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Considering the Grad moment ansatz as a suitable first approximation to a closed finite-moment dynamics,
the correction is derived from the Boltzmann equation. The correction consists of two parts, local and nonlocal.
Locally corrected thirteen-moment equations are demonstrated to contain exact transport coefficients. Equa-
tions resulting from the nonlocal correction give a microscopic justification to some phenomenological theories
of extended hydrodynamics.@S1063-651X~98!03502-8#

PACS number~s!: 05.60.1w, 44.10.1i, 47.10.1g, 51.10.1y

A considerable part of the modern development of non-
equilibrium thermodynamics is based on the idea of exten-
sion of the list of relevant variables. Various phenomenologi-
cal and semiphenomenological theories in this domain are
known under the common title of extended irreversible ther-
modynamics~EIT! @1#. With this, the question of a micro-
scopic justification of the EIT becomes important. Recall that
a justification for some of the versions of the EIT was found
within the well-known Grad moment method@2#.

Originally, the Grad moment approximation was intro-
duced for the purpose of solving the Boltzmann-like equa-
tions of the classical kinetic theory. The Grad method is used
in various kinetic problems, e.g., in plasma and in phonon
transport. We mention also that Grad equations assist in un-
derstanding asymptotic features of gradient expansions, both
in linear and in nonlinear domains@3#.

The essence of the Grad method is to introduce an ap-
proximation to the one-particle distribution functionf , which
would depend only on a finite numberN of moments, and,
subsequently, to use this approximation to derive a closed
system ofN moment equations from the kinetic equation.
The numberN ~the level at which the moment transport hi-
erarchy is truncated! is not specified in the Grad method.
One particular way to chooseN is to obtain an estimation of
the transport coefficients~viscosity and heat conductivity!
sufficiently close to their exact values provided by the
Chapman-Enskog method~CE! @4#. In particular, for the
thirteen-moment~13M! Grad approximation it is well known
that transport coefficients are equal to the first Sonine poly-
nomial approximation to the exact CE values. Accounting
for higher moments withN.13 can improve this approxi-
mation ~good for neutral gases but poor for plasmas@5#!.
However, what should be done, starting with the 13M ap-
proximation, to come to the exact CE transport coefficients is
an open question. It is also well known@6# that the Grad
method provides a poorly converging approximation when
applied to strongly nonequilibrium problems~such as shock
and kinetic layers!.

Another question comes from the approximate character
of the Grad equations, and is discussed in frames of the EIT:
while the Grad equations are strictly hyperbolic at any level
N ~i.e., predicting a finite speed of propagation!, will this
feature will be preserved in the further corrections?

These two questions are special cases of a more general
one, namely, how does one derive a closed description with
a given number of moments? Such a description is some-
times called mesoscopic@7# since it occupies an intermediate
level between the hydrodynamic~macroscopic! and the ki-
netic ~microscopic! levels of description.

In this paper we aim at deriving the mesoscopic dynamics
of thirteen moments in the simplest case when the kinetic
description satisfies the linearized Boltzmann equation. Our
approach will be based on the two assumptions:~i! The me-
soscopic dynamics of thirteen moments exists, and is invari-
ant with respect to the microscopic dynamics.~ii ! The 13M
Grad approximation is a suitable first approximation to this
mesoscopic dynamics. The assumption~i! is realized as the
invariance equation for the~unknown! mesoscopic distribu-
tion function. Following the assumption~ii !, we solve the
invariance equation iteratively, taking the 13M Grad ap-
proximation for the input approximation, and consider the
first iteration~further we refer to this as to the dynamic cor-
rection, to distinguish from constructing another ansatz!. We
demonstrate that the correction results in the exact CE trans-
port coefficients. We also demonstrate how the dynamic cor-
rection modifies the hyperbolicity of the Grad equations. A
similar viewpoint on derivation of hydrodynamics was ear-
lier developed in@8# ~we will return to a comparison below!.

First, we review the Boltzmann equation and the 13M
Grad approximation. We denote asn0 , u050, andp0 the
equilibrium values of the hydrodynamic parameters (n is the
number density,u is the average velocity, andp5nkBT is
the pressure!. The global Maxwell distribution functionF is

F5n0~vT!23p23/2exp~2c2!,

wherevT5A2kBT0m21 is the equilibrium heat velocity, and
c5v/vT is the peculiar velocity of a particle. The near-
equilibrium dynamics of the distribution function,f 5F(1
1w), is due to the linearized Boltzmann equation:
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] tw5 Ĵw[2vTc•¹w1L̂w,

L̂w5E wF~v1!@w~v18!1w~v8!

2w~v1!2w~v!#dv18dv8dv1 ,

where L̂ is the linearized collision operator, andw is the
probability density of pair encounters.

n5dn/n0 , u5du/vT , p5dp/p0 (p5n1T, T
5dT/T0) are dimensionless deviations of the hydrodynamic
variables, whiles5ds/p0 and q5dq/(p0vT) are dimen-
sionless deviations of the stress tensors, and of the heat flux
q. The linearized 13M Grad distribution function isf 0
5F(c)@11w0#, where

w05w11w2 , w15n12u•c1T@c22~3/2!#,

w25s:cc1~4/5!q•c@c22~5/2!#. ~1!

The overbar denotes a symmetric traceless dyad.
The 13M Grad’s equations are derived in two steps: first,

the 13M Grad’s distribution function~1! is inserted into the
linearized Boltzmann equation to give a formal expression,
] tw05 Ĵw0, second, projectorP0 is applied to this expres-
sion, whereP05P11P2:

P15
F0

n0
HX0E X0•dv1X•E X•dv1X4E X4•dvJ ,

P25
F0

n0
HY:E Y•dv1Z•E Z•dvJ . ~2!

Here X051, X5A2c, X45A2/3(c22 3
2 ), Y5A2 cc,

andZ5(2/A5)c(c22 5
2 ). The resulting equation,

P0@F] tw0#5P0@FĴw0#,

is a compressed representation for the 13M Grad equations
for the macroscopic variablesM135$n,u,T,s,q%.

Now we turn to the main purpose of this paper, and derive
the dynamic correction to the 13M distribution function~1!.
The assumption~i! ~existence of closed dynamics of thirteen
moments! implies the invariance equation for the true meso-
scopic distribution function,f̃ (M13,c)5F@11w̃(M13,c)#,
where we have stressed that this function depends parametri-
cally on the same thirteen macroscopic parameters, as the
original Grad approximation. The invariance condition for
f̃ (M13,c) reads@8#

~12 P̃!@FĴw̃ #50, ~3!

whereP̃ is the projector associated withf̃ . Generally speak-
ing, the projectorP̃ depends on the distribution functionf̃
@8,9#. In the following, we use the projectorP0 ~2!, which
will be consistent with our approximate treatment of Eq.~3!.

Following the assumption~ii ! @13M Grad’s distribution
function ~1! is a good initial approximation#, the Grad’s
function f 0 and the projectorP0 are chosen as the input data

for solving Eq. ~3! iteratively. The dynamic correction
amounts to the first iterate. Let us consider these steps in
more detail.

Substitutingw0 ~1! andP0 ~2! instead ofw andP in Eq.
~3!, we get (12P0)@FĴw0#[D0Þ0, which demonstrates
that ~1! is not a solution of Eq.~3!. Moreover,D0 splits in
two natural pieces:D05D0

loc1D0
nloc, where

D0
loc5~12P2!@FL̂w2#, D0

nloc5~12P0!@2vTFc•¹w0#.
~4!

Here we have accounted forP1@FL̂w#50, andL̂w150. The
first piece of Eq.~4!, D0

loc , can be termedlocal because it
does not account for spatial gradients. Its origin is twofold.
In the first place, recall that we are performing our analysis
in a non-local-equilibrium state~the 13M approximation is
not a zero point of the Boltzmann collision integral, hence
L̂w0Þ0). In the second place, specializing to the linearized
case under consideration, functionscc and c@c22(5/2)#, in
general, are not the eigenfunctions of the linearized collision
integral, and henceP2@FL̂w0#ÞFL̂w0, resulting inD0

locÞ0
@10#.

Using Cartesian coordinates and summation convention,
the nonlocal part may be written as

D0
nloc52vTf 0~P1ukrs]ks rs1P2u ik]kqi1P3]kqk!, ~5!

where] i5]/]xi , andP are velocity polynomials:

P1ukrs5ck@crcs2~1/3!d rsc
2#2~2/5!dkscrc

2,

P2u ik5~4/5!@c22~7/2!#@cick2~1/3!d ikc2#,

P35~4/5!@c22~5/2!#@c22~3/2!#2c2.

We seek the dynamic correction of the form

f 5 f 0@11w01f#.

Substitutingw5w01f, andP5P0, into Eq. ~3!, we derive
an equation for the correctionf:

~12P2!@FL̂~w21f!#5~12P0!@vTFc•¹~w01f!#.
~6!

Equation~6! should be supplied with the additional condi-
tion, P0@Ff#50.

Let us apply the usual ordering to solve the Eq.~6!, intro-
ducing a small parametere, multiplying the collision integral
L̂ with e21, and expandingf5(nenf (n). Subject to the ad-
ditional condition, the resulting sequence of linear integral
equations is uniquely soluble. Let us consider the first two
orders ine.

BecauseD0
locÞ0, the leading correction is of the ordere0,

i.e., of the same order as the initial approximationw0. The
function f (0) is due to the following equation:

~12P2!@FL̂~w21f~0!!#50, ~7!

subject to the conditionP0@Ff (0)#50. Equation~7! has the
unique solutionw21f (0)5s:Y(0)1q•Z(0), where functions
Y(0) andZ(0) are solutions of the integral equations:
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L̂Y~0!5bY, L̂Z~0!5aZ, ~8!

subject to the conditionsP1@ f 0Y(0)#50 andP1@ f 0Z(0)#50.
Factorsa andb are

a5p23/2E e2c2
Z~0!•L̂Z~0!dc,

b5p23/2E e2c2
Y~0!:L̂Y~0!dc.

Now we are able to notice Eq.~8! coincides with the CE
equations@4# for the exact transport coefficients~viscosity
and temperature conductivity!. Emergence of these well
known equations in the present context is important and
rather unexpected:when the moment transport equations are
closed with the locally corrected function floc5F(11w0

1f (0)), we come to a closed set of thirteen equations con-
taining the exact CE transport coefficients.

Let us analyze the next order (e1), whereD0
nloc comes into

play. To simplify matters, we neglect the difference between
the exact and the approximate CE transport coefficients. The
correctionf (1) is due to the equation

~12P2!@FL̂f~1!#1D0
nloc50, ~9!

the additional condition isP0@ f 0f (1)#50. The problem~9!
reduces to three integral equations of a familiar form:

L̂F1ukrs5P1ukrs , L̂F2u ik5P2u ik , L̂F35P3 , ~10!

subject to the following conditions: P1@F0F1ukrs#
50, P1@F0F2u ik#50, and P1@F0F3#50. Integral equa-
tions ~10! are of the same structure as are the integral equa-
tions appearing in the CE method, and the methods to handle
them are well developed@4#. In particular, a reasonable and
simple approximation is to takeFi u•••52AiP i u••• . Then

f~1!52vT~A1P1ukrs]ks rs1A2P2u ik]kqi1A3P3]kqk!,
~11!

where Ai are the approximate values of the kinetic coeffi-
cients, and which are expressed via matrix elements of the
linearized collision integral:

Ai
21}2E exp~2c2!P i u•••L̂P i u•••dc.0. ~12!

The estimation can be extended to a computational
scheme for any given molecular model~e.g., for the
Lennard-Jones potential!, in the manner of the transport co-
efficients computations in the CE method.

To summarize the results of the dynamic correction, we
quote first the unclosed equations for the variablesM13
5M135$n,u,T,s,q%:

~1/vT!] tn1¹•u50, ~13a!

~2/vT!] tu1¹~T1n!1¹•s50, ~13b!

~1/vT!] tT1~2/3!¹•u1~2/3!¹•q50, ~13c!

~1/vT!] ts12¹u2~2/3!¹q1¹•h5R, ~13d!

~2/vT!] tq2~5/2!¹p2~5/2!¹•s1¹•g5R. ~13e!

Terms spoiling the closure are the higher moments of the
distribution function,

h52p23/2E e2c2
wcccdc, g52p23/2E e2c2

wccc2dc,

and the ‘‘moments’’ of the collision integral,

R5
2

vT
p23/2E e2c2

ccL̂wdc,

R5
2

vT
p23/2E e2c2

cc2L̂wdc.

The 13M Grad’s distribution function~1! provides the
closing approximation to both the higher moments and the
‘‘moments’’ of the collision integral:

R052m0
21s, R052l0

21q,

¹•h05~2/3!I¹•q1~4/5!¹q,

¹•g05~5/2!¹~p1T!1~7/2!¹•s, ~14!

wherem0 andl0 are the first Sonine polynomial approxima-
tions to the viscosity and the temperature conductivity coef-
ficients @4#, respectively.

The local correction improves the closure of the ‘‘mo-
ments’’ of collision integral:

R52mCE
21s, R52lCE

21q, ~15!

where index CE corresponds to exact Chapman-Enskog val-
ues of the transport coefficients.

The nonlocal correction adds the following terms to the
higher moments:

¹•g5¹•g02A3¹¹•q2A2¹•¹q,

¹•h5¹•h02A1¹•¹s, ~16!

whereAi are the kinetic coefficients derived above.
In order to illustrate what changes in Grad equations with

the nonlocal correction, let us consider a model with two
scalar variables,T(x,t) andq(x,t) ~a simplified case of the
one-dimensional corrected 13M system where one retains
only the variables responsible for heat conduction!:

] tT1]xq50, ] tq1]xT2a]x
2q1q50. ~17!

Parametera>0 controls ‘‘turning on’’ the nonlocal correc-
tion. Using$q(k,v),T(k,v)%exp(vt1ikx), we come to a dis-
persion relation for the two rootsv1,2(k). Without the cor-
rection (a50), there are two domains ofk: for 0<k,k2 ,
dispersion is diffusionlike@Rev1,2(k)<0, Imv1,2(k)50#,
while as k>k2 , dispersion is wavelike @v1(k)
5v2* (k), Imv1(k)Þ0#. For a between 0 and 1, the dis-
persion modifies in the following way: the wavelike domain
becomes bounded, and exists forkP]k2(a),k1(a)@ , while
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the diffusionlike domain consists of two pieces,k,k2(a)
and k.k1(a). The dispersion relation fora51/2 is shown
in the Fig. 1. Asa increases to 1, the boundaries of the
wave-like domain,k2(a) and k1(a), move towards each
other, and collapse ata51. Fora.1, the dispersion relation
becomes purely diffusive (Imv1,250) for all k.

We close this paper with a discussion.
~i! Considering the 13M Grad ansatz as a suitable ap-

proximation to the closed dynamics of thirteen moments, we
have found that the first correction leads to exact Chapman-
Enskog transport coefficients. Further, the nonlocal part of
this correction extends the Grad equations with terms con-
taining spatial gradients of the heat flux and of the stress
tensor, destroying the hyperbolic nature of the former. Cor-
responding kinetic coefficients are explicitly derived for the
Boltzmann equation.

~ii ! Extension of Grad equations with terms like those in
Eq. ~16! was mentioned in many versions of the EIT@11#.
These derivations were based on phenomenological and
semi-phenomenological arguments, in particular, the exten-
sion of the heat flux with appealing to nonlocality effects in
densefluids. Here we have derived the similar contribution
from thesimplest~i.e., dilute gas! kinetics, in fact, from the
assumption about the existence of the mesoscopic dynamics.
The advantage of using the simplest kinetics is that corre-
sponding kinetic coefficients~12! become a matter of acom-
putationfor any molecular model. This computational aspect
will be discussed elsewhere, since it affects the dilute gas
contribution to dense fluids fits. Here we would like to stress
a formal support of the relevance of the above analysis: the

nonlocal piece of dynamic correction is intermediated by the
local correction,improving the 13M Grad estimation to the
ordinary transport coefficients.

~iii ! When the invariance principle is applied to derive
hydrodynamics~closed equations for the variablesn, u and
T) then @8# the local Maxwellianf lm is chosen as the input
distribution function for the invariance equation. In the linear
domain, f lm5F@11w1#, and the projector isPlm5P1; see
Eqs.~1! and ~2!. When the latter expressions are substituted
into the invariance equation~3!, we obtain D lm5D lm

nloc5

2vTF$2¹u:cc1¹T•c@c22(5/2)#%, while D lm
loc[0 because

the local Maxwellians are zero points of the Boltzmann col-
lision integral. Consequently, the dynamic correction begins
with the ordere, and the analog of Eq.~9! reads

L̂f lm
~1!5vT$2¹u:cc1¹T•c@c22~5/2!#%,

subject to the conditionP1@Ff lm
(1)#50. The latter is the fa-

miliar Chapman-Enskog equation, resulting in the Navier-
Stokes correction to the Euler equations@4#. Thus,the non-
local dynamic correction is related to the 13M Grad
equations entirely in the same way as the Navier-Stokes are
related to the Euler equations.As the final comment to this
point, it was recently demonstrated with simple examples@3#
that the invariance principle, as applied to the derivation of
hydrodynamics, is equivalent to the summation of the
Chapman-Enskog expansion.

~iv!. Let us discuss briefly the further corrections. The
first local correction@the functionsY1 andZ1 in Eq. ~8!# is
not the limiting point of our iterational procedure. When the
latter is continued, the subsequent local corrections are found
from integral equations,L̂Yn115bn11Yn , and L̂Zn11
5an11Zn . Thus, we are led to the following two eigenvalue
problems:L̂Y`5b`Y` , andL̂Z`5a`Z` , where, in accord
with general argument@8#, a` andb` are the closest to zero
eigenvalues among all the eigenvalue problems with the
given tensorial structure@12#.

~v! The approach of this paper can be extended to derive
dynamic corrections to other~nonmoment! approximations
of interest in the kinetic theory. The above analysis has dem-
onstrated, in particular, the importance of the local correc-
tion, generically relevant to an approximation that is not a
zero point of the collision integral.
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