
10 Method of Invariant Grids

The method of invariant grids is developed for a grid-based computation of
invariant manifolds.

10.1 Invariant Grids

Elsewhere above in this book, we considered the immersions F (y), and the
methods for their construction, without addressing the question of how to
implement F numerically. In most of the works (of us and of other people
on similar problems), analytic forms were required to represent manifolds
(see, however, the method of Legendre integrators [254, 266, 369]). However,
in order to construct manifolds of a relatively low dimension, grid-based rep-
resentations of manifolds become a relevant option. The method of invariant
grids (MIG) was suggested recently in [22].

The main idea of MIG is to find a mapping of the finite-dimensional grids
into the phase space of a dynamic system. That is, we construct not just a
point approximation of the invariant manifold F ∗(y), but an invariant grid.
When refined, it is expected to converge, of course, to F ∗(y), but in any case
it is a separate, independently defined object.

Let’s denote L = Rn,G is a discrete subset of Rn. It is natural to think of a
regular grid, but this is not so crucial. For every point y ∈ G, a neighborhood
of y is defined: Vy ⊂ G, where Vy is a finite set, and, in particular, y ∈ Vy.
On regular grids, Vy includes, as a rule, the nearest neighbors of y. It may
also include the points next to the nearest neighbors.

For our purpose, we should define a grid differential operator. For every
function, defined on the grid, also all derivatives are defined:

∂f

∂yi

∣∣∣∣
y∈G

=
∑
z∈Vy

qi(z, y)f(z), i = 1, . . . n . (10.1)

where qi(z, y) are some coefficients.
Here we do not specify the choice of the functions qi(z, y). We just mention

in passing that, as a rule, (10.1) is established using some approximation of f
in the neighborhood of y in Rn by some differentiable functions (for example,
polynomials). This approximation is based on the values of f at the points of
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Vy. For regular grids, qi(z, y) are functions of the difference z−y. For some of
the nodes y which are close to the edges of the grid, functions are defined only
on the part of Vy. In this case, the coefficients in (10.1) should be modified
appropriately in order to provide an approximation using available values of
f . Below we assume this modification is always done. We also assume that
the number of points in the neighborhood Vy is always sufficient to make the
approximation possible. This assumption restricts the choice of the grids G.
Let’s call admissible all such subsets G, on which one can define differentiation
operator in every point.

Let F be a given mapping of some admissible subset G ⊂ Rn into U . For
every y ∈ V we define tangent vectors:

Ty = Lin{gi}n
1 , (10.2)

where vectors gi(i = 1, . . . n) are partial derivatives (10.1) of the vector-
function F :

gi =
∂F

∂yi
=
∑
z∈Vy

qi(z, y)F (z) , (10.3)

or in the coordinate form:

(gi)j =
∂Fj

∂yi
=
∑
z∈Vy

qi(z, y)Fj(z) . (10.4)

Here (gi)j is the jth coordinate of the vector (gi), and Fj(z) is the jth coor-
dinate of the point F (z).

The grid G is invariant, if for every node y ∈ G the vector field J(F (y))
belongs to the tangent space Ty (here J is the right hand side of the kinetic
equations (3.1)).

So, the definition of the invariant grid includes:

1. The finite admissible subset G ⊂ Rn;
2. A mapping F of this admissible subset G into U (where U is the phase

space of kinetic equation (3.1));
3. The differentiation formulas (10.1) with given coefficients qi(z, y);

The grid invariance equation has a form of an inclusion:

J(F (y)) ∈ Ty for every y ∈ G ,

or a form of an equation:

(1 − Py)J(F (y)) = 0 for every y ∈ G ,

where Py is the thermodynamic projector (5.25).
The grid differentiation formulas (10.1) are needed, in the first place, to

establish the tangent space Ty, and the null space of the thermodynamic
projector Py in each node. It is important to realize that the locality of the
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construction of the thermodynamic projector enables this without a global
parametrization.

Basically, in our approach, the grid specifics is in: (a) differentiation for-
mulas, (b) grid construction strategy (the grid can be extended, contracted,
refined, etc.) The invariance equations (3.3), equations of the film dynamics
extension (4.5), the iteration Newton method (6.2), and the formulae of the
relaxation approximation (9.2) do not change at all. For convenience, let us
rewrite all these formulas in the grid context.

Let x = F (y) be the location of the grid’s node y immersed into U . We
have the set of tangent vectors gi(x), defined in x (10.3), (10.4). Thus, the
tangent space Ty is defined by (10.2). Also, one has the entropy function
S(x), the linear functional DxS|x, and the subspace T0y = Ty

⋂
kerDxS|x in

Ty. Let T0y �= Ty. In this case we have a vector ey ∈ Ty, orthogonal to T0y,
DxS|x(ey) = 1. Then the thermodynamic projector is defined as:

Py• = P0y • +eyDxS|x• , (10.5)

where P0y is the orthogonal projector on T0y with respect to the entropic
scalar product 〈|〉x.

If T0y = Ty, then the thermodynamic projector is the orthogonal projector
on Ty with respect to the entropic scalar product 〈|〉x.

For the Newton method with incomplete linearization, the equations for
calculation the new node location x′ = x+ δx are:

{
Pyδx = 0
(1 − Py)(J(x) +DJ(x)δx) = 0 . (10.6)

Here DJ(x) is a matrix of derivatives of J evaluated at x. The self-adjoint
linearization can be used too (see Chap. 7).

Equation (10.6) is a system of linear algebraic equations. In practice, it
proves convenient to choose some orthonormal (with respect to the entropic
scalar product) basis bi in kerPy. Let r = dim(kerPy). Then δx =

∑r
i=1 δibi,

and system (10.6) takes the form

r∑
k=1

δk〈bi | DJ(x)bk〉x = −〈J(x) | bi〉x, i = 1 . . . r . (10.7)

This is the system of linear equations for adjusting the node location
according to the Newton method with incomplete linearization.

For the relaxation method, one needs to calculate the defect ∆x = (1 −
Py)J(x), and the relaxation step

τ(x) = − 〈∆x|∆x〉x
〈∆x|DJ(x)∆x〉x

. (10.8)

Then, the new node location x′ is computed as
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x′ = x+ τ(x)∆x . (10.9)

This is the equation for adjusting the node location according to the
relaxation method.

10.2 Grid Construction Strategy

From all the reasonable strategies of the invariant grid construction we con-
sider here the following two: the growing lump and the invariant flag.

10.2.1 Growing Lump

The construction is initialized from the equilibrium point y∗. The first ap-
proximation is constructed as F (y∗) = x∗, and for some initial V0 (Vy∗ ⊂ V0)
one has F (y) = x∗ + A(y − y∗), where A is an isometric embedding (in the
standard Euclidean metrics) of Rn in E.

For this initial grid one makes a fixed number of iterations of one of
the methods chosen (Newton’s method with incomplete linearization or the
relaxation method), and, after that, puts V1 =

⋃
y∈V0

Vy and extends F from
V0 onto V1 using the linear extrapolation, and the process continues. One of
the possible variants of this procedure is to extend the grid from Vi to Vi+1

not after a fixed number of iterations, but only after the invariance defect ∆y

becomes less than a given ε (in a given norm, which is entropic, as a rule),
for all nodes y ∈ Vi. The lump stops growing after it reaches the boundary
and is within a given accuracy ‖∆‖ < ε.

10.2.2 Invariant Flag

In order to construct the invariant flag one uses sufficiently regular grids G,
in which many points are located on the coordinate lines, planes, etc. One
considers the standard flag R0 ⊂ R1 ⊂ R2 ⊂ . . . ⊂ Rn (every next space is
constructed by adding one more coordinate). It corresponds to a sequence of
grids {y∗} ⊂ G1 ⊂ G2 . . . ⊂ Gn, where {y∗} = R0, and Gi is a grid in Ri.

First, y∗ is mapped on x∗ and further F (y∗) = x∗. Then the invariant
grid is constructed on V 1 ⊂ G1 (up to the boundaries and within a given
accuracy ‖∆‖ < ε). After that, the neighborhoods in G2 are added to the
points V 1, and the grid V 2 ⊂ G2 is constructed (up to the boundaries and
within a given accuracy) and so on, until V n ⊂ Gn is constructed.

While constructing the kth-order grid V k ⊂ Gk, the important role of the
grids of lower dimension V 0 ⊂ . . . ⊂ V k−1 ⊂ V k embedded in it, is preserved.
The point F (y∗) = x∗ (equilibrium) remains fixed. For every y ∈ V q (q < k)
the tangent vectors g1, . . . , gq are constructed, using the differentiation oper-
ators (10.1) on the whole V k. Using the tangent space Ty = Lin{g1, . . . , gq},
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the projector Py is constructed, the iterations are applied and so on. All this
is done in order to obtain a sequence of embedded invariant grids, given by
the same map F .

10.2.3 Boundaries Check and the Entropy

We construct grid mapping of F onto a finite set V ∈ G. The technique of
checking whether the grid still belongs to the phase space U of the kinetic
system (F (V ) ⊂ U) is quite straightforward: all the points y ∈ V are checked
whether they belong to U . If at the next iteration a point F (y) leaves U , then
it is pulled inside by a homothety transform with the center in x∗. Since the
entropy is a concave function, the homothety contraction with the center in
x∗ increases the entropy monotonically. Another variant to cut off the points
which leave U .

By construction (5.25), the kernel of the entropic projector is annulled
by the entropy differential. Thus, in the first order, the steps in the Newton
method with incomplete linearization (6.2) as well as in the relaxation method
(9.1), (9.2) do not change the entropy. But if the steps are quite large, then
the increase of the entropy may become essential, and the points are returned
on their entropy levels by the homothety contraction with the center in the
equilibrium point.

10.3 Instability of Fine Grids

When one reduces the grid spacing in order to refine the grid, then, once
the grid spacing becomes small enough, one can face the problem of the
Courant instability [269–271]. Instead of converging, at every iteration the
grid becomes more and more entangled (see Fig. 10.1).

A way to avoid such instability is well-known. This is decreasing the time
step. In our problem, instead of a true time step, we have a shift in the
Newtonian direction. Formally, we can assign the value h = 1 for one complete
step in the Newtonian direction. Let us extend now the Newton method to
arbitrary h. For this, let us find δx = δF (y) from (10.6), but update δx
proportionally to h; the new value of xn+1 = Fn+1(y) is equal to

Fn+1(y) = Fn(y) + hnδFn(y) (10.10)

where n denotes the number of iteration.
One way to choose the step value h is to make it adaptive, by controlling

the average value of the invariance defect ‖∆y‖ at every step. Another way
is the convergence control: then

∑
hn plays a role of time.

Elimination of the Courant instability for the relaxation method can be
done quite analogously. Everywhere the step h is maintained as large as it is
possible without running into convergence problems.
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Iteration 1
Iteration 2
Iteration 3
Iteration 4

Fig. 10.1. Grid instability. For small grid steps approximations in the calculation of
grid derivatives lead to the grid instability effect. Several successive iterations of the
algorithm without adaptation of the time step are shown that lead to undesirable
“oscillations”, which eventually destroy the grid starting from one of its ends

10.4 Which Space is Most Appropriate
for the Grid Construction?

For kinetic systems, there are two distinguished representations of the phase
space:

– The density space (concentrations, energy or probability densities, etc.)
– The space of conjugated intensive variables, (temperature, chemical po-

tentials, etc.)

The density space is convenient for the construction of the quasi-chemical
representations. Here the balance relations are linear and the constraints are
in the form of linear inequalities (the densities themselves or some of their
linear combinations must be positive).

The conjugated variables space is convenient in the sense that the equilib-
rium conditions are linear in terms of the conjugate variables. In these spaces
the quasiequilibrium manifolds exist in the form of linear subspaces and, vice
versa, linear balance equations turn out to be equations of the conditional
entropy maximum.

The duality we have just mentioned is well-known and studied in detail in
many works on thermodynamics and Legendre transformation [274,275]. This
viewpoint of nonequilibrium thermodynamics unifies many well-established
mesoscopic dynamical theories, as for example the Boltzmann kinetic theory
and the Navier–Stokes–Fourier hydrodynamics [189]. To this end, preceding
the grids in the density space were discussed. However, the use of the space
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of conjugated variables seems to be even more appealing for the grid con-
struction. The main argument is the specific role of quasiequilibrium, which
a linear manifold in the conjugated space. Therefore, a linear extrapolation
gives a thermodynamically justified quasiequilibrium approximation. A lin-
ear approximation of the slow invariant manifold in the neighborhood of the
equilibrium in terms of the conjugate variables space already gives the readily
global quasiequilibrium manifold which corresponds to the motion separation
in the neighborhood of the equilibrium point.

For the mass action law, transition to the conjugate variables is simply
the logarithmic transformation of the coordinates.

10.5 Carleman’s Formula
in the Analytical Invariant Manifolds Approximations.
First Benefit of Analyticity: Superresolution

When constructing invariant grids, one must define the differential operators
(10.1) for every grid’s node. For calculating the differential operators in some
point y, an interpolation procedure in the neighborhood of y is used. As a
rule, it is an interpolation by a low-order polynomial, which is constructed
using the function values in the nodes belonging to the neighbourhood of y in
G. This approximation (using values in the nearest neighborhood nodes) is
natural for smooth functions. But we are looking for the analytical invariant
manifold (see discussion in Chap. 4). Analytical functions have a much more
“rigid” structure than the smooth ones. One can change a smooth function in
the neighborhood of any point in such a way, that outside this neighborhood
the function will not change. In general, this is not possible for analytical
functions: a kind of a “long-range” effect takes place (as is well known) .

The idea is to make use of this effect and to reconstruct some analytical
function fG using a function given on G. There is one important requirement:
if the values given on G are values of some function f which is analytical
in a neighborhood U , then, if the G is refined “correctly”, one must have
fG → f in U . The sequence of reconstructed function fG should converge to
the “right” function f .

What is the “correct refinement”? For smooth functions for the conver-
gence fG → f it is necessary and sufficient that, in the course of refinement, G
would approximate the whole U with arbitrary accuracy. For analytical func-
tions it is necessary only that, under the refinement, G would approximate
some uniqueness set1 A ⊂ U . Suppose we have a sequence of grids G, each
next is finer than the previous, which approximate a set A. For smooth func-
tions using function values defined on the grids one can reconstruct the func-
tion in A. For analytical functions, if the analyticity domain U is known, and
1 Let’s remind to the reader that A ⊂ U is called uniqueness set in U if for

analytical in U functions ψ and ϕ from ψ|A ≡ ϕ|A it follows ψ ≡ ϕ.
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A is a uniqueness set in U , then one can reconstruct the function in U . The
set U can be essentially bigger than A; because of this such extension was
named as superresolution effect [276]. There exist formulas for construction
of analytical functions fG for different domains U , uniqueness sets A ⊂ U
and for different ways of discrete approximation of A by a sequence of refined
grids G [276]. Here we provide only one Carleman’s formula which is the most
appropriate for our purposes.

Let domain U = Qn
σ ⊂ Cn be a product of strips Qσ ⊂ C, Qσ = {z|Imz <

σ}. We shall construct functions holomorphic in Qn
σ. This is effectively equiv-

alent to the construction of real analytical functions f in the whole Rn with
a condition on the convergence radius r(x) of the Taylor series for f as a
function of each coordinate: r(x) ≥ σ in every point x ∈ Rn.

The sequence of refined grids is constructed as follows: let for every l =
1, . . . , n a finite sequence of distinct points Nl ⊂ Qσ be defined:

Nl = {xlj |j = 1, 2, 3 . . .}, xlj �= xli for i �= j (10.11)

The countable uniqueness set A, which is approximated by a sequence of
refined grids, has the form:

A = N1×N2× . . .×Nn = {(x1i1 , x2i2 , . . . , xnin
)|i1,...,n = 1, 2, 3, . . .} (10.12)

The grid Gm is defined as the product of initial fragments Nl of length
m:

Gm = {(x1i1 , x2i2 . . . xnin
)|1 ≤ i1,...,n ≤ m} (10.13)

Let us denote λ = 2σ/π (σ is a half-width of the strip Qσ). The key role
in the construction of the Carleman’s formula is played by the functional
ωλ

m(u, p, l) of 3 variables: u ∈ U = Qn
σ, p is an integer, 1 ≤ p ≤ m, l is an

integer, 1 ≤ p ≤ n. Further u will be the coordinate value at the point where
the extrapolation is calculated, l will be the coordinate number, and p will be
an element of multi-index {i1, . . . , in} for the point (x1i1 , x2i2 , . . . , xnin

) ∈
G:

ωλ
m(u, p, l) =

(eλxlp + eλx̄lp)(eλu − eλxlp)
λ(eλu + eλx̄lp)(u− xlp)eλxlp

×
m∏

j=1j =p

(eλxlp + eλx̄lj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλx̄lj )

(10.14)

For real-valued xpk formula (10.14) simplifyes:

ωλ
m(u, p, l) = 2

eλu − eλxlp

λ(eλu + eλxlp)(u− xlp)
×

m∏
j=1j =p

(eλxlp + eλxlj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλxlj )

(10.15)
The Carleman formula for extrapolation from GM on U = Qn

σ (σ = πλ/2)
has the form (z = (z1, . . . , zn)):
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fm(z) =
m∑

k1, ... ,kn=1

f(xk)
n∏

j=1

ωλ
m(zj , kj , j) , (10.16)

where k = k1, . . . , kn, xk = (x1k1 , x2k2 , . . . , xnkn
).

There exists a theorem [276]:
If f ∈ H2(Qn

σ), then f(z) = limm→∞fm(z), where H2(Qn
σ) is the Hardy

class of holomorphic in Qn
σ functions.

It is useful to present the asymptotics of (10.16) for large |Rezj |. For this
purpose, we shall consider the asymptotics of (10.16) for large |Reu|:

|ωλ
m(u, p, l)| =

∣∣∣∣∣∣
2
λu

m∏
j=1j =p

eλxlp + eλxlj

eλxlp − eλxlj

∣∣∣∣∣∣+ o(|Reu|−1) . (10.17)

From the formula (10.16) one can see that for the finite m and |Rezj | → ∞
function |fm(z)| behaves like const ·

∏
j |zj |−1.

This property (zero asymptotics) must be taken into account when using
the formula (10.16). When constructing invariant manifolds F (W ), it is nat-
ural to use (10.16) not for the immersion F (y), but for the deviation of F (y)
from some analytical ansatz F0(y) [277–280].

The analytical ansatz F0(y) can be obtained using Taylor series, just as
in the Lyapunov auxiliary theorem [3] (see also Chap. 4). Another variant is
to use Taylor series for the construction of Pade-approximations.

It is natural to use approximations (10.16) in terms of dual variables as
well, since there exists for them (as the examples demonstrate) a simple and
effective linear ansatz for the invariant manifold. This is the slow invariant
subspace Eslow of the operator of linearized system (3.1) in dual variables
at the equilibrium point. This invariant subspace corresponds to the set of
“slow” eigenvalues (with small |Reλ|, Reλ < 0). In the space of concentrations
this invariant subspace is the quasiequilibrium manifold. It consists of the
maximum entropy points on the affine manifolds of the form x+Efast, where
Efast is the “fast” invariant subspace of the operator of the linearized system
(3.1) at the equilibrium point. It corresponds to the “fast” eigenvalues (large
|Reλ|, Reλ < 0).

Carleman’s formulas can be useful for the invariant grids construction in
two places: first, for the definition of the grid differential operators (10.1),
and second, for the analytical continuation of the manifold from the grid.

10.6 Example: Two-Step Catalytic Reaction

Let us consider a two-step four-component reaction with one catalyst A2 (the
Michaelis-Menten mechanism):

A1 +A2 ↔ A3 ↔ A2 +A4 . (10.18)
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We assume the Lyapunov function of the form

S = −G = −
4∑

i=1

ci[ln(ci/c
eq
i ) − 1] .

The kinetic equation for the four-component vector of concentrations, c =
(c1, c2, c3, c4), has the form

ċ = γ1W1 + γ2W2 . (10.19)

Here γ1,2 are stoichiometric vectors,

γ1 = (−1,−1, 1, 0) , γ2 = (0, 1,−1, 1) , (10.20)

while functions W1,2 are reaction rates:

W1 = k+
1 c1c2 − k−1 c3 , W2 = k+

2 c3 − k−2 c2c4 . (10.21)

Here k±1,2 are reaction rate constants. The system under consideration has
two conservation laws,

c1 + c3 + c4 = B1 , c2 + c3 = B2 , (10.22)

or 〈b1,2, c〉 = B1,2, where b1 = (1, 0, 1, 1) and b1 = (0, 1, 1, 0). The non-
linear system (10.18) is effectively two-dimensional, and we consider a one-
dimensional reduced description. For our example, we chosed the following
set of parameters:

k+
1 = 0.3 , k−1 = 0.15 , k+

2 = 0.8, k−2 = 2.0 ;
ceq1 = 0.5 , ceq2 = 0.1, ceq3 = 0.1 , ceq4 = 0.4 ;
B1 = 1.0, B2 = 0.2

(10.23)

The one-dimensional invariant grid is shown in Fig. 10.2 in the (c1,c4,c3)
coordinates. The grid was constructed by the growing lump method, as de-
scribed above. We used Newton iterations to adjust the nodes. The grid was
grown up to the boundaries of the phase space.

The grid in this example is a one-dimensional ordered sequence {x1, . . . ,
xn}. The grid derivatives for calculating the tangent vectors g were taken as
g(xi) = (xi+1−xi−1)/||xi+1−xi−1|| for the internal nodes, and g(x1) = (x1−
x2)/||x1 − x2||, g(xn) = (xn − xn−1)/||xn − xn−1|| for the grid’s boundaries.

Close to the phase space boundaries we had to apply an adaptive algo-
rithm for choosing the time step h: if, after the next growing step (adding
new nodes to the grid and after completing N = 20 Newtonian steps, the
grid did not converged, then we choose a new step size hn+1 = hn/2 and
recalculate the grid. The final (minimal) value for h was h ≈ 0.001.

The location of the nodes was parametrized with the entropic distance to
the equilibrium point measured in the quadratic metrics given by the matrix
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Fig. 10.2. One-dimensional invariant grid (circles) for the two-dimensional chemi-
cal system. Projection into the 3d-space of c1, c4, c3 concentrations. The trajectories
of the system in the phase space are shown by lines. The equilibrium point is marked
by the square. The system quickly reaches the grid and further moves along it

Hc = −||∂2S(c)/∂ci∂cj || in the equilibrium ceq. It means that every node is
located on a sphere in this metrics with a given radius, which increases lin-
early with number of the node. In this figure the step of the increase is chosen
to be 0.05. Thus, the first node is at the distance 0.05 from the equilibrium,
the second is at the distance 0.10 and so on. Figure 10.3 shows several impor-
tant quantities which facilitate understanding of the object (invariant grid)
extracted. The sign on the x-axis of the graphs at Fig. 10.3 is meaningless
since the distance is always positive, but in this situation it indicates two
possible directions from the equilibrium point.

Figure 10.3a,b represents the slow one-dimensional component of the dy-
namics of the system. Given any initial condition, the system quickly finds
the corresponding point on the manifold and starting from this point the
dynamics is given by a part of the graph on the Fig. 10.3a,b.

One of the useful quantities is shown on the Fig. 10.3c. It is the relation
between the relaxation times “toward” and “along” the grid (λ2/λ1, where
λ1, λ2 are the smallest and the next smallest by absolute value non-zero eigen-
value of the system, symmetrically linearized at the point of the grid node).
The figure demonstrates that the system is very stiff close to the equilibrium
point (λ1 and λ2 are well separated from each other), and becomes less stiff
(by order of magnitude) near the boundary. This leads to the conclusion that
the one-dimensional reduced model is more adequate in the neighborhood
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Fig. 10.3. One-dimensional invariant grid for the two-dimensional chemical sys-
tem. (a) Values of the concentrations along the grid. (b) Values of the en-
tropy and the entropy production (−dG/dt) along the grid. (c) Ratio of the
relaxation times “towards” and “along” the manifold. The nodes positions are
parametrized with entropic distance measured in the quadratic metrics given by
Hc = −||∂2S(c)/∂ci∂cj || in the equilibrium ceq. Entropic coordinate equal to zero
corresponds to the equilibrium
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of the equilibrium where fast and slow motions are separated by two orders
of magnitude. On the end-points of the grid the one-dimensional reduction
ceases to be well-defined.

10.7 Example: Model Hydrogen Burning Reaction

In this section we consider a more complicated example, where the concentra-
tion space is 6-dimensional, while the system is 4-dimensional. We construct
an invariant flag which consists of 1- and 2-dimensional invariant manifolds.

We consider a chemical system with six species called H2 (hydrogen),
O2 (oxygen), H2O (water), H, O, OH (radicals). We assume the Lyapunov
function of the form S = −G = −

∑6
i=1 ci[ln(ci/c

eq
i ) − 1]. The subset of the

hydrogen burning reaction and corresponding (direct) rate constants have
were taken as:

1. H2 ↔ 2H k+
1 = 2

2. O2 ↔ 2O k+
2 = 1

3. H2O ↔ H +OH k+
3 = 1

4. H2 +O ↔ H +OH k+
4 = 103

5. O2 +H ↔ O +OH k+
5 = 103

6. H2 +O ↔ H2O k+
6 = 102

(10.24)

The conservation laws are:

2cH2 + 2cH2O + cH + cOH = bH
2cO2 + cH2O + cO + cOH = bO

(10.25)

For parameter values we took bH = 2, bO = 1, and the equilibrium point:

ceqH2
= 0.27 ceqO2

= 0.135 ceqH2O = 0.7 ceqH = 0.05 ceqO = 0.02 ceqOH = 0.01
(10.26)

Other rate constants k−i , i = 1 . . . 6 were calculated from ceq value and
k+

i . For this system the stoichiometric vectors are:

γ1 = (−1, 0, 0, 2, 0, 0) γ2 = (0,−1, 0, 0, 2, 0)
γ3 = (0, 0,−1, 1, 0, 1) γ4 = (−1, 0, 0, 1,−1, 1)
γ5 = (0,−1, 0,−1, 1, 1) γ6 = (−1, 0, 1, 0,−1, 0)

(10.27)

The system under consideration is fictitious in the sense that the subset
of equations corresponds to the simplified picture of this chemical process
and the rate constants do not correspond to any experimentally measured
quantities, rather they reflect only orders of magnitudes relevant real-world
systems. In that sense we consider here a qualitative model system, which
allows us to illustrate the invariant grids method. Nevertheless, modeling of
more realistic systems differs only in the number of species and equations.
This leads, of course, to computationally harder problems, but difficulties are
not crucial.
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Figure 10.4a presents a one-dimensional invariant grid constructed for the
system. Figure 10.4b demonstrates the reduced dynamics along the manifold
(for the explanation of the meaning of the x-coordinate, see the previous
subsection). In Fig. 10.4c the three smallest by the absolute value non-zero
eigenvalues of the symmetrically linearized Jacobian matrix of the system are
shown. One can see that the two smallest eigenvalues almost interchange on
one of the grid ends. This means that the one-dimensional “slow” manifold
faces definite problems in this region, it is just not well defined there. In
practice, it means that one has to use at least a two-dimensional grids there.

Figure 10.5a gives a view of the two-dimensional invariant grid, con-
structed for the system, using the “invariant flag” strategy. The grid was
raised starting from the 1D-grid constructed at the previous step. At the
first iteration for every node of the initial grid, two nodes (and two edges)
were added. The direction of the step was chosen as the direction of the eigen-
vector of the matrix Asym (at the point of the node), corresponding to the
second “slowest” direction. The value of the step was chosen to be ε = 0.05
in terms of entropic distance. After several Newton’s iterations done until
convergence was reached, new nodes were added in the direction “ortogonal”
to the 1D-grid. This time it was done by linear extrapolation of the grid on
the same step ε = 0.05. Once some new nodes become one or several nega-
tive coordinates (the grid reaches the boundaries) they were cut off. If a new
node has only one edge, connecting it to the grid, it was excluded (since it
was impossible to calculate 2D-tangent space for this node). The process was
continued until the expansion was possible (the ultimate state is when every
new node had to be cut off).

The method for calculating tangent vectors for this regular rectangular
2D-grid was chosen to be quite simple. The grid consists of rows, which are
co-oriented by construction to the initial 1D-grid, and columns that consist
of the adjacent nodes in the neighboring rows. The direction of the columns
corresponds to the second slowest direction along the grid. Then, every row
and column is considered as a 1D-grid, and the corresponding tangent vectors
are calculated as it was described before:

grow(xk,i) = (xk,i+1 − xk,i−1)/‖xk,i+1 − xk,i−1‖

for the internal nodes and

grow(xk,1) = (xk,1 − xk,2)/‖xk,1 − xk,2‖, grow(xk,nk
)

= (xk,nk
− xk,nk−1)/‖xk,nk

− xk,nk−1‖
for the nodes which are close to the grid’s edges. Here xk,i denotes the vector
of the node in the kth row, ith column; nk is the number of nodes in the kth
row. Second tangent vector gcol(xk,i) is calculated analogously. In practice,
it proves convenient to orthogonalize grow(xk,i) and gcol(xk,i).
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Fig. 10.4. One-dimensional invariant grid for model hydrogen burning reaction.
(a) Projection into the 3d-space of cH , cO, cOH concentrations. (b) Concentration
values along the grid. (c) Three smallest by the absolute value non-zero eigenvalues
of the symmetrically linearized system
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Fig. 10.5. Two-dimensional invariant grid for the model hydrogen burning reac-
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into the principal 3D-subspace. Trajectories of the system are shown coming out
from every node. Bold line denotes the one-dimensional invariant grid, starting from
which the 2D-grid was constructed
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10.8 Invariant Grid as a Tool for Data Visualization

Invariant grids provide a possibility of data visualization. In this section we
demonstrate this possibility on the model hydrogen burning reaction. Since
the phase space is four-dimensional, it is impossible to visualize the grid in one
of the coordinate 3D-views, as it was done in the previous subsection. To fa-
cilitate visualization one can utilize traditional methods of multi-dimensional
data visualization. Here we make use of the principal components analysis
(see, for example, [273]), which constructs a three-dimensional linear sub-
space with maximal dispersion of the othogonally projected data (grid nodes
in our case). In other words, the method of principal components constructs
in a multi-dimensional space a three-dimensional box such that the grid can
be placed maximally tightly inside the box (in the mean square distance
meaning). After projection of the grid nodes into this space, we get more or
less adequate representation of the two-dimensional grid embedded into the
six-dimensional concentrations space (Fig. 10.5b). The disadvantage of the
approach is that the axes now do not bear any explicit physical meaning,
they are just some linear combinations of the concentrations.

One attractive feature of two-dimensional grids is the possibility to use
them as a screen, on which one can display different functions f(c) defined in
the concentrations space. This technology was exploited widely in the non-
linear data analysis by the elastic maps method [272]. The idea is to “unfold”
the grid on a plane (to present it in the two-dimensional space, where the
nodes form a regular lattice). In other words, we are going to work in the
internal coordinates of the grid. In our case, the first internal coordinate (let’s
call it s1) corresponds to the direction, co-oriented with the one-dimensional
invariant grid, the second one (let us call it s2) corresponds to the second slow
direction. By the construction, the coordinate line s2 = 0 line corresponds to
the one-dimensional invariant grid. Units of s1 and s2 is the entropic distance.

Every grid node has two internal coordinates (s1, s2) and, simultaneously,
corresponds to a vector in the concentration space. This allows us to map
any function f(c) from the multi-dimensional concentration space to the two-
dimensional space of the grid. This mapping is defined in a finite number of
points (grid nodes), and can be interpolated (linearly, in the simplest case)
between them. Using coloring and isolines one can visualize the values of the
function in the neighborhood of the invariant manifold. This is meaningful,
since, by the definition, the system spends most of the time in the vicinity
of the invariant manifold, thus, one can visualize the behavior of the system.
As a result of applying this technology, one obtains a set of color illustrations
(a stack of information layers), put onto the grid as a map. This enables
applying the whole family of the well developed methods of working with
the stack of information layers, such as the geographical information systems
(GIS) methods.

Briefly, this technique of the visualization is a useful tool for understand-
ing of dynamical systems. It allows to see simultaneously many different
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Fig. 10.6. Two-dimensional invariant grid as a screen for visualizing different func-
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(see the text for the explanations) along the first and the second slowest directions
on the grid. The corresponding 1D invariant grid is denoted by bold line, the equi-
librium is denoted by square

scenarios of the system behavior, together with different system’s character-
istics.

Let us use the invariant grids for the the model hydrogen burning system
as a screen for visualisation. The simplest functions to visualize are the coor-
dinates: ci(c) = ci. In Fig. 10.6 we displayed four colorings, corresponding to
the four arbitrarily chosen concentrations functions (of H2, O, H and OH;
Fig. 10.6a-d). The qualitative conclusion that can be made from the graphs
is that, for example, the concentration of H2 practically does not change dur-
ing the first fast motion (towards the 1D-grid) and then, gradually changes
to the equilibrium value (the H2 coordinate is “slow”). The O coordinate is
the opposite case, it is the “fast” coordinate which changes quickly (on the
first stage of the motion) to the almost equilibrium value, and it almost does
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not change after that. Basically, the slopes of the coordinate isolines give
some impression of how “slow” a given concentration is Fig. 10.6c shows an
interesting behavior of the OH concentration. Close to the 1D grid it behaves
like a “slow coordinate”, but there is a region on the map where it has a clear
“fast” behavior (middle bottom of the graph).

The next two functions which one could wish to visualize are the entropy
S and the entropy production σ(c) = −dG/dt(c) =

∑
i ln(ci/c

eq
i )ċi. They

are shown on Fig. 10.7a,b.
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Fig. 10.7. Two-dimensional invariant grid as a screen for visualizing different func-
tions defined in the concentrations space. The coordinate axes are entropic distances
(see the text for the explanations) along the first and the second slowest directions
on the grid. The corresponding 1D invariant grid is denoted by bold line, the equi-
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Finally, we visualize the relation between the relaxation times of the fast
motion towards the 2D-grid and the slow motion along it. This is given on
the Fig. 10.7c. This picture allows to make a conclusion that two-dimensional
consideration can be appropriate for the system (especially in the “high H2,
high O” region), since the relaxation times “towards” and “along” the grid
are well separated. One can compare this to the Fig. 10.7d, where the relation
between relaxation times towards and along the 1D-grid is shown.
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