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Abstract

In this paper, we review the construction of low-dimensional manifolds of reduced
description for equations of chemical kinetics from the standpoint of the method

of invariant manifold (MIM). MIM is based on a formulation of the condition of
invariance as an equation, and its solution by Newton iterations. A review of exist-

ing alternative methods is extended by a thermodynamically consistent version of
the method of intrinsic low-dimensional manifolds. A grid-based version of MIM is

developed, and model extensions of low-dimensional dynamics are described. Gen-
eralizations to open systems are suggested. The set of methods covered makes it

possible to effectively reduce description in chemical kinetics.
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1 Introduction

In this paper, we present a general method of constructing the reduced de-
scription for dissipative systems of reaction kinetics. Our approach is based on
the method of invariant manifold which was developed in end of 1980th - be-
ginning of 1990th by Gorban & Karlin (1992,a,b). Its realization for a generic
dissipative systems was discussed by Gorban & Karlin (1994); Gorban, Kar-
lin, Ilg & Öttinger (2001). This method was applied to a set of problems of
classical kinetic theory based on the Boltzmann kinetic equation (Gorban &
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Karlin, 1994; Karlin, Dukek & Nonnenmacher, 1997; Karlin, Gorban, Dukek
& Nonnenmacher, 1998). The method of invariant manifold was successfully
applied to a derivation of reduced description for kinetic equations of poly-
meric solutions (Zmievskii, Kalin & Deville, 2000). It was also been tested on
systems of chemical kinetics (Gorban, Karlin, Zmievskii & Dymova, 2000).

The goal of nonequilibrium statistical physics is the understanding of how a
system with many degrees of freedom acquires a description with a few degrees
of freedom. This should lead to reliable methods of extracting the macroscopic
description from a detailed microscopic description.

Meanwhile this general problem is still far from the final solution, it is reason-
able to study simplified models, where, on the one hand, a detailed description
is accessible to numerics, on the other hand, analytical methods designed to
the solution of problems in real systems can be tested.

In this paper we address the well known class of finite-dimensional systems
known from the theory of reaction kinetics. These are equations governing
a complex relaxation in perfectly stirred closed chemically active mixtures.
Dissipative properties of such systems are characterized with a global con-
vex Lyapunov function G (thermodynamic potential) which implements the
second law of thermodynamics: As the time t tends to infinity, the system
reaches the unique equilibrium state while in the course of the transition the
Lyapunov function decreases monotonically.

While the limiting behavior of the dissipative systems just described is cer-
tainly very simple, there are still interesting questions to be asked about. One
of these questions is closely related to the above general problem of nonequi-
librium statistical physics. Indeed, evidence of numerical integration of such
systems often demonstrates that the relaxation has a certain geometrical struc-
ture in the phase space. Namely, typical individual trajectories tend to man-
ifolds of lower dimension, and further proceed to the equilibrium essentially
along these manifolds. Thus, such systems demonstrate a dimensional reduc-
tion, and therefore establish a more macroscopic description after some time
since the beginning of the relaxation.

There are two intuitive ideas behind our approach, and we shall now discuss
them informally. Objects to be considered below are manifolds (surfaces) Ω
in the phase space of the reaction kinetic system (the phase space is usually a
convex polytope in a finite-dimensional real space). The ‘ideal’ picture of the
reduced description we have in mind is as follows: A typical phase trajectory,
c(t), where t is the time, and c is an element of the phase space, consists of
two pronounced segments. The first segment connects the beginning of the
trajectory, c(0), with a certain point, c(t1), on the manifold Ω (rigorously
speaking, we should think of c(t1) not on Ω but in a small neighborhood of
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Ω but this is inessential for the ideal picture). The second segment belongs to
Ω, and connects the point c(t1) with the equilibrium ceq = c(∞), ceq ∈ Ω.
Thus, the manifolds appearing in our ideal picture are “patterns” formed by
the segments of individual trajectories, and the goal of the reduced description
is to “filter out” this manifold.

There are two important features behind this ideal picture. The first feature is
the invariance of the manifold Ω: Once the individual trajectory has started
on Ω, it does not leaves Ω anymore. The second feature is the projecting: The
phase points outside Ω will be projected onto Ω. Furthermore, the dissipativity
of the system provides an additional information about this ideal picture:
Regardless of what happens on the manifold Ω, the function G was decreasing
along each individual trajectory before it reached Ω. This ideal picture is the
guide to extract slow invariant manifolds.

The paper is organized as follows. In the section 2, we review the reaction
kinetics (section 2.1), and discuss the main methods of model reduction in
chemical kinetics (section 2.2). In particular, we present two general versions
of extending partially equilibrium manifolds to a single relaxation time model
in the whole phase space, and develop a thermodynamically consistent version
of the intrinsic low-dimensional manifold (ILDM) approach. In the section 3
we introduce the method of invariant manifold in the way appropriate to this
class of nonequilibrium systems. In the sections 4 and 5 we give some details
on the two relatively independent parts of the method, the thermodynamic
projector, and the iterations for solving the invariance equation. We also intro-
duce a general symmetric linearization procedure for the invariance equation,
and discuss its relevance to the picture of decomposition of motions. In the
section 6, these two procedures are combined into an unique algorithm. In the
section 7, we demonstrate an illustrative example of computations for a model
catalytic reaction. In the section 8 we demonstrate how the thermodynamic
projector is constructed without the a priori parameterization of the manifold.
This result is essentially used in the section 9 where we introduce a computa-
tionally effective grid-based method to construct invariant manifolds. In the
section 10 we describe an extension of the method of invariant manifold to
open systems. Finally, results are discussed in the section 11.

2 Equations of chemical kinetics and their reduction

2.1 Outline of the dissipative reaction kinetics

We begin with an outline of the reaction kinetics (for details see e. g. the book
of Yablonskii, Bykov, Gorban & Elokhin (1991)). Let us consider a closed sys-
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tem with n chemical species A1, . . . ,An, participating in a complex reaction.
The complex reaction is represented by the following stoichiometric mecha-
nism:

αs1A1 + . . .+ αsnAn 
 βs1A1 + . . .+ βsnAn, (1)

where the index s = 1, . . . , r enumerates the reaction steps, and where in-
tegers, αsi and βsi, are stoichiometric coefficients. For each reaction step s,
we introduce n–component vectors αs and βs with components αsi and βsi.
Notation γs stands for the vector with integer components γsi = βsi−αsi (the
stoichiometric vector). We adopt an abbreviated notation for the standard
scalar product of the n-component vectors:

〈x,y〉 =
n∑

i=1

xiyi.

The system is described by the n-component concentration vector c, where the
component ci ≥ 0 represents the concentration of the specie Ai. Conservation
laws impose linear constraints on admissible vectors c (balances):

〈bi, c〉 = Bi, i = 1, . . . , l, (2)

where bi are fixed and linearly independent vectors, and Bi are given scalars.
Let us denote as B the set of vectors which satisfy the conservation laws (2):

B = {c|〈b1, c〉 = B1, . . . , 〈bl, c〉 = Bl} .

The phase space V of the system is the intersection of the cone of n-dimensional
vectors with nonnegative components, with the set B, and dimV = d = n− l.
In the sequel, we term a vector c ∈ V the state of the system. In addition,
we assume that each of the conservation laws is supported by each elementary
reaction step, that is

〈γs, bi〉 = 0, (3)

for each pair of vectors γs and bi.

Reaction kinetic equations describe variations of the states in time. Given the
stoichiometric mechanism (1), the reaction kinetic equations read:

ċ = J (c), J (c) =
r∑

s=1

γsWs(c), (4)

4



where dot denotes the time derivative, and Ws is the reaction rate function of
the step s. In particular, the mass action law suggests the polynomial form of
the reaction rates:

Ws = k+
s

n∏

i=1

cαii − k−s
n∏

i=1

cβii , (5)

where k+
s and k−s are the constants of the direct and of the inverse reactions

rates of the sth reaction step. The phase space V is positive-invariant of the
system (4): If c(0) ∈ V , then c(t) ∈ V for all the times t > 0.

In the sequel, we assume that the kinetic equation (4) describes evolution
towards the unique equilibrium state, ceq, in the interior of the phase space
V . Furthermore, we assume that there exists a strictly convex function G(c)
which decreases monotonically in time due to Eq. (4):

Ġ = 〈∇G(c),J (c)〉 ≤ 0, (6)

Here∇G is the vector of partial derivatives ∂G/∂ci, and the convexity assumes
that the n× n matrices

Hc = ‖∂2G(c)/∂ci∂cj‖, (7)

are positive definite for all c ∈ V . In addition, we assume that the matrices
(7) are invertible if c is taken in the interior of the phase space.

The function G is the Lyapunov function of the system (4), and ceq is the
point of global minimum of the function G in the phase space V . Otherwise
stated, the manifold of equilibrium states ceq(B1, . . . , Bl) is the solution to the
variational problem,

G → min for 〈bi, c〉 = Bi, i = 1, . . . , l. (8)

For each fixed value of the conserved quantities Bi, the solution is unique.
In many cases, however, it is convenient to consider the whole equilibrium
manifold, keeping the conserved quantities as parameters.

For example, for perfect systems in a constant volume under a constant tem-
perature, the Lyapunov function G reads:

G =
n∑

i=1

ci[ln(ci/c
eq
i )− 1]. (9)

5



It is important to stress that ceq in Eq. (9) is an arbitrary equilibrium of the
system, under arbitrary values of the balances. In order to compute G(c),
it is unnecessary to calculate the specific equilibrium ceq which corresponds
to the initial state c. Moreover, for ideal systems, function G is constructed
from the thermodynamic data of individual species, and, as the result of this
construction, it turns out that it has the form of Eq. (9). Let us mention here
the classical formula for the free energy F = RTV G:

F = V RT
n∑

i=1

ci[(ln(ciVQ i)− 1) + Fint i(T )], (10)

where V is the volume of the system, T is the temperature, VQ i = N0(2π~2/mikT )3/2

is the quantum volume of one mole of the specie Ai, N0 is the Avogadro num-
ber, mi is the mass of the molecule of Ai, R = kN0, and Fint i(T ) is the free
energy of the internal degrees of freedom per mole of Ai.

Finally, we recall an important generalization of the mass action law (5),
known as the Marcelin-De Donder kinetic function. This generalization was
developed by Feinberg (1972) based on ideas of the thermodynamic theory of
affinity (De Donder & Van Rysselberghe, 1936). We use the kinetic function
suggested by Bykov, Gorban & Yablonskii (1982). Within this approach, the
functions Ws are constructed as follows: For a given strictly convex function
G, and for a given stoichiometric mechanism (1), we define the gain (+) and
the loss (−) rates of the sth step,

W+
s = ϕ+

s exp[〈∇G,αs〉], W−
s = ϕ−s exp[〈∇G,βs〉], (11)

where ϕ±s > 0 are kinetic factors. The Marcelin-De Donder kinetic function
reads: Ws = W+

s −W−
s , and the right hand side of the kinetic equation (4)

becomes,

J =
r∑

s=1

γs{ϕ+
s exp[〈∇G,αs〉]− ϕ−s exp[〈∇G,βs〉]}. (12)

For the Marcelin-De Donder reaction rate (11), the dissipation inequality (6)
reads:

Ġ =
r∑

s=1

[〈∇G,βs〉 − 〈∇G,αs〉]
{
ϕ+
s e
〈∇G,αs〉 − ϕ−s e〈∇G,βs〉

}
≤ 0. (13)

The kinetic factors ϕ±s should satisfy certain conditions in order to make valid
the dissipation inequality (13). A well known sufficient condition is the detail
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balance:

ϕ+
s = ϕ−s , (14)

other sufficient conditions are discussed in detail elsewhere (Yablonskii, Bykov,
Gorban & Elokhin, 1991; Gorban, 1984; Karlin, 1989, 1993). For the function
G of the form (9), the Marcelin-De Donder equation casts into the more fa-
miliar mass action law form (5).

2.2 The problem of reduced description in chemical kinetics

What does it mean, “to reduce the description of a chemical system”? This
means the following:

(1) To shorten the list of species. This, in turn, can be achieved in two ways:
(i) To eliminate inessential components from the list;
(ii) To lump some of the species into integrated components.

(2) To shorten the list of reactions. This also can be done in several ways:
(i) To eliminate inessential reactions, those which do not significantly

influence the reaction process;
(ii) To assume that some of the reactions “have been already com-

pleted”, and that the equilibrium has been reached along their paths
(this leads to dimensional reduction because the rate constants of the
“completed” reactions are not used thereafter, what one needs are equi-
librium constants only).

(3) To decompose the motions into fast and slow, into independent (almost-
independent) and slaved etc. As the result of such a decomposition, the
system admits a study “in parts”. After that, results of this study are
combined into a joint picture. There are several approaches which fall
into this category: The famous method of the quasi-steady state (QSS),
pioneered by Bodenstein and Semenov and explored in considerable detail
by many authors, in particular, by Bowen, Acrivos & Oppenheim (1963);
Chen (1988); Segel & Slemrod (1989); Fraser (1988); Roussel & Fraser
(1990), and many others; the quasi-equilibrium approximation (Orlov &
Rozonoer, 1984; Gorban, 1984; Volpert & Hudjaev, 1985; Fraser, 1988;
Karlin, 1989, 1993); methods of sensitivity analysis (Rabitz, Kramer &
Dacol, 1983; Lam & Goussis, 1994); methods based on the derivation of
the so-called intrinsic low-dimensional manifolds (ILDM, as suggested by
Maas & Pope (1992)). Our method of invariant manifold (MIM, (Gorban
& Karlin, 1992,a,b, 1994; Gorban, Karlin, Zmievskii & Dymova, 2000;
Gorban, Karlin, Ilg & Öttinger, 2001)) also belongs to this kind of meth-
ods.
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Why to reduce description in the times of supercomputers?

First, in order to gain understanding. In the process of reducing the description
one is often able to extract the essential, and the mechanisms of the processes
under study become more transparent. Second, if one is given the detailed
description of the system, then one should be able also to solve the initial-
value problem for this system. But what should one do in the case where the
the system is representing just a point in a three-dimensional flow? The prob-
lem of reduction becomes particularly important for modeling the spatially
distributed physical and chemical processes. Third, without reducing the ki-
netic model, it is impossible to construct this model. This statement seems
paradoxal only at the first glance: How come, the model is first simplified,
and is constructed only after the simplification is done? However, in practice,
the typical for a mathematician statement of the problem, (Let the system
of differential equations be given, then ...) is rather rarely applicable in the
chemical engineering science for detailed kinetics. Some reactions are known
precisely, some other - only hypothetically. Some intermediate species are well
studied, some others - not, it is not known much about them. Situation is
even worse with the reaction rates. Quite on the contrary, the thermodynamic
data (energies, enthalpies, entropies, chemical potentials etc) for sufficiently
rarefied systems are quite reliable. Final identification of the model is always
done on the basis of comparison with the experiment and with a help of fit-
ting. For this purpose, it is extremely important to reduce the dimension of the
system, and to reduce the number of tunable parameters. The normal logics
of modeling for the purpose of chemical engineering science is the following:
Exceedingly detailed but coarse with respect to parameters system → reduc-
tion → fitting → reduced model with specified parameters (cycles are allowed
in this scheme, with returns from fitting to more detailed models etc). A more
radical viewpoint is also possible: In the chemical engineering science, detailed
kinetics is impossible, useless, and it does not exist. For a recently published
discussion on this topic see Levenspiel (1999, 2000); Yablonsky (2000).

Alas, with a mathematical statement of the problem related to reduction, we
all have to begin with the usual: Let the system of differential equations be
given ... . Enormous difficulties related to the question of how well the original
system is modeling the real kinetics remain out of focus of these studies.

Our present work is devoted to studying reductions in a given system of ki-
netic equations to invariant manifolds of slow motions. We begin with a brief
discussion of existing approaches.
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2.3 Partial equilibrium approximations

Quasi-equilibrium with respect to reactions is constructed as follows: From the
list of reactions (1), one selects those which are assumed to equilibrate first. Let
they be indexed with the numbers s1, . . . , sk. The quasi-equilibrium manifold
is defined by the system of equations,

W+
si

= W−
si
, i = 1, . . . , k. (15)

This system of equations looks particularly elegant when written in terms of
conjugated (dual) variables, µ =∇G:

〈γsi ,µ〉 = 0, i = 1, . . . , k. (16)

In terms of conjugated variables, the quasi-equilibrium manifold forms a linear
subspace. This subspace, L⊥, is the orthogonal completement to the linear
envelope of vectors, L = lin{γs1 , . . . ,γsk}.

Quasi-equilibrium with respect to species is constructed practically in the same
way but without selecting the subset of reactions. For a given set of species,
Ai1, . . . , Aik , one assumes that they evolve fast to equilibrium, and remain
there. Formally, this means that in the k-dimensional subspace of the space of
concentrations with the coordinates ci1, . . . , cik , one constructs the subspace L
which is defined by the balance equations, 〈bi, c〉 = 0. In terms of the conju-
gated variables, the quasi-equilibrium manifold, L⊥, is defined by equations,

µ ∈ L⊥, (µ = (µ1, . . . , µn)). (17)

The same quasi-equilibrium manifold can be also defined with the help of
fictitious reactions: Let g1, . . . ,gq be a basis in L. Then Eq. (17) may be
rewritten as follows:

〈gi,µ〉 = 0, i = 1, . . . , q. (18)

Illustration: Quasi-equilibrium with respect to reactions in hydrogen oxidation:
Let us assume equilibrium with respect to dissociation reactions, H2 
 2H,
and, O2 
 2O, in some subdomain of reaction conditions. This gives:

k+
1 cH2 = k−1 c

2
H, k

+
2 cO2 = k−2 c

2
O.

Quasi-equilibrium with respect to species: For the same reaction, let us assume
equilibrium over H, O, OH, and H2O2, in a subgomain of reaction conditions.
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Subspace L is defined by balance constraints:

cH + cOH + 2cH2O2 = 0, cO + cOH + 2cH2O2 = 0.

Subspace L is two-dimensional. Its basis, {g1,g2} in the coordinates cH, cO,
cOH, and cH2O2 reads:

g1 = (1, 1,−1, 0), g2 = (2, 2, 0,−1).

Corresponding Eq. (18) is:

µH + µO = µOH, 2µH + 2µO = µH2O2.

General construction of the quasi-equilibrium manifold: In the space of con-
centration, one defines a subspace L which satisfies the balance constraints:

〈bi, L〉 ≡ 0.

The orthogonal complement of L in the space with coordinates µ = ∇G
defines then the quasi-equilibrium manifold ΩL. For the actual computations,
one requires the inversion from µ to c. Duality structure µ↔ c is well studied
by many authors (Orlov & Rozonoer, 1984; Dukek, Karlin & Nonnenmacher,
1997).

Quasi-equilibrium projector. It is not sufficient to just derive the manifold, it
is also required to define a projector which would transform the vector field
defined on the space of concentrations to a vector field on the manifold. Quasi-
equilibrium manifold consists of points which minimize G on the affine spaces
of the form c+L. These affine planes are hypothetic planes of fast motions (G is
decreasing in the course of the fast motions). Therefore, the quasi-equilibrium
projector maps the whole space of concentrations on ΩL parallel to L. The
vector field is also projected onto the tangent space of ΩL parallel to L.

Thus, the quasi-equilibrium approximation implies the decomposition of mo-
tions into the fast - parallel to L, and the slow - along the quasi-equilibrium
manifold. In order to construct the quasi-equilibrium approximation, knowl-
edge of reaction rate constants of “fast” reactions is not required (stoichio-
metric vectors of all these fast reaction are in L, γ fast ∈ L, thus, knowledge
of L suffices), one only needs some confidence in that they all are sufficiently
fast (Volpert & Hudjaev, 1985). The quasi-equilibrium manifold itself is con-
structed based on the knowledge of L and of G. Dynamics on the quasi-
equilibrium manifold is defined as the quasi-equilibrium projection of the “slow
component” of kinetic equations (4).
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2.4 Model equations

The assumption behind the quasi-equilibrium is the hypothesis of the decom-
position of motions into fast and slow. The quasi-equilibrium approximation
itself describes slow motions. However, sometimes it becomes necessary to re-
store to the whole system, and to take into account the fast motions as well.
With this, it is desirable to keep intact one of the important advantages of
the quasi-equilibrium approximation - its independence of the rate constants
of fast reactions. For this purpose, the detailed fast kinetics is replaced by a
model equation (single relaxation time approximation).

Quasi-equilibrium models (QEM) are constructed as follows: For each concen-
tration vector c, consider the affine manifold, c+ L. Its intersection with the
quasi-equilibrium manifold ΩL consists of one point. This point delivers the
minimum to G on c + L. Let us denote this point as c∗L(c). The equation of
the quasi-equilibrium model reads:

ċ = −1

τ
[c− c∗L(c)] +

∑

slow

γsWs(c
∗
L(c)), (19)

where τ > 0 is the relaxation time of the fast subsystem. Rates of slow re-
actions are computed in the points c∗L(c) (the second term in the right hand
side of Eq. (19), whereas the rapid motion is taken into account by a sim-
ple relaxational term (the first term in the right hand side of Eq. (19). The
most famous model kinetic equation is the BGK equation in the theory of
the Boltzmann equation (Bhatnagar, Gross & Krook, 1954). The general the-
ory of the quasi-equilibrium models, including proofs of their thermodynamic
consistency, was constructed by Gorban & Karlin (1992c, 1994a).

Single relaxation time gradient models (SRTGM) were considered by Ansumali
& Karlin (2000, 2002,a) in the context of the lattice Boltzmann method for
hydrodynamics. These models are aimed at improving the obvious drawback
of quasi-equilibrium models (19): In order to construct the QEM, one needs
to compute the function,

c∗L(c) = arg min
x∈c+L, x>0

G(x). (20)

This is a convex programming problem. It does not always has a closed-form
solution.

Let g1, . . . ,gk is the orthonormal basis of L. We denote as D(c) the k ×
k matrix with the elements 〈gi,Hcgj〉, where Hc is the matrix of second
derivatives of G (7). Let C(c) be the inverse of D(c). The single relaxation
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time gradient model has the form:

ċ = −1

τ

∑

i,j

giC(c)ij〈gj,∇G〉 +
∑

slow

γsWs(c). (21)

The first term drives the system to the minimum of G on c + L, it does not
require solving the problem (20), and its spectrum in the quasi-equilibrium is
the same as in the quasi-equilibrium model (19). Note that the slow component
is evaluated in the “current” state c.

The models (19) and (21) lift the quasi-equilibrium approximation to a kinetic
equation by approximating the fast dynamics with a single “reaction rate
constant” - relaxation time τ .

2.5 Quasi-steady state approximation

The quasi-steady state approximation (QSS) is a tool used in a huge amount
of works. Let us split the list of species in two groups: The basic and the
intermediate (radicals etc). Concentration vectors are denoted accordingly, cs

(slow, basic species), and cf (fast, intermediate species). The concentration
vector c is the direct sum, c = cs ⊕ cf . The fast subsystem is Eq. (4) for the
component cf at fixed values of cs. If it happens that this way defined fast
subsystem relaxes to a stationary state, cf → cf

qss(c
s), then the assumption

that cf = cf
qss(c) is precisely the QSS assumption. The slow subsystem is the

part of the system (4) for cs, in the right hand side of which the component
cf is replaced with cf

qss(c). Thus, J = J s ⊕ J f , where

ċf =J f(c
s ⊕ cf), cs = const; cf → cf

qss(c
s); (22)

ċs =J s(c
s ⊕ cf

qss(c
s)). (23)

Bifurcations in the system (22) under variation of cs as a parameter are con-
fronted to kinetic critical phenomena. Studies of more complicated dynamic
phenomena in the fast subsystem (22) require various techniques of averaging,
stability analysis of the averaged quantities etc.

Various versions of the QSS method are well possible, and are actually used
widely, for example, the hierarchical QSS method. There, one defines not a
single fast subsystem but a hierarchy of them, cf1, . . . , cfk . Each subsystem cfi

is regarded as a slow system for all the foregoing subsystems, and it is regarded
as a fast subsystem for the following members of the hierarchy. Instead of one
system of equations (22), a hierarchy of systems of lower-dimensional equations
is considered, each of these subsystem is easier to study analytically.
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Theory of singularly perturbed systems of ordinary differential equations is
used to provide a mathematical background and further development of the
QSS approximation (Bowen, Acrivos & Oppenheim, 1963; Segel & Slemrod,
1989). In spite of a broad literature on this subject, it remains, in general, un-
clear, what is the smallness parameter that separates the intermediate (fast)
species from the basic (slow). Reaction rate constants cannot be such a param-
eter (unlike in the case of the quasi-equilibrium). Indeed, intermediate species
participate in the same reactions, as the basic species (for example, H2 
 2H,
H + O2 
 OH + O). It is therefore incorrect to state that cf evolve faster than
cs. In the sense of reaction rate constants, cf is not faster.

For catalytic reactions, it is not difficult to figure out what is the smallness
parameter that separates the intermediate species from the basic, and which
allows to upgrade the QSS assumption to a singular perturbation theory rigor-
ously (Yablonskii, Bykov, Gorban & Elokhin, 1991). This smallness parameter
is the ratio of balances: Intermediate species include the catalyst, and their
total amount is simply significantly less than the amount of all the ci’s. After
renormalizing to the variables of one order of magnitude, the small parameter
appears explicitly.

For usual radicals, the origin of the smallness parameter is quite similar. There
are much less radicals than the basic species (otherwise, the QSS assumption is
inapplicable). In the case of radicals, however, the smallness parameter cannot
be extracted directly from balances Bi (2). Instead, one can come up with a
thermodynamic estimate: Function G decreases in the course of reactions,
whereupon we obtain the limiting estimate of concentrations of any specie:

ci ≤ max
G(c)≤G(c(0))

ci, (24)

where c(0) is the initial composition. If the concentration cR of the radical
R is small both initially and in the equilibrium, then it should remain small
also along the path to the equilibrium. For example, in the case of ideal G (9)
under relevant conditions, for any t > 0, the following inequality is valid:

cR[ln(cR(t)/ceq
R )− 1] ≤ G(c(0)). (25)

Inequality (25) provides the simplest (but rather coarse) thermodynamic es-
timate of cR(t) in terms of G(c(0)) and ceq

R uniformly for t > 0. Complete
theory of thermodynamic estimates of dynamics has been developed by Gor-
ban (1984). One can also do computations without a priori estimations, if one
accepts the QSS assumption until the values cf stay sufficiently small.

Let us assume that an a priori estimate has been found, ci(t) ≤ ci max, for
each ci. These estimate may depend on the initial conditions, thermodynamic
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data etc. With these estimates, we are able to renormalize the variables in
the kinetic equations (4) in such a way that renormalized variables take their
values from the unit segment [0, 1]: c̃i = ci/ci max. Then the system (4) can be
written as follows:

dc̃i
dt

=
1

ci max
Ji(c). (26)

The system of dimensionless parameters, εi = ci max/maxi ci max defines a
hierarchy of relaxation times, and with its help one can establish various re-
alizations of the QSS approximation. The simplest version is the standard
QSS assumption: Parameters εi are separated in two groups, the smaller ones,
and of the order 1. Accordingly, the concentration vector is split into cs ⊕ cf.
Various hierarchical QSS are possible, with this, the problem becomes more
tractable analytically.

Corrections to the QSS approximation can be addressed in various ways (see,
e. g., Vasil’eva, Butuzov & Kalachev (1995); Strygin & Sobolev (1988)). There
exist a variety of ways to introduce the smallness parameter into kinetic equa-
tions, and one can find applications to each of the realizations. However, the
two particular realizations remain basic for chemical kinetics: (i) Fast reac-
tions (under a given thermodynamic data); (ii) Small concentrations. In the
first case, one is led to the quasi-equilibrium approximation, in the second
case - to the classical QSS assumption. Both of these approximations allow
for hierarchical realizations, those which include not just two but many relax-
ation time scales. Such a multi-scale approach essentially simplifies analytical
studies of the problem.

The method of invariant manifold which we present below in the section 6
allows to use both the QE and the QSS as initial approximations in the it-
erational process of seeking slow invariant manifolds. It is also possible to
use a different initial ansatz chosen by a physical intuition, like, for example,
the Tamm–Mott-Smith approximation in the theory of strong shock waves
(Gorban & Karlin, 1992).

2.6 Methods based on spectral decomposition of Jacobian fields

The idea to use the spectral decomposition of Jacobian fields in the problem of
separating the motions into fast and slow originates from methods of analysis
of stiff systems (Gear, 1971), and from methods of sensitivity analysis in con-
trol theory (Rabitz, Kramer & Dacol, 1983). There are two basic statements of
the problem for these methods: (i) The problem of the slow manifold, and (ii)
The problem of a complete decomposition (complete integrability) of kinetic
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equations. The first of these problems consists in constructing the slow mani-
fold Ω, and a decomposition of motions into the fast one - towards Ω, and the
slow one - along Ω (Maas & Pope, 1992). The second of these problems con-
sists in a transformation of kinetic equations (4) to a diagonal form, ζ̇i = fi(ζi)
(so-called full nonlinear lumping or modes decoupling, Lam & Goussis (1994);
Li, Rabitz & Tóth (1994); Tóth, Li, Rabitz & Tomlin (1997)). Clearly, if one
finds a sufficiently explicit solution to the second problem, then the system
(4) is completely integrable, and nothing more is needed, the result has to
be simply used. The question is only to what extend such a solution can be
possible, and how difficult it would be as compared to the first problem to
find it.

One of the currently most popular methods is the construction of the so-
called intrinsic low-dimensional manifold (ILDM, Maas & Pope (1992)). This
method is based on the following geometric picture: For each point c, one
defines the Jacobian matrix of Eq. (4), Fc ≡ ∂J(c)/∂c. One assumes that, in
the domain of interest, the eigenvalues of Fc are separated into two groups,
λs
i and λf

j, and that the following inequalities are valid:

Re λs
i ≥ a > b ≥ Reλf

j, a� b, b < 0.

Let us denote as Ls
c and Lf

c the invariant subspaces corresponding to λs and
λf , respectively, and let Z s

c and Z f
c be the corresponding spectral projectors,

Zs
cL

s
c = Ls

c, Z f
cL

f
c = Lf

c, Zs
cL

f
c = Z f

cL
s
c = {0}, Z s

c+Zf
c = 1. Operator Z s

c
projects onto the subspace of “slow modes” Ls

c, and it annihilates the “fast
modes” Lf

c. Operator Z f
c does the opposite, it projects onto fast modes, and

it annihilates the slow modes. The basic equation of the ILDM reads:

Z f
cJ (c) = 0. (27)

In this equation, the unknown is the concentration vector c. The set of solu-
tions to Eq. (27) is the ILDM manifold Ωildm.

For linear systems, Fc, Zs
c, and Z f

c, do not depend on c, and Ωildm = ceq+Ls.
On the other hand, obviously, ceq ∈ Ωildm. Therefore, procedures of solving
of Eq. (27) can be initiated by choosing the linear approximation, Ω

(0)
ildm =

ceq + Ls
ceq, in the neighborhood of the equilibrium ceq, and then continued

parametrically into the nonlinear domain. Computational technologies of a
continuation of solutions with respect to parameters are well developed (see,
for example, Khibnik, Kuznetsov, Levitin & Nikolaev (1993); Roose & Spence
(1990)). The problem of the relevant parameterization is solved locally: In the
neighborhood of a given point c0 one can choose Z s

c(c− c0) for a characteri-
zation of the vector c. In this case, the space of parameters is Ls

c. There exist
other, physically motivated ways to parameterize manifolds (Gorban & Karlin

15



(1992); see also section 4.1 below).

There are two drawbacks of the ILDM method which call for its refinement:
(i) “Intrinsic” does not imply “invariant”. Eq. (27) is not invariant of the
dynamics (4). If one differentiates Eq. (27) in time due to Eq. (4), one obtains
a new equation which is the implication of Eq. (27) only for linear systems. In
a general case, the motion c(t) takes off the Ωildm. Invariance of a manifold
Ω means that J (c) touches Ω in every point c ∈ Ω. It remains unclear how
the ILDM (27) corresponds with this condition. Thus, from the dynamical
perspective, the status of the ILDM remains not well defined, or “ILDM is
ILDM”, defined self-consistently by Eq. (27), and that is all what can be
said about it. (ii) From the geometrical standpoint, spectral decomposition of
Jacobian fields is not the most attractive way to compute manifolds. If we are
interested in the behavior of trajectories, how they converge or diverge, then
one should consider the symmetrized part of F c, rather than F c itself.

Symmetric part, F sym
c = (1/2)(F †c + Fc), defines the dynamics of the dis-

tance between two solutions, c and c′, in a given local Euclidean metrics.
Skew-symmetric part defines rotations. If we want to study manifolds based
on the argument about convergence/divergence of trajectories, then we should
use in Eq. (27) the spectral projector Z fsym

c for the operator F sym
c . This, by

the way, is also a significant simplification from the standpoint of computa-
tions. It remains to choose the metrics. This choice is unambiguous from the
thermodynamic perspective. In fact, there is only one choice which fits into
the physical meaning of the problem, this is the metrics associated with the
thermodynamic (or entropic) scalar product,

〈〈x,y〉〉 = 〈x,Hcy〉, (28)

where Hc is the matrix of second-order derivatives of G (7). In the equilib-
rium, operator F ceq is selfajoint with respect to this scalar product (Onsager’s
reciprocity relations). Therefore, the behavior of the ILDM in the vicinity of
the equilibrium does not alter under the replacement, F ceq = F sym

ceq . In terms
of usual matrix representation, we have:

F sym
c =

1

2
(Fc +H−1

c F
T
cHc), (29)

where F T
c is the ordinary transposition.

The ILDM constructed with the help of the symmetrized Jacobian field will be
termed the symmetric entropic intrinsic low-dimensional manifold (SEILDM).
Selfadjointness of F sym

c (29) with respect to the thermodynamic scalar product
(28) simplifies considerably computations of spectral decomposition. More-
over, it becomes necessary to do spectral decomposition in only one point -
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in the equilibrium. Perturbation theory for selfadjoint operators is a very well
developed subject (Kato, 1976), which makes it possible to easily extend the
spectral decomposition with respect to parameters. A more detailed discussion
of the selfadjoint linearization will be given below in section 5.2.

Thus, when the geometric picture behind the decomposition of motions is
specified, the physical significance of the ILDM becomes more transparent,
and it leads to its modification into the SEILDM. This also gains simplicity
in the implementation by switching from non-selfadjoint spectral problems to
selfadjoint. The quantitative estimate of this simplification is readily available:
Let d be the dimension of the phase space, and k the dimension of the ILDM
(k = dimLs

c). The space of all the projectors Z with the k-dimensional image
has the dimension D = 2k(d − k). The space of all the selfadjoint projectors
with the k-dimensional image has the dimension Dsym = k(d− k). For d = 20
and k = 3, we have D = 102 and Dsym = 51. When the spectral decomposition
by means of parametric extension is addressed, one considers equations of the
form:

dZs
c(τ)

dτ
= Ψs

(
dc

dτ
,Zs
c(τ),Fc(τ),∇Fc(τ)

)
, (30)

where τ is the parameter, and ∇Fc = ∇∇J (c) is the differential of the
Jacobian field. For the selfadjoint case, where we use = F sym

c instead of F c,
this system of equations has twice less independent variables, and also the
right hand is of a simpler structure.

It is more difficult to improve on the first of the remarks (ILDM is not invari-
ant). The following naive approach may seem possible:

(i) Take Ωildm = ceq + Ls
ceq in a neighborhood U of the equilibrium ceq. [This

is also a useful initial approximation for solving Eq. (27)].

(ii) Instead of computing the solution to Eq. (27), integrate the kinetic equa-
tions (4) backwards in the time. It is sufficient to take initial conditions c(0)
from a dense set on the boundary, ∂U ∩ (ceq +Ls

ceq), and to compute solutions
c(t), t < 0.

(iii) Consider the obtained set of trajectories as an approximation of the slow
invariant manifold.

This approach will guarantee invariance, by construction, but it is prone to
pitfalls in what concerns the slowness. Indeed, the integration backwards in the
time will see exponentially divergent trajectories, if they were exponentially
converging in the normal time progress. This way one finds some invariant
manifold which touches ceq + Ls

ceq in the equilibrium. Unfortunately, there
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are infinitely many such manifolds, and they fill out almost all the space of
concentrations. However, we must select the slow component of motions. Such
a regularization is possible. Indeed, let us replace in Eq. (4) the vector field
J(c) by the vector field Z ssym

c J(c), and obtain a regularized kinetic equation,

ċ = Zssym
c J(c). (31)

Let us replace integration backwards in time of the kinetic equation (4) in the
naive approach described above by integration backwards in time of the regu-
larized kinetic equation (31). With this, we obtain a rather convincing version
of the ILDM (SEILDM). Using Eq. (30), one also can write down an equation
for the projector Z ssym

c , putting τ = t. Replacement of Eq. (4) by Eq. (31) also
makes the integration backwards in time in the naive approach more stable.
However, regularization will again conflict with invariance. The “naive refine-
ment” after the regularization (31) produces just a slightly different version of
the ILDM (or SEILDM) but it does not construct the slow invariant manifold.
So, where is the way out? We believe that the ILDM and its version SEILDM
are, in general, good initial approximations of the slow manifold. However, if
one is indeed interested in finding the invariant manifold, one has to write out
the true condition of invariance and solve it. As for the initial approximation
for the method of invariant manifold one can use any ansatz, in particular,
the SEILDM.

The problem of a complete decomposition of kinetic equations can be solved
indeed in some cases. The first such solution was the spectral decomposition
for linear systems (Wei & Prater, 1962). Decomposition is sometimes possible
also for nonlinear systems (Li, Rabitz & Tóth (1994); Tóth, Li, Rabitz &
Tomlin (1997)). The most famous example of a complete decomposition of
infinite-dimensional kinetic equation is the complete integrability of the space-
independent Boltzmann equation for Maxwell‘s molecules found by Bobylev
(1988). However, in a general case, there exist no analytical, not even a twice
differentiable transformation which would decouple modes. The well known
Grobman-Hartman theorem (Hartman, 1963, 1982) states only the existence
of a continuous transform which decomposes modes in a neighborhood of the
equilibrium. For example, the analytic planar system, dx/dt = −x, dy/dt =
−2y+ x2, is not C2 linearizable. These problems remain of interest (Chicone,
2000). Therefore, in particular, it becomes quite ineffective to construct such
a transformation in a form of a series. It is more effective to solve a simpler
problem of extraction of a slow invariant manifold (Beyn & Kless, 1998).

Sensitivity analysis (Rabitz, Kramer & Dacol, 1983; Rabitz, 1987; Lam &
Goussis, 1994) makes it possible to select essential variables and reactions,
and to decompose motions into fast and slow. In a sense, the ILDM method
is a development of the sensitivity analysis. Recently, a further step in this
direction was done by Zhu & Petzold (1999). In this work, the authors use
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a nonlocal in time criterion of closeness of solutions of the full and of the
reduced systems of chemical kinetics. They require not just a closeness of
derivatives but a true closeness of the dynamics.

Let us be interested in the dynamics of the concentrations of just a few species,
A1, . . . ,Ap, whereas the rest of the species, Ap+1, . . . ,An are used for build-
ing the kinetic equation, and for understanding the process. Let cgoal be the
concentration vector with components c1, . . . , cp, cgoal(t) be the correspond-
ing components of the solution to Eq. (4), and cred

goal be the solution to the
simplified model with corresponding initial conditions. Zhu & Petzold (1999)
suggest to minimize the difference between cgoal(t) and cred

goal on the segment
t ∈ [0, T ]: ‖cgoal(t) − cred

goal‖ → min. In the course of the optimization under
certain restrictions one selects the optimal (or appropriate) reduced model.
The sequential quadratic programming method and heuristic rules of sorting
the reactions, substances etc were used. In the result, for some stiff systems
studied, one avoids typical pitfalls of the local sensitivity analysis. In simpler
situations this method should give similar results as the local methods.

2.7 Thermodynamic criteria for selection of important reactions

One of the problems addressed by the sensitivity analysis is the selection of
the important and discarding the unimportant reactions. Bykov, Yablonskii
& Akramov (1977) suggested a simple principle to compare importance of dif-
ferent reactions according to their contribution to the entropy production (or,
which is the same, according to their contribution to Ġ). Based on this princi-
ple, Dimitrov (1982) described domains of parameters in which the reaction of
hydrogen oxidation, H2 + O2 + M, proceeds due to different mechanisms. For
each elementary reaction, he has derived the domain inside which the contri-
bution of this reaction is essential (nonnegligible). Due to its simplicity, this
entropy production principle is especially well suited for analysis of complex
problems. In particular, recently, a version of the entropy production princi-
ple was used in the problem of selection of boundary conditions for Grad’s
moment equations (Struchtrup & Weiss, 1998; Grmela, Karlin & Zmievski,
2002). For ideal systems (9), the contribution of the sth reaction to Ġ has a
particularly simple form:

Ġs = −Ws ln

(
W+
s

W−
s

)
, Ġ =

r∑

s=1

Ġs. (32)

For nonideal systems, the corresponding expressions (13) are also not too
complicated.
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3 Outline of the method of invariant manifold

In many cases, dynamics of the d-dimensional system (4) leads to a manifold of
a lower dimension. Intuitively, a typical phase trajectory behaves as follows:
Given the initial state c(0) at t = 0, and after some period of time, the
trajectory comes close to some low-dimensional manifold Ω, and after that
proceeds towards the equilibrium essentially along this manifold. The goal is
to construct this manifold.

The starting point of our approach is based on a formulation of the two main
requirements:

(i). Dynamic invariance: The manifold Ω should be (positively) invariant un-
der the dynamics of the originating system (4): If c(0) ∈ Ω, then c(t) ∈ Ω for
each t > 0.

(ii). Thermodynamic consistency of the reduced dynamics: Let some (not oblig-
atory invariant) manifold Ω is considered as a manifold of reduced description.
We should define a set of linear operators, Pc, labeled by the states c ∈ Ω,
which project the vectors J (c), c ∈ Ω onto the tangent bundle of the manifold
Ω, thereby generating the induced vector field, PcJ(c), c ∈ Ω. This induced
vector field on the tangent bundle of the manifold Ω is identified with the
reduced dynamics along the manifold Ω. The thermodynamicity requirement
for this induced vector field reads

〈∇G(c),PcJ (c)〉 ≤ 0, for each c ∈ Ω. (33)

In order to meet these requirements, the method of invariant manifold suggests
two complementary procedures:

(i). To treat the condition of dynamic invariance as an equation, and to solve
it iteratively by a Newton method. This procedure is geometric in its nature,
and it does not use the time dependence and small parameters.

(ii). Given an approximate manifold of reduced description, to construct the
projector satisfying the condition (33) in a way which does not depend on the
vector field J .

We shall now outline both these procedures starting with the second. The so-
lution consists, in the first place, in formulating the thermodynamic condition
which should be met by the projectors Pc: For each c ∈ Ω, let us consider
the linear functional

M∗c(x) = 〈∇G(c),x〉. (34)

20



Then the thermodynamic condition for the projectors reads:

kerPc ⊆ kerM∗
c, for each c ∈ Ω. (35)

Here kerPc is the null space of the projector, and kerM ∗
c is the hyperplane

orthogonal to the vectorM ∗
c. It has been shown (Gorban & Karlin, 1992, 1994)

that the condition (35) is the necessary and sufficient condition to establish
the thermodynamic induce vector field on the given manifold Ω for all possible
dissipative vector fields J simultaneously.

Let us now turn to the requirement of invariance. By a definition, the manifold
Ω is invariant with respect to the vector field J if and only if the following
equality is true:

[1 − P ]J (c) = 0, for each c ∈ Ω. (36)

In this expression P is an arbitrary projector on the tangent bundle of the
manifold Ω. It has been suggested to consider the condition (36) as an equation
to be solved iteratively starting with some appropriate initial manifold.

Iterations for the invariance equation (36) are considered in the section 5. The
next section presents construction of the thermodynamic projector using a
specific parameterization of manifolds.

4 Thermodynamic projector

4.1 Thermodynamic parameterization

In this section, Ω denotes a generic p–dimensional manifold. First, it should
be mentioned that any parameterization of Ω generates a certain projector,
and thereby a certain reduced dynamics. Indeed, let us consider a set of m
independent functionals M(c) = {M1(c), . . . ,Mp(c)}, and let us assume that
they form a coordinate system on Ω in such a way that Ω = c(M), where
c(M) is a vector function of the parameters M1, . . . ,Mp. Then the projector
associated with this parameterization reads:

Pc(M)x =
p∑

i,j=1

∂c(M)

∂Mi
N−1
ij (M)〈∇Mj |c(M),x〉, (37)
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where N−1
ij is the inverse to the p× p matrix:

N (M) = ‖〈∇Mi, ∂c/∂Mj〉‖. (38)

This somewhat involved notation is intended to stress that the projector (37)
is dictated by the choice of the parameterization. Subsequently, the induced
vector field of the reduced dynamics is found by applying projectors (37) on
the vectors J (c(M)), thereby inducing the reduced dynamics in terms of the
parameters M as follows:

Ṁi =
p∑

j=1

N−1
ij (M)〈∇Mj |c(M),J (c(M))〉, (39)

Depending on the choice of the parameterization, dynamic equations (39)
are (or are not) consistent with the thermodynamic requirement (33). The
thermodynamic parameterization makes use of the condition (35) in order to
establish the thermodynamic projector. Specializing to the case (37), let us
consider the linear functionals,

DMi |c(M) (x) = 〈∇Mi |c(M),x〉. (40)

Then the condition (35) takes the form:

p⋂

i=1

kerDMi |c(M)⊆ kerM∗
c(M), (41)

that is, the intersection of null spaces of the functionals (40) should belong to
the null space of the differential of the Lyapunov function G, in each point of
the manifold Ω.

In practice, in order to construct the thermodynamic parameterization, we
take the following set of functionals in each point c of the manifold Ω:

M1(x) =M∗
c(x), c ∈ Ω (42)

Mi(x) = 〈mi,x〉, i = 2, . . . , p (43)

It is required that vectors∇G(c),m2, . . . ,mp are linearly independent in each
state c ∈ Ω. Inclusion of the functionals (34) as a part of the system (42) and
(43) implies the thermodynamic condition (41). Also, any linear combination
of the parameter set (42), (43) will meet the thermodynamicity requirement.

It is important to notice here that the thermodynamic condition is satisfied
whatsoever the functionals M2, . . . ,Mp are. This is very convenient for it gives
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an opportunity to take into account the conserved quantities correctly. The
manifolds we are going to deal with should be consistent with the conservation
laws (2). While the explicit characterization of the phase space V is a problem
on its own, in practice, it is customary to work in the n–dimensional space
while keeping the constraints (2) explicitly on each step of the construction.
For this technical reason, it is convenient to consider manifolds of the dimen-
sion p > l, where l is the number of conservation laws, in the n–dimensional
space rather than in the phase space V . The thermodynamic parameterization
is then concordant also with the conservation laws if l of the linear functionals
(43) are identified with the conservation laws. In the sequel, only projectors
consistent with conservation laws are considered.

Very frequently, the manifold Ω is represented as a p-parametric family c(a1, . . . , ap),
where ai are coordinates on the manifold. The thermodynamic re-parameterization
suggests a representation of the coordinates ai in terms of M∗

c,M2, . . . ,Mp

(42), (43). While the explicit construction of these functions may be a formidable
task, we notice that the construction of the thermodynamic projector of the
form (37) and of the dynamic equations (39) is relatively easy because only
the derivatives ∂c/∂Mi enter these expressions. This point was discussed in a
detail by Gorban & Karlin (1992, 1994).

4.2 Decomposition of motions: Thermodynamics

Finally, let us discuss how the thermodynamic projector is related to the de-
composition of motions. Assuming that the decomposition of motions near
the manifold Ω is true indeed, let us consider states which were initially close
enough to the manifold Ω. Even without knowing the details about the evo-
lution of the states towards Ω, we know that the Lyapunov function G was
decreasing in the course of this evolution. Let us consider a set of states Uc
which contains all those vectors c′ that have arrived (in other words, have been
projected) into the point c ∈ Ω. Then we observe that the state c furnishes
the minimum of the function G on the set Uc. If a state c′ ∈ Uc, and if it
deviates small enough from the state c so that the linear approximation is
valid, then c′ belongs to the affine hyperplane

Γc = c+ ker M∗
c, c ∈ Ω. (44)

This hyperplane actually participates in the condition (35). The consideration
was entitled ‘thermodynamic’ (Gorban & Karlin, 1992) because it describes
the states c ∈ Ω as points of minimum of the function G over the correspond-
ing hyperplanes (44).
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5 Corrections

5.1 Preliminary discussion

The thermodynamic projector is needed to induce the dynamics on a given
manifold in such a way that the dissipation inequality (33) holds. Coming back
to the issue of constructing corrections, we should stress that the projector
participating in the invariance condition (36) is arbitrary. It is convenient to
make use of this point: When Eq. (36) is solved iteratively, the projector may
be kept non–thermodynamic unless the induced dynamics is explicitly needed.

Let us assume that we have chosen the initial manifold, Ω0, together with
the associated projector P 0, as the first approximation to the desired man-
ifold of reduced description. Though the choice of the initial approximation
Ω0 depends on the specific problem, it is often reasonable to consider quasi-
equilibrium or quasi steady-state approximations. In most cases, the manifold
Ω0 is not an invariant manifold. This means that Ω0 does not satisfy the
invariance condition (36):

∆0 = [1− P 0]J(c0) 6= 0, for some c0 ∈ Ω0. (45)

Therefore, we seek a correction c1 = c0 + δc. Substituting P = P 0 and
c = c0 + δc into the invariance equation (36), and after the linearization in
δc, we derive the following linear equation:

[1− P 0] [J (c0) +Lc0δc] = 0, (46)

where Lc0 is the matrix of first derivatives of the vector function J , computed
in the state c0 ∈ Ω0. The system of linear algebraic equations (46) should be
supplied with the additional condition.

P 0δc = 0. (47)

In order to illustrate the nature of the Eq. (46), let us consider the case of
linear manifolds for linear systems. Let a linear evolution equation is given
in the finite-dimensional real space: ċ = Lc, where L is negatively definite
symmetric matrix with a simple spectrum. Let us further assume the quadratic
Lyapunov function, G(c) = 〈c, c〉. The manifolds we consider are lines, l(a) =
ae, where e is the unit vector, and a is a scalar. The invariance equation for
such manifolds reads: e〈e,Le〉−Le = 0, and is simply a form of the eigenvalue
problem for the operator L. Solutions to the latter equation are eigenvectors
ei, corresponding to eigenvalues λi.
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Assume that we have chosen a line, l0 = ae0, defined by the unit vector e0, and
that e0 is not an eigenvector of L. We seek another line, l1 = ae1, where e1 is
another unit vector, e1 = y1/‖y1‖, y1 = e0+δy. The additional condition (47)
now reads: 〈δy,e0〉 = 0. Then the Eq. (46) becomes [1−e0〈e0, ·〉]L[e0+δy] = 0.
Subject to the additional condition, the unique solution is as follows: e0+δy =
〈e0,L

−1e0〉−1L−1e0. Rewriting the latter expression in the eigen–basis of L,
we have: e0 +δy ∝∑i λ

−1
i ei〈ei,e0〉. The leading term in this sum corresponds

to the eigenvalue with the minimal absolute value. The example indicates that
the method of linearization (46) seeks the direction of the slowest relaxation.
For this reason, the method (46) can be recognized as the basis of an iterative
method for constructing the manifolds of slow motions.

For the nonlinear systems, the matrix Lc0 in the Eq. (46) depends nontrivially
on c0. In this case the system (46) requires a further specification which will
be done now.

5.2 Symmetric linearization

The invariance condition (36) supports a lot of invariant manifolds, and not all
of them are relevant to the reduced description (for example, any individual
trajectory is itself an invariant manifold). This should be carefully taken into
account when deriving a relevant equation for the correction in the states of
the initial manifold Ω0 which are located far from equilibrium. This point
concerns the procedure of the linearization of the vector field J , appearing
in the equation (46). We shall return to the explicit form of the Marcelin–De
Donder kinetic function (11). Let c is an arbitrary fixed element of the phase
space. The linearization of the vector function J (12) about c may be written
J(c+ δc) ≈ J(c) +Lcδc where the linear operator Lc acts as follows:

Lcx =
r∑

s=1

γs[W
+
s (c)〈αs,Hcx〉 −W−

s (c)〈βs,Hcx〉]. (48)

Here Hc is the matrix of second derivatives of the function G in the state c
[see Eq. (7)]. The matrix Lc in the Eq. (48) can be decomposed as follows:

Lc = L′c +L′′c. (49)

Matrices L′c and L′′c act as follows:

L′cx=−1

2

r∑

s=1

[W+
s (c) + W−

s (c)]γs〈γs,Hcx〉, (50)
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L′′cx=
1

2

r∑

s=1

[W+
s (c)−W−

s (c)]γs〈αs + βs,Hcx〉. (51)

Some features of this decomposition are best seen when we use the thermo-
dynamic scalar product (28): The following properties of the matrix L′c are
verified immediately:

(i) The matrix L′c is symmetric in the scalar product (28):

〈〈x,L′cy〉〉 = 〈〈y,L′cx〉〉. (52)

(ii) The matrix L′c is nonpositive definite in the scalar product (28):

〈〈x,L′cx〉〉 ≤ 0. (53)

(iii) The null space of the matrix L′c is the linear envelope of the vectors
H−1
c bi representing the complete system of conservation laws:

kerL′c = Lin{H−1
c bi, i = 1, . . . , l} (54)

(iv) If c = ceq, then W+
s (ceq) = W−

s (ceq), and

L′ceq = Lceq. (55)

Thus, the decomposition Eq. (49) splits the matrix Lc in two parts: one
part, Eq. (50) is symmetric and nonpositive definite, while the other part,
Eq. (51), vanishes in the equilibrium. The decomposition Eq. (49) explicitly
takes into account the Marcelin-De Donder form of the kinetic function. For
other dissipative systems, the decomposition (49) is possible as soon as the
relevant kinetic operator is written in a gain–loss form [for instance, this is
straightforward for the Boltzmann collision operator].

In the sequel, we shall make use of the properties of the operator L′c (50) for
constructing the dynamic correction by extending the picture of the decom-
position of motions.

5.3 Decomposition of motions: Kinetics

The assumption about the existence of the decomposition of motions near the
manifold of reduced description Ω has led to the thermodynamic specifica-
tions of the states c ∈ Ω. This was accomplished in the section 4.2, where the
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thermodynamic projector was backed by an appropriate variational formula-
tion, and this helped us to establish the induced dynamics consistent with
the dissipation property. Another important feature of the decomposition of
motions is that the states c ∈ Ω can be specified kinetically. Indeed, let us do
it again as if the decomposition of motions were valid in the neighborhood of
the manifold Ω, and let us ‘freeze’ the slow dynamics along the Ω, focusing on
the fast process of relaxation towards a state c ∈ Ω. From the thermodynamic
perspective, fast motions take place on the affine hyperplane c + δc ∈ Γc0,
where Γc0 is given by Eq. (44). From the kinetic perspective, fast motions on
this hyperplane should be treated as a relaxation equation, equipped with the
quadratic Lyapunov function δG = 〈〈δc, δc〉〉, Futhermore, we require that the
linear operator of this evolution equation should respect Onsager’s symme-
try requirements (selfadjointness with respect to the entropic scalar product).
This latter crucial requirement describes fast motions under the frozen slow
evolution in the similar way, as all the motions near the equilibrium.

Let us consider now the manifold Ω0 which is not the invariant manifold of the
reduced description but, by our assumption, is located close to it. Consider a
state c0 ∈ Ω0, and the states c0 + δc close to it. Further, let us consider an
equation

δ̇c = L′c0
δc. (56)

Due to the properties of the operator L′c0
(50), this equation can be regarded

as a model of the assumed true relaxation equation near the true manifold of
the reduced description. For this reason, we shall use the symmetric operator
L′c (50) instead of the linear operator Lc when constructing the corrections.

5.4 Symmetric iteration

Let the manifold Ω0 and the corresponding projector P 0 are the initial ap-
proximation to the invariant manifold of the reduced description. The dynamic
correction c1 = c0 + δc is found upon solving the following system of linear
algebraic equations:

[1 − P 0]
[
J(c0) +L′c0

δc
]

= 0, P 0δc = 0. (57)

Here L′c0
is the matrix (50) taken in the states on the manifold Ω0. An im-

portant technical point here is that the linear system (57) always has the
unique solution for any choice of the manifold Ω. This point is crucial since it
guarantees the opportunity of carrying out the correction process for arbitrary
number of steps.
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6 The method of invariant manifold

We shall now combine together the two procedures discussed above. The re-
sulting method of invariant manifold intends to seek iteratively the reduced
description, starting with an initial approximation.

(i). Initialization. In order to start the procedure, it is required to choose the
initial manifold Ω0, and to derive corresponding thermodynamic projector
P 0. In the majority of cases, initial manifolds are available in two different
ways. The first case are the quasi-equilibrium manifolds described in the sec-
tion 2.3. The macroscopic parameters are Mi = ci = 〈mi, c〉, where mi is
the unit vector corresponding to the specie Ai. The quasi-equilibrium mani-
fold, c0(M1, . . . ,Mk, B1, . . . , Bl), compatible with the conservation laws, is the
solution to the variational problem:

G→ min , 〈mi, c〉 = ci, i = 1, . . . , k, (58)

〈bj, c〉 = Bj , j = 1, . . . , l.

In the case of quasi–equilibrium approximation, the corresponding thermody-
namic projector can be written most straightforwardly in terms of the variables
Mi:

P 0x =
k∑

i=1

∂c0

∂ci
〈mi,x〉+

l∑

i=1

∂c0

∂Bi
〈bi,x〉. (59)

For quasi-equilibrium manifolds, a reparameterization with the set (42), (43)
is not necessary (Gorban & Karlin (1992); Gorban & Karlin (1994)).

The second source of initial approximations are quasi-stationary manifolds
(section 2.5). Unlike the quasi-equilibrium case, the quasi-stationary manifolds
must be reparameterized in order to construct the thermodynamic projector.

(ii). Corrections. Iterations are organized in accord with the rule: If cm is
the mth approximation to the invariant manifold, then the correction cm+1 =
cm + δc is found from the linear algebraic equations,

[1−Pm](J(cm) + L′cmδc) = 0, (60)

Pmδc= 0. (61)

Here L′cm is the symmetric matrix (50) evaluated at the mth approximation.
The projector Pm is not obligatory thermodynamic at that step, and it is
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taken as follows:

Pmx =
k∑

i=1

∂cm
∂ci
〈mi,x〉+

l∑

i=1

∂cm
∂Bi
〈bi,x〉. (62)

(iii). Dynamics. Dynamics on the mth manifold is obtained with the thermo-
dynamic re-parameterization.

In the next section we shall illustrate how this all works.

7 Illustration: Two-step catalytic reaction

Here we consider a two-step four-component reaction with one catalyst A2:

A1 +A2 
 A3 
 A2 +A4. (63)

We assume the Lyapunov function of the form (9), G =
∑4
i=1 ci[ln(ci/c

eq
i )−1].

The kinetic equation for the four–component vector of concentrations, c =
(c1, c2, c3, c4), has the form

ċ = γ1W1 + γ2W2. (64)

Here γ1,2 are stoichiometric vectors,

γ1 = (−1,−1, 1, 0), γ2 = (0, 1,−1, 1), (65)

while functions W1,2 are reaction rates:

W1 = k+
1 c1c2 − k−1 c3, W2 = k+

2 c3 − k−2 c2c4. (66)

Here k±1,2 are reaction rate constants. The system under consideration has two
conservation laws,

c1 + c3 + c4 = B1, c2 + c3 = B2, (67)

or 〈b1,2, c〉 = B1,2, where b1 = (1, 0, 1, 1) and b2 = (0, 1, 1, 0). The nonlinear
system (64) is effectively two-dimensional, and we consider a one-dimensional
reduced description.

We have chosen the concentration of the specie A1 as the variable of reduced
description: M = c1, and c1 = 〈m, c〉, where m = (1, 0, 0, 0). The initial
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manifold c0(M) was taken as the quasi-equilibrium approximation, i.e. the
vector function c0 is the solution to the problem:

G → min for 〈m, c〉 = c1, 〈b1, c〉 = B1, 〈b2, c〉 = B2. (68)

The solution to the problem (68) reads:

c01 = c1, (69)

c02 =B2 − φ(c1),

c03 =φ(c1),

c04 =B1 − c1 − φ(c1),

φ(M) =A(c1)−
√
A2(c1)−B2(B1 − c1),

A(c1) =
B2(B1 − ceq

1 ) + ceq
3 (ceq

1 + ceq
3 − c1)

2ceq
3

.

The thermodynamic projector associated with the manifold (69) reads:

P 0x =
∂c0

∂c1

〈m,x〉 +
∂c0

∂B1

〈b1,x〉+
∂c0

∂B2

〈b2,x〉. (70)

Computing ∆0 = [1− P 0]J(c0) we find that the inequality (45) takes place,
and thus the manifold c0 is not invariant. The first correction, c1 = c0 + δc,
is found from the linear algebraic system (60)

(1− P 0)L′0δc=−[1−P 0]J(c0), (71)

δc1 = 0

δc1 + δc3 + δc4 = 0

δc3 + δc2 = 0, (72)

where the symmetric 4 × 4 matrix L′0 has the form (we write 0 instead of c0

in the subscript in order to simplify notations):

L′0,kl = −γ1k
W+

1 (c0) +W−
1 (c0)

2

γ1l

c0l
− γ2k

W+
2 (c0) +W−

2 (c0)

2

γ2l

c0l
(73)

The explicit solution c1(c1, B1, B2) to the linear system (71) is easily found,
and we do not reproduce it here. The process was iterated. On the k + 1
iteration, the following projector P k was used:

P kx =
∂ck
∂c1
〈m,x〉+

∂ck
∂B1
〈b1,x〉 +

∂ck
∂B2
〈b2,x〉. (74)
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Notice that projector P k (74) is the thermodynamic projector only if k = 0. As
we have already mentioned it above, in the process of finding the corrections
to the manifold, the non-thermodynamic projectors are allowed. The linear
equation at the k + 1 iteration is thus obtained by replacing c0, P 0, and L′0
with ck, P k, and L′k in all the entries of the Eqs. (71) and (73).

Once the manifold ck was obtained on the kth iteration, we derived the corre-
sponding dynamics by introducing the thermodynamic parameterization (and
the corresponding thermodynamic projector) with the help of the function
(42). The resulting dynamic equation for the variable c1 in the kth approxi-
mation has the form:

〈∇G |ck , ∂ck/∂c1〉ċ1 = 〈∇G |ck ,J(ck)〉. (75)

Here [∇G |ck ]i = ln[cki/c
eq
i ].

Analytic results were compared with the results of the numerical integration.
The following set of parameters was used:

k+
1 = 1.0, k−1 = 0.5, k+

2 = 0.4, k−2 = 1.0;

ceq
1 = 0.5, ceq

2 = 0.1, ceq
3 = 0.1, ceq

4 = 0.4,

B1 = 1.0, B2 = 0.2.

Direct numerical integration of the system has demonstrated that the manifold
c3 = ceq

3 in the plane (c1, c3) attracts all individual trajectories. Thus, the
reduced description in this example should extract this manifold.

Fig. 1 demonstrates the quasi–equilibrium manifold (69) and first two correc-
tions found analytically. It is apparent that while the initial quasi-equilibrium
approximation is in a poor agreement with the reduced description, the cor-
rections rapidly improve the situation. This confirms our expectation of an
advantage of using iteration methods in comparison to methods based on a
small parameter expansions.

8 Method of invariant manifold without a priori parameterization

Formally, the method of invariant manifold does not require a global parame-
terization of the manifolds. However, in most of the cases, one makes use of a
priori defined “macroscopic” variables M . This is motivated by the choice of
quasi-equilibrium initial approximations.

Let a manifold Ω be defined in the phase space of the system, its tangent space
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in the point c be TcΩ. How to define the projector of the whole concentrations
space onto TcΩ without using any a priori parameterization of Ω?

The basis of the answer to this question is the condition of thermodynamicity
(35). Let us denote E as the concentration space, and consider the problem
of the choice of the projector in the quadratic approximation to the thermo-
dynamic potential G:

Gq = 〈g,Hc∆c〉+
1

2
〈∆c,Hc∆c〉 = 〈〈g,∆c〉〉+

1

2
〈〈∆c,∆c〉〉, (76)

whereHc is the matrix of the second-order derivatives of G (7), g = H−1
c ∇G,

∆c is the deviation of the concentration vector from the expansion point.

Let a linear subspace T be given in the concentrations space E. Problem: For
every ∆c+ T , and for every g ∈ E, define a subspace L∆c such that: (i) L∆c
is a complement of T in E:

L∆c + T = E, L∆c ∩ T = {0}.

(ii) ∆c is the point of minimum of Gq on L∆c + ∆c:

∆c = arg min
x−∆c∈L∆c

Gq(x). (77)

Besides (i) and (ii), we also impose the requirement of a maximal smoothness
(analyticity) on L∆c as a function of g and ∆c. Requirement (77) implies that
∆c is the quasi-equilibrium point for the given L∆c, while the problem in a
whole is the inverse quasi-equilibrium problem: We construct L∆c such that
T will be the quasi-equilibrium manifold. Then subspaces L∆c will actually
be the kernels of the quasi-equilibrium projector.

Let f 1, . . . ,f k be the orthonormalized with respect to 〈〈·, ·〉〉 scalar product
basis of T , vector h be orthogonal to T , 〈〈h,h〉〉 = 1, g = αf 1 +βh. Condition
(77) implies that the vector ∇G is orthogonal to L∆c in the point ∆c.

Let us first consider the case β = 0. The requirement of analyticity of L∆c
as the function of α and ∆c implies L∆c = L0 + o(1), where L0 = T⊥ is
the orthogonal completement of T with respect to scalar product 〈〈·, ·〉〉. The
constant solution, L∆c ≡ L0 also satisfies (77). Let us fix α 6= 0, and extend
this latter solution to β 6= 0. With this, we obtain a basis, l1, . . . , ln−k. Here
is the simplest construction of this basis:

l1 =
βf1 − (α+ ∆c1)h

(β2 + (α + ∆c1)2)1/2
, (78)
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where ∆c1 = 〈〈∆c,f 1〉〉 is the first component in the expansion, ∆c =∑
i ∆cif i. The rest of the basis elements, l2, . . . , ln−k form the orthogonal

completement of T ⊕ (h) with respect to scalar product 〈〈·, ·〉〉, (h) is the line
spanned by h.

Dependence L∆c (78) on ∆c, α and β is singular: At α + ∆c1, vector l1 ∈
T , and then L∆c is not the completement of T in E anymore. For α 6= 0,
dependence L∆c gives one of the solutions to the inverse quasi-equilibrium
problem in the neighborhood of zero in T . We are interested only in the limit,

lim
∆c→0

L∆c = Lin

{
βf1 − αh√
α2 + β2

, l2, . . . , ln−k

}
. (79)

Finally, let us define now the projector Pc of the space E onto TcΩ. If
H−1
c ∇G ∈ TcΩ, then Pc is the orthogonal projector with respect to the

scalar product 〈〈·, ·〉〉:

Pcz =
k∑

i=1

f i〈〈f i,z〉〉. (80)

If H−1
c ∇G /∈ TcΩ, then, according to Eq. (79),

Pcz =
〈〈f 1,z〉〉 − 〈〈l1,z〉〉〈〈f 1, l1〉〉

1 − 〈〈f 1, l1〉〉2
f 1 +

k∑

i=2

f i〈〈f i,z〉〉, (81)

where {f1, . . . ,f k} is the orthonormal with respect to 〈〈·, ·〉〉 basis of TcΩ,
h is orthogonal to T , 〈〈h,h〉〉 = 1, H−1

c ∇G = αf 1 + βh, l1 = (βf1 −
αh)/

√
α2 + β2, 〈〈f 1, l1〉〉 = β/

√
α2 + β2.

Thus, for solving the invariance equation iteratively, one needs only projector
Pc (81), and one does not need a priori parameterization of Ω anymore.

9 Method of invariant grids

Grid-based approximations of manifolds are attractive from the computational
perspective. Since no a priori parameterization is required in the method of
invariant manifold, in this section we develop its grid-based realization. Let
us consider a regular grid Q in Rk, and its mapping F into the concentrations
space E. It makes sense to consider only F which map a finite part of the grid
into the phase space V . This part of the map is termed essential. Extension of
the map F onto the rest of the nodes is done by a simple (for example, linear)
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extrapolation of the essential part (in practice, one needs to extrapolate only
onto the next neighbors of the essential nodes).

Let operators of grid differentiation Di where be defined for functions on the
grid, where i = 1, . . . , k label grid coordinates xi. With this, the tangent space
to the image of the grid in the point c(x) = F (x) is defined for each node of
the grid x:

Tx = Lin{ϕ1, . . . , ϕk},
ϕi = Dic(x) = (Dic1(x), . . . ,Dicn(x)). (82)

The grid is termed invariant if, for each essential node,

J (c(x)) ∈ Tx.

For the essential nodes, we write down the invariance equation with the pro-
jector, Pc(x) : E → Tx: This equation is solved using the Newton method
as it was described above in the section 6. A good initial approximation is a
linear map of the grid on the affine manifold corresponding to slow relaxation
in the vicinity of the equilibrium. It is convenient to take this map isometric
with respect to the metrics generated by the entropic scalar product in the
equilibrium.

If the vector field of the reduced model, ċ = Pc(x)J (c(x)), is defined on the
nodes F (x), then one can define the dynamics ẋi on the nodes. In order to
do this, we expand ċ over ϕi: ċ =

∑k
i=1 aiϕi. The dynamics on the nodes is

then defined by equations, ẋi = ai. Using interpolation, we can define the
vector field ẋ within the essential cells of the grid (those cells for which the all
the nodes are essential). The system of equations thus obtained models the
dynamics on the invariant manifold.

The essence of this construction is that, by solving a set of uncomplicated
linear equations arising from linearization of the invariance equations on the
nodes one gets a reliable numerical scheme for constructing invariant mani-
folds. The use of the grid differentiation rather than a differentiable approxi-
mation to the manifold makes the scheme suited for parallel realizations. We
stress it once again that such realizations are only possible if no a priori global
parameterization of manifolds is required. Further refinements of the scheme,
taking into account the process of moving the inessential nodes into the phase
space, and the opposite process of essential nodes leaving the phase space can
be done based in the same way as for grid-based data analysis (Gorban &
Rossiev, 1999; Gorban & Zinovyev, 2001).
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10 Method of invariant manifold for open systems

One of the problems to be focused on when studying closed systems is to
prepare extensions of the result for open or driven by flows systems. External
flows are usually taken into account by addidinal terms in the kinetic equations
(4):

ċ = J (c) + Π. (83)

Zero-order approximation assumes that the flow does not change the invariant
manifold. Equations of the reduced dynamics, however, do change: Instead of
J(c(M)) we substitute J(c(M)) + Π into Eq. (39):

Ṁi =
p∑

j=1

N−1
ij 〈∇Mj |c(M),J (c(M)) + Π〉. (84)

Zero-order approximation assumes that the fast dynamics in the closed system
strongly couples the variables c, so that flows cannot influence this coupling.

First-order approximation takes into account the shift of the invariant manifold
by δc. Equations for Newton’s iterations have the same form (57) but instead
of the vector field J they take into account the presence of the flow:

[1− Pc](Π +L′cδc) = 0, Pcδc = 0, (85)

where projector Pc corresponds to the unperturbed manifold.

The first-order approximation means that fluxes change the coupling between
the variables (concentrations). It is assumed that these new coupling is also
set instantaneously (neglect of inertia).

Remark. Various realizations of the first-order approximation in physical and
chemical dynamics implement the viewpoint of an infinitely small chemical re-
actor driven by the flow. In other words, this approximation is applicable in the
Lagrangian system of coordinates (Karlin, Gorban, Dukek & Nonnenmacher,
1998; Zmievskii, Kalin & Deville, 2000). Transition to Eulerian coordinates is
possible but the relations between concentrations and the flow will change its
form. In a contrast, the more simplistic zero-order approximation is equally
applicable in both the coordinate system, if it is valid.
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11 Conclusion

In this paper, we have presented the method for constructing the invariant
manifolds for reducing systems of chemical kinetics. Our approach to com-
putations of invariant manifolds of dissipative systems is close in spritit to
the Kolmogorov-Arnold-Moser theory of invariant tori of Hamiltonian sys-
tems (Arnold, 1963, 1983): We also base our consideration on the Newton
method instead of Taylor series expansions (Beyn & Kless, 1998), and sys-
tematically use duality structures. Recently, a version of an approach based
on the invarinace equations was rediscovered by Kazantzis (2000). He was
solving the invariance equation by a Taylor series expansion. A counterpart of
Taylor series expansions for constructing the slow invariant manifolds in the
classical kinetic theory is the famous Chapman-Enskog method. The question
of how this compares to iteration methods was studied extensively for certain
classes of Grad moment equations (Gorban & Karlin, 1996a; Karlin, Dukek &
Nonnenmacher, 1997a; Karlin, 2000).

The thermodynamic parameterization and the selfadjoint linearization arise
in a natural way in the problem of finding slowest invariant manifolds for
closed systems. This also leads to various applications in different approaches
to reducing the description, in particular, to a thermodynamically consistent
version of the intrinsic low-dimensional manifold, and to model kinetic equa-
tions for lifting the reduced dynamics. Use of the thermodynamic projector
makes it unnecessary global parameterizations of manifolds, and thus leads to
computationally promising grid-based realizations.

Invariant manifolds are constructed for closed space-independent chemical sys-
tems. We also describe how to use these manifolds for modeling open and
distributed systems.
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Fig. 1. Images of the initial quasi-equilibrium manifold (bold line) and the first

two corrections (solid normal lines) in the phase plane [c1, c3] for two-step catalytic
reaction (63). Dashed lines are individual trajectories.
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