is:

n∗ =
k0∫ T

0
k1(θ) dθ

. (14.76)

In order to examine stability of the uniform steady state µ∗ (14.76), the
system (14.75) is linearized. For small deviations ∆µ(τ) in linear approxima-
tion

∆µn+1(τ) = ∆µn(τ) − n∗
∫ T

0

k1(τ − τ ′)∆µn(τ ′) dτ ′ . (14.77)

Expand k1(θ) into the Fourier series:
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k1(θ) = b0 +
∞∑

n=1

(
an sin

(
2πn

θ

T

)
+ bn cos

(
2πn

θ

T

))
. (14.78)

Denote by A operator of the right-hand side of (14.77). In the basis of
functions

es n = sin
(

2πn
θ

T

)
, ec n = cos

(
2πn

θ

T

)

on the segment ]0, T ] the operator A is block-diagonal. The vector e0 is eigen-
vector, Ae0 = λ0e0, λ0 = 1−n∗b0T . On the two-dimensional space, generated
by vectors es n, ec n the operator A is acting as a matrix

An =
(

1 − Tn∗

2 bn −Tn∗

2 an
Tn∗

2 an 1 − Tn∗

2 bn

)
. (14.79)

The corresponding eigenvalues are

λn 1,2 = 1 − Tn∗

2
(bn ± ian) . (14.80)

For the uniform steady state µ∗ (14.76) to be unstable it is sufficient
that the absolute value of at least one eigenvalue λn 1,2 be larger than 1:
|λn 1,2| > 1. If there is at least one negative Fourier cosine-coefficient bn < 0,
then Reλn > 1, and thus |λn| > 1.

Note now, that almost all periodic functions (continuous, smooth, analyt-
ical – this does not matter) have negative Fourier cosine-coefficient. This can
be understood as follows. The sequence bn tends to zero at n → ∞. There-
fore, if all bn ≥ 0, then, by changing bn at sufficiently large n, we can make bn
negative, and the perturbation value can be chosen less than any previously
set positive number. On the other hand, if some bn < 0, then this coefficient
cannot be made non-negative by sufficiently small perturbations. Moreover,
the set of functions that have all Fourier cosine-coefficient non-negative is
completely thin, because for any compact of functions K (for most of norms
in use) the sequence Bn = maxf∈K |bn(f)| tends to zero, where bn(f) is the
nth Fourier cosine-coefficient of function f .

The model (14.75) is revealing, because for it we can trace the dynamics
over large times, if we restrict ourselves with a finite segment of the Fourier
series for k1(θ). Describe it for

k1(θ) = b0 + a sin
(

2π
θ

T

)
+ b cos

(
2π

θ

T

)
. (14.81)

Assume further that b < 0 (then the homogeneous distribution µ∗ ≡ k0
b0T is

unstable) and b0 >
√
a2 + b2 (then the

∫
µ(τ) dτ cannot grow unbounded in

time). Introduce notations
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M0(µ) =
∫ T

0

µ(τ) dτ, Mc(µ) =
∫ T

0

cos
(
2π

τ

T

)
µ(τ) dτ ,

Ms(µ) =
∫ T

0

sin
(
2π

τ

T

)
µ(τ) dτ, 〈µ〉n =

1
n

n−1∑
m=0

µm , (14.82)

where µm is the distribution µ at the discrete time m.
In these notations,

µn+1(τ) = µn(τ) exp
[
k0 − b0M0(µn) − (aMc(µn) + bMs(µn)) sin

(
2π

τ

T

)

+(aMs(µn) − bMc(µn)) cos
(
2π

τ

T

)]
. (14.83)

Represent the distribution µn(τ) through the initial distribution µ0(τ) and
the functionals M0,Mc,Ms values for the average distribution 〈µ〉n):

µn(τ) = µ0(τ)

× exp
{
n
[
k0 − b0M0(〈µ〉n) − (aMc(〈µ〉n) + bMs(〈µ〉n)) sin

(
2π

τ

T

)

+(aMs(〈µ〉n) − bMc(〈µ〉n)) cos
(
2π

τ

T

)]}
. (14.84)

The exponent in (14.84) is either independent of τ , or there is a function
with the single maximum on ]0, T ]. The coordinate τ#

n of this maximum is
easily calculated

τ#
n = − T

2π
arctan

aMc(〈µ〉n) + bMs(〈µ〉n)
aMs(〈µ〉n) − bMc(〈µ〉n)

(14.85)

Let the non-uniform smooth initial distribution µ0 has the whole seg-
ment [0, T ] as its support. At the time progress the distributions µn(τ) takes
the shape of ever narrowing peak. With high accuracy at large a we can
approximate µn(τ) by the Gaussian distribution (approximation accuracy is
understood in the weak sense, as closeness of mean values):

µn(τ) ≈ M0

√
qn

π
exp[−qn(τ − τ#

n )2], M0 =
k0

k1(0)
=

k0

b0 + b
, (14.86)

q2n = n2

(
2π
T

)4 [
(aMc(〈µ〉n) + bMs(〈µ〉n))2 + (aMs(〈µ〉n) − bMc(〈µ〉n))2

]
.

Expression (14.86) involves the average measure 〈µ〉n which is difficult to
compute. However, we can operate without direct computation of 〈µ〉n. At
qn 	 1

T 2 we can compute qn+1 and τ#
n+1:

µn+1 ≈ M0

√
qn +∆q

π
exp

[
−(qn +∆q)((τ − τ#

n −∆τ#)2
]
,

∆q ≈ −1
2
bM0

(
2π
T

2)
, ∆τ# ≈ 1

q
M0

2π
T

. (14.87)
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The accuracy of these expression grows with time n. The value qn grows
at large n almost linearly, and τ#

n , respectively, as the sum of the harmonic
series (mod T ), i.e. as lnn (mod T ). The drift effect takes place: location of
the peak τ#

n , passes at n → ∞ the distance diverging as lnn.
Of interest is the case, when b > 0 but

|λ1|2 =
(

1 + n∗b
T

2

)2

+
(
n∗a

T

2

)2

> 1 .

With this, homogeneous distribution µ∗ ≡ n∗ is not stable but µ does not
tend to δ-functions. There are smooth stable “self-synchronization waves” of
the form

µn = γ exp
[
q cos

(
(τ − n∆τ#)

2π
T

)]
.

At small b > 0 (b � |a|, bM0 � a2) we can find explicit form of approximated
expressions for q and ∆τ#:

q ≈ a2M0

2b
, ∆τ# ≈ bT

πa
. (14.88)

At b > 0, b → 0, smooth self-synchronization waves become ever narrow-
ing peaks, and their steady velocity approaches zero. If b = 0, |λ1|2 > 1 then
the effect of selection takes place again, and for almost all initial conditions
µ0 with the support being the whole segment [0, T ] the distribution µn takes

n*bT/2

n*aT/2

Stable
uniform
distribution

Stable waves
with non-zero
velocity

v ≈≈≈≈b/(ππππa)

Waves with velocity

Vn ÷÷÷÷ 1/n→→→0

v

Fig. 14.1. The simplest model of cell division self-synchronization: The parametric
portrait
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at large n the form of a slowly drifting almost Gaussian peak. It becomes nar-
rower with the time, and the motion slows down. Instead of the linear growth
of qn which takes place at b < 0 (14.87), for b = 0, qn+1 − qn ≈ constq−1

n and
qn grows as const

√
n.

The parametric portrait of the system for the simple reproduction coeffi-
cient (14.81) is presented in Fig. 14.1.

As usual, a small desynchronization transforms δ-functional limit peaks to
narrow Gaussian peaks, and the velocity of peaks tends to small but nonzero
velocity instead of zero. The systems with small desynchronization can be
described by equations of the form (14.69).

There are many specific mechanisms of synchronization and desynchrony-
sation in physics and biology (see, for example [405–409]). We described here
very simple mechanism: it requires only that the time of the life cycle is fixed,
in this case in a generic situation we should observe the self-synchronization.
Of course, the real-world situation can be much more complicated, with a
plenty of additional factors, but the basic mechanism of the “phase selec-
tion” works always if the life cycle has more or less fixed duration.
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