
12 Geometry of Irreversibility:
The Film of Nonequilibrium States

A geometrical framework of nonequilibrium thermodynamics is developed in
this chapter. The notion of macroscopically definable ensembles is introduced.
A thesis about macroscopically definable ensembles is suggested. This the-
sis should play the same role in the nonequilibrium thermodynamics, as the
well-known Church-Turing thesis in the theory of computability. The prim-
itive macroscopically definable ensembles are described. These are ensem-
bles with macroscopically prepared initial states. A method for computing
trajectories of primitive macroscopically definable nonequilibrium ensembles
is elaborated. These trajectories are represented as sequences of deformed
quasiequilibrium ensembles and simple quadratic models between them. The
primitive macroscopically definable ensembles form a manifold in the space of
ensembles. We call this manifold the film of nonequilibrium states. The equa-
tion for the film and the equation for the ensemble motion on the film are
written down. The notion of the invariant film of non-equilibrium states, and
the method of its approximate construction transform the problem of non-
equilibrium kinetics into a series of problems of equilibrium statistical physics.
The developed methods allow us to solve the problem of macro-kinetics even
when there are no autonomous equations of macro-kinetics.

12.1 The Thesis About Macroscopically Definable
Ensembles
and the Hypothesis About
Primitive Macroscopically Definable Ensembles

The goal of this chapter is to discuss the nonlinear problem of irreversibil-
ity, and to revise previous attempts to solve it. The interest to the problem
of irreversibility persists during decades. It has been intensively discussed
in the past, and nice accounts of these discussions can be found in the lit-
erature (see, for example, [194, 195, 286, 287]). We here intend to develop a
more geometrical viewpoint on the subject. First, in Sect. 12.2, we discuss
in an informal way the origin of the problem, and demonstrate how the ba-
sic constructions arise. Second, in Sect. 12.3, we give a consistent geometric
formalization of these constructions. Our presentation is based on the notion
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of the natural projection introduced in section 12.4. We discuss in detail the
method of natural projector as the consistent formalization of Ehrenfests’
ideas of coarse-graining.

In Sect. 12.4.2 we introduce a one-dimensional model of nonequilibrium
states. In the background of many derivations of nonequilibrium kinetic equa-
tions one can imagine the following picture: Above each point of the qua-
siequilibrium manifold there is located a huge subspace of nonequilibrium
distributions with the same values of the macroscopic variables, as in the
quasiequilibrium state. It seems that the motion of the nonequilibrium en-
semble decomposes into two projections, transversal to the quasiequilibrium
manifold, and in the projection on this manifold. The motion in each layer
above the quasiequilibrium points is highly complicated, but fast, and every-
thing quickly settles in this fast motion.

However, upon a more careful looking into the motions of the ensem-
bles which start from the quasiequilibrium points, we recognize that above
each point of the quasiequilibrium manifold it is located just a single and
in some sense monotonic curve, and all the relevant nonequilibrium (not-
quasiequilibrium) states form just a one-dimensional manifold.

The one-dimensional models of nonequilibrium states form a film of non-
equilibrium states. In Sect. 12.5 we present a collection of methods for the film
construction. One of the benefits from this new technique is the possibility to
solve the problem of macro-kinetics even when there are no autonomous equa-
tions of macro-kinetic for moment variables. The notion of the invariant film
of non-equilibrium states, and the method of its approximate construction
transform the problem of nonequilibrium kinetics into a series of problems of
equilibrium statistical physics.

The most important results of this chapter are:

1. The notion of macroscopically definable ensembles is developed.
2. The primitive macroscopically definable ensembles are described.
3. The method for computing trajectories of primitive macroscopically defin-

able nonequilibrium ensembles is elaborated. These trajectories are repre-
sented a sequence of deformed quasiequilibrium ensembles connected by
quadratic models.

Let us give here an introductory description of these results.
The notion of macroscopically definable ensembles consists of three ingre-

dients:

1. The macroscopic variables, the variables which values can be controlled by
us;

2. The quasiequilibrium state, the conditional equilibrium state for fixed val-
ues of the macroscopic variables;

3. The natural dynamics of the system, or the microscopic dynamics.

We use the simplest representation of the control: At certain moments of
time we fix some values of the macroscopic variables (one can fix all of all these
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macroscopic variables, or only a part of them; for the whole system, or for
macroscopically defined part of it; the current values, or some arbitrary values
of these variables), and the system settles in the corresponding conditional
equilibrium state. We can also keep fixed values of some macroscopic variables
during a time interval.

These control operations are discrete in time. The continuous control can
be obtained by a closure: the limit of a sequence of macroscopically definable
ensembles is macroscopically definable too.

The role of the macroscopic variables for the irreversibility problem was
clarified by M. Leontovich and J. Lebowitz several decades ago [288–292].
This was the first step. Now we do need the elaborate notion of ensembles
which can be obtained by the macroscopic tools. The Maxwell Demon gives
the early clear picture of a difference between the macroscopic and micro-
scopic tools for the ensembles control (books are devoted to the studies of
this Demon [293, 294]). Nevertheless, a further step towards the notion of
the macroscopic definability in the context of constructive transition from
the microdynamics to macrokinetics was not done before the paper [33]. Our
analysis is an analog of the Church-Turing thesis in the theory of computabil-
ity [295, 296]. This thesis concerns the notion of an effective (or mechanical)
method in mathematics. As a “working hypothesis”, Church proposed: A
function of positive integers is effectively calculable only if recursive.

We introduce a class of “macroscopically definable ensembles” and formu-
late the thesis: An ensemble can be macroscopically obtained only if macro-
scopically definable according to the introduced notion. This is the thesis
about the success of the formalization, as the Church-Turing thesis, and no-
body can prove or disprove it in a rigorous sense, as well as this famous
thesis.

Another important new notion is the “macroscopically definable trans-
formation” of the ensemble: If one got an ensemble, how can he transform
it? First, it is possible just to let them evolve due to the natural dynamics,
second, it can be controlled by the macroscopic tools in the prescribed way
(it is necessary just to keep values of some macroscopic variables during some
time).

The primitive macroscopically definable ensembles are ensembles with
quasiequilibrium initial states and without further macroscopic control. These
ensembles are prepared macroscopically, and evolve due to the natural dy-
namics. The significance of this class of ensembles is determined by the hy-
pothesis about the primitive macroscopically definable ensembles: Any macro-
scopically definable ensemble can be approximated by primitive macroscopi-
cally definable ensembles with appropriate accuracy. After that there remains
no other effective way to decribe the nonequilibrium state.

The primitive macroscopically definable ensembles form the manifold in
the space of ensembles. We call this manifold the “film of nonequilibrium
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states”. The equation for the film and the equation for the ensemble motion
on the film are written down.

The film of nonequilibrium states is the trajectory of the manifold of initial
quasiequilibrium states due to the natural (microscopic) dynamics. For every
value of macroscopic variables this film gives us a curve. The curvature of
this curve defines kinetic coefficients and the entropy production.

The main technical problem is the computation of this curve for arbi-
trary values of the macroscopic variables. We represent it as a sequence of
distinguished states and second-order polynomial (Kepler) models for the tra-
jectory between these points. This can be viewed as a further development of
the method for initial layer problem in the Boltzmann kinetics (see Sect. 9.3
and [26, 27]). For the dissipative (Boltzmann) microkinetics it was sufficient
to use the first-order models (with or without smoothing). For conservative
microkinetics it is necessary to use the higher-order models. Applications of
this method to the lattice kinetic equations (Sect. 2.7) allowed

– To create the lattice Boltzmann method with the H-theorem [137];
– To transform the lattice Boltzmann method into the numerically stable

computational tool for fluid flows and other dissipative systems out of
equilibrium [136];

– To develop the entropic lattice Boltzmann method as a basis for the for-
mulation of a new class of turbulence models based on genuinely kinetic
principles [66].

In this chapter we extend the method elaborated for dissipative systems
[26,27] to the higher-order models for conservative systems. The constructing
of the method of physically consistent computation is the central part of this
chapter.

The main results of this chapter were presented in the talk given at the
First Mexican Meeting on Mathematical and Experimental Physics, Mexico
City, September 10–14, 2001 [33], and in the lectures given on the V Russian
National Seminar “Modeling of Nonequilibrium systems”, Krasnoyarsk, Oc-
tober 18–20, 2002 [298].

12.2 The Problem of Irreversibility

12.2.1 The Phenomenon of the Macroscopic Irreversibility

The best way to get a feeling about the problem of irreversibility is the
following thought experiment (Gedankenexperiment): Let us watch a movie:
It’s raining, people are running, cars rolling. Let us now wind this movie in
the opposite direction, and we shall see a strange and funny picture: Drops
of the rain are raising up to the clouds, people run with their backs forward,
cars also behave quite strange, and so forth. This cannot be true, and we
“know” this for sure, we have never seen anything like this in our life. Let
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us now imagine that we watch the same movie with a magnitude of 108–
109 so that we can resolve individual particles. And all of the sudden we
discover that we cannot notice any substantial difference between the direct
and the reverse demonstration: Everywhere the particles move, collide, react
according to the laws of physics, and nowhere there is a violation of anything.
We cannot tell the direct progressing of the time from the reversed. So, we
have the irreversibility of the macroscopic picture under the reversibility of
the microscopic one.

Rain, people, cars – all this is too complicated. One of the simplest exam-
ples of the irreversible macroscopic picture under the apparent reversibility
of the microscopic picture is given by R. Feynman in his lectures on the
character of physical law [297]. We easily label it as self-evident the fact that
particles of different colors mix together, and we would deem it wonderful the
reverse picture of a spontaneous decomposition of their mixture. However, by
itself, an appreciation of one picture as usual, and of the other as unusual
and wonderful – this is not yet physics. It is desirable to measure somehow
this transition from order to disorder.

12.2.2 Phase Volume and Dynamics of Ensembles

Let there be n blue and n white particles in a box, and let the box is separated
in two halves, the left and the right. Location of all the particles in the box is
described by the assembly of 2n vectors of locations of the individual particles.
The set of all the assemblies is a “box” in the 6n-dimensional space. A point
in this 6n-dimensional box describes a configuration. The motion of this point
is defined by equations of mechanics.

“Order” is the configuration in which the blue particles are all in the
right half, and all the white particles are in the left half. The set of all such
configurations has a rather small volume. It makes only (1/2)2n of the total
volume of the 6n-dimensional box. If n = 10, this is of the order of one per
million of the total volume. It is practically unthinkable to land into such
a configuration by a chance. It is also highly improbable that, by forming
more or less voluntary the initial conditions, we can observe that the system
becomes ordered by itself. From this standpoint, the motion goes from the
states of “order” to the state of “disorder”, just because there are many more
states of “disorder”.

However, we have defined it in this way. The well known question of what
has more order, a fine castle or a pile of stones, has a profound answer: It
depends on which pile you mean. If “piles” are thought as all configurations of
stones which are not castles, then there are many more such piles, and so there
is less order in such a pile. However, if these are specially and uniquely placed
stones (for example, a garden of stones), then there is the same amount of
order in such a pile as in a fine castle. Not a specific configuration is important
but an assembly of configurations embraced by one notion.



330 12 Geometry of Irreversibility: The Film of Nonequilibrium States

This transition from single configurations to their assemblies (ensembles)
play the pivotal role in the understanding of irreversibility: The irreversible
transition from the ordered configuration (blue particles are on the right,
white particles are on the left) to the disordered one occurs simply because
there are many more of the disordered (in the sense of the volume). Here,
strictly speaking, we have to add also a reference to the Liouville theorem:
The volume in the phase space which is occupied by the ensemble does not
change in time as the mechanical system evolves. Because of this fact, the
phase volume V is a good measure to compare the assemblies of configu-
rations. However, more often the quantity lnV is used, this is called the
entropy.

The point representing the configuration, very rapidly leaves a small
neighborhood and for a long time (in practice, never) does not return into it.
In this, seemingly idyllic picture, there are still two rather dark clouds left.
First, the arrow of time has not appeared. If we move from the ordered initial
state (separated particles) backwards in time, then everything will stay the
same as when we move forward in time, that is, the order will be changing
into the disorder. Second, let us wind the film backwards, let us shoot the
movie about mixing of colored particles, and then let us watch in the reverse
order their demixing. Then the initial configurations for the reverse motion
will only seem to be disordered. Their “order” is in the fact that they were
obtained from the separated mixture by letting the system to evolve for the
time t. There are also very few such configurations, just the same number
as of the ordered (separated particles) states. If we start with these configu-
rations, then we obtain the ordered system after the time t. Then why this
most obvious consequence of the laws of mechanics looks so improbable on
the screen? Perhaps, it should be accepted that states which are obtained
from the ordered state by a time shift, and by inversion of particle’s veloc-
ities (in order to initialize the reverse motion in time), cannot be prepared
using macroscopic means of preparation. In order to prepare such states, one
would have to employ an army of Maxwell’s Demons which would invert in-
dividual velocities with sufficient accuracy (here, it is much more into the
phrase “sufficient accuracy” but this has to be discussed separately and next
time).

For that reason, we lump the distinguished initial conditions, for which
the mixture decomposes spontaneously (“piles” of special form, or “gardens
of stones”) together with other configurations into macroscopically definable
ensembles. And already for these ensembles the spontaneous demixing be-
comes improbable. This way we come to a new viewpoint: (i). We cannot
prepare individual systems but only representatives of ensembles. (ii) We
cannot prepare ensembles at our will but only “macroscopically definable en-
sembles”. What are these macroscopically definable ensembles? It seems that
one has to give some constructions, the universality of which can only be
proven by time and experience.
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There is one property that distinguishes an arbitrary ensemble with phase
volume V and ensembles (with the same volume) that we usually associate
with the order. This property is observability. Usually we can fix a configu-
ration within some error only, this means that we cannot distinguish points,
if the distance between them is less then some ε > 0. Hence, the observable
ensemble should not change its volume significantly, if we replace all points
by the ε-small balls (i.e. if we just add a small ball to the set of states, or, if
the ensemble is presented by the distribution density, just average the density
over such balls). This operation, averaging over small balls or cells, is called
coarse graining. The observable state should not significantly change its vol-
ume after the coarse-graining. The ordered state (the blue particles are all in
the right half, and all the white particles are in the left half, for example) is
observable, but dynamics makes it unobservable after some time. Of course,
the notion of macroscopically definable ensembles should meet the expecta-
tion concerning observability as well as implementability and controlability
of these ensembles.

12.2.3 Macroscopically Definable Ensembles and Quasiequilibria

The main tool in the study of the macroscopically definable ensembles is
the notion of the macroscopic variables, and of the quasiequilibria. In the dy-
namics of the ensembles, the macroscopic variables are defined as linear func-
tionals (moments) of the density distribution of the ensemble. Macroscopic
variables M usually include the hydrodynamic fields: density of particles,
density of momentum, and density of energy. This list may also include the
stress tensor, the reaction rates and other quantities. In the present context,
it is solely important that the list the macroscopic variables is identified for
the system under consideration.

A single system is characterized by a single point x in the phase space.
The ensemble of the systems is defined by the probability density F over
the phase space. The density F must satisfy a set of restrictions, the most
important of which are: Nonnegativity, F (x) ≥ 0, normalization,

∫
X

F (x) dV (x) = 1 , (12.1)

and that the entropy is defined, that is, there exists the integral,

S(F ) = −
∫

X

F (x) lnF (x) dV (x) . (12.2)

The function F lnF is continuously extended to zero values of F : 0 ln 0 = 0).
Here, dV (x) is the invariant measure (phase volume.

The quasiequilibrium ensemble describes the “equilibrium under restric-
tions”. It is assumed that some external forcing keeps the given values of the
macroscopic variables M , with this, “all the rest” comes to the equilibrium.
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The corresponding (generalized) canonical ensemble F which is the solution
to the problem:

S(F ) → max, M(F ) = M . (12.3)

where S(F ) is the entropy, M(F ) is the set of macroscopic variables.
The thesis about the macroscopically definable ensembles. Macro-

scopically definable ensembles are obtained as the result of two operations:

1. Bringing the system into the quasiequilibrium state corresponding to ei-
ther the whole set of the macroscopic variables M , or to its subset;

2. Evolution of the ensemble according to the microscopic dynamics (due to
the Liouville equation) during some time t.

These operations can be applied in the interchanging order any number
of times, and for arbitrary time segments t. The limit of macroscopically
definable ensembles will also be termed macroscopically definable. One always
begins with the first operation.

In order to work out the notion of macroscopic definability, one has to
pay more attention to partitioning the system into subsystems. This involves
a partition of the phase space X with the measure dV into a direct prod-
uct of spaces, X = X1 × X2 with the measure dV1dV2. To each admissible
(“macroscopic”) partition into sub-systems, it corresponds the operation of
taking a “partial quasiequilibrium”, applied to some density F0(x1, x2):

S(F ) → max , (12.4)

M(F ) = M,

∫
X2

F (x1, x2) dV2(x2) =
∫

X2

F0(x1, x2) dV2(x2) .

where M is some subset of macroscopic variables (not necessarily the whole
list of the macroscopic variables). In (12.4), the state of the first subsystem
is not changing, whereas the second subsystem is brought into the quasiequi-
librium. In fact, the problem (12.4) is a version of the problem (12.3) with
additional “macroscopic variables”,

∫
X2

F (x1, x2) dV2(x2) . (12.5)

The extended thesis about the macroscopically definable ensembles allows
to use also operations (12.4) with only one restriction: The initial state should
be the “true quasiequilibrium”, that is, macroscopic variables related to all
possible partitions into subsystems should appear only after the sequence
of operations has started with the solution to the problem (12.3) for some
initial M . This does not exclude a possibility of including operators (12.5)
into the list of the basic macroscopic variables M . The standard example of
such an inclusion are few-body distribution functions treated as macroscopic
variables in derivations of kinetic equations from the Liouville equation.
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Irreversibility is related to the choice of the initial conditions. The ex-
tended set of macroscopically definable ensembles is thus given by three ob-
jects:

1. The set of macroscopic variables M which are linear (and, in an appropri-
ate topology, continuous) mappings of the space of distributions onto the
space of values of the macroscopic variables;

2. Macroscopically admissible partitions of the system into sub-systems;
3. Equations of the microscopic dynamics (the Liouville equation, for

example).

The choice of the macroscopic variables and of the macroscopically ad-
missible partitions is a distinguished topic. The main question is: which vari-
ables are under the macroscopic control? Here the macroscopic variables are
represented as formal elements of the construction, and the arbitrariness is
removed only at solving specific problems. Usually we can postulate some
properties of macroscopic variables, for example, symmetry with respect to
any permutation of equivalent particles.

We have discussed the prepared ensembles. But there is another statement
of the problem: Let an ensemble be just given. The way it emerged it may
be irrelevant or unknown, for example, some demon or oracle1 can prepare
the ensemble for us. How can we transform this ensemble by the macroscopic
tools? First, it is possible just to let it evolve, second, it can be controlled
by the macroscopic tools in the prescribed way (it is necessary just to keep
values of some macroscopic variables during some time).

The thesis about the macroscopically definable transformation
of ensembles. Macroscopically definable transformation of ensembles are
obtained as the result of two operations:

1. Bringing the system into the quasiequilibrium state corresponding to ei-
ther the whole set of the macroscopic variables M , or to its subset.

2. Changing the ensemble according to the microscopic dynamics (due to the
Liouville equation, for example) during some time t.

These operations can be applied in the interchanging order any number of
times, and for arbitrary time segments t. The limit of macroscopically defin-
able transformations will also be termed macroscopically definable. The main
difference of this definition (macroscopically definable transformation) from
the definition of the macroscopically definable ensembles is the absence of
the restriction on the initial state, one can start from an arbitrary ensemble.

The class of macroscopically definable ensembles includes a simpler, but
important subclass. Let us reduce the macroscopic control to preparation
of the initial quasiequilibrium ensemble: we just prepare the ensemble by
macroscopic tools and then let it evolve due to the natural dynamics (Liouville

1 In the theory of computation, if there is a device which could answer questions
beyond those that a Turing machine can answer, then it is called the oracle.
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equation, for example). Let us call this class the primitive macroscopically
definable ensembles. These ensembles appear as the results (for t > 0) of
motions which start from the quasiequilibrium state (at t = 0). The main
technical focus of our work concerns the computation of the manifold of
primitive macroscopically definable ensembles for a given system.

The importance of this subclass of ensembles is determined by the fol-
lowing hypothesis. The hypothesis about the primitive macroscopi-
cally definable ensembles. Any macroscopically definable ensemble can
be approximated by primitive macroscopically definable ensembles with an
appropriate accuracy. In certain limits we can attempt to say: “with any ac-
curacy”. Moreover, this hypothesis with “arbitrary accuracy” can be found
as the basic but implicit foundation of all nonequilibrium kinetics theories
which claim derivation the macrokinetics from microdymamics, for example
Zubarev’s nonequilibrium statistical operator theory [195]. This hypothesis
allows us to describe nonequilibrium state as a result of evolution of quasi-
equilibrium state in time.

The hypothesis about the primitive macroscopically definable ensembles is
a hypothesis indeed, it can hold for different systems with different accuracy,
it can be valid or invalid. In some limits the set of primitive macroscopically
definable ensembles can be dense in the set of all macroscopically definable
ensembles, or, in some cases it can be not dense. There is a significant differ-
ence between this hypothesis and the thesis about macroscopically definable
ensembles. The thesis can be accepted, or not, the reasons for its acceptance
can be discussed, but nobody can prove or disprove the definition, even the
definition of the macroscopically definable ensembles.

12.2.4 Irreversibility and Initial Conditions

The choice of the initial state of the ensemble plays the crucial role in the
thesis about the macroscopically definable ensembles. The initial state is al-
ways taken as the quasiequilibrium distribution which realizes the maximum
of the entropy for given values of the macroscopic variables. The choice of the
initial state splits the time axis into two semi-axes: moving forward in time,
and moving backward in time. In both cases the observed disorder increases
(the simplest example is the mixing of the particles of different colors).

In some works, in order to achieve the “true nonequilibrium”, that is, the
irreversible motion along the whole time axis, the quasiequilibrium initial
condition is shifted to −∞ in time. This trick, however, casts some doubts,
the major being this: Most of the known equations of the macroscopic dy-
namics describing irreversible processes have solutions which can be extended
backwards in time only for finite times (or cannot be extended at all). Such
equations as the Boltzmann kinetic equation, diffusion equation, equations
of chemical kinetics and like do not allow for almost all their solutions to be
extended backward in time for indefinitely long. All motions have a “begin-
ning” beyond which some physical properties of a solution will be lost (often,
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positivity of distributions), although formally solutions may even exist, as in
the case of ordinary differential equations of chemical kinetics.

12.2.5 Weak and Strong Tendency to Equilibrium,
Shaking and Short Memory

One aspect of irreversibility is the special choice of the initial conditions.
Roughly speaking, the arrow of time is defined by the fact that the quasi-
equilibrium initial condition was in the past.

This remarkably simple observation does not, however, exhaust the prob-
lem of transition from the reversible equations to the irreversible macroscopic
equations. One more aspect deserves a serious consideration. Indeed, distri-
bution functions tend to the equilibrium state according to the macroscopic
equations in a strong sense: deviations from the equilibrium tends to zero in
the sense of most relevant norms (in the L1 sense, for example, or even uni-
formly). On the contrast, for the Liouville equation, the tendency to equilib-
rium occurs (if at all) only in the weak sense: the average values of sufficiently
“regular” functions on the phase space do tend to their equilibrium values
but the distribution function itself does not tend to the equilibrium with re-
spect to any norm, not even point-wise. This is especially easy to appreciate
if the initial state was the equipartition over some small bounded subset of
the phase space (the “phase drop” with small, but non-zero volume). This
phase drop can mix over the phase space, but for all the times it will remain
“the drop of oil in the water”, the density will be always taking only two
values, 0 and p > 0, and the volume of the set where the density is larger
than zero will not be changing in time, of course. So, how to arrive from the
weak convergence (in the sense of the convergence of the mean values), to the
strong convergence (to the L1 or to the uniform convergence, for example)?
In order to do this, there are two basic constructions: The coarse-graining
(shaking) in the sense of Ehrenfests’, and the short memory approximation.

The idea of coarse-graining dates back to P. and T. Ehrenfests, and it
has been most clearly expressed in their famous paper of 1911 [15]. Ehren-
fests considered a partition of the phase space into small cells, and they have
suggested to supplement the motions of the phase space ensemble due to the
Liouville equation with “shaking” – averaging of the density of the ensem-
ble over the phase cells. In the result of this process, the convergence to the
equilibrium becomes strong out of the weak. It is not difficult to recognize
that ensembles with constant densities over the phase cells are quasiequilib-
ria; corresponding macroscopic variables are integrals of the density over the
phase cells (“occupation numbers” of the cells). This generalizes to the fol-
lowing: alternations of the motion of the phase ensemble due to microscopic
equations with returns to the quasiequilibrium manifold, preserving the val-
ues of the macroscopic variables. The formalization of this idea was given in
the previous chapter.
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12.2.6 Subjective Time and Irreversibility

In our discussion, the source of the arrow of time is, after all, the asymmetry of
the subjective time of the experimentalist. We prepare initial conditions, and
after that we watch what will happen in the future but not what happened in
the past. Thus, we obtain kinetic equations for specifically prepared systems.
How is this related to the dynamics of the real world? These equations are
applicable to real systems to the extent that the reality can be modeled with
systems with specifically prepared quasiequilibrium initial conditions. This is
anyway less demanding than the condition of quasi-staticity of processes in
classical thermodynamics. For this reason, versions of nonequilibrium thermo-
dynamics and kinetics based on this understanding of irreversibility allowed
to include such a variety of situations, and moreover, they include all classical
equations of nonequilibrium thermodynamics and kinetics.

12.3 Geometrization of Irreversibility

12.3.1 Quasiequilibrium Manifold

We remind here some of the constructions from Chap. 5. Let E be a linear
space, and U ⊂ E be a convex subset, with a nonempty interior intU . Let
a twice differentiable concave functional S be defined in intU , and S be
continuous on U . According to the familiar interpretation, S is the entropy,
E is an appropriate space of distributions, U is the cone of nonnegative
distributions from E. Space E is chosen in such a way that the entropy is
well defined on U .

Let K be a closed linear subspace of space E, and m : E → E/K be
the natural projection on the factor-space. The factor-space L = E/K will
further play the role of the space of macroscopic variables (in examples, the
space of moments of the distribution).

For each M ∈ intm(U) we define the quasiequilibrium, f∗
M ∈ intU , as the

solution to the problem,

S(f) → max, m(f) = M . (12.6)

We assume that, for each M ∈ m(U), there exists the (unique) solution to the
problem (12.6). This solution, f∗

M , is called the quasiequilibrium, correspond-
ing to the value M of the macroscopic variables. The set of quasiequilibria
f∗

M forms a manifold in intU , parameterized by the values of the macroscopic
variables M ∈ intU/L (Fig. 12.1).

Let us specify some notations: ET is the adjoint to the E space. Adjoint
spaces and operators will be indicated by T , whereas notation ∗ is earmarked
for equilibria and quasiequilibria.

Furthermore, [l, x] is the result of application of the functional l ∈ ET to
the vector x ∈ E. We recall that, for an operator A : E1 → E2, the adjoint
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Fig. 12.1. Relations between a microscopic state f , the corresponding macroscopic
state M = m(f), and quasiequilibria f∗

M

operator, AT : ET
1 → ET

2 is defined by the following relation: For any l ∈ ET
2

and x ∈ E1,

[l, Ax] = [AT l, x] .

Next, DfS(f) ∈ ET is the differential of the functional S(f), D2
fS(f)

is the second differential of the functional S(f). Corresponding quadratic
functional D2

fS(f)(x, x) on E is defined by the Taylor formula,

S(f + x) = S(f) +
[
DfS(f), x

]
+

1
2
D2

fS(f)(x, x) + o(‖x‖2) . (12.7)

We keep the same notation for the corresponding symmetric bilinear form,
D2

fS(f)(x, y), and also for the linear operator, D2
fS(f) : E → ET , defined

by the formula,

[D2
fS(f)x, y] = D2

fS(f)(x, y) .

In this formula, on the left hand side there is the operator, on the right
hand side there is the bilinear form. Operator D2

fS(f) is symmetric on E,
D2

fS(f)T = D2
fS(f).

Concavity of S means that for any x ∈ E the inequality holds,

D2
fS(f)(x, x) ≤ 0 ;
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in the restriction onto the affine subspace parallel to K = kerm we assume
the strict concavity,

D2
fS(f)(x, x) < 0 if x ∈ K and x �= 0 .

A comment on the degree of rigor is in order: the statements which will be
made below become theorems or plausible hypotheses in specific situations.
Moreover, specialization is always done with an account for these statements
in such a way as to simplify the proofs.

Let us compute the derivative DMf∗
M . For this purpose, let us apply

the method of Lagrange multipliers: There exists such a linear functional
Λ(M) ∈ LT , that

DfS(f)
∣∣
f∗

M

= Λ(M) ·m, m(f∗
M ) = M , (12.8)

or
DfS(f)

∣∣
f∗

M

= mT · Λ(M), m(f∗
M ) = M . (12.9)

From equation (12.9) we get,

m(DMf∗
M ) = 1(L) , (12.10)

where we have indicated the space in which the unit operator is acting. Next,
using the latter expression, we transform the differential of the equation
(12.8),

DMΛ = (m(D2
fS)−1

f∗
M
mT )−1 , (12.11)

and, consequently, from (12.9)

DMf∗
M = (D2

fS)−1
f∗

M
mT (m(D2

fS)−1
f∗

M
mT )−1 . (12.12)

Notice that, elsewhere in equation (12.12), operator (D2
fS)−1 acts on the

linear functionals from im(mT ). These functionals are precisely those which
become zero on K (that is, on ker(m)), or, which is the same, those which
can be represented as functionals of macroscopic variables.

The tangent space to the quasiequilibrium manifold in the point f∗
M is

the image of the operator DMf∗
M :

im (DMf∗
M ) = (D2

fS)−1
f∗

M
im(mT ) = (D2

fS)−1
f∗

M
AnnK (12.13)

where AnnK (the annulator of K) is the set of linear functionals which be-
come zero on K. Another way to write equation (12.13) is the following:

x ∈ im (DMf∗
M ) ⇔ (D2

fS)f∗
M

(x, y) = 0, y ∈ K (12.14)

This means that im (DMf∗
M ) is the orthogonal completement of K in E with

respect to the scalar product,
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Fig. 12.2. Quasiequilibrium manifold Ω, tangent space Tf∗
M

Ω, quasiequilibrium
projector πf∗

M
, and defect of invariance, ∆ = ∆f∗

M
= J − πf∗

M
(J)

〈x|y〉f∗
M

= −(D2
fS)f∗

M
(x, y) . (12.15)

The entropic scalar product (12.15) appears often in the constructions
below. (Usually, this becomes the scalar product indeed after the conservation
laws are excluded). Let us denote as Tf∗

M
= im(DMf∗

M ) the tangent space
to the quasiequilibrium manifold in the point f∗

M . An important role in the
construction of quasiequilibrium dynamics and its generalizations is played by
the quasiequilibrium projector, an operator which projects E on Tf∗

M
parallel

to K. This is the orthogonal projector with respect to the entropic scalar
product, πf∗

M
: E → Tf∗

M
:

πf∗
M

= (DMf∗
M )M m =

(
D2

fS
)−1

f∗
M

mT
(
m
(
D2

fS
)−1

f∗
M

mT
)−1

m . (12.16)

It is straightforward to check the equality π2
f∗

M
= πf∗

M
, and the self-adjointness

of πf∗
M

with respect to entropic scalar product (12.15). Thus, we have in-
troduced the basic constructions: quasiequilibrium manifold, entropic scalar
product, and quasiequilibrium projector (Fig. 12.2).

12.3.2 Quasiequilibrium Approximation

Let a kinetic equation be defined in U :

df
dt

= J(f) . (12.17)
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(This can be the Liouville equation, the Boltzmann equation, and so on,
dependent on which level of precision is taken for the microscopic description.)
One seeks the dynamics of the macroscopic variables M . If we adopt the
thesis that the solutions of the equation (12.17) of interest for us begin on
the quasiequilibrium manifold, and stay close to it for all the later times, then,
as the first approximation, we can take the quasiequilibrium approximation.
It is constructed this way: We regard f as the quasiequilibrium, and write,

dM
dt

= m (J (f∗
M )) . (12.18)

With this, the corresponding to M point on the quasiequilibrium manifold
moves according to the following equation:

df∗
M(t)

dt
= (DMf∗

M )m(J(f∗
M )) = πf∗

M
J(f∗

M ) , (12.19)

where πf∗
M

is the quasiequilibrium projector (12.16).
Let us term function S(M) = S(f∗

M ) the quasiequilibrium entropy. Let us
denote as dS(M)/dt the derivative of the quasiequilibrium entropy due to
the quasiequilibrium approximation (12.18). Then,

dS(M)
dt

=
dS(f)

dt

∣∣∣∣
f=f∗

M

. (12.20)

From the identity (12.20), it follows the theorem about preservation of
the type of dynamics:

(i) If for the original kinetic equation (12.17) dS(f)/dt = 0 at f = f∗
M ,

then the entropy is conserved due to the quasiequilibrium system (12.19).
(ii) If for the original kinetic equation (12.17) dS(f)/dt ≥ 0 at f = f∗

M ,
then, at the same points f∗

M , dS(M)/dt ≥ 0 due to the quasiequilibrium
system (12.18).

The theorem about the preservation of the type of dynamics2 demon-
strates that if there was no dissipation in the original system (12.17) (if the
entropy was conserved) then there is also no dissipation in the quasiequilib-
rium approximation. The passage to the quasiequilibrium does not introduce
irreversibility. The reverse may happen, for example, there is no dissipa-
tion in the quasiequilibrium approximation for hydrodynamic variables as
obtained from the Boltzmann kinetic equation (the compressible Euler equa-
tions). Though dissipation is present in the Boltzmann equation, it occurs
in different points but on the quasiequilibrium manifold of local Maxwellians
the entropy production is equal to zero. The same statement also holds for
2 This is a rather old theorem, one of us had published this theorem in 1984 already

as a textbook material ( [115], chapter 3 “Quasiequilibrium and entropy maxi-
mum”, p. 37, see also the paper [29]), but from time to time different particular
cases of this theorem are continued to be published as new results.
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the thermodynamic projectors described in Sect. 5.3. On the other hand, the
entropy production in the quasiequilibrium state is the same as for the qua-
siequilibrium system in the corresponding point, hence, if the initial system
is dissipative, then quasiequilibrium entropy production is nonnegative.

Usually, the original dynamics (12.17) does not leave the quasiequilibrium
manifold invariant, that is, the vector field J(f) is not tangent to the qua-
siequilibrium manifold in all its points f∗

M . In other words, the condition of
invariance (see Chap. 3),

(1 − πf∗
M

)J(f∗
M ) = 0 , (12.21)

is not satisfied on the quasiequilibrium manifold. The left hand side of the
invariance condition (12.21) is the defect of invariance, and we denote it as
∆f∗

M
(Chap. 3). It is possible to consider the invariance condition as an equa-

tion, and to compute corrections to the quasiequilibrium approximation f∗
M

in such a way as to make it “more invariant”. If the original equation (12.17)
is already dissipative, this route of corrections, supplemented by the con-
struction of the projector as in Sect. 5.3, leads to an appropriate macroscopic
kinetics [11].

However, here, we are mainly interested in the route “from the very be-
ginning”, from conservative systems to dissipative. And here solving the in-
variance equation does not help since it will lead us to “more invariant” but
still conservative dynamics. In all the approaches to this problem (passage
from the conservative to the dissipative systems), dissipation is introduced in
a more or less explicit fashion by various assumptions about the “short mem-
ory”. The originating point of our constructions is the absolutely transparent
and explicit approach of Ehrenfests.

12.4 Natural Projector
and Models of Nonequilibrium Dynamics

12.4.1 Natural Projector

So, let the original system (12.17) be conservative, and thus, dS(f)/dt = 0.
The idea of Ehrenfests is to supplement the dynamics (12.17) by coarse-
graining (“shakings”). The coarse-graining steps are external perturbations
which are applied periodically with a fixed time interval τ , and which lead to
“forgetting” of the small scale (nonequilibrium) details of the dynamics. For
us here the coarse-graining is the replacement of f by the quasiequilibrium
distribution f∗

m(f). In the particular case which was originally considered in by
Ehrenfests, the macroscopic variables m(f) were the averages of f over cells
in the phase space, while f∗

m(f) was the cell-homogeneous distribution with
the constant density within each cell equal to the corresponding cell-average
of f . In the limit τ → 0, one gets back the quasiequilibrium approximation –
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and the type of the dynamics is preserved. In this limit we obtain just the
usual projection of the vector field J(f) (12.17) on the tangent bundle to the
quasiequilibrium manifold.

So, the natural question appears: What will happen, if we shall not just
send τ to zero but will consider finite, and even large, τ? In such an approach,
not just the vector fields are projected but segments of trajectories. We shall
term this way of projecting the natural. Let us now pose the problem of the
natural projector formally. Let Tt(f) be the phase flow of the system (12.17).
We must derive a phase flow of the macroscopic system, Θt(M) (that is, the
phase flow of the macroscopic system, dM/dt = F (M), which we are looking
for), such that, for any M ,

m(Tτ (f∗
M )) = Θτ (M) . (12.22)

That is, when moving along the macroscopic trajectory, after the time τ we
must obtain the same values of the macroscopic variables as if we were moving
along the true microscopic trajectory for the same time τ , starting with the
quasiequilibrium initial condition (Fig. 12.3).

The final form of the equation for the macroscopic variables M (see
Chap. 11) may be written:

dM
dt

= F (M) = m(J(f∗
M )) + (τ/2)m(DfJ(f)

∣∣
f∗

M

∆f∗
M

) + o(τ2) . (12.23)

Fig. 12.3. Projection of segments of trajectories: The microscopic motion above
the manifold Ω and the macroscopic motion on this manifold. If these motions
began in the same point on Ω, then, after time τ , projection of the microscopic
state onto Ω should coincide with the result of the macroscopic motion on Ω. For
quasiequilibrium Ω, projector π : E → Ω acts as π(f) = f∗

m(f)
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It is remarkable the appearance of the defect of invariance in the second term
(proportional to τ): If the quasiequilibrium manifold is invariant with respect
to the microscopic dynamics, then F (M) is the quasiequilibrium state.

The formula for the entropy production follows from (12.23):

dS(f∗
M )

dt
= (τ/2)〈∆f∗

M
|∆f∗

M
〉f∗

M
. (12.24)

The quasiequilibrium entropy increases due to the equation of the macro-
scopic dynamics (12.23) in those points of the quasiequilibrium manifold
where the defect of invariance is not equal to zero. This way we see how
the problem of the natural projector (projected are not vector fields but
segments of trajectories) results in the dissipative equations. For specific ex-
amples see [30] and Chap. 11. The second term in equation (12.23) results
in viscosity and heat conductivity terms in the Navier–Stokes equations, dif-
fusion and other dissipative contributions. However, it remains the unde-
termined parameter τ . Formula (12.24) gives the entropy production just
proportional to the time interval between subsequent coarse-grainings. Of
course, this could be true only for small enough τ , whereas we are mostly
interested in the limit τ → ∞. It is only in this limit where one can eliminate
the arbitrariness in the choice of τ present in equations (12.23) and (12.24).
In order to do this, we need to study more carefully the structure of the
trajectories which begin on the quasiequilibrium manifold.

12.4.2 One-Dimensional Model of Nonequilibrium States

In the background of many derivations of nonequilibrium kinetic equations
one can recognize the following picture: Above each point of the quasiequi-
librium manifold there is located a huge subspace of nonequilibrium distri-
butions with the same values of the macroscopic variables, as in the quasi-
equilibrium. It is as if the motion decomposes into two projections, above
the point on the quasiequilibrium manifold, and in the projection on this
manifold. The motion in each layer above the quasiequilibria is extremely
complicated, but fast, and everything quickly settles in this fast motion.

However, upon a more careful looking into the motions which begin in
the quasiequilibrium points, we shall observe that, above each point of the
quasiequilibrium manifold it is located just a single and in certain sense
monotonic curve. All the nonequilibrium (not-quasiequilibrium) states which
come into the game form just a one-dimensional manifold. This is the curve of
the primitive macroscopically definable ensembles. These ensembles appear as
the result (for t > 0) of motions which start from the quasiequilibrium state
(at t = 0). It is namely this curve the construction of which we shall be
dealing with in this chapter.

For each value of the macroscopic variables M , and for every time τ ≥ 0,
we define M−τ by the following equality:
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m(Tτ (f∗
M−τ

)) = M . (12.25)

In other words, M−τ are those values of macroscopic variables which satisfy
Θτ (M−τ ) = M for the natural projector (12.22). Of course, it may well
happen that such M−τ exists not for every pair (M, τ) but we shall assume
here that for every M there exists τM > 0, so that there exists M−τ for
0 < τ < τM .

A set of distributions, qM,τ = Tτ (f∗
M−τ

), forms precisely the desired curve
of nonequilibrium states with the given values of M . Notice that, for each τ ,
it holds, m(qM,τ ) = M . The set {qM,τ} for all possible M and τ is positive
invariant: If the motion of the system starts on it at some time t0, it stays
on it also at t > t0. If the dependence qM,τ is known, equations of motion in
the coordinate system (M, τ) have a simple form:

dτ
dt

= 1 , (12.26)

dM
dt

= m(J(qM,τ )) .

The simplest way to study qM,τ is through a consideration of a sequence
of its derivatives with respect to τ at fixed M . The first derivative is readily
written as,

dqM,τ

dτ

∣∣∣∣
τ=0

= J(f∗
M ) − πf∗

M
J(f∗

M ) = ∆f∗
M
. (12.27)

By the construction of the quasiequilibrium manifold (we remind that K =
kerm), for any x ∈ K,

S(f∗
M + τx) = S(f∗

M ) − (τ2/2)〈x|x〉f∗
M

+ o(τ2) .

Therefore,

S(qM,τ ) = S(f∗
M ) − (τ2/2)〈∆f∗

M
|∆f∗

M
〉f∗

M
+ o(τ2) .

Thus, to first order in τ , we have, as expected,

qM,τ = f∗
M + τ∆f∗

M
+ o(τ) .

Let us find qM,τ to the accuracy of the order o(τ2). To this end, we expand
all the functions in equation (12.25) to the order of o(τ2). With

M−τ = M − τm(J(f∗
M )) + τ2B(M) + o(τ2) ,

where function B is yet unknown, we write:

f∗
M−τ

= f∗
M − τDMf∗

Mm(J(f∗
M )) + τ2DMf∗

MB(M) + (τ2/2)A2(M) + o(τ2) ,

where
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A2(M) =
d2f∗

M+tm(J(f∗
M ))

dt2

∣∣∣∣
t=0

, (12.28)

and

Tτ (x+ τα) = x+ τα+ τJ(x) + τ2DxJ(x)
∣∣
x
α

+(τ2/2)DxJ(x)
∣∣
x
J(x) + o(τ2) ,

Tτ (f∗
M−τ

) = f∗
M − τDMf∗

Mm(J(f∗
M )) + τ2DMf∗

MB(M) + (τ2/2)A2(M)

+τJ(f∗
M ) − τ2DfJ(f)

∣∣
f∗

M

DMf∗
Mm(J(f∗

M ))

+(τ2/2)DfJ(f)
∣∣
f∗

M

J(f∗
M ) + o(τ2)

= f∗
M + τ∆f∗

M
+ (τ2/2)A2(M)

+(τ2/2)DfJ(f)
∣∣
f∗

M

(1 − 2πf∗
M

)J(f∗
M )

+τ2DMf∗
MB(M) + o(τ2) .

The latter somewhat lengthy expression simplifies significantly under the
action of m. Indeed,

m(A2(M)) = d2[M + tm(J(f∗
M ))]/dt2 = 0 ,

m(1 − πf∗
M

) = 0 ,
m(DMf∗

M ) = 1 .

Thus,

m(Tτ (f∗
M−τ

))=M+(τ2/2)m(DfJ(f)
∣∣
f∗

M

(1−2πf∗
M

)J(f∗
M ))+τ2B(M)+o(τ2) ,

B(M) = (1/2)m(DfJ(f)
∣∣
f∗

M

(2πf∗
M

− 1)J(f∗
M )) .

Accordingly, to second order in τ ,

qM,τ = Tτ (f∗
M−τ

) (12.29)

= f∗
M + τ∆f∗

M
+ (τ2/2)A2(M)

+(τ2/2)(1 − πf∗
M

)DfJ(f)
∣∣
f∗

M

(1 − 2πf∗
M

)J(f∗
M ) + o(τ2) .

Notice that, besides the dynamic contribution of the order of τ2 (the last
term), there appears also the term A2 (12.28) which is related to the curvature
of the quasiequilibrium manifold along the quasiequilibrium trajectory.

Let us address the behavior of the entropy production in the neighborhood
of f∗

M . Let x ∈ K (that is, m(x) = 0). The production of the quasiequilibrium
entropy, σ∗

M (x), equals, by definition,

σ∗
M (x) = DMS(f∗

M ) ·m(J(f∗
M + x)) . (12.30)
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Equation (12.30) gives the rate of the entropy change under the motion of
the projection of the state onto the quasiequilibrium manifold if the true
trajectory passes the point f∗

M + x. In order to compute the right hand side
of equation (12.30), we use essentially the same argument, as in the proof of
the entropy production formula (12.24). Namely, in the point f∗

M , we have
K ⊂ kerDfS(f)

∣∣
f∗

M

, and thus DfS(f)
∣∣
f∗

M

πf∗
M

= DfS(f)
∣∣
f∗

M

. Using this, and
the fact that the entropy production in the quasiequilibrium approximation
is equal to zero, equation (12.30) may be written,

σ∗
M (x) = DfS(f)

∣∣
f∗

M

(J(f∗
M + x) − J(f∗

M )) . (12.31)

To the linear order in x, the latter expression reads:

σ∗
M (x) = DfS(f)

∣∣
f∗

M

DfJ(f)
∣∣
f∗

M

x . (12.32)

Using the identity

D2
fS(f)

∣∣
f
J(f) +DfS(f)

∣∣
f
DfJ(f)

∣∣
f

= 0 , (12.33)

we obtain in equation (12.32),

σ∗
M (x) = −D2

fS(f)
∣∣
f∗

M

(J(f∗
M ), x) = 〈J(f∗

M )|x〉f∗
M
. (12.34)

Because x ∈ K, we have (1 − πf∗
M

)x = x, and

〈J(f∗
M )|x〉f∗

M
= 〈J(f∗

M )|(1 − πf∗
M

)x〉f∗
M

= 〈(1 − πf∗
M

)J(f∗
M )|x〉f∗

M
= 〈∆f∗

M
|x〉f∗

M
.

Thus, finally, the entropy production in the formalism developed here, to the
linear order reads,

σ∗
M (x) = 〈∆f∗

M
|x〉f∗

M
. (12.35)

The above consideration gives us the simplest way to study the primitive
macroscopically definable ensembles using Taylor expansion in τ . This way
has obvious limitations because τ remains a parameter of the theory.

12.4.3 Curvature and Entropy Production:
Entropic Circle and First Kinetic Equations

In a consequent geometric approach to the problem of constructing the one-
dimensional model of nonequilibrium states it is more relevant to consider
the entropic parameter, δS = S∗(M) − S instead of τ . Within this parame-
terization of the one-dimensional curve of the nonequilibrium states one has
to address functions σM (∆S), rather than σM (τ).

In order to give an example here, we notice that the simplest geometric
estimate amounts to approximating the trajectory qM,τ with a second order



12.4 Natural Projector and Models of Nonequilibrium Dynamics 347

curve3. Given q̇M,τ and q̈M,τ (12.29), we construct a tangent circle (in the
entropic metrics, 〈|〉f∗

M
, since the entropy is the integral of motion of the

original equations). For the radius of this circle we compute

R =
〈q̇M,0|q̇M,0〉f∗

M√
〈q̈⊥ M,0|q̈⊥ M,0〉f∗

M

, (12.36)

where

q̇M,0 = ∆f∗
M
,

q̈⊥ M,0 = q̈M,0 −
〈q̈M,0|∆f∗

M
〉f∗

M
∆f∗

M

〈∆f∗
M
|∆f∗

M
〉f∗

M

,

q̈M,0 = (1 − πf∗
M

)DfJ(f)
∣∣
f∗

M

(1 − 2πf∗
M

)J(f∗
M ) +

(
DMπf∗

M

)
m(J(f∗

M )) .

Let us represent the microscopic motion as a circular motion along this
entropic circle with the constant “linear velocity” q̇M,0 = ∆f∗

M
. After the

microscopic motion passed the quarter of the circle, the entropy production
begins decreasing and it becomes equal to zero after passing the semicircle.
Hence, after passing the quarter of the circle, this model should be changed.
The time of the motion along the quarter of the entropic circle is:

τ ≈ π

2

√
〈∆f∗

M
|∆f∗

M
〉f∗

M

〈q̈⊥ M,0|q̈⊥ M,0〉f∗
M

. (12.37)

After averaging over the 1/4 of this circle we obtain the macroscopic
equations

dM
dt

= m

(
J

(
f∗

M +
2
π
R

∆f∗
M

‖∆f∗
M
‖ +

(
1 − 2

π

)
R

q̈⊥ M,0

‖q̈⊥ M,0‖

))

= m(J(f∗
M )) +

2
π

R

‖∆f∗
M
‖m

(
DfJ(f)

∣∣
f∗

M

(∆f∗
M

)
)

+
(

1 − 2
π

)
R

‖q̈⊥ M,0‖
m
(
DfJ(f)

∣∣
f∗

M

(q̈⊥ M,0)
)

+ o(R) .(12.38)

where ‖y‖ =
√
〈y|y〉f∗

M
.

Equations (12.38) contain no undetermined parameters. This is the sim-
plest example of a general macroscopic equations obtained by the natural
projector. The coefficients (2/π, etc.) can be corrected, but the form is more
universal. The entropy production for equations (12.38) is proportional both
to the defect of invariance and to the radius of curvature:

3 We shall argue below in detail, why the first-order estimates, qM,τ = f∗
M +τ∆f∗

M
,

are insufficient in the case of the conservative dynamics.
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σM =
2
π
R‖∆f∗

M
‖ . (12.39)

This equation demonstrates the thermodynamical sense of curvature of the
curve of the nonequilibrium states. The combination

defect of invariance
curvature

(12.40)

is the dissipation (recall that all the scalar products and norms are entropic).

12.5 The Film of Non-Equilibrium States

12.5.1 Equations for the Film

The set qM,τ in the space E forms a “surface” parameterized by “two vari-
ables”: A scalar, τ ≥ 0, and the value of the macroscopic variables, M, subject
to the condition

M = m(qM,τ ) . (12.41)

We call this surface the film of non-equilibrium states or simply the film. It
consists of the primitive macroscopically definable ensembles, the result (for
t > 0) of motions which start from the quasiequilibrium state (at t = 0).

For each τ ≥ 0 the section of the film is defined: the set, qM,τ , for a
given τ. It is parameterized by the value of M. For τ = 0 the section of
the film coincides with the quasiequilibrium manifold. The film itself can be
considered as a trajectory of motion of the section under the variation of
τ ∈ [0;+∞). It is not difficult to write down equations of this motion using
the definition of qM,τ :

qM,τ = Tτf
∗
M−τ

, (12.42)

where Tτ is the phase flow of the microscopic dynamical system, M−τ is
defined with equation (12.25).

For small ∆τ

qM,τ+∆τ = qM−∆M,τ + J(qM,τ )∆τ + o(∆τ) , (12.43)

where ∆M = mJ(qM,τ )∆τ. Hence,

dqM,τ

dτ
= (1 −DMqM,τm)J(qM,τ ) . (12.44)

The initial condition for equation (12.44) is the quasiequilibrium

qM,0 = f∗
M . (12.45)

Equation (12.44), subject to the initial condition (12.45), defines the film
of non-equilibrium states in the space E. This film is a minimal positive
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invariant set (i.e invariant with respect to the shift Tτ for positive times
τ > 0), including the quasiequilibrium manifold, f∗

M . All of the macroscopic
kinetics take place only on this film.

Thus, the study of the non-equilibrium kinetics can be separated into two
problems:

1. Construction of the film of non-equilibrium states: solution of equation
(12.44) with the initial condition (12.45).

2. Investigation of the motion of the system on the film.

Of course, one should assume that the film will be constructed only approx-
imately. Therefore, the second problem in turn should be separated in two
subproblems:

– Construction of projection of the microscopic vector field J on the ap-
proximately found film, and construction of equations for M and τ.

– Investigation and solution of equations for M and τ.

It should be emphasized that the existence of the film is not signifi-
cantly questionable (though, of course, proving theorems about existence and
uniqueness for (12.44), (12.45) can turn into a hard mathematical problem).
In a contrast, existence of kinetic coefficients (viscosity etc.), and generally,
of the fast convergence of dM/dt to a certain dependence dM/dt of M is
essentially a hypothesis which is not expected to always be true.

Below we mostly deal with the problem of construction of equations: the
problems ii1) and ii2). And we shall begin with the problem ii2). Thus, let
the film be approximately constructed.

12.5.2 Thermodynamic Projector on the Film

We need the projector in order to project the vector field on the tangent space.
The method of the thermodynamic projector ( [9,10] and Chap. 5) allows to
characterize every manifold (subject to certain requirements of transversality)
as the quasiequilibrium one. This is achieved by a construction of a projection
of a neighborhood of the manifold. The projection of the neighborhood on
the manifold should satisfy essentially only one condition: a point of the
manifold must be the point of maximum of the entropy on its preimage. If
the preimage of the point f∗ is a domain in the affine subspace, Kf∗ ⊂ E,
then the required condition is the property A (5.37):

(DfS)f∗(Kf∗ − f∗) ≡ 0 . (12.46)

where Kf∗ − f∗ is the linear subspace in E because f∗ ∈ Kf∗ .
For the projections with the property A (5.37), a dissipative vector field

is projected into a dissipative one, and a conservative vector field (with the
entropy conservation) is projected into a conservative one, i.e. the entropy
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balance is exact. Thus, let the film, qM,τ , be defined, and let us construct for
it the projector.

Under small variation of variables M and τ

∆qM,τ = DMqM,τ∆M +DτqM,τ∆τ + o(∆M,∆τ) ,
∆S = DfS

∣∣
qM,τ

∆qM,τ + o(∆M,∆τ) . (12.47)

After simple transformations we obtain:

∆τ =
∆S −DfS|qM,τ

DMqM,τ∆M

DfS|qM,τ
DτqM,τ

+ o(∆M,∆S) ,

∆qM,τ =
[
1 −

DτqM,τDfS|qM,τ

DfS|qM,τ
DτqM,τ

]
DMqM,τ∆M

+
DτqM,τ∆S

DfS|qM,τ
DτqM,τ

+ o(∆M,∆S) . (12.48)

From this formulae we obtain the projector with the property A for J , πA:

πA|qM,τ
J =

[
1 −

DτqM,τDfS|qM,τ

DfS|qM,τ
DτqM,τ

]
DMqM,τmJ

+
DτqM,τDfS|qM,τ

DfS|qM,τ
DτqM,τ

J . (12.49)

It is straightforward to check the equality π2
A = πA. For the conservative

vector fields J(f), the second term in (12.49) vanishes becauseDfS|f (J(f)) =
0, and

πA|qM,τ
J =

[
1 −

DτqM,τDfS|qM,τ

DfS|qM,τ
DτqM,τ

]
DMqM,τmJ . (12.50)

The equation for M corresponding to (12.50) has the form:

dM
dt

= m(πA|qM,τ
(J(qM,τ )))

= m

[
1 −

DτqM,τDfS|qM,τ

DfS|qM,τ
DτqM,τ

]
DMqM,τmJ(qM,τ )

= mJ(qM,τ ) . (12.51)

By the definition of the projector with the property A the equation for M
(12.51) should be supplemented with the equation for S:

dS
dt

= 0 , (12.52)

or for τ, in accordance with (12.48),
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Fig. 12.4. Dynamics on the film: Ṁ = mJ(qM,τ ), τ̇ = −Df S|qM,τ
DM qM,τ Ṁ

Df S|qM,τ
Dτ qM,τ

dτ
dt

=
Ṡ −DfS|qM,τ

DMqM,τṀ

DfS|qM,τ
DτqM,τ

= −
DfS|qM,τ

DMqM,τṀ

DfS|qM,τ
DτqM,τ

, (12.53)

where Ṁ is defined in accordance with (12.51). The numerator in (12.53)
has a simple meaning: it is the rate of the entropy production by dynamic
equations (12.51) when τ is constant (for frozen τ). Expression (12.53) can
be obtained from the condition of the constant entropy for the motion on
the film in accordance with (12.51,12.53). Equations (12.51,12.53) describe
dynamics on the film (Fig. 12.4).

The system of equations (12.51,12.53) has a very simple sense:

dM
dt

= mJ(qM,τ );
dS
dt

= 0 . (12.54)

It is just the standard moment equation supplied by the equation of entropy
production (in this case by the equation of entropy conservation).

It should be emphasized that the projector with the property A is not
unique, and here we made the simplest choice.

Let us further assume that condition (12.27) is satisfied:

qM,τ = f∗
M + τ∆f∗

M
+ o(τ) .

In expressions (12.48,12.51,12.53) the denominator, DfS|qM,τ
DτqM,τ , is pre-

sent. For τ → 0 this expression vanishes:

DτqM,τ |τ=0 = ∆f∗
M
,

DfS|f=f∗
M
x = 0, for x ∈ kerm , (12.55)
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m(∆f∗
M

) = 0, therefore DfS|qM,τ
DτqM,τ → 0 for τ → 0. For τ → 0 inde-

terminate forms 0/0 appear in expressions (12.48–12.50,12.52,12.53). Let us
resolve the indeterminate forms and calculate the corresponding limits.

Two indeterminate forms are present:

N1 =
(DτqM,τ )(DfS|qM,τ

)DMqM,τmJ

DfS|qM,τ
DτqM,τ

(12.56)

and the right hand side of equation (12.53), N2(τ). Let us evaluate the form
(12.56). We obtain:

lim
τ→0

N1(τ) =
∆f∗

M
DfS|f∗

M
πf∗

M
DfJ(f)|f∗

M

〈∆f∗
M
|∆f∗

M
〉f∗

M

(12.57)

using identity (12.33), similar to (12.24), we obtain:

lim
τ→0

N2(τ) = −
∆f∗

M
〈∆f∗

M
|∆f∗

M
〉f∗

M

〈∆f∗
M
|∆f∗

M
〉f∗

M

= −∆f∗
M
.

Therefore, for τ → 0

πA|qM,τ
J(qM,τ ) → DMf∗

MmJ(f∗
M ) +∆f∗

M

= πf∗
M
J(f∗

M ) + (1 − πf∗
M

)J(f∗
M ) = J(f∗

M ) . (12.58)

Similarly, after simple calculations we obtain that:

dτ
dt

→ 1, for τ → 0 . (12.59)

The fact that for τ → 0 the action of the projector πA on J becomes
trivial, πAJ = J, can be obtained (without calculations) from the construc-
tion of qM,τ in the vicinity of zero. We have chosen this dependence in such
a way that J(qM,τ ) becomes transverse to the film for τ → 0. This follows
from the condition (12.27). Let us emphasize, however, that derivation of the
formulas (12.50–12.53) themselves was not based on (12.27), and they are
applicable to any ansatz, qM,τ , not necessarily with the right behavior near
the quasiequilibrium (if one needs such an ansatz for anything).

12.5.3 Fixed Points of the Film Equation

What features can one expect from the dynamics of the film according to
equation (12.44)? A naive expectation that qM,τ tends to a stable fixed point
of equation (12.44) leads to somewhat strange consequences. Fixed point for
equation (12.44) is the invariant manifold qM . On this manifold,

J(qM ) = DMqMmJ(qM ) , (12.60)
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i.e. the projection of the vector field, J, onto qM coincides with J. Were
the condition qM,τ → qM satisfied for τ → ∞, the dynamics would become
“more and more conservative”. On the limit manifold qM , the entropy should
be conserved. This leads to unusual consequences. The first of them is the
limited extendability backwards “in the entropy”.

Indeed, let us consider the set of points M−τ (12.25) for a given M. There
exists the limit,

lim
τ→∞

Tτ (f∗
M−τ

) = qM ,

The flow Tτ conserves the entropy, hence, the difference of the values of the
quasiequilibrium entropy, S(M) − S(M−τ ) = ∆Sτ , is bounded on the half-
axis, τ ∈ [0;+∞) : ∆Sτ < ∆S∞(M). This means that it is impossible to
get into the values of macroscopic variables, M, from the quasiequilibrium
initial conditions, M1, for that S(M) − S(M1) > ∆S∞(M). Thus, possible
fixed points of the equation (12.44), regardless of their obvious interest, likely
demonstrate some exotic possibilities.

12.5.4 The Failure of the Simplest
Galerkin-Type Approximations for Conservative Systems

Usually, the simplest approach to the problem is the projection approxima-
tion: one considers a projection of the vector field, J(f), onto the manifold in
question and investigates the obtained equations of motion. However, it is not
difficult to see sure that such an approach is unfruitful in the present case
of conservative systems. If the orthogonal with respect the entropic scalar
product projection is taken, then only the quasiequilibrium approximations
with increased number of moments could be obtained.

For the dissipative systems, in contrast, such a projection approximations
leads to quite satisfactory results. For example, if for the Boltzmann equation
and the hydrodynamic moments the approximate invariant manifold is to be
searched in the form f#

M = f∗
M + a(M)∆f∗

M
, where f∗

M is local Maxwellian,
then we obtain the Navier–Stokes equations with the viscosity and heat con-
ductivity calculated within the first Sonine polynomials approximation. Using
another scalar product simply leads to unphysical results.

In order to highlight the pitfall in the conservative case, let us give an
example with a linear field, J(f) = Af, and a quadratic entropy, S(f) =
(1/2)〈f |f〉. The conservativity of J means that for each f it holds

〈f |Af〉 = 0 . (12.61)

The quasiequilibrium subspace corresponding to the moments M = mf
is the orthogonal complement, kerM. The quasiequilibrium projector, π, is
an orthogonal projector on this subspace. For the defect of invariance ∆f∗

M

we obtain:

∆f∗
M

= (A− πA)f∗
M . (12.62)



354 12 Geometry of Irreversibility: The Film of Nonequilibrium States

Under the simplest projection approximation we write

qM,τ = f∗
M + a(M, τ)∆f∗

M
. (12.63)

Projector on ∆f∗
M

is

|∆f∗
M
〉〈∆f∗

M
|

〈∆f∗
M
|∆f∗

M
〉 . (12.64)

Thus, we pass from the equation of motion of the film (12.44) to the
Galerkin-type approximation for a(M, τ).

ȧ = 1 + a
〈∆f∗

M
|A∆f∗

M
〉

〈∆f∗
M
|∆f∗

M
〉 − a

〈∆f∗
M
|AπA∆f∗

M
〉

〈∆f∗
M
|∆f∗

M
〉

−a2
〈∆f∗

M
|AπA∆f∗

M
〉

〈∆f∗
M
|∆f∗

M
〉 − (DMa)m

Af∗
M + aA∆f∗

M

〈∆f∗
M
|∆f∗

M
〉 . (12.65)

One can try to find fixed points (solving ȧ = 0). This is the projected
invariance equation. Due to the properties of the operator A, and the self-
adjoint projector, π, we obtain for conservative systems

〈∆f∗
M
|A∆f∗

M
〉 = 0 , (12.66)

〈∆f∗
M
|AπA∆f∗

M
〉 = −〈πA∆f∗

M
|(πA2 − (πA)2)∆f∗

M
〉 . (12.67)

On the other hand, for the dissipative systems the form (12.66) is nega-
tively definite, and it is this form that determines the Navier–Stokes equations
(in the first Sonine’s polynomials approximation) in the derivation of these
equations from the Boltzmann equation. For the conservative equations this
main part vanishes, while the second term in equation (12.65), generally
speaking, is sign-indefinite.

The failure of the projection approximations becomes even more obvious
in the equations of motions on the film. Here everything is very simple:

ȧ = 1 + a
〈∆f∗

M
|A∆f∗

M
〉

〈∆f∗
M
|∆f∗

M
〉 . (12.68)

For the dissipative systems under frozen M, a relaxes to the stable point

a = −
〈∆f∗

M
|∆f∗

M
〉

〈∆f∗
M
|A∆f∗

M
〉 > 0 . (12.69)

This fixed point is “the leading order term” in the solution of the invari-
ance equation, ȧ = 0 (12.65).

However, for the conservative systems ȧ = 1. This result was expected
from the entropy production formula (12.24), and

− S(f) = (1/2)〈f |f〉 = (1/2)〈πf |πf〉 + (1/2)〈(1 − π)f |(1 − π)f〉 .
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12.5.5 Second Order Kepler Models of the Film

In the problems of the dissipative kinetics (namely, in the problem of the
initial layer for the Boltzmann equation) it was found efficient to approxi-
mate the trajectories by segments (with further smoothing and corrections,
or without them). These segments were constructed in the following way: the
initial direction of motion was taken, and f evolved along this direction for
as long as the entropy increases. Further, the procedure was repeated from
the obtained point (for details see [26,27] and Sect. 9.3).

Unfortunately, in the problem of the initial layer for the conservative
systems there are no termination points during the motion along a straight
line (more precisely, the beginning of the motion itself can be considered
as a termination point because under the linear approximation the relation
(12.66) is valid). In the initial layer for the dissipative systems the motion of
the system along the straight line x = τ∆ in any case increases the entropy.
For the conservative systems one needs to “rotate the phase”, and the models
of motion should be arcs of ellipses (in linear space), or the constant entropy
lines, rather than straight lines. In the film problem the simplest “good”
model is a general conic section. A simple example: J(f) = Af, A is generator
of rotation around the axis with the direction r = ex +αey, M = x, the film
is the lateral surface of the cone, obtained by rotation of the quasiequilibrium
manifold, the axis {xex}, around the axis {ϕr}. For α < 1 the curve qM,τ is
an ellipse, for α > 1 it is a hyperbole, for α = 1 it is a parabola.

The curve qM,τ is an intersection of two manifolds: one of them is the
result of the motion of the quasiequilibrium manifold along the vector field
J(f), other is the linear manifold f∗

M + kerm.
Already in the finite-dimensional space, and under linear approximation

(J is linear, S is quadratic), we have an interesting geometrical picture: quasi-
equilibrium manifold is an orthogonal complement to kerm, A is the rotation
generator. (kerm)⊥ is rotated under action of eAτ , the unknown curve is the
section:

(f∗
M + kerm)

⋂
eAR+(kerm)⊥ , (12.70)

where R+ = [0;∞), f∗
M ∈ (kerm)⊥.

Thus, the simplest model motion is a second order curve. However, it is
not sufficient to know the first and the second derivatives. We need infor-
mation about the third-order derivative. If we consider the curve qM,τ as
a trajectory in the Kepler problem, then the location, r, of the center of
attraction (repulsion) is (Fig. 12.5):

r = q0 − q̈
〈q̇⊥|q̇⊥〉
〈
...
q |q̇⊥〉

, (12.71)

where q0 is the initial point where all the derivatives are taken. The force is:
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Second order models

1.  The circle

2.  Kepler models

=
⊥⊥

r −=
⊥⊥

⊥⊥

R

R

Fig. 12.5. The definition of the second-order models

F = α
r − q

〈r − q|r − q〉3/2
;

α2 = 〈q̈|q̈〉〈r − q|r − q〉2 = 〈q̈|q̈〉3 〈q̈⊥|q̈⊥〉
4

〈
...
q |q̇⊥〉4

; (12.72)

α > 0 (attraction) if 〈
...
q |q̇⊥〉 < 0 ;

α < 0 (repulsion) if 〈
...
q |q̇⊥〉 > 0 .

(12.73)

It is necessary to point out that the Kepler problem defines an approxi-
mation of the trajectory qM,τ , but not the dependence on τ.

An important question is the finiteness of the film. Is the model motion
finite? The answer is simple in terms of the Kepler problem [182]:

‖q̇‖2

2
<

α

‖r − q0‖
,

or

‖q̇‖2|〈q̇⊥|
...
q 〉|

2‖q̇⊥‖2‖q̈‖2
< 1 . (12.74)

Here ‖ ‖ = (〈|〉f∗
M

)1/2 is the norm in the entropic scalar product, as usual.

12.5.6 The Finite Models: Termination at the Horizon Points

In order to construct a step-by-step approximation it is necessary to solve
two problems: the choice of the direction of the next step, and the choice of
the size of this step.
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Fig. 12.6. The stepwise construction of the film for dissipative system. First-order
models: The motion along the defect of invariance

If the motion qM,τ is taken along the straight line (dissipative sys-
tems), the direction of the step is q̇M,τ0 (let us remind that q̇M,τ0 is the defect
of the invariance of the manifold qM = qM,τ0 at fixed τ = τ0), and the size
of the step should be adjusted in such a way as to reach a stable point, that
is, the point where the direction q̇M,τ becomes orthogonal to the initial one,
q̇M,τ0 (Fig. 12.6). The current direction of q̇M,τ is calculated with the help of
(12.44), where the projector is frozen (DMqM,τ0m instead of DMqM,τm).

For the conservative systems we have chosen the second order models
instead of the linear ones. For finiteness of the models we need to define the
moments of termination of motion. It is suggested to operate in a manner
similar to the case of the dissipative systems: to stop at the moment when
the direction of the motion becomes orthogonal to the initial one.

Thus, if qM,τ0 is a starting point of motion, and q̃M,τ0+θ is a motion on
the finite second order model, then the condition for the transition to the
next model is 〈

q̇M,τ0

∣∣∣dq̃M,τ0+θ

dθ

〉
= 0 (12.75)

(in the entropic scalar product).
Let us call the horizon points such points, qM,τ0+θ0 , where the scalar

product (12.75) for the first time becomes equal to zero (for 0 ≤ θ < θ0
this scalar product is positive). This notion is motivated by the fact that
for θ > θ0 the motion on the second order model “disappears behind the
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Fig. 12.7. The stepwise construction of the film for conservative system. Finite
second-order models: The motion starts in the direction of the defect of invari-
ance, and stops when the direction of motion becomes orthogonal to the defect of
invariance

horizon”, and its orthogonal projection on the line parallel to q̇M,τ0 starts to
move back passing the same points for the second time.

The convention about the change of the model in the horizon points seems
quite natural. The following sequence of calculations becomes self-explaining
(Fig. 12.7):

1. we seed the film with the quasiequilibrium manifold, qM,0 = f∗
M ;

2. we calculate q̇M,0, q̈M,0, . . . in accordance with equation (12.44);
3. we construct the (finite) second order models, qM,θ;
4. we find the horizon points, qM,θ0(M), from (12.75);
5. then we take the manifold of the horizon points as a new initial manifold,

and dio the next iteration.

At a first glance, this sequence contradicts the original statement of the
film problem. The manifold qM,θ0(M) does not have the form of qM,τ for a
fixed τ and thus it is not a shift of the quasiequilibrium manifold by the given
time along the true microscopic equations of motion.

The second difficulty was already mentioned: the time of motion along
the model curve does not coincide with the proper time, τ . More precisely,
it coincides only within the second order. However, now global, not local
approximation are constructed. Therefore, global corrections to the time, or
ways to circumvent these corrections, are required.
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The following two subsections are devoted to the elimination of these
difficulties.

12.5.7 The Transversal Restart Lemma

Let qM,τ (τ ∈ [0;+∞)) be the solution to (12.44) under initial condition
(12.45) (the film). We call the transverse section of the film, qM,τ , the mani-
fold, qM,θ(M), where θ(M) is a smooth function 0 ≤ θ(M) ≤ t < ∞.

Let the transversality condition be satisfied. Namely, for every bounded
domain that does not include equilibrium there exists ε > 0 such that in this
patch

‖J(qM,θ(M)) −DMqM,θ(M)mJ(qM,θ(M))‖
‖J(qM,θ(M))‖

> ε (12.76)

in an appropriate norm. Let q̃M,τ be the solution to (12.44) under the initial
condition q̃M,0 = qM,θ(M). Then the following transverse restart lemma is
valid:

qM,[0;+∞) = qM,[0;θ(M)]

⋃
q̃M,[0;+∞) . (12.77)

here qM,[a;b] = {qM,τ |τ ∈ [a; b]}.
The transversality condition (12.76) can be understood as a condition of

an “uniform noninvariance”. As we already know, fixed points of the film
equations are irrelevant.

The transversal restart lemma is the statement about the correctness of
the film. One way to derive the film is to seed it at the quasiequilibrium edge
and to evolve in τ to +∞ along the film equation (12.44). Another way is to
evolve it to some transverse section, not obligatory uniformly in time, and
then continue growing the film from this new edge. The result will be the
same.

In order to “prove”4 this lemma, we notice that it is equivalent to the
following statement. For every M̃ the segment of the trajectory, Tτ̃f

∗
M̃

(τ̃ ∈
[0; t]), crosses the manifold qM,θ(M), and only once.

In order to demonstrate the unicity of the section, we consider the film
in another coordinates, for each point q we set M̃ and τ̃ : q = Tτ̃f

∗
M̃
. In these

coordinates the transversality condition excludes folds on qM,θ(M).
In order to demonstrate the existence of the crossing point, q∗, of the

segment Tτ̃f
∗
M̃

(τ̃ ∈ [0; t]) with the section manifold qM,θ(M), we define in the
neighborhood of the point f∗

M̃
on the quasiequilibrium manifold the mapping

into the neighborhood of this section point. Image of the point f∗
M̃

is section
of the trajectory Tτ̃f

∗
M̃

(τ̃ ∈ [0; t]) with the manifold qM,θ(M) in the neighbor-
hood of q∗. Due to the transversality condition, it performs an isomorphism
4 Let us remind that within the degree of generality used here there are no proofs

to the theorems of existence and uniqueness.
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of the neighborhoods. Therefore, the set of M̃ for which the section of the
trajectory with qM,θ(M) exists is open. Furthermore, it is closed, because
the limit of section points is a section point (and segment [0; t] is compact).
Obviously, it is not empty. Consequently, it is the set of all possible M.

12.5.8 The Time Replacement, and the Invariance
of the Projector

Let the film of nonequilibrium states be constructed as q̃M,θ, where relation
between θ and τ is implicit; τ = τ(M, θ), θ = θ(M, τ). In order to deter-
mine these functions one needs to solve equation obtained from (12.44) with
substitution qM,τ = q̃M,θ(M,τ) (and projection, because q̃ is only an approxi-
mation). The calculation itself presents no difficulties. However, is it possible
to avoid the inversion in replacing of time for a derivation of the kinetic equa-
tions? In another words, could we use the constructed geometrical object, the
film, without an exact reconstruction of the time, τ, on it?

For a positive answer to this question it is sufficient to demonstrate that
the equations of motion, constructed with the projector (12.51–12.53), de-
scribe the same motion on the film after the time replacement.

This property of the πA is evident: while deriving equations (12.51–12.53),
we did not use that τ is the “true time” from the equation (12.44), and made
the local replacement of variables, passing from ∆M, ∆τ to ∆M, ∆S.

Thus, the projector πA is invariant with respect to the time replacement,
and, when constructing equations of motion, it is not necessary to restore the
“true time”.

Results of this and previous subsections allow to apply the sequence of
operations suggested in Subsect. 12.5.6.

12.5.9 Correction to the Infinite Models

Let an infinite model qM,θ, (θ ∈ [0;+∞)), qM,0 = f∗
M be constructed for the

film. Actually, it means that an approximation is constructed for the whole
film qM,τ (not just for its initial segment, as it was for the finite models).
Naturally, there arises a problem of correction to this approximation, and, in
general, construction of a step-by-step computational procedure.

The projector πA on the film is defined (12.50). Correspondingly, the
invariance defect of the film is determined too

∆qM,θ = (1 − πA|qM,θ
)J(qM,θ)

=
[
1 −

(
1 −

DθqM,θDfS|qM,θ

DfS|qM,θ
DθqM,θ

)
DMqM,θm

]
J(qM,θ) (12.78)

It is easy to verify, that if qM,θ is a solution to (12.44), then ∆qM,θ ≡ 0.
Subsequently we calculate the corrections to qM,τ using an iterative

method for the manifold correction (see Chaps. 6 and 9).
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Generally speaking, one could (and should) calculate these corrections
also for the finite models. However, the infinite models are distinguished,
because they require such corrections.

12.5.10 The Film, and the Macroscopic Equations

Let the film of nonequilibrium states be constructed. What next? There are
two routes.

1. Investigation of the conservative dynamics of “N + 1” variables, where
“N” is moments for the moments M, and “+1” is for the coordinate τ on
the film;

2. Derivation of the macroscopic equations for M.

Actually, the second route is more desirable, it leads to familiar classes of
kinetic equations. The first one, however, is always available, because the
film exists always (at least formally) but the existence of equations for M is
not guaranteed.

The route of obtaining equations forM is essentially the same as suggested
by us [29], [30–33] following Ehrenfests [15], and Zubarev [195]. That is,

– One chooses a time T .
– For arbitrary M0 one solves the problem of the motion on the film (12.51),

(12.53) under initial conditions M(0) = M0, τ(0) = τ0 on the segment
t ∈ [0;T ]. The solution is M(t,M0).

– For the mapping M0 → M(T ) the system dM/dt = F (M) is constructed.
It has the property that for its phase flow, θt(M), the identity

θT (M0) ≡ M(T,M0) (12.79)

is satisfied. This is the method of natural projector once again (see (12.22)
and Chap. 11).

In this sequence of actions there are two nontrivial problems: solution to the
equations on the film, and reconstruction of the vector field by transformation
of the phase flow, θT , under fixed T.

The natural method for solving the first problem is the averaging method.
The equations of motion on the film read

Ṁ = εP (M, τ) ; τ̇ = Q(M, τ) (12.80)

where ε is (formally) small parameter.
Assuming that the motion of M is slow, one can write down the series of

the Bogoliubov-Krylov averaging method [183]. The first term of this series
is a simple averaging over the period T : τ1(T,M) is solution to the equation
τ̇ = Q(M, τ) under fixed M,
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M1(t,M0) = M0 + εt

(
1
T

∫ T

0

P (M0, τ1(θ,M0)) dθ

)
(12.81)

for t ∈ [0;T ], and

M1(T,M0) = M0 + ε

∫ T

0

P (M0, τ(θ,M0)) dθ , (12.82)

correspondingly.
The first correction to the reconstruction of the vector field, F (M), by

the transformation of the phase flow, θT (M), is very simple too:

F1(M) =
1
T

(θT (M) −M) . (12.83)

Hence, we obtain the first correction to the macroscopic equations:

Ṁ = F1(M) =
1
T

∫ T

0

m(J(qM,τ(t,M))) dt , (12.84)

where τ(t,M) is a solution to the equation (12.53) under fixed M (actually,
mJ(qM,τ ) should be substituted into (12.53) instead of Ṁ).

The second and higher approximations are much more cumbersome, but
their construction is not a principal problem.

In general, the sequence of the horizon points of the second order finite
Kepler models and corresponding q̇i, q̈i determines the macroscopic kinetic
equations. Only the values of the coefficients remain unknown. Let us start
from linearized in layers system (12.17)

ḟ = J(f∗
m(f)) + Lm(f)(f − f∗

m(f)) , (12.85)

where linear operator LM parameterized by macroscopic variables M =
m(f). For the system (12.85) the second order finite Kepler models give
the macroscopic equation

Ṁ = m(J(f∗
M )) +

∑
i

(αim(LM (q̇i)) + βim(LM (q̈i))) , (12.86)

with αi, βi > 0.
The final comment on the positivity of the “kinetic coefficients” αi and βi

is important, and cannot be easily verified every time. However, in the case
under consideration it is so by the following theorem.

The theorem about the positivity of kinetic constants. The motion
on the Kepler ellipse from start to the horizon point always satisfies the
property

q − q0 = αq̇ + βq̈ ; α, β > 0 , (12.87)
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where q0 is a starting point, q̇, and q̈ are the velocity, and the acceleration,
correspondingly.

This theorem follows from elementary theorems about analytical geome-
try of second-order curves: Let a chord in an ellipse is passing through a focus,
and l1,2 are the tangents to the ellipse at the ends of this chord. Then the
angle between l1,2 that is based on the chord is acute. The starting point q0
is one of the ends of the chord, the vector of acceleration q̈ is the direction of
the chord (from q0 to the focus), the velocity vector q̇ is the tangent direction
at the point q0. Following these elementary facts, the horizon point belongs
to the arc on which the angle between l1,2 is based, hence the positivity
condition (12.87) holds.

For the model motion on the entropic circle, strictly speaking, this is not
always the case. Positivity of the coefficients is guaranteed only for m(L(q̇)),
and m(L(q̈⊥)).

Two phenomena can be related to the increase of the number of terms
in (12.86) as compared to the short-memory approximation: (i) alteration of
the kinetic constants (terms are not orthogonal to each other, therefore, new
terms contribute to the previous processes), (ii) birth of new processes.

Motion on an infinite film can lead to stabilization of kinetic coefficients as
the functions of M , but it can also lead to their permanent transformation. In
the second case one has to introduce into macroscopic equations an additional
variable, the coordinate τ on the film.

From the applications point of view, another form of equations of mo-
tion on the film could be more natural. In these equations kinetic coefficients
are used as dynamic variables. Essentially, this is just another representa-
tion of equations (12.51), (12.53). For every kinetic coefficient, k, expres-
sion dk/dt = ψk(τ,M) = ϕk(k,M) is calculated in accordance with (12.51),
(12.53). Substitution of variables (τ,M) → (k,M) in this equation is possible
(at least locally) if value k does not stabilize during the motion on the film.
Finally, we have the system in the form:

Ṁ = m(J(f∗
M )) +

∑
j

kjFj(M) ; k̇j = ϕj(kj ,M) . (12.88)

For the motion starting from the quasiequilibrium state the initial conditions
are kj = 0.

12.5.11 New in the Separation of the Relaxation Times

Originally, there are no dissipative possesses in the quasiequilibrium state
(the theorem of preservation of the type of dynamics for the quasiequilibrium
approximation).

The first thing that occurs during the motion out of the quasiequilibrium
initial conditions is the emergence of the dissipation. It can be described (in
the first non-vanishing approximation) by equation (12.23). It is of special
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importance that there is yet no separation into dissipation processes with
various relaxation times and kinetic coefficients on that stage. This separation
occurs at further stages: Various processes appear, their kinetic coefficients
are determined (see, for example, (12.86)) (or, in certain cases, the dynamics
of the kinetic coefficients is determined).

Generalizing, we can distinguish three stages:

1. birth of dissipation;
2. branching of dissipation: appearance of various processes;
3. macroscopic relaxation.

It is important to notice in this scheme that the determination of the kinetic
coefficients can occur at both stages: at the second stage when macroscopic
(hydrodynamic) relaxation can be described in the usual form with kinetic
coefficient as functions of the macroscopic parameters, as well as in the third
phase (motion on the film), when the hydrodynamic description includes
dynamics of the kinetic coefficients also.

12.6 The Main Results

In order to solve the problem of irreversibility we have introduced the notion
of the macroscopically definable ensembles. They result from the evolution of
ensembles out of the quasiequilibrium initial conditions under macroscopic
control.

Technically, the solution to the problem of irreversibility looks as follows:
we can operate only with the macroscopically definable ensembles; the class of
these ensembles is not invariant with respect to the time inversion. The notion
of the macroscopically definable ensembles casts the problem of irreversibility
into a new setting. It could be called a control theory point of view. The key
question is: Which parameters can we control? These those parameters are
fixed until “all the rest” come into equilibrium. The quasiequilibrium states
are obtained in such a way.

A further development of this direction should lead to investigation of the
macro-dynamics under controlled macro-parameters. This will be a supple-
ment of the postulated quasiequilibrium initial conditions with an investiga-
tion of a general case of an evolution of the controlled ensembles.

The method of the natural projector allows us to construct an approx-
imate dynamics of macro-variables. When the time of projection, τ, tends
to infinity, these equations should tend to the actual equations of macro-
dynamics, if the latter exist. This hypothesis about their existence in the
thermodynamic limit (first, the number of particles N → ∞, and after that,
the time of projection τ → ∞) is the basis of Zubarev’s nonequlibrium sta-
tistical operator approach [195].

Here, we need to make a remark. Frequently, physicists use mathemati-
cal objects whose existence and uniqueness are not proven: solutions to the



12.6 The Main Results 365

equations of hydro- and gaso-dynamics, kinetic equations etc. Often, the fail-
ure to prove theorems of existence and uniqueness is viewed as a lack of an
adequate mathematical statement of the problem (definition of spaces, etc.).
For all this, it is assumed that essential obstacles either are absent, or can
be sorted out separately, independently of the theorem proof in physically
trivial situations. Existence (or non-existence) of the macroscopic dynamics
is a problem of a different kind. The cases of non-existence can be found as
frequently as the physically expected existence.

The notion of the invariant film of non-equilibrium states, and the method
of its approximate construction allows us to solve the problem of macro-
kinetics even when there are no autonomous equations of macro-kinetics.
The existence of the film seems to be one of the physically trivial problems of
existence and uniqueness of solutions. Further computations will show how
productive the methods of film construction are.

The formula for entropy production,

σ ∼ defect of invariance
curvature

clarifies the geometrical sense of the dissipation. Here, “defect of invariance”
is the defect of invariance of the quasiequilibrium manifold, and “curvature”
is the curvature of the film of nonequilibrium states in the direction of the
defect of invariance of the quasiequilibrium manifold.

At least one essential problem remains unsolved. This is the problem of
indivisible events: For a macroscopically small time, a small microscopic sub-
systems can go through “its whole life”, from the beginning to the limit state
(or, more accurate, to the limit behaviour which may be not only a state, but
a type of motion, etc.). The microscopic evolution of the system in a small
interval of the macroscopic time cannot be written in the form

∆f = ḟ∆t .

The evolution of the microscopic subsystems in a macroscopically small time
∆t should be described as an “ensemble of indivisible events”. An excel-
lent hint is given by the Boltzmann equation with its indivisible collisions,
another good hint gives the chemical kinetics with indivisible events of ele-
mentary reactions. The useful formalism for a description such ensembles of
indivisible events is well developed. It is the “quasi-chemical” representation
(see Chap. 7). But the way from general system to such ensembles remains
unclear and presents the challenge to the future works (see, however, section
“Neurons and particles” in the paper [10]).

There is an important link between the theory of invariant film and the
Hilbert method in the theory of the Boltzmann equation (see Chap. 2). The
Hilbert method constructs the invariant film for the Boltzmann equation, and
the initial manifold for this film is the local Maxwellian manifold (the local
equilibrium manifold). The significant novelty of the theory of the invariant
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film of non-equilibrium states is the splitting of the problem in two parts: the
geometrical part (construction of the film) and the dynamical part (dynamics
on the film). The first (geometrical) part is solved here by the method of
“large stepping” instead of a Taylor series expansion as in the original Hilbert
method.
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