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Dynamic correction to moment approximations
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Considering the Grad moment ansatz as a suitable first approximation to a closed finite-moment dynamics,
the correction is derived from the Boltzmann equation. The correction consists of two parts, local and nonlocal.
Locally corrected thirteen-moment equations are demonstrated to contain exact transport coefficients. Equa-
tions resulting from the nonlocal correction give a microscopic justification to some phenomenological theories
of extended hydrodynamicgS1063-651X98)03502-§

PACS numbefs): 05.60:+w, 44.10+i, 47.10+g, 51.10+y

A considerable part of the modern development of non- Another question comes from the approximate character
equilibrium thermodynamics is based on the idea of extenef the Grad equations, and is discussed in frames of the EIT:
sion of the list of relevant variables. Various phenomenologiwhile the Grad equations are strictly hyperbolic at any level
cal and semlphenomenologlcal theories |n_th|s do_maln ar@| (i.e., predicting a finite speed of propagatiowill this
known under the common title of extended irreversible therfeature will be preserved in the further corrections?
modynamics(EIT) [1]. With this, the question of a micro-  These two questions are special cases of a more general
scopic justification of the EIT becomes important. Recall thalyne namely, how does one derive a closed description with
a justification for some of the versions of the EIT was foundy given number of moments? Such a description is some-
W'tgf? the l\I/veIIt—hknoC\_/‘vndC-}rad moTent met_htﬁﬂt].. ntro. limes called mesoscopi] since it occupies an intermediate

rginaily, the tsrad moment approximation was Intro-qq| petween the hydrodynamimacroscopig and the ki-
duced for the purpose of solving the Boltzmann-like equay, ot (microscopig levels of description
tions of the classical kinetic theory. The Grad method is used : : s ' . .
In this paper we aim at deriving the mesoscopic dynamics

in various kinetic problems, e.g., in plasma and in phonon f thirteen moments in the simplest when the Kineti
transport. We mention also that Grad equations assist in urf ee oments € Simpiest case whe € Kinetic

derstanding asymptotic features of gradient expansions, boﬁlpscnpnon _satlsfles the linearized Boltzmar_m_ equation. Our
in linear and in nonlinear domairig]. approach will be based on the two assumptidgisThe me-

The essence of the Grad method is to introduce an aps_oscqpic dynamics of thir.teen moments exi.s.t_s, and is invari-
proximation to the one-particle distribution functibpwhich ~ @nt with respect to the microscopic dynami@s) The 13M
would depend only on a finite numbar of moments, and, Grad approximation is a suitable first approximation to this
subsequently, to use this approximation to derive a closef€soscopic dynamics. The assumpt{dnis realized as the
system ofN moment equations from the kinetic equation. invariance equation for th@inknowr) mesoscopic distribu-
The numbem (the level at which the moment transport hi- tion function. Following the assumptiofii), we solve the
erarchy is truncatédis not specified in the Grad method. invariance equation iteratively, taking the 13M Grad ap-
One particular way to choose is to obtain an estimation of Proximation for the input approximation, and consider the
the transport coefficientéviscosity and heat conductivity f|rst_|terat|on_(fl_1rthe_r we refer to this as to the dynamic cor-
sufficiently close to their exact values provided by therection, to distinguish from constructing another ansatte
Chapman-Enskog methotCE) [4]. In particular, for the demonstrfat.e that the correction results in the exact CE trans-
thirteen-moment13M) Grad approximation it is well known Port coefficients. We also demonstrate how the dynamic cor-
that transport coefficients are equal to the first Sonine polyrection modifies the hyperbolicity of the Grad equations. A
nomial approximation to the exact CE values. AccountingSimilar viewpoint on derivation of hydrodynamics was ear-
for higher moments wittN>13 can improve this approxi- lier developed iff8] (we will return to a comparison belgw
mation (good for neutral gases but poor for plasni&g. First, we review the Boltzmann equation and the 13M
However, what should be done, starting with the 13M ap-Grad approximation. We denote ag, Uo=0, andp, the
proximation, to come to the exact CE transport coefficients i€quilibrium values of the hydrodynamic parametersg the
an open question. It is also well knows] that the Grad number densityy is the average velocity, angi=nkgT is
method provides a poorly converging approximation wherfhe pressune The global Maxwell distribution functiof is
applied to strongly nonequilibrium problenisuch as shock
and kinetic layers F=no(vy) 37 ¥exp —c?),

wherev:=\2kgTom ! is the equilibrium heat velocity, and
* Author to whom correspondence should be addressed. PreseEV/vt is the peculiar velocity of a particle. The near-
address: Istituto Applicazioni Calcolo, CNR, Via del Policlinico, equilibrium dynamics of the distribution functiori=F(1
137 00161 Roma, ltaly. + ¢), is due to the linearized Boltzmann equation:
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for solving Eq. (3) iteratively. The dynamic correction

dp=dp=—vC-Vo+Log, = ; .
e TYeTRe amounts to the first iterate. Let us consider these steps in

. more detail.
Le= j WF(v)[e(vy)+e(V') Substitutinge, (1) and Py (2) instead ofe andP in Eq.
(3), we get (1- PO)[FjgoO]EAo#O, which demonstrates
— (V1) —@(v)]dvidv’'dv,, that (1) is not a solution of Eq(3). Moreover,A splits in

two natural piecesA,= AR+ A5, where

where L is the linearized collision operator, avd is the N
probability density of pair encounters. AR°=(1-Py)[FLg,], Af=(1-Po)[—vFc Veol.

n=én/ng, u=dulvy, p=6p/p, (p=n+T, T (4)
= 6T/Ty) are dimensionless deviations of the hydrodynamic N R
variables, whilea= 8a/p, and q=5q/(pev+) are dimen- Here we have accountled fBr[FL¢]=0, andLe,=0. The
sionless deviations of the stress tenapand of the heat flux  first piece of Eq.(4), Ag®, can be termedocal because it
g. The linearized 13M Grad distribution function i, does not account for spatial gradients. Its origin is twofold.

=F(c)[1+ ¢o], Where In the first place, recall that we are performing our analysis
in a non-local-equilibrium statéhe 13M approximation is
o= @1t @2, @1=N+2u-c+T[c?—(3/2)], not a zero point of the Boltzmann collision integral, hence
Leo#0). In the second place, specializing to the linearized
@,= a:cc+ (4/5)q- [ c2—(5/2)]. (1)  case under consideration, functioosand [ c®—(5/2)], in
general, are not the eigenfunctions of the linearized collision
The overbar denotes a symmetric traceless dyad. integral, and henc@Z[Ff_%]geFf_%, resulting inA'gCgeo
The 13M Grad’s equations are derived in two steps: first[10].
the 13M Grad’s distribution functiofl) is inserted into the Using Cartesian coordinates and summation convention,

linearized Boltzmann equation to give a formal expressionthe nonlocal part may be written as

&tchZjQDO, second, projectoP is applied to this expres- Ho -
sion, whereP,=P;+ P,: Ag ==Vt oIy krsdkors T o)k di@i + 30k Qi) (5)

whered,=dl dx;, andIl are velocity polynomials:

F
P1=—°{xof xo-dv+x-fx-dv+x4f X4~dv],
Mo Hl\krs:Ck[CrCs_(1/3)5rsC2]_(2/5)5kscrczy

Fo I, = (4/5)[ ¢~ (7/2) ][ cick— (1/3) §ikc?],

P2=n—[Y:J Y~dv+Z~J’Z-dv]. (2
0 ;= (4/5)[c®—(5/2)][c®—(3/2)]—c2.
Here Xo=1, X=+2c, X,=y2/3(c?2-%), Y=\2cc

We seek the dynamic correction of the form
andZ=(2/\/5)c(c?—2). The resulting equation, y

Pol Faigo]=Po[Fgql, o ) )
Substitutinge= g+ ¢, andP =Py, into Eq.(3), we derive
is a compressed representation for the 13M Grad equatior@n equation for the correctiog:
for the macroscopic variabléd 13={n,u, T, o,q}. R
Now we turn to the main purpose of this paper, and derive  (1—P)[FL(@,+ ¢)]=(1—Po)[viFc-V(go+ ¢)].
the dynamic correction to the 13M distribution functith. (6)
The assumptiofi) (existence of closed dynamics of thirteen . . . . .
moment$ implies the invariance equation for the true meso-Equat'on(@ should be supplied with the additional condi-
ic distribution function.f (M =F[1+¢(M tion, Pol F]=0.
schop|c 'Sh” u |otn un(ijl?hn,tg[h' 13f,c) _t [ q ol d13'c)]’ i Let us apply the usual ordering to solve the Hj, intro-
where we have stressed that this function depends parame HUcing a small parameter multiplying the collision integral
cally on the same thirteen macroscopic parameters, as the

.2 . . . . - i -1 i = (n) i -
original Grad approximation. The invariance condition for b With € ~, and expandings=2xe"$™". Subject to the ad
~ ditional condition, the resulting sequence of linear integral
f(M3,C) reads[8]

equations is uniquely soluble. Let us consider the first two
orders ine.

Because\{°+0, the leading correction is of the ordef,
- ) ) _ i.e., of the same order as the initial approximatiop The
whereP is the pr(}lector associated with Generally spegk- function ¢(© is due to the following equation:
ing, the projectorP depends on the distribution functioih
[8,9]. In the following, we use the projectd?, (2), which (1-P,)[FL(@p+ ¢?)]=0, (7)
will be consistent with our approximate treatment of Eg).

Following the assumptiortii) [13M Grad’s distribution  subject to the conditio®[ F $(®)]=0. Equation(7) has the
function (1) is a good initial approximatiop the Grad’s  unique solutionp,+ ¢(®= oY+ q.2(®, where functions
function f, and the projectoP, are chosen as the input data Y(®) andZ(®) are solutions of the integral equations:

(1-P)[FIg]=0, (3)
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LYO—py, [zO0=az ®) (1N7)do+2Vu—(2/3Vq+V-h=R,  (13d)

subject to the conditionB,[f,Y(®]=0 andP,[f,Z(®]=0. (2h1)3,q—(5/2Vp—(5/2V-o+V-g=R. (13¢

Factorsa andb are . )
Terms spoiling the closure are the higher moments of the

) . distribution function,
a= 77*3’21 e ¢z©.Lz0dc,

h:277*3’2f e~ oecdc, g=27-r*3’2f e~ poac?dc,

b=w‘3’2f e ¢y yOqc.
and the “moments” of the collision integral,

Now we are able to notice E¢8) coincides with the CE o e r
equations[4] for the exact transport coefficient&/iscosity R= v f e cclede,
and temperature conductivjty Emergence of these well
known equations in the present context is important and 2 o n
rather unexpectedvhen the moment transport equations are R= V_Tw—3/2f e “cc?L edc.

closed with the locally corrected function®¥=F(1+ ¢q

+¢(%), we come to a closed set of thirteen equations con- The 13M Grad's distribution functiorl) provides the
taining the exact CE transport coefficients. closing approximation to both the higher moments and the
Let us analyze the next ordet), whereA°° comes into  “moments” of the collision integral:

play. To simplify matters, we neglect the difference between . .

the exact and the approximate CE transport coefficients. The Ro=—no 0, Ro=—\y7q,

correctiong® is due to the equation _

V-hy=(2/3)IV-q+(4/5Vq,

1-P,)[FLgW]+ARC=0, 9
(1=PIIFLF™ ]+ a0 V-90=(5/2V(p+T)+(7/2V - o, (14)

the additional condition i®,[ fo¢]=0. The problem(9)

reduces to three integral equations of a familiar form: where o andi are the first Sonine polynomial approxima-

tions to the viscosity and the temperature conductivity coef-
ficients[4], respectively.

The local correction improves the closure of the “mo-
ments” of collision integral:

LFakes=Takrs,  LFow=Tp, LF3=II3, (10

subject to the following conditions: Py[FoFyys]
=0, Py[FoFyik]=0, and P,[FoF3]=0. Integral equa-
tions (10) are of the same structure as are the integral equa-
tions appearing in the CE method, and the methods to handighere index CE corresponds to exact Chapman-Enskog val-
them are well developefd]. In particular, a reasonable and yes of the transport coefficients.

simple approximation is to také;...= —AIlL;.... Then The nonlocal correction adds the following terms to the
higher moments:

R=—puceo, R=-\2q. (15)

p V=~ V(AT rsdkars T Aol )i didi + Azllzd ),

(11 V.g=V-go—AVV-q—A,V-Vq,
where A; are the approximate values of the kinetic coeffi- V-h=V-hy—A,V-Va, (16)
cients, and which are expressed via matrix elements of the
linearized collision integral: whereA; are the kinetic coefficients derived above.

In order to illustrate what changes in Grad equations with
the nonlocal correction, let us consider a model with two
scalar variablesT (x,t) andq(x,t) (a simplified case of the
one-dimensional corrected 13M system where one retains

The estimation can be extended to a computationabnly the variables responsible for heat condugtion
scheme for any given molecular modéé.g., for the
Lennard-Jones potentjaiin the manner of the transport co- 6 T+4,0=0, Qg+ aXT—aa)z(quq:O. (17
efficients computations in the CE method.

To summarize the results of the dynamic correction, weParametea=0 controls “turning on” the nonlocal correc-
quote first the unclosed equations for the variabldg, tion. Using{q(k, ), T(k,w)}exp(wt+ikx), we come to a dis-

Ai’loc—f exp(— ¢, LII;).. dc>0. (12

=M3={n,u,T,0,q}: persion relation for the two roots, ,(k). Without the cor-
rection @=0), there are two domains &f for Osk<k_,
(INv7)dn+V.-u=0, (139 dispersion is diffusionlikg Rew; J(k)<0, Imw; Ak)=0],
while as k=k_, dispersion is wavelike [w4(Kk)
(2N1)0:u+V(T+n)+V-0o=0, (13b) =w3(k), Imw.(k)#0]. Fora between 0 and 1, the dis-

persion modifies in the following way: the wavelike domain
(IN7) 3T+ (2/3)V-u+(2/3)V-q=0, (130  becomes bounded, and exists foe 1k_(a),k.(a)[, while



FIG. 1. Attenuation Re1 5(k) (lower pair of curvey frequency
Imw; AK) (upper pair of curves Dashed lines: Grad casa£0),
solid lines: dynamic correctiona=0.5).

the diffusionlike domain consists of two piecdss<k_(a)
andk>k, (a). The dispersion relation faa=1/2 is shown
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nonlocal piece of dynamic correction is intermediated by the
local correction,improvingthe 13M Grad estimation to the
ordinary transport coefficients.

(i) When the invariance principle is applied to derive
hydrodynamicgclosed equations for the variablasu and
T) then[8] the local Maxwellianf,,, is chosen as the input
distribution function for the invariance equation. In the linear
domain, f;,=F[1+ ¢,], and the projector i®,,,=P;; see
Egs.(1) and(2). When the latter expressions are substituted
into the invariance equatiof3), we obtain A,,=A/lo°=
—vF{2Vu:cc+ VT- [ c®—(5/2)]}, while Al=0 because
the local Maxwellians are zero points of the Boltzmann col-
lision integral. Consequently, the dynamic correction begins
with the ordere, and the analog of E(9) reads

LopD=vi{2Vu:cct VT - c2— (521},

subject to the conditiof®;[ F¢{1)]=0. The latter is the fa-
miliar Chapman-Enskog equation, resulting in the Navier-
Stokes correction to the Euler equatiddg. Thus,the non-

in the Fig. 1. Asa increases to 1, the boundaries of thelocal dynamic correction is related to the 13M Grad

wave-like domain,k_(a) and k, (a), move towards each
other, and collapse at=1. Fora>1, the dispersion relation
becomes purely diffusive (lm, ,=0) for all k.

We close this paper with a discussion.

equations entirely in the same way as the Navier-Stokes are
related to the Euler equationés the final comment to this
point, it was recently demonstrated with simple exampbs
that the invariance principle, as applied to the derivation of

(i) Considering the 13M Grad ansatz as a suitable aphydrodynamics, is equivalent to the summation of the
proximation to the closed dynamics of thirteen moments, wéhapman-Enskog expansion.
have found that the first correction leads to exact Chapman- (iv). Let us discuss briefly the further corrections. The
Enskog transport coefficients. Further, the nonlocal part ofirst local correctior{the functionsY; andZ, in Eq. (8)] is
this correction extends the Grad equations with terms conRot the limiting point of our iterational procedure. When the
taining spatial gradients of the heat flux and of the stres#atter is continued, the subsequent local corrections are found
tensor, destroying the hyperbolic nature of the former. Corfrom integral equations,I:Yn+1=bn+1Yn, and LG+1
responding kinetic coefficients are explicitly derived for the=a,,,Z,,. Thus, we are led to the following two eigenvalue

Boltzmann equation.

problems:IA_szbooYm, andLZ.=a.Z.., where, in accord

(i) Extension of Grad equations with terms like those iNWwith general argumer8], a,. andb., are the closest to zero

Eq. (16) was mentioned in many versions of the HIT1].

eigenvalues among all the eigenvalue problems with the

These derivations were based on phenomenological ar@ven tensorial structurfL2].

semi-phenomenological arguments, in particular, the exten- ) The approach of this paper can be extended to derive
sion of the heat flux with appealing to nonlocality effects in dynamic corrections to othenonmoment approximations

densefluids. Here we have derived the similar contribution

from the simplest(i.e., dilute gagkinetics, in fact, from the

of interest in the kinetic theory. The above analysis has dem-
onstrated, in particular, the importance of the local correc-

assumption about the existence of the mesoscopic dynamicgy, ' generically relevant to an approximation that is not a
The advantage of using the simplest kinetics is that corresg,q point of the collision integral.

sponding kinetic coefficientsl2) become a matter of eom-

putationfor any molecular model. This computational aspect

I.V.K. acknowledges the support of the Alexander von

will be discussed elsewhere, since it affects the dilute gaslumboldt Foundation, the Italian Ministry of Research
contribution to dense fluids fits. Here we would like to stress(CNR), and the support of the RFBR through Grant No.
a formal support of the relevance of the above analysis: th85-02-03836-4A.N.G. and 1.V.K).
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