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Abstract

A recently introduced systematic approach to derivations of the macroscopic dynamics from
the underlying microscopic equations of motions in the short-memory approximation (Phys.
Rev. E 63 (2001) 066 124) is presented in detail. The essence of this method is a consistent
implementation of Ehrenfest’s idea of coarse-graining, realized via a matched expansion of both
the microscopic and the macroscopic motions. Applications of this method to a derivation of
the nonlinear Vlasov–Fokker–Planck equation, di<usion equation and hydrodynamic equations
of the =uid with a long-range mean >eld interaction are presented in full detail. The advantage
of the method is illustrated by the computation of the post-Navier–Stokes approximation of the
hydrodynamics which is shown to be stable unlike the Burnett hydrodynamics.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The question of how irreversibility can be derived from reversible dynamics is one of
the classical problems in physics. The >rst solution has been suggested by Boltzmann
[1], and it provoked much discussion at that time. An alternative approach has been
given by Ehrenfest [2] who coined the notion of coarse-graining.
The impact of Ehrenfest’s ideas on the long-standing discussions of the foundations

of the nonequilibrium thermodynamics is enormous (see, e.g. Refs. [3,4]). In a re-
cent paper [5] we have given a novel formalization of Ehrenfest’s approach. The main
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focus of Ref. [5] was the mathematical consistency of the formalization, whereas appli-
cations were only brie=y indicated. The goal of the present paper is to give a detailed
description of the method, focusing on how to apply it to various typical examples.
The starting point of our construction are microscopic equations of motion. A tra-

ditional example of the microscopic description is the Liouville equation for classical
particles. However, we need to stress that the distinction between “micro” and “macro”
is always context dependent. For example, Vlasov’s equation describes the dynamics
of the one-particle distribution function. In one statement of the problem, this is a mi-
croscopic dynamics in comparison to the evolution of hydrodynamic moments of the
distribution function. In a di<erent setting, this equation itself is a result of reducing
the description from the microscopic Liouville equation.
The problem of reducing the description includes a de>nition of the microscopic

dynamics, and of the macroscopic variables of interest, for which equations of the
reduced description must be found. The next step is the construction of the initial
approximation. This is the well known quasi-equilibrium approximation, which is the
solution to the variational problem, S → max, where S in the entropy, under given
constraints. This solution assumes that the microscopic distribution functions depend on
time only through their dependence on the macroscopic variables. Direct substitution
of the quasi-equilibrium distribution function into the microscopic equation of motion
gives the initial approximation to the macroscopic dynamics. All further corrections
can be obtained from a more precise approximation of the microscopic as well as of
the macroscopic trajectories within a given time interval � which is the parameter of
our method.
The method described here has several clear advantages:

(i) It allows to derive complicated macroscopic equations, instead of writing them
ad hoc. This fact is especially signi>cant for the description of complex =uids.
The method gives explicit expressions for relevant variables with one unknown
parameter (�). This parameter can be obtained from the experimental data.

(ii) Another advantage of the method is its simplicity. For example, in the case where
the microscopic dynamics is given by the Boltzmann equation, the approach avoids
evaluation of Boltzmann collision integral.

(iii) The most signi>cant advantage of this formalization is that it is applicable to
nonlinear systems. Usually, in the classical approaches to reduced description, the
microscopic equation of motion is linear. In that case, one can formally write
the evolution operator in the exponential form. Obviously, this does not work
for nonlinear systems, such as, for example, systems with mean >eld interactions.
The method which we are presenting here is based on mapping the expanded
microscopic trajectory into the consistently expanded macroscopic trajectory. This
does not require linearity. Moreover, the order-by-order recurrent construction can
be, in principle, enhanced by restoring to other types of approximations, like PadOe
approximation, for example, but we do not consider these options here.

In the present paper we discuss in detail applications of the method [5] to derivations
of macroscopic equations in various cases, with and without mean >eld interaction
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potentials, for various choices of macroscopic variables, and demonstrate how computa-
tions are performed in the higher orders of the expansion. The structure of the paper is
as follows: In Section 2, for the sake of completeness, we describe brie=y the formaliza-
tion of Ehrenfest’s approach [5]. We stress the rôle of the quasi-equilibrium approxima-
tion as the starting point for the constructions to follow. We derive explicit expressions
for the correction to the quasi-equilibrium dynamics, and conclude this section with the
entropy production formula and its discussion. In Section 3, we begin the discussion
of applications. The >rst example is the derivation of the Fokker–Planck equation from
the Liouville equation. In Section 4 we use the present formalism in order to derive
hydrodynamic equations. Zeroth approximation of the scheme is the Euler equations
of the compressible nonviscous =uid. The >rst approximation leads to the system of
Navier–Stokes equations. Moreover, the approach allows to obtain the next correction,
so-called post-Navier–Stokes equations. The latter example is of particular interest. In-
deed, it is well known that post-Navier–Stokes equations as derived from the Boltzmann
kinetic equation by the Chapman–Enskog method (Burnett and super-Burnett hydro-
dynamics) su<er from unphysical instability already in the linear approximation [6].
We demonstrate it by the explicit computation that the linearized higher-order hydro-
dynamic equations derived within our method are free from this drawback. In Section
5, we derive macroscopic equations in the case of the nonlinear microscopic dynamics
(hydrodynamic equations from the Vlasov kinetic equation). Signi>cance of this exam-
ple is that methods based on the projection operator approach [7–9], are inapplicable to
nonlinear systems. We show in detail how this problem is solved on the basis of our
method.

2. General construction

Let us consider a microscopic dynamics given by an equation

ḟ = J (f) ; (1)

where f(x; t) is a distribution function over the phase space x at time t, and where
operator J (f) may be linear or nonlinear. We consider linear macroscopic variables
Mk = 
k(f), where operator 
k maps f into Mk . The problem is to obtain closed
macroscopic equations of motion, Ṁk = �k(M). This is achieved in two steps: First,
we construct an initial approximation to the macroscopic dynamics and, second, this
approximation is further corrected on the basis of the coarse-gaining.
The initial approximation is the quasi-equilibrium approximation, and it is based on

the entropy maximum principle under >xed constraints [10,11]:

S(f) → max; 
(f) =M ; (2)

where S is the entropy functional, which is assumed to be strictly concave, and M
is the set of the macroscopic variables {M}; and 
 is the set of the corresponding
operators. If the solution to the problem (2) exists, it is unique thanks to the concavity
of the entropy functionals. Solution to Eq. (2) is called the quasi-equilibrium state,
and it will be denoted as f∗(M). The classical example is the local equilibrium of
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the ideal gas: f is the one-body distribution function, S is the Boltzmann entropy,

 are >ve linear operators, 
(f) =

∫ {1; v; v2}f dv, with v the particle’s velocity; the
corresponding f∗(M) is called the local Maxwell distribution function.
If the microscopic dynamics is given by Eq. (1), then the quasi-equilibrium dynamics

of the variables M reads

Ṁ k = 
k(J (f∗(M)) = �∗
k : (3)

The quasi-equilibrium approximation has important property, it conserves the type
of the dynamics: If the entropy monotonically increases (or not decreases) due to
Eq. (1), then the same is true for the quasi-equilibrium entropy, S∗(M) = S(f∗(M)),
due to the quasi-equilibrium dynamics (3). That is, if

Ṡ =
9S(f)
9f ḟ =

9S(f)
9f J (f)¿ 0 ;

then

Ṡ∗ =
∑
k

9S∗
9Mk

Ṁ k =
∑
k

9S∗
9Mk


k(J (f∗(M)))¿ 0 : (4)

Summation in k always implies summation or integration over the set of labels of the
macroscopic variables.
Conservation of the type of dynamics by the quasi-equilibrium approximation is

a simple yet a general and useful fact. If the entropy S is an integral of motion
of Eq. (1) then S∗(M) is the integral of motion for the quasi-equilibrium Eq. (3).
Consequently, if we start with a system which conserves the entropy (for example,
with the Liouville equation) then we end up with the quasi-equilibrium system which
conserves the quasi-equilibrium entropy. For instance, if M is the one-body distribution
function, and (1) is the (reversible) Liouville equation, then (3) is the Vlasov equation
which is reversible, too. On the other hand, if the entropy was monotonically increasing
on solutions to Eq. (1), then the quasi-equilibrium entropy also increases monotonically
on solutions to the quasi-equilibrium dynamic equations (3). For instance, if Eq. (1)
is the Boltzmann equation for the one-body distribution function, and M is a >nite set
of moments (chosen in such a way that the solution to the problem (2) exists), then
(3) are closed moment equations for M which increase the quasi-equilibrium entropy
(this is the essence of a well known generalization of Grad’s moment method).

2.1. Enhancement of quasi-equilibrium approximations for entropy-conserving
dynamics

The goal of the present section is to describe the simplest analytic implementation,
the microscopic motion with periodic coarse-graining. The notion of coarse-graining
was introduced by Ehrenfests in their seminal work [2]: The phase space is partitioned
into cells, the coarse-grained variables are the amounts of the phase density inside the
cells. Dynamics is described by the two processes, by the Liouville equation for f,
and by periodic coarse-graining, replacement of f(x) in each cell by its average value
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M
·

ϕ M( )=

f· J f( )= f

M

f ∗

µµµ

Fig. 1. Coarse-graining scheme. f is the space of microscopic variables, M is the space of the macroscopic
variables, f∗ is the quasi-equilibrium manifold, 
 is the mapping from the microscopic to the macroscopic
space.

in this cell. The coarse-graining operation means forgetting the microscopic details, or
of the history.
From the perspective of general quasi-equilibrium approximations, periodic coarse-

graining amounts to the return of the true microscopic trajectory on the quasi-
equilibrium manifold with the preservation of the macroscopic variables. The motion
starts at the quasi-equilibrium state f∗

i . Then the true solution fi(t) of the microscopic
equation (1) with the initial condition fi(0)=f∗

i is coarse-grained at a >xed time t=�,
solution fi(�) is replaced by the quasi-equilibrium function f∗

i+1 =f
∗(
(fi(�))). This

process is sketched in Fig. 1.
From the features of the quasi-equilibrium approximation it follows that for the

motion with periodic coarse-graining, the inequality is valid,

S(f∗
i )6 S(f∗

i+1) ; (5)

the equality occurs if and only if the quasi-equilibrium is the invariant manifold of the
dynamic system (1). Whenever the quasi-equilibrium is not the solution to Eq. (1),
the strict inequality in (5) demonstrates the entropy increase.
In other words, let us assume that the trajectory begins at the quasi-equilibrium

manifold, then it takes o< from this manifold according to the microscopic evolution
equations. Then, after some time �, the trajectory is coarse-grained, that is the, state
is brought back on the quasi-equilibrium manifold keeping the values of the macro-
scopic variables. The irreversibility is born in the latter process, and this construction
clearly rules out quasi-equilibrium manifolds which are invariant with respect to the
microscopic dynamics, as candidates for a coarse-graining. The coarse-graining indi-
cates the way to derive equations for macroscopic variables from the condition that the
macroscopic trajectory, M (t), which governs the motion of the quasi-equilibrium states,
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f∗(M (t)), should match precisely the same points on the quasi-equilibrium manifold,
f∗(M (t + �)), and this matching should be independent of both the initial time, t,
and the initial condition M (t). The problem is then how to derive the continuous time
macroscopic dynamics which would be consistent with this picture. The simplest real-
ization suggested in Ref. [5] is based on using an expansion of both the microscopic
and the macroscopic trajectories. Here we present this construction to the third order
accuracy, in a general form, whereas only the second-order accurate construction has
been discussed in Ref. [5].
Let us write down the solution to the microscopic equation (1), and approximate this

solution by the polynomial of third oder in �. Introducing notation, J ∗ = J (f∗(M (t))),
we write,

f(t + �) = f∗ + �J ∗ +
�2

2
9J ∗
9f J ∗ +

�3

3!

(
9J ∗
9f

9J ∗
9f J ∗ +

92J ∗
9f2 J

∗J ∗
)
+ o(�3) :

(6)

Evaluation of the macroscopic variables on the function (6) gives

Mk(t + �) =Mk + ��∗
k +

�2

2

k

(
9J ∗
9f J ∗

)

+
�3

3!

{

k

(
9J ∗
9f

9J ∗
9f J ∗

)
+ 
k

(
92J ∗
9f2 J

∗J ∗
)}

+ o(�3) ; (7)

where �∗
k = 
k(J ∗) is the quasi-equilibrium macroscopic vector >eld (the right-hand

side of Eq. (3)), and all the functions and derivatives are taken in the quasi-equilibrium
state at time t.
We shall now establish the macroscopic dynamic by matching the macroscopic and

the microscopic dynamics. Speci>cally, the macroscopic dynamic equations (3) with
the right-hand side not yet de>ned, give the following third-order result:

Mk(t + �) =Mk + ��k +
�2

2

∑
j

9�k
9Mj

�j

+
�3

3!

∑
ij

(
92�k
9MiMj

�i�j +
9�k
9Mi

9�i
9Mj

�j

)
+ o(�3) : (8)

Expanding functions �k into the series �k =R
(0)
k + �R(1)k + �2R(2)k + · · ·, (R(0)k =�∗), and

requiring that the microscopic and the macroscopic dynamics coincide to the order of
�3, we obtain the sequence of corrections for the right-hand side of the equation for
the macroscopic variables. Zeroth order is the quasi-equilibrium approximation to the
macroscopic dynamics. The >rst-order correction gives:

R(1)k =
1
2

{

k

(
9J ∗
9f J ∗

)
−
∑
j

9�∗
k

9Mj
�∗
j

}
: (9)
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The next, second-order correction has the following explicit form:

R(2)k =
1
3!

{

k

(
9J ∗
9f

9J ∗
9f J ∗

)
+ 
k

(
92J ∗
9f2 J

∗J ∗
)}

− 1
3!

∑
ij

(
9�∗

k

9Mi

9�∗
i

9Mj
�∗
j

)

− 1
3!

∑
ij

(
92�∗

k

9Mi9Mj
�∗
i �

∗
j

)
− 1

2

∑
j

(
9�∗

k

9Mj
R(1)j +

9R(1)j
9Mj

�∗
j

)
: (10)

Further corrections are found by the same token. Eqs. (9)–(10) give explicit closed
expressions for corrections to the quasi-equilibrium dynamics to the order of accuracy
speci>ed above. They are used below in various speci>c examples.

2.2. Entropy production

The most important consequence of the above construction is that the resulting con-
tinuous time macroscopic equations retain the dissipation property of the discrete time
coarse-graining (5) on each order of approximation n¿ 1. Let us >rst consider the en-
tropy production formula for the >rst-order approximation. In order to shorten notations,
it is convenient to introduce the quasi-equilibrium projection operator,

P∗g=
∑
k

9f∗

9Mk

k(g) : (11)

It has been demonstrated in Ref. [5] that the entropy production,

Ṡ∗(1) =
∑
k

9S∗
9Mk

(R(0)k + �R(1)k ) ;

equals

Ṡ∗(1) =− �
2
(1− P∗)J ∗

92S∗
9f9f

∣∣∣∣
f∗

(1− P∗)J ∗ : (12)

Eq. (12) is nonnegative de>nite due to concavity of the entropy. Entropy production
(12) is equal to zero only if the quasi-equilibrium approximation is the true solution
to the microscopic dynamics, that is, if (1 − P∗)J ∗ ≡ 0. While quasi-equilibrium
approximations which solve the Liouville equation are uninteresting objects (except, of
course, for the equilibrium itself), vanishing of the entropy production in this case is
a simple test of consistency of the theory. Note that the entropy production (12) is
proportional to �. Note also that projection operator does not appear in our consideration
a priory, rather, it is the result of exploring the coarse-graining condition in the previous
section.
Though Eq. (12) looks very natural, its existence is rather subtle. Indeed, Eq. (12)

is a di<erence of the two terms,
∑

k 
k(J
∗9J ∗=9f) (contribution of the second-order

approximation to the microscopic trajectory), and
∑

ik R
(0)
i 9R

(0)
k =9Mi (contribution of the

derivative of the quasi-equilibrium vector >eld). Each of these expressions separately
gives a positive contribution to the entropy production, and Eq. (12) is the di<erence of
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the two positive de>nite expressions. In the higher order approximations, these subtrac-
tions are more involved, and explicit demonstration of the entropy production formulae
becomes a formidable task. Yet, it is possible to demonstrate the increase-in-entropy
without explicit computation, though at a price of smallness of �. Indeed, let us denote
Ṡ∗(n) the time derivative of the entropy on the nth order approximation. Then∫ t+�

t
Ṡ∗(n)(s) ds= S

∗(t + �)− S∗(t) + O(�n+1) ;

where S∗(t + �) and S∗(t) are true values of the entropy at the adjacent states of the
H -curve. The di<erence �S = S∗(t+ �)− S∗(t) is strictly positive for any >xed �, and,
by Eq. (12), �S ∼ �2 for small �. Therefore, if � is small enough, the right-hand side
in the above expression is positive, and

�Ṡ∗(n)(�(n))¿ 0 ;

where t6 �(n)6 t+�. Finally, since Ṡ∗(n)(t)= Ṡ
∗
(n)(s)+O(�n) for any s on the segment

[t; t + �], we can replace Ṡ∗(n)(�(n)) in the latter inequality by Ṡ∗(n)(t). The sense of this
consideration is as follows: Since the entropy production formula (12) is valid in the
leading order of the construction, the entropy production will not collapse in the higher
orders at least if the coarse-graining time is small enough. More re>ned estimations
can be obtained only from the explicit analysis of the higher-order corrections.

2.3. Relation to the work of Lewis

Among various realizations of the coarse-graining procedures, the work of Lewis
[12] appears to be most close to our approach. It is therefore pertinent to discuss the
di<erences. Both methods are based on the coarse-graining condition,

Mk(t + �) = 
k(T�f∗(M (t))) ; (13)

where T� is the formal solution operator of the microscopic dynamics. Above, we
applied a consistent expansion of both, the left-hand side and the right-hand side of
the coarse-graining condition (13), in terms of the coarse-graining time �. In the work
of Lewis [12], it was suggested, as a general way to exploring condition (13), to write
the >rst-order equation for M in the form of the di<erential pursuit,

Mk(t) + �
dMk(t)

dt
≈ 
k(T�f∗(M (t))) : (14)

In other words, in the work of Lewis [12], the expansion to the >rst order was con-
sidered on the left (macroscopic)-hand side of Eq. (13), whereas the right-hand side
containing the microscopic trajectory T�f∗(M (t)) was not treated on the same footing.
Clearly, expansion of the right-hand side to >rst order in � is the only equation which
is common in both approaches, and this is the quasi-equilibrium dynamics. However,
the di<erence occurs already in the next, second-order term (see Ref. [5] for details).
Namely, the expansion to the second order of the right-hand side of Lewis’ equation
(14) results in a dissipative equation (in the case of the Liouville equation, for ex-
ample) which remains dissipative even if the quasi-equilibrium approximation is the
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exact solution to the microscopic dynamics, that is, when microscopic trajectories once
started on the quasi-equilibrium manifold belong to it in all the later times, and thus
no dissipation can be born by any coarse-graining.
On the other hand, our approach assumes a certain smoothness of trajectories so

that application of the low-order expansion bears physical signi>cance. For example,
while using lower-order truncations it is not possible to derive the Boltzmann equa-
tion because in that case the relevant quasi-equilibrium manifold (N -body distribution
function is proportional to the product of one-body distributions, or uncorrelated states,
see next section) is almost invariant during the long time (of the order of the mean
free =ight of particles), while the trajectory steeply leaves this manifold during the
short-time pair collision. It is clear that in such a case lower-order expansions of the
microscopic trajectory do not lead to useful results. It has been clearly stated by Lewis
[12], that the exploration of condition (13) depends on the physical situation, and how
one makes approximations. In fact, derivation of the Boltzmann equation given by
Lewis on the basis of condition (13) does not follow the di<erential pursuit approxi-
mation: As is well known, the expansion in terms of particle’s density of the solution
to the BBGKY hierarchy is singular, and begins with the linear in time term. Assuming
the quasi-equilibrium approximation for the N -body distribution function under >xed
one-body distribution function, and that collisions are well localized in space and time,
one gets on the right-hand side of Eq. (13),

f(t + �) = f(t) + n�JB(f(t)) + o(n) ;

where n is particle’s density, f is the one-particle distribution function, and JB is
the Boltzmann’s collision integral. Next, using the mean-value theorem on the left-
hand side of Eq. (13), the Boltzmann equation is derived (see also a recent elegant
renormalization-group argument for this derivation [13]).

We stress that our approach of matched expansion for exploring the coarse-graining
condition (13) is, in fact, the exact (formal) statement that the unknown macroscopic
dynamics which causes the shift of Mk on the left-hand side of Eq. (13) can be recon-
structed order-by-order to any degree of accuracy, whereas the low-order truncations
may be useful for certain physical situations. A thorough study of the cases beyond
the lower-order truncations is of great importance which is left for future work.

3. Vlasov–Fokker–Planck kinetic equation

In this section we derive kinetic equations based on the approach formulated above.
Here microscopic dynamics is given by the N -particle Liouville equation. Macro-
scopic variable is the one-particle distribution function. The solution to the varia-
tional problem (2) is the approximation of the absence of correlations. In this case
the quasi-equilibrium N -particle distribution function is proportional to the product of
the one-particle distribution functions. On the basis of this quasi-equilibrium we
obtain the Vlasov equation, as the zeroth approximation, and the Fokker–Planck equa-
tion, as the next correction.
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The dynamics of the ensemble of N classical point particles interacting by a pair
potential is given by the Liouville equation,

9wN
9t = LwN = {H;wN}

=
∑
ij

(
9�(|ri − rj|)

9ri
9wN
9pi

+
9U (ri)
9ri

9wN
9pi

− pi
m
9wN
9ri

)
; (15)

where wN is the N -particle distribution function,

wN = wN (p1; : : : pN ; r1; : : : rN ; t) :

It is normalized to one (
∫
wN dp1 : : : drN = 1). L is the Liouville operator (Poisson

bracket), H is classical Hamilton function, �(|ri − rj|) describes interaction between
particles with indices i and j, U (ri) is an external >eld. Here, and in every case later,
summation is assumed over the total number of particles. The indices i and j take
values from 1 to N independently.
The macroscopic variable is the one-particle distribution function f(p; r; t). The lat-

ter satis>es the normalization condition
∫
f(p; r; t) dr dp = N . The mapping of the

microscopic variables into the space of macroscopic variables is given by the follow-
ing operator:


 =
∑
i

∫
�(x − yi) dy1 : : : dyN ; (16)

where x denotes the point (p; r) in the phase space. The solution to the variational
problem (2) has the form

w∗
N (x1; : : : ; xN ; t) = N

−N∏
i

f(xi; t) : (17)

Before proceeding further, a remark on the choice of the one-particle distribution
function as the macroscopic variable is in order. The total energy of the system under
consideration can be expressed as a linear functional of the two-particle distribution
function rather than in terms of the one-particle distribution. For that reason, when only
the one-particle distribution is chosen for the macroscopic variable, the coarse-graining
procedure must be supplemented by a thermostatting procedure in order to keep the
energy balance in the system intact. While it is possible to take care of the energy con-
servation through introducing extra terms into the Liouville equation describing inter-
actions with the thermostat, we will implement thermostatting after the coarse-graining.
Now we proceed with executing the formalism developed in the previous sections.
The quasi-equilibrium (conservative) dynamics in the space of the macroscopic vari-

ables is given by the action of operator (16) on the microscopic equation of motion (15).
9f(x; t)
9t =

∑
i

∫
�(x − yi) dy1 : : : dyN

×
∑
k


9U ("k)

9"k
9w∗

N

9#k
− pk
m
9w∗

N

9"k
+
∑
l�=k

9�(|"k − "l|)
9"k

9w∗
N

9#k


 :
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In order to avoid a confusion, we used variables "; #, and y under integrals instead
of r, p, and x, respectively. Thus, we obtain:

9f(x; t)
9t +

p
m
9f(x; t)
9r − 9U (r)

9r
9f(x; t)
9p + F(r; t)

9f(x; t)
9p = 0 ; (18)

where

F(r; t) =
∫ 9�(|r − "|)

9r f(y; t) dy (19)

is the mean >eld interaction force. Eq. (18) has been >rst derived by Vlasov, and is
usually applied to description of plasma without collisions [14,15].
Now we are going to obtain dissipative correction to the Vlasov equation (18) based

on the approach developed above. For the sake of simplicity we omit external >eld
term. Let us begin with the second term in expression (9).

9�∗

9M �∗ =
( p
m

)2 9
9r

(
9f
9r

)
+

p
m
9
9r

(
9f
9p F(r)

)
+
9f
9p &(r; t)

+F(r; t)
9
9p

(
p
m
9f
9r

)
+ F(r; t)

9
9p

(
9f
9pF(r; t)

)
; (20)

where

&(r; t) =
1
m

∫ 9�(|r − r′|)
9r

(
v′
9f(x′; t)
9r′

)
dx′ : (21)

First term in Eq. (9) is proportional to

9J ∗
9f J ∗ = L2w∗

N

=


∑

i

− pi
m
9
9ri

+
∑
i; j �=i

9�(|ri − rj|)
9ri

9
9pi




×

∑

k

− pk
m
9
9rk

+
∑
k;l �=i

9�(|rk − rl|)
9rk

9
9pk




×
∏
s

f(xs; t)N−N ; (22)

where indices i; j; k; and l enumerate particles in the system.
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Removing the brackets in (22), we obtain
∑

ik

pipk
m2

92
9ri9rk

− 2
∑
i;l; k

pi
m
9�(|rk − rl|)

9rk
92

9ri9pk
−
∑
ij

1
m
9�(|ri − rj|)

9ri
9
9pi

+
∑
ijkl

9�(|ri − rj|)
9rk

9�(|rk − rl|)
9rk

92
9pi9pk


∏

s

f(xs; t)N−N ; (23)

where j �= i and k �= l.
Let us now consider the >rst term in (23) under the action of the operator (16). The

result is not equal to zero only for i = k. In this case we have:( p
m

)2 9
9r

(
9f
9r

)
:

Note that this term is cancelled by the same term in Eq. (20). The second and the
third term in Eq. (23) do not contribute to the >nal result by the same reason.
Let us consider the last term in (23), whose contribution is nontrivial. It is:∑

p

∫
�(x − yp)

∑
ijkl

9�(|ri − rj|)
9ri

9�(|rk − rl|)
9rk

× 92
9pi9pk

∏
s

f(ys; t)N−Ndy1::dyN ; (24)

where k �= l and i �= j.
(i) For j = l, expression (24) gives

92f
9p2

∫ (9�(|r − r′|)
9r

)2
f(x′) dx′

NN−2N (N − 1)
NN

: (25)

In the thermodynamic limit (N → ∞) expression (25) becomes equal to the following:

92f
9p2

∫ (9�(|r − r′|)
9r

)2
f(x′) dx′ : (26)

(ii) For j �= l, expression (24) gives

92f
9p2

(∫ 9�(|r − r′|)
9r f(x′) dx′

)2 NN−3(N − 1)2

NN−1 : (27)

Combining expressions (26) and (27) with the last term in the equation (20), we
obtain(

− 1
N

+
1
N 2

)
92f
9p2

(∫ 9�(|r − r′|)
9r f(x′) dx′

)2
:

In the thermodynamic limit the term 1=N 2 can be neglected.
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Thus, we obtain the following macroscopic equation of motion:

9f(x; t)
9t +

p
m
9f(x; t)
9r − 9f(x; t)

9p

∫ 9�(|r − "|)
9r f(y; t) dy

=D
92f(x; t)
9p2 ; (28)

where D is the di<usion tensor,

D =
�
2

{∫ (9�(|r − "|)
9r

)2
f(y; t) dy − 1

N

(∫ 9�(|r − "|)
9r f(y; t) dy

)2}
:

(29)

Note the clear Green–Kubo-type structure of the latter expression. The absence of the
time integration reveals the short-memory nature of the construction.
At this point of the derivation, one can notice that the obtained collision integral in

Eq. (28) does not conserve the total energy. As we have argued above, this fact has
the following explanation: Since the interaction between particles is pair-wise, the total
energy is a functional of the two-particles distribution function. However, we have
restricted ourselves to the equation for the one-particle distribution function. At the
beginning of our procedure, the trajectories belong to the quasi-equilibrium manifold,
later the correlations start growing, and lead to the decrease of the potential energy,
and to the increase of the kinetic energy. At every instance of the microscopic motion,
the total energy is conserved. At some moment (de>ned by the step of coarse-graining)
the system is returned back onto the quasi-equilibrium manifold with the conservation
of value of all the variables which can be expressed as functionals of the one-particle
distribution function (including the kinetic energy). As a result, the total energy is
not conserved. There are two ways to solve this problem. The >rst is to choose the
two-particle distribution function as the macroscopic variable. This route is very com-
plicated, and in order to circumvent it and to stay on the level of the one-particle
distribution function, we shall subtract the spurious contribution by a regularization of
the macroscopic vector >eld.
Speci>cally, let us write the dissipative contribution to Eq. (28) in the gradient form

9f
9t diss =− 9j9p ; (30)

here

j =−D 9f9p :

This form automatically takes into account the conservation of particle’s density. In
order to satisfy the conservation of the momentum and of the energy, we shall introduce
a subspace E, and require that j belong to E: Subspace E is a set of functions {’} for
which the momentum and the energy are conserved. This means that the moments,

M0 =
∫
’ dp; M+ =

∫
p+’+ dp ;
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are equal to zero (M0 = 0; M+ =0). Index + runs over the space coordinates. There is
no summation over +.
Now we introduce an orthogonal complement to E. This is a set of functions �i,

(i is 0; x; y; z) which satisfy the conditions:

(’; �i) =
∫

1
f
’�i dp = 0 ;

(�i; �j) =
∫

1
f
�i�j dp = �ij ; (31)

where we have introduced the scalar product (·; ·) to be used below, and where �ij is
the Kronecker delta, and f is the distribution function. We de>ne a projector - which
maps j into {E}. The projector is

-(j) = j −
4∑
i

(�i; j)�i : (32)

The >nal form of the macroscopic equation depends on the choice of the functions �i,
speci>cally, on the conditions of normalization and orthogonality. Let us demonstrate
a few cases.
Let us >rst assume that the functions �i satisfy conditions, (�i; �j) = �ij, and that

the average momentum of the =uid,
∫
fp dp, is equal to zero. Then we can take these

functions in the form:

�0 = C0f ;

�+ = C+p+f ; (33)

where the constants Ci should be found from the normalization conditions

C2
0

∫
f dp = C2

0n= 1; C0 = 1=
√
n ;

C2
+

∫
p2
+f dp = C2

+mnkBT = 1; C+ =
1√

mnkBT
:

Now we calculate the convolutions (�i; j):

(�0; j) =−D
∫ +∞

−∞

9f(x; t)
9p dp = 0 ;

(�+; j) =−D 1√
mnkBT

∫ +∞

−∞
p+
9f(x; t)
9p0

dp =

{
−Dn=

√
mnkBT ; if += 0 ;

0; if + �= 0 :
(34)

Finally, substituting result (34) into Eq. (32) we obtain

j =−D
(
9f(x; t)
9p +

1
mkBT

pf(x; t)
)
: (35)
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Thus, Eq. (28) is represented as follows:

9f(x; t)
9t +

p
m
9f(x; t)
9r − 9f(x; t)

9p

∫ 9�(|r − "|)
9r f(y; t) dy

=D
9
9p

(
9f(x; t)
9p +

1
mkBT

pf(x; t)
)
: (36)

This is the Fokker–Planck equation describing a di<usion in the momentum space. The
short-memory approximation behind the present approach is apparent in the present
example.
Result (36) can be generalized to the case when the average momentum u does not

vanish. In this case the basis functions (33) are chosen as follows:

�0 = f=
√
n ;

�+ =
p+ − mu+√
nmkBT

f :

It is easy to check that they satisfy condition (31). Then Eq. (30) reads,

9f(x; t)
9t diss

= D
9
9p

(
9f(x; t)
9p +

p − mu
mkBT

f(x; t)
)
: (37)

Thus, in this section we derived the di<usion equation from the N -particle Liouville
equation. In contrast to a commonly known Fokker–Planck equation, Eq. (36) is non-
linear because the di<usion coeWcient depends on the distribution function. Near equi-
librium, the di<usion coeWcient becomes constant, and the result is the usual Fokker–
Planck equation (with a mean->eld extension due to Vlasov’s term). Then the usual
stochastic interpretation in terms of the =uctuation–dissipation theorem applies. We re-
mind the reader that the stochastic interpretation of nonlinear equations is, in general,
a diWcult problem [16], and that the result obtained here corresponds to the lower-order
(�2) of approximation of microscopic trajectories. Higher-order corrections will cease
to have a stochastic interpretation in terms of the usual =uctuation–dissipation theorem.

4. Equations of hydrodynamics for simple $uid

The method discussed above enables one to establish in a simple way the form of
equations of the macroscopic dynamics to various degrees of approximation. In this
section, the microscopic dynamics is given by the Liouville equation, similar to the
previous case. However, we take another set of macroscopic variables: density, average
velocity, and average temperature of the =uid. Under this condition the solution to the
problem (2) is the local Maxwell distribution. For the hydrodynamic equations, the
zeroth (quasi-equilibrium) approximation is given by Euler’s equations of compressible
nonviscous =uid. The next order approximation are the Navier–Stokes equations which
have dissipative terms.
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Higher-order approximations to the hydrodynamic equations, when they are derived
from the Boltzmann kinetic equation (so-called Burnett approximation), are subject
to various diWculties, in particular, they exhibit an instability of sound waves at suW-
ciently short wave length (see, e.g. Ref. [17] for a recent review). Here we demonstrate
how model hydrodynamic equations, including post-Navier–Stokes approximations, can
be derived on the basis of coarse-graining idea, and investigate the linear stability of
the obtained equations. We will >nd that the resulting equations are stable.
Two points need a clari>cation before we proceed further [5]. First, below we con-

sider the simplest Liouville equation for the one-particle distribution, describing a free
moving particle without interactions. The procedure of coarse-graining we use is an
implementation of collisions leading to dissipation. If we had used the full interacting
N -particle Liouville equation, the result would be di<erent, in the >rst place, in the
expression for the local equilibrium pressure. Whereas in the present case we have the
ideal gas pressure, in the N -particle case the nonideal gas pressure would arise.
Second, and more essential is that, to the order of the Navier–Stokes equations,

the result of our method is identical to the lowest-order Chapman–Enskog method as
applied to the Boltzmann equation with a single relaxation time model collision integral
(the Bhatnagar–Gross–Krook model [18]). However, this happens only at this particular
order of approximation, because already the next, post-Navier–Stokes approximation, is
di<erent from the Burnett hydrodynamics as derived from the BGK model (the latter
is linearly unstable).

4.1. Derivation of the Navier–Stokes equations

Let us assume that reversible microscopic dynamics is given by the one-particle
Liouville equation,

9f
9t =−vi 9f9ri ; (38)

where f=f(r; v; t) is the one-particle distribution function, and index i runs over
spatial components {x; y; z}. Subject to appropriate boundary conditions which we
assume, this equation conserves the Boltzmann entropy S =−kB

∫
f lnf dv dr.

We introduce the following hydrodynamic moments as the macroscopic variables:
M0 =

∫
f dv; Mi =

∫
vif dv; M4 =

∫
v2f dv. These variables are related to the more

conventional density, average velocity and temperature, n; u; T as follows:

M0 = n; Mi = nui; M4 =
3nkBT
m

+ nu2 ;

n=M0; ui =M−1
0 Mi; T =

m
3kBM0

(M4 −M−1
0 MiMi) : (39)

The quasi-equilibrium distribution function (local Maxwellian) reads:

f0 = n
(

m
23kBT

)3=2
exp
(−m(v− u)2

2kBT

)
: (40)

Here and below, n; u; and T depend on r and t.
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Based on the microscopic dynamics (38), the set of macroscopic variables (39), and
the quasi-equilibrium (40), we can derive the equations of the macroscopic motion.
A speci>c feature of the present example is that the quasi-equilibrium equation for

the density (the continuity equation),

9n
9t =−9nui9ri

; (41)

should be excluded out of the further corrections. This rule should be applied generally:
If a part of the chosen macroscopic variables (momentum =ux nu here) correspond to
=uxes of other macroscopic variables, then the quasi-equilibrium equation for the latter
is already exact, and has to be exempted of corrections.
The quasi-equilibrium approximation for the rest of the macroscopic variables is

derived in the usual way. In order to derive the equation for the velocity, we substitute
the local Maxwellian into the one-particle Liouville equation, and act with the operator

k =

∫
vk · dv on both the sides of the equation (38). We have:

9nuk
9t =− 9

9rk
nkBT
m

− 9nukuj
9rj

:

Similarly, we derive the equation for the energy density, and the complete system
of equations of the quasi-equilibrium approximation reads (Euler equations):

9n
9t =−9nui9ri

;

9nuk
9t =− 9

9rk
nkBT
m

− 9nukuj
9rj

;

94
9t =− 9

9ri

(
5kBT
m

nui + u2nui

)
: (42)

Now we are going to derive the next order approximation to the macroscopic dynamics
(>rst order in the coarse-graining time �). For the velocity equation we have:

Rnuk =
1
2

(∫
vkvivj

92f0

9ri9rj
dv −

∑
j

9�nuk
9Mj

�j

)
;

where �j are the corresponding right hand sides of the Euler equations (42). In order
to take derivatives with respect to macroscopic moments {M0; Mi;M4}, we need to
rewrite equations (42) in terms of these variables instead of {n; ui; T}. After some
computation, we obtain

Rnuk =
1
2
9
9rj

(
nkBT
m

[
9uk
9rj

+
9uj
9rk

− 2
3
9un
9rn

�kj

])
: (43)

For the energy we obtain

R4 =
1
2

(∫
v2vivj

92f0

9ri9rj
dv −

∑
j

9�4
9Mj

�j

)
=

5
2
9
9ri

(
nk2BT
m2

9T
9ri

)
: (44)
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Thus, we get the system of the Navier–Stokes equation in the following form:

9n
9t =−9nui9ri

;

9nuk
9t =− 9

9rk
nkBT
m

− 9nukuj
9rj

+
�
2
9
9rj

nkBT
m

(
9uk
9rj

+
9uj
9rk

− 2
3
9un
9rn

�kj

)
;

94
9t =− 9

9ri

(
5kBT
m

nui + u2nui

)
+ �

5
2
9
9ri

(
nk2BT
m2

9T
9ri

)
: (45)

We see that kinetic coeWcients (viscosity and heat conductivity) are proportional to
the coarse-graining time �. Note that they are identical with kinetic coeWcients as
derived from the Bhatnagar–Gross–Krook model [18] in the >rst approximation of the
Chapman–Enskog method [19] (also, in particular, no bulk viscosity).

4.2. Post-Navier–Stokes equations

Now we are going to obtain the second-order approximation to the hydrodynamic
equations in the framework of the present approach. We will compare qualitatively
the result with the Burnett approximation. The comparison concerns stability of the
hydrodynamic modes near global equilibrium, which is violated for the Burnett ap-
proximation. Though the derivation is straightforward also in the general, nonlinear
case, we shall consider only the linearized equations which is appropriate to our pur-
pose here.
Linearizing the local Maxwell distribution function, we obtain

f= n0

(
m

23kBT0

)3=2( n
n0

+
mvn
kBT0

un +
(
mv2

2kBT0
− 3

2

)
T
T0

)
e−mv

2=2kBT0

=
{
(M0 + 2Mici +

(
2
3
M4 −M0

)(
c2 − 3

2

)}
e−c

2
; (46)

where we have introduced dimensionless variables: ci = vi=vT , vT =
√
2kBT0=m is the

thermal velocity, M0 = �n=n0; Mi = �ui=vT , M4 = (3=2)(�n=n0 + �T=T0). Note that �n,
and �T determine deviations of these variables from their equilibrium values, n0;
and T0.
The linearized Navier–Stokes equations read:

9M0

9t =−9Mi

9ri
;

9Mk

9t =−1
3
9M4

9rk
+
�
4
9
9rj

(
9Mk

9rj
+
9Mj

9rk
− 2

3
9Mn

9rn
�kj

)
;

9M4

9t =−5
2
9Mi

9ri
+ �

5
2
92M4

9ri9ri
: (47)

Let us >rst compute the post-Navier–Stokes correction to the velocity equation.
In accordance with the equation (10), the >rst part of this term under linear
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approximation is:

1
3!

k

(
9J ∗
9f

9J ∗
9f J

∗
)
− 1

3!

∑
ij

(
9�∗

k

9Mi

9�∗
i

9Mj
�∗
j

)

=− 1
6

∫
ck

93
9ri9rj9rn

cicjcn

{
(M0 + 2Mici +

(
2
3
M4 −M0

)(
c2 − 3

2

)}

× e−c
2
d3c +

5
108

9
9ri

92M4

9rs9rs

=
1
6
9
9rk

(
3
4
92M0

9rs9rs
− 92M4

9rs9rs

)
+

5
108

9
9rk

92M4

9rs9rs

=
1
8
9
9rk

92M0

9rs9rs
− 13

108
9
9rk

92M4

9rs9rs
: (48)

The part of Eq. (10) proportional to the >rst-order correction is

− 1
2

∑
j

(
9�∗

k

9Mj
R(1)j +

9R(1)k
9Mj

�∗
j

)
=

5
6
9
9rk

92M4

9rs9rs
+

1
9
9
9rk

92M4

9rs9rs
: (49)

Combining together terms (48), and (49), we obtain

R(2)Mk
=

1
8
9
9rk

92M0

9rs9rs
+

89
108

9
9rk

92M4

9rs9rs
:

Similar calculation for the energy equation leads to the following result:

−
∫
c2

93
9ri9rj9rk

cicjck

{
(M0 + 2Mici +

(
2
3
M4 −M0

)(
c2 − 3

2

)}
e−c

2
d3c

+
25
72

9
9ri

92Mi

9rs9rs
=−1

6

(
21
4
9
9ri

92Mi

9rs9rs
+

25
12

9
9ri

92Mi

9rs9rs

)
=−19

36
9
9ri

92Mi

9rs9rs
:

The term proportional to the >rst-order corrections gives

5
6

(
92

9rs9rs
9Mi

9ri

)
+

25
4

(
92

9rs9rs
9Mi

9ri

)
:

Thus, we obtain

R(2)M4
=

59
9

(
9e2
9rs9rs

9Mi

9ri

)
: (50)

Finally, combining together all the terms, we obtain the following system of lin-
earized hydrodynamic equations:

9M0

9t =−9Mi

9ri
;
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9Mk

9t =−1
3
9M4

9rk
+
�
4
9
9rj

(
9Mk

9rj
+
9Mj

9rk
− 2

3
9Mn

9rn
�kj

)

+ �2
{
1
8
9
9rk

92M0

9rs9rs
+

89
108

9
9rk

92M4

9rs9rs

}
;

9M4

9t =−5
2
9Mi

9ri
+ �

5
2
92M4

9r2 + �2
59
9

(
92

9rs9rs
9Mi

9ri

)
: (51)

Now we are in a position to investigate the dispersion relation of this system. Substi-
tuting Mi = M̃ i exp(!t + i(k; r)) (i = 0; k; 4) into Eq. (51), we reduce the problem to
>nding the spectrum of the matrix:


0 −ikx −iky −ikz 0

−ikx k
2

8 − 1
4k

2− 1
12k

2
x − kxky

12 − kxkz
12 −ikx

(
1
3+

89k2

108

)
−iky k

2

8 − kxky
12 − 1

4k
2− 1

12k
2
y − kykz

12 −iky
(

1
3+

89k2

108

)
−ikz k

2

8 − kxkz
12 − kykz

12 − 1
4k

2− 1
12k

2
z −ikz

(
1
3+

89k2

108

)
0 −ikx

(
5
2+

59k2

9

)
−iky

(
5
2+

59k2

9

)
−ikz

(
5
2+

59k2

9

)
− 5

2k
2



:

This matrix has >ve eigenvalues. These real parts of these eigenvalues responsible for
the decay rate of the corresponding modes are shown in Fig. 2 as functions of the
wave vector k. We see that all real parts of all the eigenvalues are nonpositive for
any wave vector. In other words, this means that the present system is linearly stable.
For the Burnett hydrodynamics as derived from the Boltzmann or from the single
relaxation time Bhatnagar–Gross–Krook model, it is well known that the decay rate of
the acoustic becomes positive after some value of the wave vector [6,17] which leads
to the instability. While the method suggested here is clearly semi-phenomenological
(coarse-graining time � remains unspeci>ed), the consistency of the expansion with the
entropy requirements, and especially the latter result of the linearly stable post-Navier–
Stokes correction strongly indicates that it might be more suited to establishing models
of highly nonequilibrium hydrodynamics.

4.3. Di>usion in the two-component ?uid

In this example we consider a mixture of the particles of two kinds. We determine
microscopic equations as two independent one-particle Liouville equations. Using our
general procedure, we obtain a di<usion behavior of the mixture on the macroscopic
level.
Microscopic equations of motion for the particles of the >rst and of the second kind

are:

9f1

9t =−v1
9f1

9r ; (52)
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Fig. 2. Attenuation rates of various modes of the post-Navier–Stokes equations as functions of the wave
vector. Attenuation rate of the twice degenerated shear mode is curve 1. Attenuation rate of the two sound
modes is curve 2. Attenuation rate of the di<usion mode is curve 3.

9f2

9t =−v2
9f2

9r : (53)

We denote all variables related to particles of the >rst kind with index 1, and with
the index 2 for the second kind, f1 = f1(r; v1; t) and f2 = f2(r; v2; t) are one-particle
distribution functions.
In order to describe hydrodynamics of the system, we introduce the following macro-

scopic variables:

M1 = 91 = m1

∫
f1 dv ;

M2 = 92 = m2

∫
f2 dv ;

Mi = (91 + 92)ui = m1

∫
v1if1 dv + m2

∫
v2if1 dv ;

MT =
3
2
(n1 + n2)kBT = m1

∫
(v1 − u)2

2
f1 dv + m2

∫
(v2 − u)2

2
f2 dv ; (54)

where 91; 92 are densities; ui is the ith spatial component of the average velocity of
the mixture; and T is the temperature.
The quasi-equilibrium distribution functions are:

f1 = n1(r)
(

m1

23kBT (r)

)3=2
exp

{
−m1(v1 − u(r))2

2kBT (r)

}
; (55)
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f2 = n2(r)
(

m2

23kBT (r)

)3=2
exp

{
−m2(v2 − u(r))2

2kBT (r)

}
: (56)

After the convolution of system (52)–(53) with the operators 
1=
∫
m1 dv, 
2=

∫
m2 dv,


u1 =
∫
m1v1 dv, 
u2 =

∫
m2v2 dv; 
T1 =

∫
m1(v1 − u)2=2 dv, 
T2 =

∫
m2(v2 − u)2=2 dv,

and after summations, we obtain the system of Euler equations for the binary mixture:

991
9t =−991ui9ri

; (57)

992
9t =−992ui9ri

; (58)

99uk
9t =−9nkBT9rk

− 99ukui
9ri

; (59)

3
2
9nkBT
9t =−3

2
9uinkBT
9ri

− nkT 9ui9ri : (60)

Let us now calculate the dissipative correction for the density equations. For
Eq. (57) we obtain:

R1 =
1
2

(
92n1kBT
9r2 +

9291uiuj
9ri9rj

)

− 1
2
9
9rk

(
Mk

9
9
9rj

(
Mj91
9

)
− Mk91

92
9
9rj

(
Mj91
9

))

− 1
2
9
9rk

(
Mk92
92

9
9rj

(
Mj92
9

))
− 1

2
9
9rk

{
91
9
9nkBT
9rk

+
91
9
9nujuk
9rj

}
:

(61)

Substituting (54) into (61), and performing similar to the above calculations for the
Eq. (57), we arrive at the di<usion equations for the binary mixture under a simplifying
assumption T = const, u = 0:

991
9t =

�kBT
2

{
92n1
9rk9rk

− 9
9rk

(
91
9
9n
9rk

)}
; (62)

992
9t =

�kBT
2

{
92n2
9rk9rk

− 9
9rk

(
92
9
9n
9rk

)}
: (63)

Di<usion coeWcient �kBT=2m coincides with Einstein di<usion coeWcient, where � has
meaning of the average relaxation time.

5. Hydrodynamic equation for the $uid with long-range interaction

In this section we derive equations of hydrodynamics from the nonlinear Vlasov
equation. This example is also interesting from the methodological point of view. Usual
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methods of reduction of the description are applicable mostly to a linear microscopic
dynamics [7–9]. These methods are based on a formal solution to the microscopic
equation of motion presented in the exponential form. This is not directly possible
for nonlinear microscopic models. Since we avoid integrating microscopic equations
of motion, our approach is immediately applicable to nonlinear systems without any
modi>cations.
Let the microscopic dynamics be given by the Vlasov equation (18). Choosing again

the usual hydrodynamic >elds for the macroscopic variables (39), we obtain the system
of Euler equations enriched by the mean->eld terms:

9n
9t =−9nui9ri

;

9nuk
9t =− 9

9rk
nkBT
m

− 9nukuj
9rj

+ nFk ;

94
9t =− 9

9ri

(
5kBT
m

nui + u2nui

)
+ 2nuiFi ; (64)

where Fi is the ith spatial component of the mean->eld force given by Eq. (19).
Following the same route as in Section (4.1), we compute term by term the correction

for (64). The >rst term in the brackets in Eq. (9) is proportional to

9J ∗
9f J ∗ = vivj

92f0

9ri9rj
+ vi

9
9ri

(
9f0

9vj
Fj

)
+
9f0

9vi
&i

+Fi
9
9vi

(
vj
9f0

9rj

)
+ Fi

9
9vi

(
9f0

9vj
Fj

)
; (65)

where & is given by Eq. (21).
In order to calculate the mean->eld terms in the velocity equation, we act by the

operator
∫
vk dv on Eq. (65). We obtain

−2
(
9nui
9ri

Fk +
9nuk
9ri

Fi

)
− (nui�jk + nuk�ij)

9Fj
9ri

− n&k +
9nuk
9ri

Fi : (66)

The second part of Eq. (9) is

∑
j

9�ui
9Mj

�j =−FjM0
9Mi

9rj
−Mj

9Fi
9rj

− Fi 9Mj

9rj
− Mi

M0

9FiM0

9rj
− Fi 9Mj

9rj
;

where Mi correspond to (39). Rewriting this expression in terms of the variables n; u
and T , and combining the result with Eq. (66), we obtain

R(1)nuk = n&k :
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Now let us calculate the correction to the energy equation (45) in the presence of the
mean->eld interaction. Action of the operator

∫
v2 dv in Eq. (65) gives(

−5
9
9rj

(
kBTn
m

)
− 2uiuj

9n
9ri

− u2 9n9rj

)
Fj

−
(
2nui

9uj
9ri

− 2nui
9ui
9rj

− 2nuj
9ui
9ri

)
Fj

+
(
−5

nkBT
m

�ij − 2nuiuj − u2n�ij
)
9Fj
9ri

− 2nui&i +
(
3
9
9ri

(
kBTn
m

)
+
9nu2
9ri

)
Fi + 2nFiFi :

The di<erential term for the energy density equation gives:

∑
i

9�4
9Mi

�i =−M4

M0
Fi
9M0

9ri
−M4

9Fi
9ri

− 2
3
9
9ri

(
Fi

(
M4 − MnMn

M0

))

− 2FiMj
9
9rj

(
Mi

M0

)
− 2FjMi

9
9rj

(
Mi

M0

)
− 2

MiMj

M0

9Fi
9rj

−Fi 99ri

(
M4 − MnMn

M0

)
+
Fi
M0

(
M4 − MnMn

M0

)
9M0

9ri

− 2MjFj
M0

9Mi

9ri
− Fi 23

9
9ri

(
M4 − MnMn

M0

)

− 2FiMj
9
9rj

(
Mi

M0

)
− 2FiMi

M0

9Mj

9rj
:

Thus, we obtain the >rst-order correction to the energy equation,

R(1)4 =
6kBT
m

Fi
9n
9ri

+ 2Fiuiuj
9n
9rj

− 2nui&i + 2nFiFi ;

Finally, we arrive at the following system of hydrodynamic equations with the mean-
>eld interaction:

9n
9t =−9nui9ri

;

9nuk
9t =− 9

9rk
nkBT
m

− 9nukuj
9rj

+ nFk

+
�
2
9
9rj

nkBT
m

(
9uk
9rj

+
9uj
9rk

− 2
3
9un
9rn

�kj

)
− �n

2
&k ;
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94
9t =− 9

9ri

(
5kBT
m

nui + u2nui

)
+ 2nuiFi

+ �
5
2
9
9ri

(
nk2BT
m2

9T
9ri

)
+ �

3kBT
m

Fi
9n
9ri

+ �Fiuiuj
9n
9rj

− �nui&i + �nFiFi ; (67)

Eqs. (67) are the general form of the hydrodynamic equations of a simple =uid with the
mean->eld interaction. Examples of the system for which this result may be relevant
can be found in studies of electron transport in the various media [20], as well as
in description of nonNewtonian =uids [21]. For each particular case the interaction
potential �(|r−r′|) has its speci>c form, and leads to the corresponding hydrodynamics
of the system.

6. Conclusion

In this paper the formalization of Ehrenfest’s approach to irreversible dynamics is
given in details. This method allows one to derive macroscopic equations of motion
on the basis of the microscopic dynamics and the very transparent coarse-graining
procedure. The method is applicable to both reversible as well as to the irreversible
microscopic dynamics, independently of whether it is linear or not. We have presented
a set of examples demonstrating how this method is applied to various situations.
The most interesting continuation of this approach is, of course, how to specify in a

sensible and practical way the coarse-graining time � in order to make the modelling
parameter-free. This requires is a subject of our current studies (see Refs. [22–24]).
Finally, whereas we have focused on the application of our formalism to the entropy-

conserving microscopic dynamics, it should be mentioned that it is applicable also to
constructing slow invariant manifolds of dissipative systems. In particular, when applied
to the Boltzmann equation, the result is equivalent at � → ∞ to the exact Chapman–
Enskog solution [22].
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