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Abstract. In this work, we present and validate a methodology for coupling
reduced models of detailed combustion mechanisms within the lattice Boltzmann
framework. A detailed mechanism (9 species, 21 elementary reactions) for
modeling reacting mixtures of air and hydrogen is considered and reduced using
the method of invariant grids (MIG). In particular, a 2D quasi-equilibrium grid
is constructed, further refined via the MIG method, stored in the form of tables
and used to simulate a 1D flame propagating freely through a homogeneous
premixed mixture. Comparisons between the detailed and reduced models show
that the technique presented enables one to achieve a remarkable speedup in the
computations with excellent accuracy.
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1. Introduction

The numerical solution of the full set of governing equations, as dictated by modeling of
reactive flows with detailed chemical kinetics, remains a challenging task. The reasons
are as follows. On one hand, there are a large number of conservation equations to be
solved in order to keep track of each chemical species. On the other hand, the reaction
mechanism introduces large differences in the time scales of species dynamics, and the
numerical implementation has to cope with stiffness. The latter aspect has a particularly
negative impact on the explicit schemes, such as the lattice Boltzmann method, where
reducing the time step becomes necessary in order to avoid numerical instabilities. As a
result, the smallest time scales need to be resolved even when one is interested only in the
slow dynamics. In addition, the larger the number of elementary reactions involved in the
detailed mechanism, the more significant the computational effort, due to the evaluation
of reaction rates.
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In contrast, the disparate time scales can be exploited in order to construct a reduced
description of the detailed model. For instance, because of the stiffness, the dynamics of
homogeneous reactive systems is often characterized by a short transient towards a low
dimensional manifold in the concentration space, known as the slow invariant manifold.
The subsequent dynamics is slower and it proceeds along the manifold itself, until a
steady state is reached. Constructing such manifolds can lead to a simpler and less stiff
description of the reactive system; moreover, the interesting slow dynamics can still be
reproduced with high accuracy. Therefore, much effort has been devoted to achieving
that aim; the method of invariant grids (MIG) [4], the intrinsic low dimensional manifold
(ILDM) approach [14] and the computational singular perturbation (CSP) method [15]
are representative examples. The present study intends to investigate the potential of
using reduced kinetics within the lattice Boltzmann framework: to this end, here we use a
reduced description (two degrees of freedom) of a detailed mechanism for reactive mixing
of hydrogen and air, obtained by the MIG.

The paper is organized as follows. In section 2, we briefly review some basics of
reaction kinetics and thermodynamic Lyapunov functions for closed dissipative systems.
For illustration purposes, a one-dimensional reduced description of a simple chain
branching mechanism with two degrees of freedom is discussed in section 3. In section 4,
the implementation of the method of invariant grids is reviewed. The detailed lattice
Boltzmann scheme for simulating reactive flows and the suggested coupling with reduced
chemistry are presented in section 5. The validation study is presented in section 6, where
we consider the propagation of a flame front in a premixed mixture of hydrogen and air.
Finally, conclusions are drawn in section 7.

2. Theoretical background

2.1. Detailed reaction kinetics

Let xq,...,x, be n chemical species participating in a complex reaction mechanism with
r reversible steps,

aslxl_}_"'—i_asnl‘n:ﬁslx1+"'+ﬁsn:pn7 S:]-w”vTa (1)

where a, and [ are stoichiometric coefficients of species i in the reaction step s
for reactants and products, respectively. Let the stoichiometric vectors be a, =
(s1y -y Qsn)y By = (Bs1, .-+, PBsn) and v, = B, — as. The reaction rate of step s is
given by the mass action law:

0,=0f -0, o=k o =k O] @
i=1 i=1

where [X;] is the molar concentration of species i. The forward and the reverse reaction
rate constants kI, k; take on the Arrhenius form

_Eas
ke (T) = AT exp (ﬁ) , (3)
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where A, denotes the pre-exponential factor, 3, the temperature exponent, and F,, is the
activation energy of reaction s. The rate of change of species ¢ is given by

b= 3, () 0 (4)

with forward and reverse reaction rate constants related by the equilibrium constant
K.s =k /k;. A detailed discussion of the theory of chemical kinetics can be found in,
e.g., the classical work of Williams [1].

In the following, we focus on ideal gas mixtures in closed adiabatic reactors with fixed
total pressure p and averaged specific enthalpy h. In this case, any state of the reacting
mixture is fully described by the vector ¥ = (p, h,Yi,..., Y,)T whose temporal evolution
obeys a set of ordinary differential equations (ODEs):

d W, oW\ T
_‘/’:(o,o,wl_l,...,w ) (5)

de p p

where the superscript ¥ denotes transposition, Y; and W, are the mass fraction and
molecular weight of species i, respectively. The mixture enthalpy h and density p can
be explicitly written as

ﬁzzhi(Tm p‘zZWi[XA. (6)

Like in CHEMKIN [2], for any species i, the dependence of the specific enthalpy h; on
temperature T (in kelvins) is represented by a polynomial fit
a2 Qi3 9 | Qidn3 | Q5 g, QAi6
hi(T) = BT (ay + 27 + S804 S0y 4 S0t 4 00, 7
D) R (7)
Here, R denotes the universal gas constant while the coefficients a;; are tabulated
constants. It is worth noting that the temperature 7', corresponding to the state b,
is not explicitly known. Therefore, the evaluation of the right-hand side of (5) is obtained
after computing 7" via iterative solution of the first equation in (6).

2.2. Thermodynamic Lyapunov function

Equation (5) describes the temporal evolution of an adiabatic batch reactor towards a
unique steady state. Due to the second law of thermodynamics, the specific mixture-
averaged entropy (in mass units) 5 of such a reactor monotonically increases, starting
from any initial non-equilibrium condition. In other words, since the function G = —s§
only depends on the state ¥ and must monotonically decrease in time under the dynamics
of (5), it is a Lyapunov function of the system (5). For an ideal gas mixture, G takes the
explicit form
> iz [si (T) — RIn (X;) — RIn (p/prer)] X

G=-5=— = : (8)

where W = Z?:l W; X, pret, X; and s; are the mixture molecular weight, a given
reference pressure, the mole fraction and the specific entropy (in molar units) of species
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i, respectively. The specific entropy s;, according to [2], is assumed to have the following

dependence on the temperature 7"
&anzRQmmT+mT+%ﬁﬂ+%ﬁ%ﬁ%ﬂ+%ﬁ. 9)

Let d be the number of chemical elements involved in the reaction. Let p;, be the number
of atoms of the k th element in species i. Another form of the Lyapunov function of (5)
can be constructed as follows:

d n
G:@+Z<)\k2%§ﬁ>, (10)
k=1 i=1 "

where the Lagrange multipliers Aj, are chosen in such a way that VG|, ; = 0 at the steady
state, with the gradient of G computed for fixed p and h. Because of the conservation of
atoms, the time derivative of (10) is non-positive:

4 .

aG_dG_ - an

dt dt — dt

with the conserved atom mole numbers N, expressed as

—0, (11)

i=1

k=1,....d (12)

3. Example: a chain branching model

To gain a better understanding of some notions discussed later on in the paper, we consider
here a simple kinetic model adopted to illustrate isothermal chain branching mechanisms.
It consists of three species x1, x5 and x3 involved in the following three reactions:

(1) 1 — T9,
(2) x4 22 — 3+ Axo, (13)
(3) T9 — T3,

known as initiation, propagation and termination steps, respectively. The compounds 1,
o and x3 are representative of a reactant, a chain carrier and a product, respectively,
with A denoting a positive chain branching constant. Let k", & and ;" be the forward
reaction rate constants of the three steps (13); the time evolution of the z; and x5 molar
concentrations obeys the following system:

d[X,l] = —k [X1] — K} [X4] [X],
[dt’2] = K [X0] + k(= 1) [X0] [Xo] = k7 [X].

Introducing the dimensionless variables z = [X1]/[XV], y = k' [Xo]/kf, t = k7t and the

(2
parameters € = kj [XV]/kF, ¢ = k[X7]/k} with [X7] denoting a reference concentration,
the rate equations (14) attain a non-dimensional form:
dz dy 1
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Figure 1. Several solution trajectories of (15) in the space (z,y) with e = 0.015,
A=p=2

The system (15) has a single steady state at (z,y) = (0,0). On choosing ¢ < 1, the
propagation step occurs at a faster rate than the initiation step, and the above becomes
a stiff planar system. As a result, typical solution trajectories in the phase space (z,¥),
starting from arbitrary initial conditions, quickly approach a one-dimensional attractor,
and afterwards keep moving along it towards the steady state at a slower rate. Figure 1
shows the case corresponding to € = 0.015 and A = ¢ = 2. In the following, we refer to
such attractors as invariant manifolds of the slow motions, or slow invariant manifolds

(SIM) for short.

3.1. Invariant grid construction

Although the system (15) possesses two degrees of freedom, a one-dimensional description
of it can be attained by extracting the asymptotic slow dynamics, which takes place
along the slow invariant manifold. Therefore, constructing SIM represents a general and
automated approach when seeking for a reduced model of reaction mechanisms. In this
work, manifolds are represented by discrete collections of points in the phase space which
are named grids. Accurate discrete descriptions of slow invariant manifolds are termed
invariant grids, and are computed using the method of invariant grids (MIG).

For illustration purposes, the construction of a one-dimensional reduced description
of (15), under the conditions of figure 1, is discussed below. The method of invariant grids
is an iterative procedure, which aims at constructing the invariant grid by subsequent
refinements from an initial approximation (initial grid). The eigenvector of the first-
derivative matrix J (Jacobian) of (15)

_ afz/az afz/ay _ _1_y —z
T=1a1,/0- 8fy/3y}_[(1+(k—1))y/€ (A-1)z-g)e] 1O

corresponding to the smallest eigenvalue with absolute value, at the origin (z,y) = (0,0),
provides a good approximation of the slow invariant manifold only in a neighborhood of the
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steady state (see, e.g., [14]). Hence, a set of points Gy along the straight line parallel to the
latter eigenvector and passing through the steady state represents an initial approximation
of the slow invariant manifold (squares in figure 1). Let w = [u., u,| be the unit vector
tangent to Gy at an arbitrary node. It proves convenient to define the following orthogonal
projector matrix P, for projection onto the tangent space [u.,u,] of G:

2
P = { U W;y} . (17)
Uyl Uy,

In other words, the matrix P transforms an arbitrary vector into a new one parallel to w.
According to the MIG, a generic node (z°,3°) of the initial grid can be refined as follows:

=246z, yt =%+ oy, (18)

where the correction vector [dz, dy| takes the explicit form
0z
L;y] = (f'=Pfh)ot, (19)

with f = [f., f,], while dt is chosen of the order of a time step for integrating (15) using
the explicit Euler scheme. However, estimates of 0t can also be computed as suggested
in [5]. MIG refinements are discussed in more detail in section 4.2. The collection of
refined nodes forms the new grid G;, which can be further refined until the right-hand
side of (19) becomes smaller than a fixed threshold. For instance, in figure 1 a refined
grid (circles) is obtained after five iterations with §t = 1 x 1072.

Remark. In the case of chemical reactive systems supported by thermodynamic
Lyapunov functions (see section 2.2), the initial grid can be computed using the notion of a
quasi-equilibrium manifold, as discussed in section 4.1. Moreover, a different construction
of the projector matrix P is reviewed in section 4.2 (thermodynamic projector), which
proves convenient in defining the fast directions in a general case (see, e.g., [7,11]).

3.2. Grid based integrator

The slow dynamics of (15) obeys the following reduced equation:

dg

— =IPf" 20

dt U (20)
where ¢ = lc' is a parameter associated with the invariant grid node e. Grid

parameterization must be a unique mapping, and here we assume I = (1,0). Notice
that, though there are no general recipes for choosing the vector I, some suggestions are
presented in section 6.1 and [11,12]. Starting from the initial condition £°; (20) describes
the slow dynamics of the full system (15) integrated from (z°,4"). More specifically, £°
can be chosen as the grid parameter at the intersection point of the invariant grid and
the straight line through (z°;y°) aligned with the fast directions. In our case, due to the
smallness of the parameter ¢ in (15), fast motions occur along y; hence £° = 2°. Rigorous
and more general definitions of fast and slow motions are provided in the literature on
the basis of the notion of a thermodynamic projector [7,11], and spectral decomposition
of the Jacobian matrix [14]. The solution of (15) starting from (z,y) = (0.75,2), and the
corresponding reduced solution of (20) are compared in figure 2. As a result, the reduced
system recovers the asymptotic behavior with high accuracy once the fast dynamics gets
exhausted.

doi:10.1088,/1742-5468/2009/06 /P06013 7
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Figure 2. Comparison between detailed and reduced solutions. Initial condition:
(z,y) = (0.75,2).

4. Model reduction technique

In our approach, we seek the reduced description of a batch reactor under the conditions
described in section 2.1. The model reduction technique follows three steps:

(i) construction of the quasi-equilibrium grid using the algorithm introduced in [11],

(ii) refinement of the quasi-equilibrium grid via MIG iterations in order to get a better
description of the SIM: the invariant grid,

(iii) invariant grid parameterization and construction of tables for lattice Boltzmann flow
solvers.

These steps are briefly reviewed in the following sections.

4.1. Quasi-equilibrium grid

By definition, a ¢-dimensional QEM is a manifold in the space of concentration which
minimizes the Lyapunov function (10) under a set of ¢ linear constraints. Let us consider
the minimization problem

min G st Y HYi=¢, j=1,...,q, (21)
i=1
where {l/ = (1,..., 1)} is a set of ¢ fixed vectors and their choice will be discussed in

section 6.1. Because of the convexity of G, once ¢ values are assigned to the quantities

doi:10.1088,/1742-5468/2009/06 /P06013 8
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&7, the solution of (21) is unique when it exists. For a detailed discussion about the
mathematical properties of (21), the interested reader is referred to [3,4]. Regarding &’
as variables, the full set of constrained minima forms the ¢-dimensional quasi-equilibrium
manifold (QEM) corresponding to the vector set {I7}.

As suggested in [4, 5], the QEM provides a reasonably good initial approximation of
the slow invariant manifold (SIM). Comparisons between QEM and SIM can be found
in [6, 11] for a range of problems.

Before proceeding further, we note that the QEM can be of interest for model
reduction even before any of its refinement is addressed. For instance, the rate-
controlled constrained-equilibrium (RCCE) method uses directly the notion of the QEM
for simplifying reaction mechanisms in combustion [8]-[10].

For the sake of completeness, below we briefly review the quasi-equilibrium grid
algorithm [11] for constructing a discrete analog of a QEM. Let D be the d x n matrix
whose (i, k)-element is p;,/W;. Let E be the (d + q) X n matrix, constructed by adding
the IV vectors as ¢ additional rows to D. Assume that the steady state of (5) is
P’ = (p,h,Y?,...,Y?) while the gradient and the second-derivative matrix of G are

oG *G
Y, ph 9Y;dY; ph

where all the derivatives are computed for fixed pressure and mixture-averaged enthalpy.
A QEM state @' can be computed, in a neighborhood of 1°, by solving the linear algebraic
system

z

1=1

Z (U'p!) @i =0,

i=1

(23)

z

> (o) i = e,

i=1

z

> (1p)) i =0.

i=1
If {py,...,p.} and {t,,....t,_,} are two vector bases in the null space of matrix D and
E, respectively, then

Y= (ph YY) +dVy,. Y04 dY,), (dYh,. L dY) =) epn (24)
=1

Referring to system (23), all derivatives of G are evaluated at 4° and, through the last ¢
equations, we impose that 1! belongs to a Cartesian grid in the space {¢!,...,£9}, with
the fixed parameter ¢;, defining the grid step along £*. Similarly, by solving (23) at ', a

doi:10.1088,/1742-5468/2009/06 /P06013 9
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new QEM point %* can be found. In general, this procedure can be iterated as long as
all the coordinates of the computed state are non-negative. The collection of computed
states is called the quasi-equilibrium grid.

4.2. Refinement procedure

Assuming that the slow dynamics of (5) approximately evolves along a QEM, the
corresponding quasi-equilibrium grid might be directly used for the reduced description
of the detailed system. However, the QEM (and its discrete form) generally provides only
an approximation of the slow invariant manifold [5], [10]-[12], and the method of invariant
grids (MIG) enables us to refine it. A brief discussion on the MIG implementation is in
order (see also the relazation methods in [5,7]).

Assume that, at any QEM point, the tangent plane 7 is defined and spanned by ¢
vectors

u; =0F/0¢, i=1,...,q, (25)

where a smooth function F(&,...,&,), mapping the variables {£', ..., &%} into the state
space {Y1,...,Y,}, is a solution to the problem (21). Typically, the tangent vectors
can be defined at a point of a quasi-equilibrium grid by approximating (25) via finite
differences. Let P be any (n x n) matrix (projector), defined at the quasi-equilibrium
grid point 1, such that the image im(P) = 7 and P? = P. In general, if the vector field
f=(dyy/dt, ..., dY,/dt)T is computed at 1), the invariance defect

Ap)=f-Pf (26)

does not vanish, whereas it does so in the case of an invariant manifold. According to the
MIG, any state of the initial grid ¥ = (p, h,Y7,...,Y,) can be corrected and replaced by
¥* where

P = (p,h,Y1+dY1,....Y, +dY,), (dYy,...,dY,) = 0tA (). (27)

The collection of states 1* forms a new grid, where the matrix P can be updated and
the corrections (27) applied again. The parameter 6¢ has the dimension of time and it
is chosen of the order of magnitude of the time step needed for integrating (5) using
the explicit Euler scheme. This iterative procedure ends when, at any grid point, the
Euclidean norm of the invariance defect, compared to the norm of the vector field f, is
smaller than a fixed threshold. The last set of states is called the invariant grid.
Moreover, we recommend a special construction of P reported below at a given point
1. Let ker(V @) be the plane orthogonal to VG and 70 = 7 Nker(VG), with 7 # 79. Let

the vector w; of 7 fulfil the conditions

VGa; =1, @, Hn" =0, Vn € 0. (28)
Assume that {@s, ..., @, } is a vector basis of 7y such that w; H zle = 0,5, where ¢;; denotes
the Kronecker delta. In the case 7 = 79, let {wq,...,w,} be a vector basis of 7 such that

u; H ﬁjT = 0;5. P is called a thermodynamic projector if it is constructed as follows:

P=P+) P, Pi(i,j)=VGa  P(ij) = (aH) . (29)

k=2

doi:10.1088/1742-5468/2009,/06 /P06013 10
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4.3. Grid tabulation

The slow dynamics of (5) takes place along the invariant grid and obeys the reduced
g-dimensional system
d¢?
dt

=U'Pf", i=1,...,q. (30)

Once the invariant grid is obtained, it can be stored in tables for later use in the flow solver.
The grid parameterization is performed by attaching, to any grid state, the ¢ quantities
&7, evaluated according to (21). The coordinates at every grid point, the corresponding
temperature, the right-hand side of (30) and each component of the projected vector
field PfT are collected in g-dimensional arrays and can be accessed through the grid
parameters &7,

Remark. On the invariant grid, the thermodynamic projector performs fast-slow
motion decomposition of the vector field f. In other words, the fast component of f
belongs to the null space of the matrix (29) (see [7]). For this reason, the projector in (30)
must be thermodynamic, whereas for the refinement procedure (27) we may use a different
projector matrix.

5. Lattice Boltzmann method for reactive flows

We consider here the simplest lattice Boltzmann formulation suitable for simulations of
combustion. To this end, following the suggestion of Yamamoto et al [19], reactive flows
can be simulated with the lattice Boltzmann (LB) method as reported in section 5.1.

Note, however, that more elaborate and complete LB models for mixtures [16, 17] and
compressible flows [18] will be taken into account in the near future, too.

5.1. Original model

Let us consider the 1D three-bit lattice (figure 3). We assume that the flow field is not
affected by the chemical reaction, transport coefficients are constant and Fick’s law applies
to the diffusion. The evolution equation of pressure populations, for the incompressible
model, is

L pa (@) — 2 (0, 0)], (31)

Do (T + €yt + Al) = p,, (x,1) — —
TF

where the equilibrium populations take the form
e (p,v) = wap [14 3 (eav) + § (eav)” — 30°] (32)

with wg = 1/3, wy = w_ = 1/6. The total pressure p and the fluid velocity v read

b= Zpom v = piozeapa' (33)

doi:10.1088/1742-5468/2009,/06 /P06013 11
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Figure 3. D1Q3 stencil. Three discrete velocities on a 1D lattice.

The reference pressure is pg = po/3, po being the constant density of the model in LB
units. Let At be the time step; the relaxation parameter 7y is related to the kinematic
viscosity v by

. 2TF —1
G

Let Ty be a reference temperature; the evolution equations for the temperature and
concentration of species i are written as

v

At. (34)

1 1~ . .
Ty (z+ eq, t + At) =Ty, (z,t) = —— [Ta (x,t) = T4 <T, v)} + waQr,
T
1 (33)
)/ia (l‘ + ) t + At) - Y;a (l‘,t) = - D/ia (ZE, t) - )/i(;q ()/H U)] + waQYm

TY;

where

T=T/Ty=) T.. Yi=) Y, (36)

and the equilibrium populations Taeq, Y1 are expressed as in (32) after replacing p with
T and Yj, respectively. Assume that ¢y is a factor for converting physical time into LB
time units: (¢)pg = (¢)phys/to- The source terms take the explicit form

1 [ oW, w; W,
= " th | toAL, Qy, = Lt At 37
QT TO (; ﬁCp ) 0 7QY1 ﬁ 0 ) ( )

where ¢, is the mean specific heat of the mixture per unit mass at constant pressure. The
thermal diffusivity x and diffusion coefficient D; of species i are related to the relaxation
parameters as follows:

270 — 1 21y — 1
o1y, p o tmcl

At.
5 G (38)

K =
5.2. Hydrodynamic limit

In section 5.1, we briefly review the lattice Boltzmann model for reactive flows originally
presented in [19], where more details can be found. However, it is worth reporting here
the basic assumptions of the model:

There are no external forces.

The chemical reaction does not affect the flow field in an incompressible model.

The transport properties are constant.
The diffusion follows Fick’s law.

Viscous energy dissipation and radiative heat loss are neglected.

doi:10.1088/1742-5468/2009,/06 /P06013 12
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A detailed discussion on fundamental aspects of the lattice Boltzmann equation (31),
derivation of the equilibrium populations (32), relations between transport coefficients
and relaxation parameters (e.g. (34) and (38)) can be found in [20]. According to [19],
the lattice Boltzmann equations (35) simulate, in the hydrodynamic limit, the following
partial differential equations (PDE) written for one-dimensional problems:

or or 0*T w;W;

E + U% = /iw + ZZI —p_cp hi, (39)
and

NG ) AN ) AN

p(at —Hjax) _Dlax (pax)—i_wzwz’ (40)

which account for the conservation of energy and a generic species x;, respectively. It is
worth stressing here that the PDE (39) is valid under the assumption of constant mean
specific heat c¢,. More generally, conservation of energy can be written in terms of the
mixture-averaged enthalpy h as follows:

Oh Oh_ O | SN,

i=1
while (39) is recovered neglecting the dependence of ¢, on temperature, and recording

that h = c,T. As a result, the first equation in (35) can be also expressed in terms of
populations representing the mixture-averaged enthalpy:

o (0 ot + A1) = g (28) = = [ (e.) B3] + 0, Qu. (42)

TT

Here, we have reformulated the temperature evolution equations in terms of dimensionless
enthalpy: h = h/hg, with hy a reference enthalpy. Now, the equilibrium populations and
the heat source term are given by

iLZq = waiz [1 + 3 (eqv) + % (eav)2 — §U2] ,

1 [ Wi (43)
= — h; | toAt.
0+ (z ! ) :

i=1

In the following, the energy conservation equation will be used in the form (42), because
the mixture-averaged enthalpy is an explicit parameter of the reduced model construction,
as illustrated later on in section 6.1.

5.3. Modified algorithm

The slow manifold, constructed by the procedure of section 4, is invariant under the
dynamics of system (5), which only accounts for the chemical source term. Since, at any
lattice point of the domain, the LB equations also contain advection and diffusion terms,
the computed grid is not invariant with respect to the LB dynamics (see figure 4). On the
other hand, the time scales associated with chemical reactions are typically faster than the
time scales of the flow. In this case, we can still use the chemical slow invariant manifold
for speeding up computations. To this end, we suggest the following modifications to the
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Figure 4. Starting from an initial state I*, the LB dynamics runs out of the
chemical slow manifold.
LB algorithm of section 5.1, where the energy equation is written according to (42):
e COLLISION:
e (1) = B (2, 8) = = [ ar,2) = B3 (. 0)]

e STREAMING + REACTION:

ho (z + eq,t + At) = hE (2,1) + waQh,

: (45)
Yo (x+ eq,t + At) = Yo (2,1) + waQy;,

e POPULATION CORRECTION:
Via (5,8) = Vi (,8) + i (46)

The correction step (46) can be understood by referring to figure 4. The LB dynamics
brings the initial state I* (located on the chemical slow manifold) to the point E* (off-
manifold). Nevertheless, assuming that such a manifold is still attractive for the overall
dynamics, E* has to quickly relax to the point M*. This relaxation occurs along the local
fast direction, towards a manifold computed under the fixed mixture enthalpy and element
fractions (12) of state E*. Let (M* — E*)(i) be the ith element of vector (M* — E*). The
correction terms are evaluated using the conditions

Y= (M =E)(i), Y eathia=0, Y eitha=0, (47)

« «

meaning that the zeroth-order moment of Y, collapses from E* to M*, while none of the
other moments are affected. The conditions (47) are written for the 1D lattice of figure 3,
but the same idea can be applied to any lattice.

The procedure described is intended to get rid of the fast motions which require
explicit solvers, such as the LB method, to choose a small time step. Finally, notice that
the source terms in (45) are now obtained from tables via interpolation.
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Figure 5. Schematic representation of the 1D setup.

6. Example: plane flame propagation

In the following, we consider a stoichiometric hydrogen—air mixture entering an adiabatic
channel (constant cross section) under room conditions (7" = 300 K, p = 1 bar) at
fixed velocity. A heat source is placed at the outlet in order to ignite the mixture (see
figure 5). The background flow, from equation (31), keeps both pressure and velocity
fields uniform in space and time. A flame front is formed and propagates upstream
since the laminar flame speed is larger than the flow velocity. For simplicity, we use the
assumption of equal diffusivity D for all species and Lewis number Le = k/D = 1. In this
case, the mixture enthalpy h and the element fractions (12) remain constant throughout
the domain, and the reduced dynamics takes place along the invariant grid constructed
as illustrated in section 4. Notice that the latter assumption is not restricting and a
generalization is obtained by extending the invariant grid with enthalpy and element
fractions as additional degrees of freedom. On the other hand, in premixed systems, those
quantities are conserved up to small fluctuations and, for such applications, the invariant
grid is often sufficient. Finally, in combustion, the pressure p can be considered constant
for most cases.

6.1. 2D reduced description

In our study, the detailed mechanism of Li et al [13] (9 species, 21 elementary reactions)
for hydrogen combustion is considered, and we search for a reduced description with
only two degrees of freedom. To this end, let us construct the 2D quasi-equilibrium
grid for a stoichiometric Ho—air mixture under fixed pressure p = 1 bar and enthalpy
h =2.8kJ kg™, corresponding to the temperature Ty = 300 K for the unburned mixture
Hy + 0.502 + 1.88N,. The vector set {l} in (21) is used to reparameterize the original
variables Y; in terms of new ones ¢/, which are expected to follow a slow dynamics.
Many suggestions for defining slow lumped variables in chemical kinetics are known in
the literature, and for our purposes we use

Yo n Yonu n YHQO’
Wo Wou  Whyo

=) = &= (48)

expressing the total number of moles (slow dissociation/recombination reactions) and free
ozygen (slow reactions where the O—O bond is broken), respectively (see, e.g., [10]). A
different choice of the reduced variables, based on the Jacobian matrix of system (5) at
the steady state, can also be found in [6]. It is important to stress that, though the choice
of {l’} affects the accuracy of the quasi-equilibrium grid in describing the slow manifold,
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Figure 6. Six coordinates of the 2D quasi-equilibrium grid for a stoichiometric
Hy-air mixture, under p = 1 bar and h = 2.8 kJ kg™ 1.

that grid is anyway refined (see section 4.2) and the final result does not depend on
the initial grid. First of all, starting from the steady state, equations (23) are solved
moving along &' with ¢; = 1.8 x 107%; second the grid grows along &2 with &, = &
and the construction ends when the concentration point, corresponding to the unburned
mixture, is reached. The 2D quasi-equilibrium grid, shown in figure 6, is relaxed to the
invariant grid using equation (27), where the projector is thermodynamic and constructed
as illustrated in (29). We have chosen the parameter 6t = 1 x 107® and the convergence
ratio between the invariance defect and the vector field was set at |A|/|f] < 0.01 at
any grid node. Whenever that ratio keeps increasing while refining, the corresponding
grid node is discarded. The 2D refined grid is shown in figure 7, and it is compared to
the initial quasi-equilibrium grid in figure 8. Notice that in the low temperature region
(T" < 800 K), the invariant grid is not convergent, meaning that a 2D description is
not enough and the dimension of the slow invariant manifold is larger than 2. The grid
coordinates, the thermodynamic projection of the vector field f and the two parameters
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Figure 7. Six coordinates of the refined 2D invariant grid for a stoichiometric
Hy-air mixture, under p = 1 bar and h = 2.8 kJ kg~ !.

&1, &2 are stored in two-dimensional arrays and each grid node is identified by an index
pair (7,7). Any tabulated quantity @, associated with a generic parameter pair (&', £?),

is reconstructed by linear bi-variate interpolation:
Q = 1aQa + 15Qp + tcQc + tpQp,
where A, B, C, D are the grid nodes corresponding to (i, j), (i+1,j), (¢,j+1), (i+1,j+1),
respectively, while ¢4, tp, tc, tp are the Lagrangian weights
ta=(1—m) (1l —m), tp =m (1 —ma), (50)

1o = (1 —my) ma, Lp = M T2,

with m = (§' = &4)/(§p — €4) and m = (62 — €3)/(§& — €3).

(49)

6.2. Setup and comparisons

In the simulation, the length of the adiabatic channel is L. = 5 mm, the inlet velocity
1 and the species diffusivity D = 5 x 107° m? s~!. All quantities given in

17

Vi, = 1.2 m s~
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Figure 8. OH coordinate: 2D quasi-equilibrium grid (dashed lines), 2D invariant
grid (continuous lines), trajectory starting from the unburned mixture (squares).

physical units of time (s) and length (m) are converted into LB units, dividing by the
factors

Lc Vin S Lc S
ty = (/A’ Lo = @’ (51)
(Le/vin)Lp (Le)rp
respectively. Let Ax be the space step, the time step
Ax
AtLB = (—) s Atphys = toAtLB (52)
€ /B

is set by defining the ratio (L./vi)Lp, and e is the magnitude of the non-zero lattice
velocities of figure 3. The initial profiles are flat, corresponding to the unburned mixture
with 7" = 300 K, everywhere except in a neighborhood of the outlet, where the temperature
peaks up to T' = 1400 K, in order to let the mixture ignite. At the inlet, the initial
conditions are imposed while, at the outlet, the fully developed boundary conditions
are used for every field. Because of the stiffness of the chemical source term, a stable
computation, carried out by using the model in section 5.1, requires Atppys < 6 x 1078 s.
Notice that, due to the unity Lewis number, the enthalpy is uniform in space and the
temperature is given by solving the first equation in (6). An identical setup can also be
simulated using the modified algorithm of section 5.3, where the reduced description is
provided either by the 2D quasi-equilibrium grid or by the refined invariant grid. The
latter option is chosen; the result is shown in figure 9 and compared to the solution of
the original detailed reaction model. The invariant grid does not extend into the low
temperature zone: here, the source terms are evaluated as in the original model and the
correction step (46) is not performed. For simplicity, on the basis of the assumption that
the variables (48) are slow over the whole concentration space, the point M* of figure 4
is the grid state which corresponds to the pair (£!,£?) computed at E*. The agreement
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Figure 9. Fields along the channel at a given time: detailed model (continuous
line) and reduced model (circles).

between the two models is excellent and, using the modified algorithm, computations are
stable with the time step At pys < 5x 107" s. Moreover, in the latter case the extra effort,
due to an additional step (46), is counterbalanced by savings during the computation of the
chemical source terms: those quantities do indeed demand the evaluation of exponential
functions (see (2) and (3)), whereas for the reduced model a fast look-up table is adopted.
As a result, in our simulations, the modified sequence of section 5.3, with interpolated
source terms Qy,, is about 30% faster than the detailed reaction algorithm, where the Qy,
are explicitly computed. Overall, the suggested methodology exhibits a speedup of ten
times.

6.3. Dimension reduction

Let all species have equal diffusivity D; a projection of the species evolution equations
in (35) onto the invariant grid, according to the slow variables (48), gives

~ ~ 1 r- ~
hJMﬁM+U—%@ﬁ:——Vﬂm%wme+w@m

T
| | 1. o (53)
ég{ (l‘ + €a,t + 1) - fgz ($7t) = _7__§ [fg((x,t) - égyeq (fjav)] +waQ§j-
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reconstructed with parameters of figure 10.

Here, the equilibrium populations for the reduced variables &7 read

£ = w143 (ewr) + 3 (ea0)” — 207], oY

where D = At(21: —1)/6, Qe = Y., UQy,, & = S0 UV, = 32_ & Notice
that {I = (H,...,l2)} is the set of vectors introduced for the quasi-equilibrium grid
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Figure 12. Flame front position versus time.

parameterization in section 4.1 and defined in section 6.1. Now, the setup of section 6.2
can be simulated by solving for only the two lumped variables &/ using equations (53)
and tabulated source terms ()¢, while the flow dynamics still follows (31). The result
is shown in figure 10, and all relevant fields Y;(&', &%), T(£Y,€?) can be reconstructed
by interpolation on the invariant grid in post-processing. Here, in the low temperature
region, a 1D induction manifold is used, instead of detailed chemistry. The induction
manifold is obtained by a fit from the detailed solution and it is parameterized by &!.
This time, due to the slow dynamics of £/, computations are stable with At <1 x 107%:
yet, as reported in figure 11, the detailed solution is reproduced with excellent accuracy.
It is worth stressing that a remarkable saving, in terms of memory, is now achieved, too.
Indeed, for the 1D problem presented, the number of density functions, stored at each
lattice node, is one fourth. Whenever the hypothesis of equal diffusivity can be applied,
such an approach is revealed to be extremely convenient, especially in the case of the
larger population set needed for 2D and 3D reactive flows. Finally, in figure 12 the flame
position is shown as a function of time. The flame is defined as the point with the highest
heat release (), at a given time. The linear dependence indicates that the flame moves at
constant speed given by Sy = slope + vy, = 2.26 m s~ 1. The value of the burning velocity
S, is in perfect accordance with the detailed model prediction (up to 2%) and in good
agreement with experimental data (see, e.g., [21]).

7. Conclusions and outlook

In this paper, we have suggested a methodology for using accurate reduced chemical
kinetics in combination with a lattice Boltzmann solver for simulating reactive flows.
It has been shown that the MIG is suitable for providing the reduced description of the
chemistry, and this approach enables us to cope with stiffness when solving the LB species
equations. This is particularly desirable in the case of explicit solvers, and it results in
a remarkable speedup. Moreover, in applications where differential diffusivity effects can
be neglected, the computational effort and memory demand can be drastically reduced in
a very simple manner. In the near future, we plan to further investigate the performance
of the technique presented for both more complex flows (2D, 3D) and more demanding
fuels (e.g. simple hydrocarbon fuels such as methane).
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