
Introduction to k Nearest Neighbour Classification and
Condensed Nearest Neighbour Data Reduction

Oliver Sutton

February, 2012

Contents

1 Introduction 1
1.1 Example . 1
1.2 Example . 1
1.3 The General Case . 2

2 The k Nearest Neighbours Algorithm 2
2.1 The Algorithm . 3
2.2 An Example Using the Applet . 3

3 Condensed Nearest Neighbour Data Reduction 8

1 Introduction

The purpose of the k Nearest Neighbours (kNN) algorithm is to use a database in which the
data points are separated into several separate classes to predict the classification of a new
sample point. This sort of situation is best motivated through examples.

1.1 Example

Suppose a bank has a database of people’s details and their credit rating. These details would
probably be the person’s financial characteristics such as how much they earn, whether they own
or rent a house, and so on, and would be used to calculate the person’s credit rating. However,
the process for calculating the credit rating from the person’s details is quite expensive, so the
bank would like to find some way to reduce this cost. They realise that by the very nature of
a credit rating, people who have similar financial details would be given similar credit ratings.
Therefore, they would like to be able to use this existing database to predict a new customer’s
credit rating, without having to perform all the calculations.

1.2 Example

Suppose a botanist wants to study the diversity of flowers growing in a large meadow. However,
he does not have time to examine each flower himself, and cannot afford to hire assistants who

1

know about flowers to help him. Instead, he gets people to measure various characteristics of
the flowers, such as the stamen size, the number of petals, the height, the colour, the size of
the flower head, etc, and put them into a computer. He then wants the computer to compare
them to a pre-classified database of samples, and predict what variety each of the flowers is,
based on its characteristics.

1.3 The General Case

In general, we start with a set of data, each data point of which is in a know class. Then, we want
to be able to predict the classification of a new data point based on the known classifications
of the observations in the database. For this reason, the database is known as our training set,
since it trains us what objects of the different classes look like. The process of choosing the
classification of the new observation is known as the classification problem, and there are several
ways to tackle it. Here, we consider choosing the classification of the new observation based on
the classifications of the observations in the database which it is “most similar” to.

However, deciding whether two observations are similar or not is quite an open question. For
instance, deciding whether two colours are similar is a completely different process to deciding
whether two paragraphs of text are similar. Clearly, then, before we can decide whether two
observations are similar, we need to find some way of comparing objects. The principle trouble
with this is that our data could be of many different types - it could be a number, it could
be a colour, it could be a geographical location, it could be a true/false (boolean) answer to a
question, etc - which would all require different ways of measuring similarity. It seems then that
this first problem is one of preprocessing the data in the database in such a way as to ensure
that we can compare observations. One common way of doing this is to try to convert all our
characteristics into a numerical value, such as converting colours to RGB values, converting
locations to latitude and longitude, or converting boolean values into ones and zeros. Once
we have everything as numbers, we can imagine a space in which each of our characteristics is
represented by a different dimension, and the value of each observation for each characteristic
is its coordinate in that dimension. Then, our observations become points in space and we can
interpret the distance between them as their similarity (using some appropriate metric).

Even once we have decided on some way of determining how similar two observations are, we
still have the problem of deciding which observations from the database are similar enough to
our new observation for us to take their classification into account when classifying the new
observation. This problem can be solved in several different ways, either by considering all the
data points within a certain radius of the new sample point, or by taking only a certain number
of the nearest points. This latter method is what we consider now in the k Nearest Neighbours
Algorithm.

2 The k Nearest Neighbours Algorithm

As discussed earlier, we consider each of the characteristics in our training set as a different
dimension in some space, and take the value an observation has for this characteristic to be
its coordinate in that dimension, so getting a set of points in space. We can then consider the
similarity of two points to be the distance between them in this space under some appropriate
metric.

2

The way in which the algorithm decides which of the points from the training set are similar
enough to be considered when choosing the class to predict for a new observation is to pick the
k closest data points to the new observation, and to take the most common class among these.
This is why it is called the k Nearest Neighbours algorithm.

2.1 The Algorithm

The algorithm (as described in [1] and [2]) can be summarised as:

1. A positive integer k is specified, along with a new sample

2. We select the k entries in our database which are closest to the new sample

3. We find the most common classification of these entries

4. This is the classification we give to the new sample

2.2 An Example Using the Applet

First we set up the applet [1] as shown in Figure 1, with 40 points of two different colours in
opposite corners of the screen, and 20 points of random for each colour. Now, these points will

Figure 1: The initial set up of the applet

make up our training set, since we know their characteristics (their x and y coordinates) and
their classification (their colour). Clicking on the handle test tab at the top will allow us to
place a new test point on the screen by clicking anywhere, as shown in Figure 2. The applet
finds an highlights with a star the 3 nearest neighbours of this point. Then, the most common
colour among these nearest neighbours is used as the colour of the test point (indicated by the
large circle).

Similarly, clicking on the map tab allows us to plot the map generated by the data, as shown
in Figure 3. This colours each point on the screen by the colour which a test point at that

3

Figure 2: The classification of a test point based on the classes of its nearest neighbours

position would be coloured, so essentially gives us all the results from testing all possible test
points.

Figure 3: The map generated by our data set, essentially the classification of a test point at
any location

This can be particularly useful for seeing how the algorithm’s classification of a point at a
certain location would compare to how we might do it by eye. For example, notice the large
band of blue beside the pink cluster, and the fact that the lower right hand corner got coloured
pink. This goes very much against how we would classify a point in either of those locations
by eye, where we might be tempted to just split the screen down the middle diagonally, saying
anything above the line was pink and anything below the line was blue.

4

However, if we create the map of a dataset without any noise (as shown in Figure 4), we can
see that there is a much clearer division between where points should be blue and pink, and it
follows the intuitive line much more closely.

Figure 4: The map generated by the dataset without any random noise points added

The reason for this is not too hard to see. The problem is that the algorithm considers all
points equally, whether they are part of a main cluster, or just a random noise point, so even
just having a few unusual points can make the results very different.

However, in reality, we certainly expect to get some unusual points in our sample, so we would
like to find a way to make the algorithm more robust. With a view to finding a way to make the
results look more like the map in Figure 4, we first add in 20 random points from each colour,
going back to where we were started. Plotting the map at this stage will produce something
fairly unintuitive, like Figure 3, with seemingly random sections mapped to different colours.
Instead, we try changing the value of k. This is achieved using the ‘Parameters’ tab at the top.
Clearly, when choosing a new value for k, we do not want to pick an even number, since we
could find ourselves in the awkward position of having an equal number of nearest neighbours
of each colour. Instead, we pick an odd number, say 5, and plot the map. We find that as we
increase the value of k, the map gets closer and closer to the map produced when we had no
random points, as shown in Figure 5.

The reason why this happens is quite simple. If we assume that the points in the two clusters
will be more dense than the random noise points, it makes sense that when we consider a large
value of nearest neighbours, the influence of the noise points in rapidly reduced. However, the
problem with this approach is that increasing the value of k means that the algorithm takes
a long time to run, so if we consider a much bigger database with thousands of data points,
and a lot more noise, we will need a higher value of k, and the process will take longer to run
anyway.

An alternative method for dealing with noise in our results is to use cross validation. This
determines whether each data point would be classified in the class it is in if it were added to
the data set later. This is achieved by removing it from the training set, and running the kNN
algorithm to predict a class for it. If this class matches, then the point is correct, otherwise
it is deemed to be a cross-validation error. To investigate the effects of adding random noise
points to the training set, we can use the applet. Setting it up as before, with two clusters in
opposite corners, we can use the “Cross Validation” feature to run a cross validation on the
data in our training set. This was done for 6 different data sets, and the number of noise points

5

Figure 5: The maps generated as we increase the value of k, starting with k = 3 in the top left
and ending with k = 17 in the bottom right

6

in each one was increased. These results were averaged, and the average percentage of points
misclassified is shown in the table:

Questions 2, 3, and 4

Generating two dense data groups in opposite corners of the screen and random noise
of the same colours produces a data set like the one seen in Figure 1

To investigate how the number of cross-validation errors depends on the number of
random noise points, a data set similar to this was created 6 times and the percentage
of data points wrongly classified by the cross-validation were calculated as the
number of random noise points for each colour is increased in steps of 20 from 0 to
160. Since the setup is symmetric for each colour, we can average the results of the
cross-validation tests for both colours, obtaining the results shown in Table 1 and
Chart 1.

Number'of'Random'Data'Points Average'Percentage'of'Cross8Valida;on'Errors
0 0
20 17.5
40 25
60 29.66666667
80 33.58333333
100 34.66666667
120 35.83333333
140 37.25
160 38.5

For clarity, these data are also presented in the graph in Figure 6. As can be seen, the number
of mis-classifications increases as we increase the number of random noise points present in
our training data. This as we would expect, since the random noise points should show up as
being unexpected. Indeed, if we extrapolate the data using the general trend of the graph, we
can expect that the percentage of mis-classifications would increase to approximately 50% as
we continue increasing the number of random noise points. This agrees with how we would
intuitively expect the cross-validation to behave on a completely random data set.

Average'Number'of'Errors

0

10

20

30

40

0 50 100 150 200

Average'Percentage'of'Errors

Pe
rc
en

ta
ge
'o
f'e

rr
or
s

Number'of'random'points'added

Clearly, there is a definite upward trend as the number of random points is increased,
although the rate of increase seems to slow down when the number of random points
gets large. Testing on a purely random dataset shows that one expects the percentage
of points misclassified to tend to about half for 3 Nearest Neighbours, as would be
expected (since the chance of any neighbour of a data point being from either data
group is about equal). From Chart 1, it can be seen that the percentage of errors would
be expected to eventually (as the number of data points tends to infinity) tend to about
50%. Taking both these observations together, it suggests that perhaps the percentage
of errors follows a relationship similar to y = 1/(kx+0.02) + 50.

Condensed Nearest Neighbour data reduction was also implemented on 3 different
data sets as described in Figure 1, to obtain the percentage of data points classified as
outlier points (those which would not be recognised as the correct class if they were
added to the data set later), prototype points (the minimum set of points required in

Average'Percentage'of'Outliers
Average'Percentage'of'Prototype'Points
Average'Percentage'Of'Absorbed'Points

Figure 6: A graph demonstrating the effect of increasing the number of random noise points in
the data set on the number of mis-classifications

It is also found that increasing the size of the training set makes classification of a new point
take much longer, due simply to the number of comparisons required. This speed problem
is one of the main issues with the kNN algorithm, alongside the need to find some way of
comparing data of strange types (for instance, trying to compare people’s favourite quotations
to decide their political preferences would require us to take all sorts of metrics about the actual
quotation such as information about the author, about the work it is part of, etc, that it quickly
becomes very difficult for a computer, while still relatively easy for a person).

To solve the first of these problems, we can use data reduction methods to reduce the number
of comparisons necessary.

7

3 Condensed Nearest Neighbour Data Reduction

Condensed nearest neighbour data reduction is used to summarise our training set, finding just
the most important observations, which will be used to classify any new observation. This
can drastically reduce the number of comparisons we need to make in order to classify a new
observation, while only reducing the accuracy slightly.

The way the algorithm works is to divide the data points into 3 different types (as described
in [1]):

1. Outliers: points which would not be recognised as the correct type if added to the
database later

2. Prototypes: the minimum set of points required in the training set for all the other
non-outlier points to be correctly recognised

3. Absorbed points: points which are not outliers, and would be correctly recognised
based just on the set of prototype points

Then, we only need to compare new observations to the prototype points.

The algorithm to do this can be summarised as:

1. Go through the training set, removing each point in turn, and checking whether it is
recognised as the correct class or not

• If it is, then put it back in the set

• If not, then it is an outlier, and should not be put back

2. Make a new database, and add a random point.

3. Pick any point from the original set, and see if it is recognised as the correct class based
on the points in the new database, using kNN with k = 1

• If it is, then it is an absorbed point, and can be left out of the new database

• If not, then it should be removed from the original set, and added to the new database
of prototypes

4. Proceed through the original set like this

5. Repeat steps 3 and 4 until no new prototypes are added

As described in [3] and [4], this algorithm can take a long time to run, since it has to keep
repeating. The problem of trying to improve this algorithm to make it faster can, however, we
tackled by using extended techniques, such as that described in [4]. However, once it has been
run, the kNN algorithm will be much faster.

The applet can also handle CNN data reduction, and an example of its use is given in the
slides.

CNN is also quite affected by noise in the training set. In order to investigate this, three data
sets were produced as usual, and for each one the number of noise points was increased, and
CNN was run, recording the percentage of points assigned to each type. The results from
averaging these three different data sets are shown in the table below:

These data are also presented as a graph in Figure 7 for clarity. As can easily be seen, increasing
the number of random noise points affected the results of the CNN algorithm in three main

8

group is more likely to have its nearest neighbours from the other group, so making it
more likely for it to be classified as an outlier. Similarly, the points which are not
classified as outliers from each data group will be more disparate, so we will require
more prototype points to represent our whole group. Then, since the absorbed points
must be the points which are neither outliers nor prototypes, we can expect the
percentage of these to decrease as more random points are added, which is
represented by the green curve in Chart 2.

Question 5
As with any algorithm, when using the K Nearest Neighbours algorithm it is
important to balance the accuracy of the results against how expensive it is to run. For
this reason, the effects of varying the parameters of the KNN algorithm were
compared with the results produced. Clearly, as the value of k (the number of
neighbours to consider) is increased the algorithm becomes more expensive to run.
On the other hand, implementing data reduction means that any new point to be
classified needs to be compared against fewer points from the data set, although it

Number'of'Random'
Data'Points

Average'Percentage'of'
Cross8Valida;on'Errors

Average'Percentage'
of'Prototype'Points

Average'Percentage'
of'Outlier'Points

Average'Percentage'
of'Absorbed'Points

0 0 3 0 98
20 17.5 16.16667 5.5 78.33333
40 25 22 9.333333 69
60 29.66666667 25.66667 8.833333 65.5
80 33.58333333 31.16667 10 59
100 34.66666667 31.16667 11.16667 57.66667
120 35.83333333 33.66667 10.5 55.66667
140 37.25 32.33333 12.33333 55.16667
160 38.5 37 11.5 52.16667

0

25

50

75

100

0 50 100 150 200

Condensed'NN'Data'Reduc;on

Pe
rc
en
ta
ge
'o
f'P

oi
nt
s'
A
ss
ig
ne

d'
Ea
ch
'S
ta
tu
s

Number'of'Random'Data'Points

Average'Percentage'of'Outliers
Average'Percentage'of'Prototype'Points
Average'Percentage'Of'Absorbed'Points

ways:

1. The percentage of points classed as outliers increased dramatically

2. The percentage of points classed as absorbed decreased

3. The percentage of points classed as prototypes increased slightly

All of these are as would be expected. The percentage of outliers increases because there are
increasingly many noise points of the other colour in each cluster, which will lead them to be
mis-classified. The percentage of points deemed to be prototypes increases because our data
set now has a much more complex structure once we have included all these random noise
points. The percentage of absorbed points therefore must decrease since the other two types
are increasing (and the three are mutually exclusive).

group is more likely to have its nearest neighbours from the other group, so making it
more likely for it to be classified as an outlier. Similarly, the points which are not
classified as outliers from each data group will be more disparate, so we will require
more prototype points to represent our whole group. Then, since the absorbed points
must be the points which are neither outliers nor prototypes, we can expect the
percentage of these to decrease as more random points are added, which is
represented by the green curve in Chart 2.

Question 5
As with any algorithm, when using the K Nearest Neighbours algorithm it is
important to balance the accuracy of the results against how expensive it is to run. For
this reason, the effects of varying the parameters of the KNN algorithm were
compared with the results produced. Clearly, as the value of k (the number of
neighbours to consider) is increased the algorithm becomes more expensive to run.
On the other hand, implementing data reduction means that any new point to be
classified needs to be compared against fewer points from the data set, although it

Number'of'Random'
Data'Points

Average'Percentage'of'
Cross8Valida;on'Errors

Average'Percentage'
of'Prototype'Points

Average'Percentage'
of'Outlier'Points

Average'Percentage'
of'Absorbed'Points

0 0 3 0 98
20 17.5 16.16667 5.5 78.33333
40 25 22 9.333333 69
60 29.66666667 25.66667 8.833333 65.5
80 33.58333333 31.16667 10 59
100 34.66666667 31.16667 11.16667 57.66667
120 35.83333333 33.66667 10.5 55.66667
140 37.25 32.33333 12.33333 55.16667
160 38.5 37 11.5 52.16667

0

25

50

75

100

0 50 100 150 200

Condensed'NN'Data'Reduc;on

Pe
rc
en

ta
ge
'o
f'P

oi
nt
s'
A
ss
ig
ne

d'
Ea
ch
'S
ta
tu
s

Number'of'Random'Data'Points

Average'Percentage'of'Outliers
Average'Percentage'of'Prototype'Points
Average'Percentage'Of'Absorbed'Points

Figure 7: A graph showing the effects of increasing the number of random noise points in the
training data on the percentage of points assigned each of the three primitive types by the CNN
algorithm.

References

[1] E. Mirkes, KNN and Potential Energy (Applet). University of Leicester. Available: http:

//www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html, 2011.

[2] L. Kozma, k Nearest Neighbours Algorithm. Helsinki University of Technology, Available:
http://www.lkozma.net/knn2.pdf, 2008.

9

http://www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html
http://www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html
http://www.lkozma.net/knn2.pdf

[3] N. Bhatia et al, Survey of Nearest Neighbor Techniques. International Journal of Computer
Science and Information Security, Vol. 8, No. 2, 2010.

[4] F. Anguilli, Fast Condensed Nearest Neighbor Rule. Proceedings of the 22nd International
Conference on Machine Learning, Bonn, Germany, 2005.

10

	Introduction
	Example
	Example
	The General Case

	The k Nearest Neighbours Algorithm
	The Algorithm
	An Example Using the Applet

	Condensed Nearest Neighbour Data Reduction

