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Abstract The concept of the limiting step gives the limit simplification: the whole
network behaves as a single step. This is the most popular approach for

model simplification in chemical kinetics. However, in its elementary form

this idea is applicable only to the simplest linear cycles in steady states. For

simple cycles the nonstationary behavior is also limited by a single step, but

not the same step that limits the stationary rate. In this chapter, we develop

a general theory of static and dynamic limitation for all linear multiscale

networks. Our main mathematical tools are auxiliary discrete dynamical

systems on finite sets and specially developed algorithms of ‘‘cycles surgery’’

for reaction graphs. New estimates of eigenvectors for diagonally dominant

matrices are used.

Multiscale ensembles of reaction networks with well-separated constants

are introduced and typical properties of such systems are studied. For any

given ordering of reaction rate constants the explicit approximation of

steady state, relaxation spectrum and related eigenvectors (‘‘modes’’) is

presented. In particular, we prove that for systems with well-separated

constants eigenvalues are real (damped oscillations are improbable). For

systems with modular structure, we propose the selection of such modules

that it is possible to solve the kinetic equation for every module in the

explicit form. All such ‘‘solvable’’ networks are described. The obtained

multiscale approximations, that we call ‘‘dominant systems’’ are



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 105

Author's personal copy
computationally cheap and robust. These dominant systems can be used for

direct computation of steady states and relaxation dynamics, especially

when kinetic information is incomplete, for design of experiments and

mining of experimental data, and could serve as a robust first approximation

in perturbation theory or for preconditioning.
1. INTRODUCTION

Which approach to model reduction is the most important? Population is not the
ultimate judge, and popularity is not a scientific criterion, but ‘‘Vox populi, vox
Dei’’, especially in the epoch of citation indexes, impact factors and bibliometrics.
Let us ask Google. It gave on 31st December 2006:

– for ‘‘quasi-equilibrium’’ — 301,000 links;
– for ‘‘quasi-steady state’’ 347,000 and for ‘‘pseudo-steady state’’ 76,200, 42,3000

together;
– for our favorite ‘‘slow manifold’’ (Gorban and Karlin, 2003, 2005) 29,800 links

only, and for ‘‘invariant manifold’’ slightly more, 98,100;
– for such a framework topic as ‘‘singular perturbation’’ Google gave 361,000 links;
– for ‘‘model reduction’’ even more, as we did expect, 373,000;
– but for ‘‘limiting step’’ almost two times more — 714,000!

Our goal is the general theory of static and dynamic limitation for multiscale
networks. The concept of the limiting step gives, in some sense, the limit
simplification: the whole network behaves as a single step. As the first result of
our chapter we introduce further detail in this idea: the whole network behaves
as a single step in statics, and as another single step in dynamics: even for simplest
cycles the stationary rate and the relaxation time to this stationary rate are limited
by different reaction steps, and we describe how to find these steps.

The concept of limitation is very attractive both for theorists and
experimentalists. It is very useful to find conditions when a selected reaction
step becomes the limiting step. We can change conditions and study the network
experimentally, step-by-step. It is very convenient to model a system with
limiting steps: the model is extremely simple and can serve as a very elementary
building block for further study of more complex systems, a typical situation
both in industry and in systems biology.

In the IUPAC Compendium of Chemical Terminology (2007) one can find two
articles with a definition of limitation.

– Rate-determining step (rate-limiting step) (2007): ‘‘These terms are best
regarded as synonymous with rate-controlling step’’.

– Rate-controlling step (2007): ‘‘A rate-controlling (rate-determining or rate-
limiting) step in a reaction occurring by a composite reaction sequence is an
elementary reaction the rate constant for which exerts a strong effect —
stronger than that of any other rate constant — on the overall rate’’.

It is not wise to object to a definition and here we do not object, but, rather,
complement the definition by additional comments. The main comment is that
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usually when people are talking about limitation they expect significantly more:
there exists a rate constant which exerts such a strong effect on the overall rate
that the effect of all other rate constants together is significantly smaller. Of
course, this is not yet a formal definition, and should be complemented by a
definition of ‘‘effect’’, for example, by ‘‘control function’’ identified by derivatives
of the overall rate of reaction, or by other overall rate ‘‘sensitivity parameters’’
(Rate-controlling step, 2007).

For the IUPAC Compendium definition a rate-controlling step always exists,
because among the control functions generically exists the biggest one. On the
contrary, for the notion of limitation that is used in practice, there exists a
difference between systems with limitation and systems without limitation.

An additional problem arises: are systems without limitation rare or should
they be treated equitably with limitation cases? The arguments in favor of
limitation typicality are as follows: the real chemical networks are multi-scale with
very different constants and concentrations. For such systems it is improbable to
meet a situation with compatible effects of all different stages. Of course, these
arguments are statistical and apply to generic systems from special ensembles.

During the last century, the concept of the limiting step was revised several
times. First simple idea of a ‘‘narrow place’’ (a least conductive step) could be
applied without adaptation only to a simple cycle of irreversible steps that are of
the first order (see Chapter 16 of the book Johnston (1966) or the paper of Boyd
(1978)). When researchers try to apply this idea in more general situations they
meet various difficulties such as:

– Some reactions have to be ‘‘pseudomonomolecular’’. Their constants depend
on concentrations of outer components, and are constant only under condition
that these outer components are present in constant concentrations, or change
sufficiently slow. For example, the simplest Michaelis–Menten enzymatic
reaction is E+S-ES-E+P (E here stands for enzyme, S for substrate and P for
product), and the linear catalytic cycle here is S-ES-S. Hence, in general we
must consider nonlinear systems.

– Even under fixed outer components concentration, the simple ‘‘narrow place’’
behavior could be spoiled by branching or by reverse reactions. For such
reaction systems definition of a limiting step simply as a step with the smallest
constant does not work. The simplest example is given by the cycle: A12A2-
A3-A1. Even if the constant of the last step A3-A1 is the smallest one, the
stationary rate may be much smaller than k3b (where b is the overall balance of
concentrations, b ¼ c1+c2+c3), if the constant of the reverse reaction A2-A1 is
sufficiently big.

In a series of papers, Northrop (1981, 2001) clearly explained these difficulties
with many examples based on the isotope effect analysis and suggested that the
concept of rate-limiting step is ‘‘outmoded’’. Nevertheless, the main idea of
limiting is so attractive that Northrop’s arguments stimulated the search for
modification and improvement of the main concept.

Ray (1983) proposed the use of sensitivity analysis. He considered cycles of
reversible reactions and suggested a definition: The rate-limiting step in a reaction



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 107

Author's personal copy
sequence is that forward step for which a change of its rate constant produces the largest
effect on the overall rate. In his formal definition of sensitivity functions
the reciprocal reaction rate (1/W) and rate constants (1/ki) were used and the
connection between forward and reverse step constants (the equilibrium
constant) was kept fixed.

Ray’s approach was revised by Brown and Cooper (1993) from the system
control analysis point of view (see the book of Cornish-Bowden and Cardenas,
1990). They stress again that there is no unique rate-limiting step specific for an
enzyme, and this step, even if it exists, depends on substrate, product and
effector concentrations. They also demonstrated that the control coefficients

CW
ki
¼

ki

W

@W

@ki

� �
½S�;½P�;...

where W is the stationary reaction rate and ki are constants, are additive and obey
the summation theorems (as concentrations do). A simple relation between control
coefficients of rate constants and intermediate concentrations was reported by
Kholodenko et al. (1994). This relation connects two type of experiments:
measurement of intermediate levels and steady-state rate measurements.

For the analysis of nonlinear cycles the new concept of kinetic polynomial was
developed (Lazman and Yablonskii, 1991; Yablonskii et al., 1982). It was proven
that the stationary state of the single-route reaction mechanism of catalytic
reaction can be described by a single polynomial equation for the reaction rate.
The roots of the kinetic polynomial are the values of the reaction rate in the
steady state. For a system with limiting step the kinetic polynomial can be
approximately solved and the reaction rate found in the form of a series in
powers of the limiting-step constant (Lazman and Yablonskii, 1988).

In our approach, we analyze not only the steady-state reaction rates, but also
the relaxation dynamics of multiscale systems. We focused mostly on the case
when all the elementary processes have significantly different timescales. In this
case, we obtain ‘‘limit simplification’’ of the model: all stationary states and
relaxation processes could be analyzed ‘‘to the very end’’, by straightforward
computations, mostly analytically. Chemical kinetics is an inexhaustible source of
examples of multiscale systems for analysis. It is not surprising that many ideas
and methods for such analysis were first invented for chemical systems.

In Section 2 we analyze a simple example and the source of most
generalizations, the catalytic cycle, and demonstrate the main notions on this
example. This analysis is quite elementary, but includes many ideas elaborated in
full in subsequent sections.

There exist several estimates for relaxation time in chemical reactions
(developed, e.g. by Cheresiz and Yablonskii, 1983), but even for the simplest
cycle with limitation the main property of relaxation time is not widely known.
For a simple irreversible catalytic cycle with limiting step the stationary rate is
controlled by the smallest constant, but the relaxation time is determined by the
second in order constant. Hence, if in the stationary rate experiments for that
cycle we mostly extract the smallest constant, in relaxation experiments another,
the second in order constant will be observed.
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It is also proven that for cycles with well-separated constants damped
oscillations are impossible, and spectrum of the matrix of kinetic coefficients is
real. For general reaction networks with well-separated constants this property is
proven in Section 4.

Another general effect observed for a cycle is robustness of stationary rate and
relaxation time. For multiscale systems with random constants, the standard
deviation of constants that determine stationary rate (the smallest constant for a
cycle) or relaxation time (the second in order constant) is approximately n times
smaller than the standard deviation of the individual constants (where n is the
cycle length). Here we deal with the so-called order statistics. This decrease of the
deviation as n�1 is much faster than for the standard error summation, where it
decreases with increasing n as n�1/2.

In more general settings, robustness of the relaxation time was studied by
Gorban and Radulescu (2007) for chemical kinetics models of genetic and
signaling networks. Gorban and Radulescu (2007) proved that for large
multiscale systems with hierarchical distribution of timescales the variance of
the inverse relaxation time (as well as the variance of the stationary rate) is much
lower than the variance of the separate constants. Moreover, it can tend to 0 faster
than 1/n, where n is the number of reactions. It was demonstrated that similar
phenomena are valid in the nonlinear case as well. As a numerical illustration we
used a model of a signaling network that can be applied to important
transcription factors such as NFkB.

Each multiscale system is characterized by its structure (the system of
elementary processes) and by the rate constants of these processes. To make any
general statement about such systems when the structure is given but the
constants are unknown it is useful to take the constant set as random and
independent. But it is not obvious how to chose the random distribution. The
usual idea to take normal or uniform distribution meets obvious difficulties, the
timescales are not sufficiently well separated.

The statistical approach to chemical kinetics was developed by Li et al.
(2001, 2002), and high-dimensional model representations (HDMR) were
proposed as efficient tools to provide a fully global statistical analysis of a
model. The work of Feng et al. (2004) was focused on how the network properties
are affected by random rate constant changes. The rate constants were
transformed to a logarithmic scale to ensure an even distribution over the large
space.

The log-uniform distribution on sufficiently wide interval helps us to improve
the situation, indeed, but a couple of extra parameters appears: a ¼ min log k
and b ¼ max log k. We have to study the asymptotics a-�N, b-N. This
approach could be formalized by means of the uniform invariant distributions of
log k on R n. These distributions are finite-additive, but not countable-additive
(not s-additive).

The probability and measure theory without countable additivity has a long
history. In Euclid’s time only arguments based on finite-additive properties of
volume were legal. Euclid meant by equal area the scissors congruent area. Two
polyhedra are scissors-congruent if one of them can be cut into finitely many
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polyhedral pieces which can be reassembled to yield the second. But all proofs of
the formula for the volume of a pyramid involve some form of limiting process.
Hilbert asked in his third problem: are two Euclidean polyhedra of the same
volume scissors congruent? The answer is ‘‘no’’ (a review of old and recent
results is presented by Neumann, 1998). There is another invariant of cutting and
gluing polyhedra.

Finite-additive invariant measures on non-compact groups were studied by
Birkhoff (1936) (see also the book of Hewitt and Ross, 1963, Chapter 4). The
frequency-based Mises approach to probability theory foundations (von Mises,
1964), as well as logical foundations of probability by Carnap (1950) do not need
s-additivity. Non-Kolmogorov probability theories are discussed now in the
context of quantum physics (Khrennikov, 2002), nonstandard analysis (Loeb,
1975) and many other problems (and we do not pretend provide here is a full
review of related works).

We answer the question: What does it mean ‘‘to pick a multiscale system
at random’’? We introduce and analyze a notion of multiscale ensemble of
reaction systems. These ensembles with well-separated variables are presented in
Section 3.

The best geometric example that helps us to understand this problem is one of
the Lewis Carroll’s Pillow Problems published in 1883 (Carroll, 1958): ‘‘Three
points are taken at random on an infinite plane. Find the chance of their being the
vertices of an obtuse-angled triangle.’’ (In an acute-angled triangle all angles are
comparable, in an obtuse-angled triangle the obtuse angle is bigger than others
and could be much bigger.) The solution of this problem depends significantly on
the ensemble definition. What does it mean ‘‘points are taken at random on an
infinite plane’’? Our intuition requires translation invariance, but the normalized
translation invariant measure on the plain could not be s-additive. Nevertheless,
there exist finite-additive invariant measures.

Lewis Carroll proposed a solution that did not satisfy some of modern
scientists. There exists a lot of attempts to improve the problem statement
(Eisenberg and Sullivan, 1996; Falk and Samuel-Cahn, 2001; Guy, 1993; Portnoy,
1994): reduction from infinite plane to a bounded set, to a compact symmetric
space, etc. But the elimination of paradox destroys the essence of Carroll’s
problem. If we follow the paradox and try to give a meaning to ‘‘points are taken
at random on an infinite plane’’ then we replace s-additivity of the probability
measure by finite-additivity and come to the applied probability theory for finite-
additive probabilities. Of course, this theory for abstract probability spaces
would be too poor, and some additional geometric and algebraic structures are
necessary to build rich enough theory.

This is not just a beautiful geometrical problem, but rather an applied
question about the proper definition of multiscale ensembles. We need such a
definition to make any general statement about multiscale systems, and briefly
analyze lessons of Carroll’s problem in Section 3.

In this section, we use some mathematics to define the multiscale ensembles
with well-separated constants. This is necessary background for the analysis of
systems with limitation, and technical consequences are rather simple. We need
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only two properties of a typical system from the multiscale ensemble with well-
separated constants:

(i) Every two reaction rate constants k, ku, are connected by the relation k�ku or
k�ku (with probability close to 1);

(ii) The first property persists (with probability close to 1), if we delete two
constants k and ku from the list of constants, and add a number kku or a
number k/ku to that list.

If the reader can use these properties (when it is necessary) without additional
clarification, it is possible to skip reading Section 3 and go directly to more applied
sections. In Section 4 we study static and dynamic properties of linear multiscale
reaction networks. An important instrument for that study is a hierarchy of
auxiliary discrete dynamical system. Let Ai be nodes of the network (‘‘compo-
nents’’), Ai-Aj be edges (reactions), and kji be the constants of these reactions
(please pay attention to the inverse order of subscripts). A discrete dynamical
system f is a map that maps any node Ai in a node Af(i). To construct a first
auxiliary dynamical system for a given network we find for each Ai the maximal
constant of reactions Ai-Aj: kf(i)iZkji for all j, and f(i) ¼ i if there are no reactions
Ai-Aj. Attractors in this discrete dynamical system are cycles and fixed points.

The fast stage of relaxation of a complex reaction network could be described
as mass transfer from nodes to correspondent attractors of auxiliary dynamical
system and mass distribution in the attractors. After that, a slower process of
mass redistribution between attractors should play a more important role. To
study the next stage of relaxation, we should glue cycles of the first auxiliary
system (each cycle transforms into a point), define constants of the first derivative
network on this new set of nodes, construct for this new network an (first)
auxiliary discrete dynamical system, etc. The process terminates when we get a
discrete dynamical system with one attractor. Then the inverse process of cycle
restoration and cutting starts. As a result, we create an explicit description of the
relaxation process in the reaction network, find estimates of eigenvalues and
eigenvectors for the kinetic equation, and provide full analysis of steady states for
systems with well-separated constants.

The problem of multiscale asymptotics of eigenvalues of nonself-
adjoint matrices was studied by Vishik and Ljusternik (1960) and Lidskii
(1965). Recently, some generalizations were obtained by idempotent (min-plus)
algebra methods (Akian et al., 2004). These methods provide a natural language
for discussion of some multiscale problems (Litvinov and Maslov, 2005). In the
Vishik–Ljusternik–Lidskii theorem and its generalizations the asymptotics of
eigenvalues and eigenvectors for the family of matrices Aijð�Þ ¼ aij�Aij þ oð�Aij Þ is
studied for eW0, e-0.

In the chemical reaction networks that we study, there is no small parameter e
with a given distribution of the orders �Aij of the matrix nodes. Instead of these
powers of e we have orderings of rate constants. Furthermore, the matrices of
kinetic equations have some specific properties. The possibility to operate with
the graph of reactions (cycles surgery) significantly helps in our constructions.
Nevertheless, there exists some similarity between these problems and, even for
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general matrices, graphical representation is useful. The language of idempotent
algebra (Litvinov and Maslov, 2005), as well as nonstandard analysis with
infinitisemals (Albeverio et al., 1986), can be used for description of the multiscale
reaction networks, but now we postpone this for later use.

We summarize results of relaxation analysis and describe the algorithm of
approximation of steady state and relaxation in Section 4.3. After that, several
examples of networks are analyzed. In Section 5 we illustrate the analysis of
dominant systems on a simple example, the reversible triangle of reactions:
A12A22A32A1. This simplest example became very popular for the lumping
analysis case study after the well-known work of Wei and Prater (1962). The most
important mathematical proofs are presented in the appendices.

In multiscale asymptotic analysis of reaction network we found several very
attractive zero-one laws. First of all, components eigenvectors are close to 0 or 71.
This law together with two other zero-one laws are discussed in Section 6: ‘‘Three
zero-one laws and nonequilibrium phase transitions in multiscale systems’’.

A multiscale system where every two constants have very different orders of
magnitude is, of course, an idealization. In parametric families of multiscale
systems there could appear systems with several constants of the same order.
Hence, it is necessary to study effects that appear due to a group of constants of
the same order in a multiscale network. The system can have modular structure,
with different time scales in different modules, but without separation of times
inside modules. We discuss systems with modular structure in Section 7. The full
theory of such systems is a challenge for future work, and here we study
structure of one module. The elementary modules have to be solvable. That
means that the kinetic equations could be solved in explicit analytical form. We
give the necessary and sufficient conditions for solvability of reaction networks.
These conditions are presented constructively, by algorithm of analysis of the
reaction graph.

It is necessary to repeat our study for nonlinear networks. We discuss this
problem and perspective of its solution in the concluding Section 8. Here we
again use the experience summarized in the IUPAC Compendium (Rate-
controlling step, 2007) where the notion of controlling step is generalized onto
nonlinear elementary reaction by inclusion of some concentration into ‘‘pseudo-
first-order rate constant’’.
2. STATIC AND DYNAMIC LIMITATION IN A LINEAR CHAIN AND
A SIMPLE CATALYTIC CYCLE

2.1 Linear chain

A linear chain of reactions, A1 ! A2 ! . . .An, with reaction rate constants ki (for
Ai ! Aiþ1), gives the first example of limitation Let the reaction rate constant kq

be the smallest one. Then we expect the following behavior of the reaction chain
in timescale � 1=kq: all the components A1; . . . ;Aq�1 transform fast into Aq, and
all the components Aqþ1; . . . ;An�1 transform fast into An, only two components,
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Aq and An are present (concentrations of other components are small), and the
whole dynamics in this time scale can be represented by a single reaction
Aq ! An with reaction rate constant kq. This picture becomes more exact when kq

becomes smaller with respect to other constants.
The kinetic equation for the linear chain is

_ci ¼ ki�1ci�1 � kici (1)

where ci is concentration of Ai and ki�1 for i ¼ 1. The coefficient matrix K of this
equation is very simple. It has nonzero elements only on the main diagonal, and
one position below. The eigenvalues of K are �ki (i ¼ 1,y,n�1) and 0. The left
and right eigenvectors for 0 eigenvalue, l0 and r0, are:

l0 ¼ ð1; 1; . . . ; 1Þ; r0 ¼ ð0; 0; . . . ; 0; 1Þ (2)

all coordinates of l0 are equal to 1, the only nonzero coordinate of r0 is r0
n and we

represent vector-column r0 in row.
Below we use explicit form of K left and right eigenvectors. Let vector-column

ri and vector-row li be right and left eigenvectors of K for eigenvalue �ki.
For coordinates of these eigenvectors we use notation ri

j and li
j. Let us choose

a normalization condition ri
i ¼ li

i ¼ 1. It is straightforward to check that ri
j ¼ 0

( joi) and lij ¼ 0 ( jWi), ri
jþ1 ¼ kjrj=ðkjþ1 � kiÞ ( jXi) and li

j�1 ¼ kj�1lj=ðkj�1 � kjÞ

( jpi), and

ri
iþm ¼

Ym
j¼1

kiþj�1

kiþj � ki
; lii�m ¼

Ym
j¼1

ki�j

ki�j � ki
(3)

It is convenient to introduce formally k0 ¼ 0. Under selected normalization
condition, the inner product of eigenvectors is: lirj ¼ dij, where dij is the
Kronecker delta.

If the rate constants are well separated (i.e. any two constants, ki and kj are
connected by relation ki � kj or ki � kj,

ki�j

ki�j � ki
�

1; if ki � ki�j;

0; if ki � ki�j

(
(4)

Hence, jli
i�mj � 1 or jli

i�mj � 0. To demonstrate that also jri
iþmj � 1 or jri

iþmj � 0, we
shift nominators in the product (3) on such a way:

ri
iþm ¼

ki

kiþm � ki

Ym�1

j¼1

kiþj

kiþj � ki

Exactly as in Equation (4), each multiplier

kiþj

ðkiþj � kiÞ

here is either almost 1 or almost 0, and

ki

ðkiþm � kiÞ
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is either almost 0 or almost �1. In this zero-one asymptotics

li
i ¼ 1; lii�m � 1

if ki�j4ki for all j ¼ 1; . . . ;m; else li
i�m � 0;

ri
i ¼ 1; ri

iþm � �1

if kiþj4ki for all j ¼ 1; . . . ;m� 1

and kiþmoki; else ri
iþm � 0

(5)

In this asymptotic, only two coordinates of right eigenvector ri can have
nonzero values, ri

i ¼ 1 and ri
iþm � �1 where m is the first such positive integer

that i + mon and kiþmoki. Such m always exists because kn ¼ 0. For left
eigenvector li; li

i � . . . l
i
i�q � 1 and lii�q�j � 0 where jW0 and q the first such

positive integer that i�q�1W0 and ki�q�1oki. It is possible that such q does not
exist. In that case, all li

i�j � 1 for jX0. It is straightforward to check that in this
asymptotic lirj ¼ dij.

The simplest example gives the order k1 � k2 � � � � � kn�1 : li
i�j � 1 for jX0,

ri
i ¼ 1, ri

iþ1 � �1 and all other coordinates of eigenvectors are close to zero.
For the inverse order, k1 � k2 � � � � � kn�1, lii ¼ 1, ri

i ¼ 1, ri
n � �1 and all other

coordinates of eigenvectors are close to zero.
For less trivial example, let us find the asymptotic of left and right

eigenvectors for a chain of reactions:

A1�!
5

A2�!
3

A3�!
4

A4�!
1

A5�!
2

A6

where the upper index marks the order of rate constants: k4 � k5 � k2 � k3 � k1

(ki is the rate constant of reaction Ai ! . . .).
For left eigenvectors, rows li, we have the following asymptotics:

l1 � ð1; 0; 0; 0; 0; 0Þ; l2
� ð0; 1; 0; 0; 0; 0Þ,

l3 � ð0; 1; 1; 0; 0; 0Þ; l4
� ð0; 0; 0; 1; 0; 0Þ,

l5 � ð0; 0; 0; 1; 1; 0Þ

(6)

For right eigenvectors, columns ri, we have the following asymptotics (we write
vector-columns in rows):

r1 � ð1; 0; 0; 0; 0;�1Þ; r2 � ð0; 1;�1; 0; 0; 0Þ,

r3 � ð0; 0; 1; 0; 0;�1Þ; r4 � ð0; 0; 0; 1;�1; 0Þ,

r5 � ð0; 0; 0; 0; 1;�1Þ

(7)

The correspondent approximation to the general solution of the kinetic equations
is:

cðtÞ ¼ ðl0cð0ÞÞr0 þ
Xn�1

i¼1

ðlicð0ÞÞri expð�kitÞ (8)

where c(0) is the initial concentration vector, and for left and right eigenvectors li

and ri we use their zero-one asymptotic.



114 A.N. Gorban and O. Radulescu

Author's personal copy
Asymptotic formulas allow us to transform kinetic matrix K to a matrix with
value of diagonal element could not be smaller than the value of any element
from the correspondent column and row.

Let us represent the kinetic matrix K in the basis of approximations to
eigenvectors (7). The transformed matrix is ~Kij ¼ liKrj (i, j ¼ 0, 1,y, 5):

K ¼

�k1 0 0 0 0 0

k1 �k2 0 0 0 0

0 k2 �k3 0 0 0

0 0 k3 �k4 0 0

0 0 0 k4 �k5 0

0 0 0 0 k5 0

2
6666666664

3
7777777775
;

K~¼

0 0 0 0 0 0

0 �k1 0 0 0 0

0 k1 �k2 0 0 0

0 k1 k3 �k3 0 0

0 0 �k3 k3 �k4 0

0 0 �k3 k3 �k5 �k5

2
6666666664

3
7777777775

(9)

The transformed matrix has an important property

j ~Kijj 	 minfj ~Kiij; j ~Kjjjg

The initial matrix K is diagonally dominant in columns, but its rows can
include elements that are much bigger than the correspondent diagonal elements.

We mention that a naive expectation ~Kij � dij is not realistic: some of the
nondiagonal matrix elements ~Kij are of the same order than minf ~Kii; ~Kjjg. This
example demonstrates that a good approximation to an eigenvector could be not
an approximate eigenvector. If Ke ¼ le and e� f

�� �� is small then f is an
approximation to eigenvector e. If KfElf (i.e. Kf � lf

�� �� is small), then f is
an approximate eigenvector for eigenvalue l. Our kinetic matrix K is very
ill-conditioned. Hence, nobody can guarantee that an approximation to eigen-
vector is an approximate eigenvector, or, inverse, an approximate eigenvector
(a ‘‘quasimode’’) is an approximation to an eigenvector.

The question is, what do we need for approximation of the relaxation process (8).
The answer is obvious: for approximation of general solution (8) with guaranteed
accuracy we need approximation to the genuine eigenvectors (‘‘modes’’) with the
same accuracy. The zero-one asymptotic (5) gives this approximation. Below we
always find the modes approximations and not quasimodes.
2.2 General properties of a cycle

The catalytic cycle is one of the most important substructures that we study in
reaction networks. In the reduced form the catalytic cycle is a set of linear
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reactions:

A1 ! A2 ! . . .An ! A1

Reduced form means that in reality some of these reaction are not
monomolecular and include some other components (not from the list
A1; . . . ;An). But in the study of the isolated cycle dynamics, concentrations of
these components are taken as constant and are included into kinetic constants of
the cycle linear reactions.

For the constant of elementary reaction Ai- we use the simplified notation ki

because the product of this elementary reaction is known, it is Ai+1 for ion and
A1 for i ¼ n. The elementary reaction rate is wi ¼ kici, where ci is the concentration
of Ai. The kinetic equation is:

_ci ¼ wi�1 � wi (10)

where by definition w0 ¼ wn. In the stationary state ð_ci ¼ 0Þ, all the wi are equal:
wi ¼ w. This common rate w we call the cycle stationary rate, and

w ¼
b

ð1=k1Þ þ � � � þ ð1=knÞ
; ci ¼

w

ki
(11)

where b ¼
P

ici is the conserved quantity for reactions in constant volume (for
general case of chemical kinetic equations see elsewhere, for example, the book
by Yablonskii et al., 1991). The stationary rate w (11) is a product of the arithmetic
mean of concentrations, b/n, and the harmonic mean of constants (inverse mean
of inverse ki).
2.3 Static limitation in a cycle

If one of the constants, kmin, is much smaller than others (let it be kmin ¼ kn),
then

cn ¼ b 1�
X
ion

kn

ki
þ o

X
ion

kn

ki

 ! !
,

ci ¼ b
kn

ki
þ o

X
ion

kn

ki

 ! !
,

w ¼ knb 1þO
X
ion

kn

ki

 ! !
(12)

or simply in linear approximation

cn ¼ b 1�
X
ion

kn

ki

 !
; ci ¼ b

kn

ki
; w ¼ knb (13)

where we should keep the first-order terms in cn in order not to violate the
conservation law.

The simplest zero order approximation for the steady state gives

cn ¼ b; ci ¼ 0 ðianÞ (14)
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This is trivial: all the concentration is collected at the starting point of the
‘‘narrow place’’, but may be useful as an origin point for various approximation
procedures.

So, the stationary rate of a cycle is determined by the smallest constant, kmin, if
kmin is sufficiently small:

w ¼ kminb if
X

kiakmin

kmin

ki
� 1 (15)

In that case we say that the cycle has a limiting step with constant kmin.
2.4 Dynamical limitation in a cycle

If kn=ki is small for all ion, then the kinetic behavior of the cycle is extremely
simple: the coefficients matrix on the right-hand side of kinetic equation (10) has
one simple zero eigenvalue that corresponds to the conservation law

P
ci ¼ b

and n�1 nonzero eigenvalues

li ¼ �ki þ di ðionÞ (16)

where di ! 0 when
P

ionðkn=kiÞ ! 0.
It is easy to demonstrate Equation (16): let us exclude the conservation

law (the zero eigenvalue)
P

ci ¼ b and use independent coordinates ci

(i ¼ 1,y, n�1); cn ¼ b�
P

ionci. In these coordinates the kinetic equation (10)
has the form

_c ¼ Kc� knAcþ knbe1 (17)

where c is the vector-column with components ci (ion), K the lower triangle
matrix with nonzero elements only in two diagonals: ðKÞii ¼ �ki(i ¼ 1,y, n�1),
ðKÞiþ1;i ¼ ki (i ¼ 1,y, n�2) (this is the kinetic matrix for the linear chain of n�1
reactions A1 ! A2 ! . . .An); A the matrix with nonzero elements only in the
first row: ðAÞ1i 
 1, e1 the first basis vector (e1

1 ¼ 1, e1
i ¼ 0 for 1oion). After

that, Equation (16) follows simply from continuous dependence of spectra on
matrix.

The relaxation time of a stable linear system (17) is, by definition,

t ¼ ½minfReð�liÞji ¼ 1; . . . ; n� 1g��1

For small kn,

t � 1=kt; kt ¼ minfkiji ¼ 1; . . . ;n� 1g (18)

In other words, kt is the second slowest rate constant: kmin 	 kt 	 � � �
2.5 Relaxation equation for a cycle rate

A definition of the cycle rate is clear for steady states because stationary rates of
all elementary reactions in cycle coincide. There is no common definition of the
cycle rate for nonstationary regimes. In practice, one of steps is the step of
product release (the ‘‘final’’ step of the catalytic transformation), and we can



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 117

Author's personal copy
consider its rate as the rate of the cycle. Formally, we can take any step and study
relaxation of its rate to the common stationary rate. The single relaxation time
approximation gives for rate wi of any step:

_wi ¼ ktðkminb� wiÞ;

wiðtÞ ¼ kminbþ e�kttðwið0Þ � kminbÞ
(19)

where kmin is the limiting (the minimal) rate constant of the cycle and kt the
second in order rate constant of the cycle.

So, for catalytic cycles with the limiting constant kmin, the relaxation time is
also determined by one constant, but another one. This is kt, the second in order
rate constant. It should be stressed that the only smallness condition is required,
kmin should be much smaller than other constants. The second constant, kt should
be just smaller than others (and bigger than kmin), but there is no� condition for
kt required.

One of the methods for measurement of chemical reaction constants is the
relaxation spectroscopy (Eigen, 1972). Relaxation of a system after an impact
gives us a relaxation time or even a spectrum of relaxation times. For catalytic
cycle with limitation, the relaxation experiment gives us the second constant kt,
whereas the measurement of stationary rate gives the smallest constant, kmin. This
simple remark may be important for relaxation spectroscopy of open system.
2.6 Ensembles of cycles and robustness of stationary rate and
relaxation time

Let us consider a catalytic cycle with random rate constants. For a given
sample constants k1; . . . ; kn the ith order statistics is equal its ith smallest
value. We are interested in the first order (the minimal) and the second order
statistics.

For independent identically distributed constants the variance of
kmin ¼ minfk1; . . . ; kng is significantly smaller than the variance of each ki, Var(k).
The same is true for statistic of every order. For many important distributions
(e.g. for uniform distribution), the variance of ith order statistic is of order
BVar(k)/n2. For big n it goes to zero faster than variance of the mean that is of
order BVar(k)/n. To illustrate this, let us consider n constants distributed in
interval [a, b]. For each set of constants, k1; . . . ; kn we introduce ‘‘symmetric
coordinates’’ si: first, we order the constants, a 	 ki1 	 ki2 	 � � � kin 	 b, then
calculate s0 ¼ ki1 � a, sj ¼ kijþ1

� kij ( j ¼ 1,y, n�1), sn ¼ b� kin . Transformation
ðk1; . . . ; knÞ7!ðs0; . . . ; snÞ maps a cube ½a; b�n onto n-dimensional simplex
Dn ¼ fðs0; . . . ; snÞj

P
isi ¼ b� ag and uniform distribution on a cube transforms

into uniform distribution on a simplex.
For large n, almost all volume of the simplex is concentrated in a small

neighborhood of its center and this effect is an example of measure concentration
effects that play important role in modern geometry and analysis (Gromov, 1999).
All si are identically distributed, and for normalized variable s ¼ si=ðb� aÞ
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the first moments are: E(s) ¼ 1/(n+1) ¼ 1/n+o(1/n), Eðs2Þ ¼ 2=½ðnþ 1Þðnþ 2Þ� ¼
2=n2 þ oð1=n2Þ,

VarðsÞ ¼ Eðs2Þ � ðEðsÞÞ2

¼
n

ðnþ 1Þ2ðnþ 2Þ
¼

1

n2
þ o

1

n2

� �
Hence, for example, VarðkminÞ ¼ ðb� aÞ2=n2 þ oð1=n2Þ. The standard deviation

of kmin goes to zero as 1/n when n increases. This is much faster than 1=
ffiffiffi
n
p

prescribed to the deviation of the mean value of independent observation (the
‘‘law of errors’’). The same asymptotic B1/n is true for the standard deviation of
the second constant also. These parameters fluctuate much less than individual
constants, and even less than mean constant (for more examples with
applications to statistical physics we address to the paper by Gorban, 2006).

It is impossible to use this observation for cycles with limitation directly,
because the inequality of limitation (15) is not true for uniform distribu-
tion. According to this inequality, ratios ki=kmin should be sufficiently small
(if kiakmin). To provide this inequality we need to use at least the log-uniform
distribution: ki ¼ expDi and Di are independent variables uniformly distributed
in interval [a,b] with sufficiently big (b�a)/n.

One can interpret the log-uniform distribution through the Arrhenius law:
k ¼ Aexp(�DG/kT), where DG is the change of the Gibbs free energy inreaction
(it includes both energetic and entropic terms: DG ¼ DH�TDS, where DH the
enthalpy change and DS the entropy change in reaction, T the temperature). The
log-uniform distribution of k corresponds to the uniform distribution of DG.

For log-uniform distribution of constants k1; . . . ; kn, if the interval of
distribution is sufficiently big (i.e. (b�a)/n�1), then the cycle with these constants
has the limiting step with probability close to one. More precisely we can show
that for any two constants ki and kj the probability P ½ki=kj4r or kj=ki4r� ¼
ð1� logðrÞ=ðb� aÞÞ2 approaches one for any fixed r W1 when b�a-N. Relaxation
time of this cycle is determined by the second constant kt (also with probability
close to one). Standard deviations of kmin and kt are much smaller than standard
deviation of single constant ki and even smaller than standard deviation of mean
constant

P
iki=n. This effect of stationary rate and relaxation time robustness seems

to be important for understanding robustness in biochemical networks: behavior of
the entire system is much more stable than the parameters of its parts; even for
large fluctuations of parameters, the system does not change significantly the
stationary rate (statics) and the relaxation time (dynamics).
2.7 Systems with well-separated constants and monotone relaxation

The log-uniform identical distribution of independent constants k1; . . . ; kn with
sufficiently big interval of distribution ((b�a)/n�1) gives us the first example of
ensembles with well-separated constants: any two constants are connected by
relation� or� with probability close to one. Such systems (not only cycles, but
much more complex networks too) could be studied analytically ‘‘up to the end’’.
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Some of their properties are simpler than for general networks. For example,
the damping oscillations are impossible, i.e. the eigenvalues of kinetic matrix are
real (with probability close to one). If constants are not separated, damped
oscillations could exist, for example, if all constants of the cycle are equal,
k1 ¼ k2 ¼ � � � ¼ kn ¼ k, then ð1þ l=kÞn ¼ 1 and lm ¼ kðexpð2pim=nÞ � 1Þ
(m ¼ 1,y, n�1), the case m ¼ 0 corresponds to the linear conservation law.
Relaxation time of this cycle may be relatively big: t ¼ ð1=kÞ ð1� cosð2p=nÞÞ�1

�

n2=ð2pkÞ (for big n).
The catalytic cycle without limitation can have relaxation time much bigger

then 1=kmin, where kmin is the minimal reaction rate constant. For example, if all k
are equal, then for n ¼ 11 we get tE20/k. In more detail the possible relations
between t and the slowest constant were discussed by Yablonskii and Cheresiz
(1984). In that paper, a variety of cases with different relationships between the
steady-state reaction rate and relaxation was presented.

For catalytic cycle, if a matrix K � knA (17) has a pair of complex eigenvalues
with nonzero imaginary part, then for some gA[0, 1] the matrix K � gknA has a
degenerate eigenvalue (we use a simple continuity argument). With probability
close to one, kmin � jki � kjj for any two ki and kj that are not minimal. Hence,
the kmin-small perturbation cannot transform matrix K with eigenvalues ki (16)
and given structure into a matrix with a degenerate eigenvalue. For proof of this
statement it is sufficient to refer to diagonal dominance of K (the absolute value of
each diagonal element is greater than the sum of the absolute values of the other
elements in its column) and classical inequalities.

The matrix elements of A in the eigenbasis of K are ðAÞij ¼ liArj. From
obtained estimates for eigenvectors we get jðAÞijjt1 (with probability close to
one). This estimate does not depend on values of kinetic constants. Now, we can
apply the Gershgorin theorem (see, e.g. the review of Marcus and Minc (1992)
and for more details the book of Varga (2004)) to the matrix K � knA in
the eigenbasis of K: the characteristic roots of K � knA belong to discs
jzþ kij 	 knRiðAÞ, where RiðAÞ ¼

P
jjðAÞijj. If the discs do not intersect, then each

of them contains one and only one characteristic number. For ensembles with
well-separated constants these discs do not intersect (with probability close to
one). Complex conjugate eigenvalues could not belong to different discs. In this
case, the eigenvalues are real — there exist no damped oscillations.
2.8 Limitation by two steps with comparable constants

If we consider one-parametric families of systems, then appearance of systems
with two comparable constants may be unavoidable. Let us imagine a continuous
path kiðsÞ (sA[0, 1], s is a parameter along the path) in the space of systems, which
goes from one system with well-separated constants (s ¼ 0) to another such
system (s ¼ 1). On this path kiðsÞ such a point s that kiðsÞ ¼ kjðsÞmay exist, and this
existence may be stable, that is, such a point persists under continuous
perturbations. This means that on a path there may be points where not all the
constants are well separated, and trajectories of some constants may intersect.
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For catalytic cycle, we are interested in the following intersection only:
kmin and the second constant are of the same order, and are much smaller
than other constants. Let these constants be kj and kl, j 6¼l. The limitation
condition is

1

kj
þ

1

kl
�
X
iaj;l

1

ki
(20)

The steady-state reaction rate and relaxation time are determined by these
two constants. In that case their effects are coupled. For the steady state we get in
first-order approximation instead of Equation (13):

w ¼
kjkl

kj þ kl
b; ci ¼

w

ki
¼

b

ki

kjkl

kj þ kl
ðiaj; lÞ;

cj ¼
bkl

kj þ kl
1�

X
iaj;l

l

ki

kjkl

kj þ kl

0
@

1
A;

cl ¼
bkj

kj þ kl
1�

X
iaj;l

l

ki

kjkl

kj þ kl

0
@

1
A

(21)

Elementary analysis shows that under the limitation condition (20) the relaxation
time is

t ¼
1

kj þ kl
(22)

The single relaxation time approximation for all elementary reaction rates in a
cycle with two limiting reactions is

_wi ¼ kjklb� ðkj þ klÞwi;

wiðtÞ ¼
kjkl

kj þ kl
bþ e�ðkjþklÞt wið0Þ �

kjkl

kj þ kl
b

� �
ð23Þ

The catalytic cycle with two limiting reactions has the same stationary rate w
(21) and relaxation time (22) as a reversible reaction A2B with kþ ¼ kj and
k� ¼ kl.

In two-parametric families three constants can meet. If three smallest
constants kj; kl and km have comparable values and are much smaller than
others, then static and dynamic properties would be determined by these
three constants. Stationary rate w and dynamic of relaxation for the whole cycle
would be the same as for 3-reaction cycle A! B! C! A with constants
kj; kl and km. The damped oscillation here are possible, for example, if
kj ¼ kl ¼ km ¼ k, then there are complex eigenvalues l ¼ kð�ð3=2Þ � ið

ffiffiffi
3
p

=2ÞÞ.
Therefore, if a cycle manifests damped oscillation, then at least three slowest
constants are of the same order. The same is true, of course, for more general
reaction networks.
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In N-parametric families of systems N+1 smallest constants can meet, and
near such a ‘‘meeting point’’ a slow auxiliary cycle of N+1 reactions determines
behavior of the entire cycle.
2.9 Irreversible cycle with one inverse reaction

In this subsection, we represent a simple example that gives the key to most of
subsequent constructions of ‘‘cycles surgery’’. Let us add an inverse reaction to
the irreversible cycle: A1 ! . . .! Ai2Aiþ1 ! . . .! An ! A1. We use the
previous notation k1; . . . ; kn for the cycle reactions, and k�i for the inverse reaction
Ai  Aiþ1. For well-separated constants, influence of k�i on the whole reaction is
determined by relations of three constants: ki; k

�
i and kiþ1. First of all, if k�i � kiþ1

then in the main order there is no such influence, and dynamic of the cycle is the
same as for completely irreversible cycle.

If the opposite inequality is true, k�i � kiþ1, then equilibration between Ai

and Ai+1 gives kicix � k�i ciþ1. If we introduce a lumped component A1
i with

concentration c1
i ¼ ci þ ciþ1, then ci � k�i c1

i =ðki þ k�i Þ and ciþ1 � kic
1
i =ðki þ k�i Þ.

Using this component instead of the pair Ai;Aiþ1 we can consider an irreversible
cycle with n�1 components and n reactions A1 ! . . .! Ai�1 ! A1

i !

Aiþ2 ! . . .! An ! A1. To estimate the reaction rate constant k1
i for a new

reaction, A1
i ! Aiþ2, let us mention that the correspondent reaction rate should

be kiþ1ciþ1 � kiþ1kic1
i =ðki þ k�i Þ. Hence,

k1
i � kiþ1ki=ðki þ k�i Þ

For systems with well-separated constants this expression can be simplified: if
ki � k�i then k1

i � kiþ1 and if ki � k�i then k1
i � kiþ1ki=k�i . The first case, ki � k�i is

limitation in the small cycle (of length two) Ai2Aiþ1 by the inverse reaction
Ai  Aiþ1. The second case, ki � k�i , means the direct reaction is the limiting step
in this small cycle.

To estimate eigenvectors, we can, after identification of the limiting step in the
small cycle, delete this step and reattach the outgoing reaction to the beginning of
this step. For the first case, ki � k�i , we get the irreversible cycle,
A1 ! . . .! Ai ! Aiþ1 ! . . .! An ! A1, with the same reaction rate constants.
For the second case, ki � k�i we get a new system of reactions: a shortened cycle
A1 ! . . .! Ai ! Aiþ2 ! . . .! An ! A1 and an ‘‘appendix’’ Aiþ1 ! Ai. For the
new elementary reaction Ai ! Aiþ2 the reaction rate constant is k1

i � kiþ1ki=k�i .
All other elementary reactions have the same rate constants, as they have in the
initial system. After deletion of the limiting step from the ‘‘big cycle’’
A1 ! . . .! Ai ! Aiþ2 ! . . .! An ! A1, we get an acyclic system that approx-
imate relaxation of the initial system.

So, influence of a single inverse reaction on the irreversible catalytic
cycle with well-separated constants is determined by relations of three constants:
ki; k

�
i and kiþ1. If k�i is much smaller than at least one of ki; kiþ1, then there is

no influence in the main order. If k�i � ki and k�i � kiþ1 then the relaxation
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of the initial cycle can be approximated by relaxation of the auxiliary acyclic
system.

Asymptotic equivalence (for k�i � ki; kiþ1) of the reaction network
Ai2Aiþ1 ! Aiþ2 with rate constants ki; k

�
i and kiþ1 to the reaction network

Aiþ1 ! Ai ! Aiþ2 with rate constants k�i (for the reaction Aiþ1 ! Ai) and
kiþ1ki=k�i (for the reaction Ai ! Aiþ2) is simple, but slightly surprising fact. The
kinetic matrix for the first network in coordinates ci; ciþ1 and ciþ2 is

K ¼

�ki k�i 0

ki �ðk�i þ kiþ1Þ 0

0 kiþ1 0

2
64

3
75

The eigenvalues are 0 and

l1;2 ¼
1

2
�ðki þ k�i þ kiþ1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki þ k�i þ kiþ1Þ

2
� 4kikiþ1

q� �
l1 ¼ �kiþ1kið1þ oð1ÞÞ=k�i , l2 ¼ �k�i ð1þ oð1ÞÞ, where o(1)�1. Right eigenvector r0

for zero eigenvalue is (0, 0, 1) (we write vector columns in rows). For l1 the
eigenvector is r1 ¼ ð1; 0;�1Þ þ oð1Þ, and for l2 it is r2 ¼ ð1;�1; 0Þ þ oð1Þ. For the
linear chain of reactions, Aiþ1 ! Ai ! Aiþ2, with rate constants k�i and kiþ1ki=k�i
eigenvalues are�k�i and �kiþ1ki=k�i . These values approximate eigenvalues of the
initial system with small relative error. The linear chain has the same zero-one
asymptotic of the correspondent eigenvectors.

This construction, a small cycle inside a big system, a quasi-steady state in
the small cycle, and deletion of the limiting step with reattaching of reactions
(see Figure 1 below) appears in this chapter many times in much general settings.
The uniform estimates that we need for approximation of eigenvalues and
eigenvectors by these procedures are proven in Appendices.
A1

A2

Ai

A�

k

ki

klim

k1

k2

Aj

A1

A2

A�

k1

k2

k�−1

kklim/ki

Aj

Figure 1 The main operation of the cycle surgery: on a step back we get a cycle

A1 ! . . .! At ! A1 with the limiting step At ! A1 and one outgoing reaction Ai ! Aj. We

should delete the limiting step, reattach (‘‘recharge’’) the outgoing reaction Ai ! Aj from Ai to

At and change its rate constant k to the rate constant kklim=ki. The new value of reaction rate

constant is always smaller than the initial one: kklim=kiok if klimaki. For this operation only

one condition k � ki is necessary (k should be small with respect to reaction Ai ! Aiþ1 rate

constant, and can exceed any other reaction rate constant).



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 123

Author's personal copy
3. MULTISCALE ENSEMBLES AND FINITE-ADDITIVE DISTRIBUTIONS

3.1 Ensembles with well-separated constants, formal approach

In previous section, ensembles with well-separated constants appear. We
represented them by a log-uniform distribution in a sufficiently big interval log
kA[a, b], but we were not interested in most of probability distribution properties,
and did not use them. The only property we really used is: if ki4kj, then ki=kj � 1
(with probability close to one). It means that we can assume that ki=kj � a for any
preassigned value of a that does not depend on k values. One can interpret this
property as an asymptotic one for a-�N, b-N.

That property allows us to simplify algebraic formulas. For example, ki þ kj

could be substituted by maxfki; kjg (with small relative error), or

aki þ bkj

cki þ dkj
�

a=c; if ki � kj;

b=d; if ki � kj

(

for nonzero a, b, c, d (see, e.g. Equation (4)).
Of course, some ambiguity can be introduced, for example, what is it,

ðk1 þ k2Þ � k1, if k1 � k2? If we first simplify the expression in brackets, it is zero,
but if we open brackets without simplification, it is k2. This is a standard
difficulty in use of relative errors for round-off. If we estimate the error in the
final answer, and then simplify, we shall avoid this difficulty. Use of o and O
symbols also helps to control the error qualitatively: if k1 � k2, then we can write
ðk1 þ k2Þ ¼ k1ð1þ oð1ÞÞ and k1ð1þ oð1ÞÞ � k1 ¼ k1oð1Þ. The last expression is neither
zero nor absolutely small — it is just relatively small with respect to k1.

The formal approach is: for any ordering of rate constants, we use relations �
and �, and assume that ki=kj � a for any preassigned value of a that does not
depend on k values. This approach allows us to perform asymptotic analysis of
reaction networks. A special version of this approach consists of group ordering:
constants are separated on several groups, inside groups they are comparable, and
between groups there are relations � or �. An example of such group ordering
was discussed at the end of previous section (several limiting constants in a cycle).
3.2 Probability approach: finite additive measures

The asymptotic analysis of multiscale systems for log-uniform distribution of
independent constants on an interval log k A[a, b] (�a, b-N) is possible, but
parameters a, b do not present in any answer, they just should be sufficiently big.
A natural question arises, what is the limit? It is a log-uniform distribution on
a line, or, for n independent identically distributed constants, a log-uniform
distribution on R n).

It is well known that the uniform distribution on R n is impossible: if a cube
has positive probability eW0 (i.e. the distribution has positive density) then the
union of NW1/e such disjoint cubes has probability bigger than 1 (here we use
the finite-additivity of probability). This is impossible. But if that cube has
probability zero, then the whole space has also zero probability, because it can be
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covered by countable family of the cube translation. Hence, translation
invariance and s-additivity (countable additivity) are in contradiction (if we
have no doubt about probability normalization).

Nevertheless, there exists finite-additive probability which is invariant with
respect to Euclidean group E(n) (generated by rotations and translations). Its
values are densities of sets.

Let l be the Lebesgue measure and D � R n be a Lebesgue measurable subset.
Density of D is the limit (if it exists):

rðDÞ ¼ lim
r!1

lðD \ B n
r Þ

lðB n
r Þ

(24)

where B n
r is a ball with radius r and center at origin. Density of R n is 1, density of

every half-space is ½, density of bounded set is zero, density of a cone is its solid
angle (measured as a sphere surface fractional area). Density (24) and translation
and rotational invariant. It is finite-additive: if densities r(D) and r(H) (24) exist
and D-H ¼+ then r(D,H) exists and r(D,H) ¼ r(D)+r(H).

Every polyhedron has a density. A polyhedron could be defined as the union
of a finite number of convex polyhedra. A convex polyhedron is the intersection
of a finite number of half-spaces. It may be bounded or unbounded. The family of
polyhedra is closed with respect to union, intersection and subtraction of sets. For
our goals, polyhedra form sufficiently rich class. It is important that in definition
of polyhedron finite intersections and unions are used. If one uses countable
unions, he gets too many sets including all open sets, because open convex
polyhedra (or just cubes with rational vertices) form a basis of standard topology.

Of course, not every measurable set has density. If it is necessary, we can use
the Hahn–Banach theorem (Rudin, 1991) and study extensions rEx of r with the
following property:

rðDÞ 	 rExðDÞ 	 r̄ðDÞ

where

rðDÞ ¼ lim
r!1

inf
lðD \ B n

r Þ

lðB n
r Þ

;

r̄ðDÞ ¼ lim
r!1

sup
lðD \ B n

r Þ

lðB n
r Þ

Functionals rðDÞ and r̄ðDÞ are defined for all measurable D. We should stress
that such extensions are not unique. Extension of density (24) using the Hahn–
Banach theorem for picking up a random integer was used in a very recent work
by Adamaszek (2006).

One of the most important concepts of any probability theory is the
conditional probability. In the density-based approach we can introduce
the conditional density. If densities r(D) and r(H) (24) exist, r(H)6¼0 and the
following limit r(D|H) exists, then we call it conditional density:

rðDjHÞ ¼ lim
r!1

lðD \H \ B n
r Þ

lðH \ B n
r Þ

(25)
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For polyhedra the situation is similar to usual probability theory: densities
r(D) and r(H) always exist and if r(H) 6¼ 0 then conditional density exists too. For
general measurable sets the situation is not so simple, and existence of r(D) and
r(H)6¼0 does not guarantee existence of r(D|H).

On a line, convex polyhedra are just intervals, finite or infinite. The
probability defined on polyhedra is: for finite intervals and their finite unions
it is zero, for half-lines xWa or xoa it is ½, and for the whole line R the
probability is 1. If one takes a set of positive probability and adds or subtracts a
zero-probability set, the probability does not change.

If independent random variables x and y are uniformly distributed on a line,
then their linear combination z ¼ ax+by is also uniformly distributed on a line.
(Indeed, vector (x, y) is uniformly distributed on a plane (by definition), a set zWg
is a half-plane, the correspondent probability is ½.) This is a simple, but useful
stability property. We shall use this result in the following form. If independent
random variables k1; . . . ; kn are log-uniformly distributed on a line, then the
monomial

Qn
i¼1kai

i for real ai is also log-uniformly distributed on a line, if some of
ai 6¼ 0.
3.3 Carroll’s obtuse problem and paradoxes of conditioning

Lewis Carroll’s Pillow Problem #58 (Carroll, 1958): ‘‘Three points are taken at
random on an infinite plane. Find the chance of their being the vertices of an
obtuse-angled triangle’’.

A random triangle on an infinite plane is presented by a point equidistributed
in R 6. Owing to the density — based definition, we should take and calculate the
density of the set of obtuse-angled triangles in R 6. This is equivalent to the
problem: find a fraction of the sphere S 5

� R 6 that corresponds to obtuse-angled
triangles. Just integratey. But there remains a problem. Vertices of triangle are
independent. Let us use the standard logic for discussion of independent trials:
we take the first point A at random, then the second point B and then the third
point C. Let us draw the first side AB. Immediately we find that for almost all
positions of the the third point C the triangle is obtuse-angled (Guy, 1993). Carroll
proposed to take another condition: let AB be the longest side and let C be
uniformly distributed in the allowed area. The answer then is easy — just a ratio
of areas of two simple figures. But there are absolutely no reasons for uniformity
of C distribution. And it is more important that the absolutely standard reasoning
for independently chosen points gives another answer than could be found on
the base of joint distribution. Why these approaches are in disagreement now?
Because there is no classical Fubini theorem for our finite-additive probabilities,
and we cannot easily transfer from a multiple integral to a repeated one.

There exists a much simpler example. Let x and y be independent positive
real number. This means that vector (x, y) is uniformly distributed in the first
quadrant. What is probability that xXy? Following the definition of probability
based on the density of sets, we take the correspondent angle and find
immediately that this probability is ½. This meets our intuition well. But let us
take the first number x and look for possible values of y. The result: for given x the
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second number y is uniformly distributed on [0, N), and only a finite interval
[0, x] corresponds to xXy. For the infinite rest we have xoy. Hence, xoy with
probability 1. This is nonsense because of symmetry. So, for our finite-additive
measure we cannot use repeated integrals (or, may be, should use them in a very
peculiar manner).
3.4 Law of total probability and orderings

For polyhedra, there appear no conditioning problems. The law of total
probabilities holds: if R n ¼ [m

i¼1Hi, Hi are polyhedra, rðHiÞ40, rðHi \HjÞ ¼ 0
for i 6¼j, and D � R n is a polyhedron, then

rðDÞ ¼
Xm

i¼1

rðD \HiÞ ¼
Xm

i¼1

rðDjHiÞrðHiÞ (26)

Our basic example of multiscale ensemble is log-uniform distribution of
reaction constants in R n

þ (log ki are independent and uniformly distributed on the
line). For every ordering kj1

4kj2
4 � � �4kjn

a polyhedral cone Hj1; j2;...; jn in R n is
defined. These cones have equal probabilities rðHj1; j2;...; jnÞ ¼ 1=n! and probability
of intersection of cones for different orderings is zero. Hence, we can apply the
law of total probability (26). This means that we can study every event D
conditionally, for different orderings, and then combine the results of these
studies in the final answer (26).

For example, if we study a simple cycle then formula (13) for steady state is
valid with any given accuracy with unite probability for any ordering with the
given minimal element kn.

For cycle with given ordering of constants we can find zero-one approxima-
tion of left and right eigenvectors (5). This approximation is valid with any given
accuracy for this ordering with probability one.

If we consider sufficiently wide log-uniform distribution of constants on a
bounded interval instead of the infinite axis then these statements are true with
probability close to 1.

For general system that we study below the situation is slightly more
complicated: new terms, auxiliary reactions with monomial rate constants
kB ¼

Q
ik
Bi

i could appear with integer (but not necessary positive) Bi, and we
should include these kB in ordering. It follows from stability property that these
monomials are log-uniform distributed on infinite interval, if ki are. Therefore the
situation seems to be similar to ordering of constants, but there is a significant
difference: monomials are not independent, they depend on ki with Bia0.

Happily, in the forthcoming analysis when we include auxiliary reactions
with constant kB, we always exclude at least one of the reactions with rate
constant ki and Bia0. Hence, for we always can use the following statement (for
the new list of constants, or for the old one): if kj1

4kj2
4 � � �4kjn

then
kj1
� kj2

� � � � � kjn
, where a�b for positive a, b means: for any given eW0 the

inequality eaWb holds with probability one.
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If we use sufficiently wide but finite log-uniform distribution then e could not
be arbitrarily small (this depends on the interval with), and probability is not
unite but close to one. For given eW0 probability tends to one when the interval
width goes to infinity. It is important that we use only finite number of auxiliary
reactions with monomial constants, and this number is bounded from above for
given number of elementary reactions. For completeness, we should mention
here general algebraic theory of orderings that is necessary in more sophisticated
cases (Greuel and Pfister, 2002; Robbiano, 1985).
4. RELAXATION OF MULTISCALE NETWORKS AND HIERARCHY OF
AUXILIARY DISCRETE DYNAMICAL SYSTEMS

4.1 Definitions, notations and auxiliary results

4.1.1 Notations
In this section, we consider a general network of linear (monomolecular)
reactions. This network is represented as a directed graph (digraph): vertices
correspond to components Ai, edges correspond to reactions Ai ! Aj with kinetic
constants kji40. For each vertex, Ai, a positive real variable ci (concentration) is
defined. A basis vector ei corresponds to Ai with components ei

j ¼ dij, where dij is
the Kronecker delta. The kinetic equation for the system is

dci

dt
¼
X

j

ðkijcj � kjiciÞ (27)

or in vector form: _c ¼ Kc.
To write another form of Equation (27) we use stoichiometric vectors: for a

reaction Ai ! Aj the stoichiometric vector gji is a vector in concentration space
with ith coordinate �1, jth coordinate 1 and other coordinates 0. The reaction rate
wji ¼ kjici. The kinetic equation has the form

dc

dt
¼
X

i;j

wjigji (28)

where c is the concentration vector. One more form of Equation (27) describes
directly dynamics of reaction rates:

dwji

dt
¼ kji

dci

dt

� �
¼ kji

X
l

ðwil � wliÞ (29)

It is necessary to mention that, in general, system (29) is not equivalent to
system (28), because there are additional connections between variables wji. If
there exists at least one Ai with two different outgoing reactions, Ai ! Aj and
Ai ! Al (j6¼l), then wji=wli 
 kji=kli. If the reaction network generates a discrete
dynamical system Ai ! Aj on the set of Ai (see below), then the variables wji are
independent, and Equation (29) gives equivalent representation of kinetics.

For analysis of kinetic systems, linear conservation laws and positively
invariant polyhedra are important. A linear conservation law is a linear function
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defined on the concentrations bðcÞ ¼
P

ibici, whose value is preserved by the
dynamics (27). The conservation laws coefficient vectors bi are left eigenvectors of
the matrix K corresponding to the zero eigenvalue. The set of all the conservation
laws forms the left kernel of the matrix K. Equation (27) always has a linear
conservation law: b0

ðcÞ ¼
P

ici ¼ constant. If there is no other independent linear
conservation law, then the system is weakly ergodic.

A set E is positively invariant with respect to kinetic equations (27), if any
solution c(t) that starts in E at time t0ðcðt0Þ 2 EÞ belongs to E for t4t0 (c(t)AE
if t4t0). It is straightforward to check that the standard simplex
S ¼ fcjci  0;

P
ici ¼ 1g is positively invariant set for kinetic equation (27): just

to check that if ci ¼ 0 for some i, and all cj  0 then _ci  0. This simple fact
immediately implies the following properties of K:

– All eigenvalues l of K have non-positive real parts, Relp0, because solutions
cannot leave S in positive time.

– If Rel ¼ 0 then l ¼ 0, because intersection of S with any plain is a polygon, and
a polygon cannot be invariant with respect of rotations to sufficiently small
angles.

– The Jordan cell of K that corresponds to zero eigenvalue is diagonal — because
all solutions should be bounded in S for positive time.

– The shift in time operator exp(Kt) is a contraction in the l1 norm for tW0: for
positive t and any two solutions of Equation (27) c(t), cu(t)ASX

i

jciðtÞ � c0iðtÞj 	
X

i

jcið0Þ � c0ið0Þj

Two vertices are called adjacent if they share a common edge. A path is a
sequence of adjacent vertices. A graph is connected if any two of its vertices are
linked by a path. A maximal connected subgraph of graph G is called a connected
component of G. Every graph can be decomposed into connected components.

A directed path is a sequence of adjacent edges where each step goes in
direction of an edge. A vertex A is reachable by a vertex B, if there exists an
oriented path from B to A.

A nonempty set V of graph vertexes forms a sink, if there are no oriented
edges from Ai 2 V to any AjeV. For example, in the reaction graph
A1  A2 ! A3 the one-vertex sets fA1g and fA3g are sinks. A sink is minimal if
it does not contain a strictly smaller sink. In the previous example, fA1g and fA3g

are minimal sinks. Minimal sinks are also called ergodic components.
A digraph is strongly connected, if every vertex A is reachable by any other

vertex B. Ergodic components are maximal strongly connected subgraphs of the
graph, but inverse is not true: there may exist maximal strongly connected
subgraphs that have outgoing edges and, therefore, are not sinks.

We study ensembles of systems with a given graph and independent and
well-separated kinetic constants kij. This means that we study asymptotic
behavior of ensembles with independent identically distributed constants,
log-uniform distributed in sufficiently big interval log kA[a, b], for a-�N,
b-N, or just a log-uniform distribution on infinite axis, log k 2 R .
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4.1.2 Sinks and ergodicity
If there is no other independent linear conservation law, then the system is
weakly ergodic. The weak ergodicity of the network follows from its topological
properties.

The following properties are equivalent and each one of them can be used as
an alternative definition of weak ergodicity:

(i) There exist the only independent linear conservation law for kinetic
equations (27) (this is b0(c) ¼

P
ici ¼ constant).

(ii) For any normalized initial state c(0) (b0(c) ¼ 1) there exists a limit state

c� ¼ lim
t!1

expðKtÞcð0Þ

that is the same for all normalized initial conditions: For all c,

lim
t!1

expðKtÞc ¼ b0
ðcÞc�

(iii) For each two vertices Ai and Aj(i 6¼j) we can find such a vertex Ak that is
reachable both by Ai and by Aj. This means that the following structure
exists:

Ai ! :::! Ak  ::: Aj

One of the paths can be degenerated: it may be i ¼ k or j ¼ k.

(iv) The network has only one minimal sink (one ergodic component).

For every monomolecular kinetic system, the Jordan cell for zero eigenvalue
of matrix K is diagonal and the maximal number of independent linear
conservation laws (i.e. the geometric multiplicity of the zero eigenvalue of the
matrix K) is equal to the maximal number of disjoint ergodic components
(minimal sinks).

Let G ¼ fAi1 ; . . . ;Ailg be an ergodic component. Then there exists a unique
vector (normalized invariant distribution) cG with the following properties:
cG

i ¼ 0 for iefi1; . . . ; ilg, cG
i 40 for all i 2 fi1; . . . ; ilg; b0

ðcGÞ ¼ 1, KcG ¼ 0.
If G1; . . . ;Gm are all ergodic components of the system, then there exist m

independent positive linear functionals b1
ðcÞ; . . . ; bm

ðcÞ, such that
Pm

i¼1bi
¼ b0 and

for each c

lim
t!1

expðKtÞc ¼
Xm

i¼1

bi
ðcÞcGi (30)

So, for any solution of kinetic equations (27), c(t), the limit at t-N is a linear
combination of normalized invariant distributions cGi with coefficients bi

ðcð0ÞÞ. In the
simplest example, A1  A2 ! A3, G1 ¼ fA1g, G2 ¼ fA3g, components of vectors cG1 ,
cG2 are (1, 0, 0) and (0, 0, 1), correspondingly. For functionals b1;2 we get:

b1
ðcÞ ¼ c1 þ

k1

k1 þ k2
c2; b2

ðcÞ ¼
k2

k1 þ k2
c2 þ c3 (31)

where k1 and k2 are rate constants for reaction A2 ! A1 and A2 ! A3,
correspondingly. We can mention that for well-separated constants either k1 � k2
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or k1 � k2. Hence, one of the coefficients k1=ðk1 þ k2Þ and k2=ðk1 þ k2Þ is close to 0,
another is close to 1. This is an example of the general zero-one law for multiscale
systems: for any l, i, the value of functional bl (30) on basis vector ei, bl

ðeiÞ, is either
close to 1 or close to 0 (with probability close to 1).

We can understand better this asymptotics by using the Markov chain
language. For nonseparated constants a particle in A2 has nonzero probability to
reach A1 and nonzero probability to reach A3. The zero-one law in this simplest
case means that the dynamics of the particle becomes deterministic: with
probability one it chooses to go to one of vertices A2, A3 and to avoid another.
Instead of branching, A2 ! A1 and A2 ! A3, we select only one way: either
A2 ! A1 or A2 ! A3. Graphs without branching represent discrete dynamical
systems.

4.1.3 Decomposition of discrete dynamical systems
Discrete dynamical system on a finite set V ¼ fA1;A2; . . . ;Ang is a semigroup
1;f;f2; . . ., where f is a map f:V-V. Ai 2 V is a periodic point, if fl

ðAiÞ ¼ Ai for
some lW0; else Ai is a transient point. A cycle of period l is a sequence of l distinct
periodic points A;fðAÞ;f2

ðAÞ; . . . ;fl�1
ðAÞ with fl

ðAÞ ¼ A. A cycle of period one
consists of one fixed point, f(A) ¼ A. Two cycles, C and Cu either coincide or have
empty intersection.

The set of periodic points, Vp, is always nonempty. It is a union of cycles:
Vp ¼ [jCj. For each point AAV there exist such a positive integer t(A) and a cycle
CðAÞ ¼ Cj that fq

ðAÞ 2 Cj for qXt(A). In that case we say that A belongs to basin
of attraction of cycle Cj and use notation AttðCjÞ ¼ fAjCðAÞ ¼ Cjg. Of course,
Cj � AttðCjÞ. For different cycles, AttðCjÞ \AttðClÞ ¼+. If A is periodic point
then t(A) ¼ 0. For transient points t(A)W0.

So, the phase space V is divided onto subsets AttðCjÞ. Each of these subsets
includes one cycle (or a fixed point, that is a cycle of length 1). Sets AttðCjÞ are
f-invariant: fðAttðCjÞÞ � AttðCjÞ. The set AttðCjÞnCj consist of transient points and
there exists such positive integer t that fq

ðAttðCjÞÞ ¼ Cj if qXt.
4.2 Auxiliary discrete dynamical systems and relaxation analysis

4.2.1 Auxiliary discrete dynamical system
For each Ai, we define ki as the maximal kinetic constant for reactions
Ai ! Aj : ki ¼ maxjfkjig. For correspondent j we use notation fðiÞ : fðiÞ ¼
arg maxjfkjig. The function f(i) is defined under condition that for Ai outgoing
reactions Ai ! Aj exist. Let us extend the definition: f(i) ¼ i if there exist no such
outgoing reactions.

The map f determines discrete dynamical system on a set of components
V ¼ fAig. We call it the auxiliary discrete dynamical system for a given network
of monomolecular reactions. Let us decompose this system and find the cycles Cj

and their basins of attraction, AttðCjÞ.
Notice that for the graph that represents a discrete dynamic system, attractors

are ergodic components, whereas basins are connected components.
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An auxiliary reaction network is associated with the auxiliary discrete
dynamical system. This is the set of reactions Ai ! AfðiÞ with kinetic constants ki.
The correspondent kinetic equation is

_ci ¼ �kici þ
X
fðjÞ¼i

kjcj (32)

or in vector notations (28)

dc

dt
¼ ~Kc ¼

X
i

kicigfðiÞi; ~Kij ¼ �kjdij þ kjdifðjÞ (33)

For deriving of the auxiliary discrete dynamical system we do not need the
values of rate constants. Only the ordering is important. Below we consider
multiscale ensembles of kinetic systems with given ordering and with well-
separated kinetic constants (ksð1Þ � ksð2Þ � � � � for some permutation s).

In the following, we analyze first the situation when the system is connected
and has only one attractor. This can be a point or a cycle. Then, we discuss the
general situation with any number of attractors.
4.2.2 Eigenvectors for acyclic auxiliary kinetics
Let us study kinetics (32) for acyclic discrete dynamical system (each vertex
has one or zero outgoing reactions, and there are no cycles). Such acyclic
reaction networks have many simple properties. For example, the nonzero
eigenvalues are exactly minus reaction rate constants, and it is easy to find
all left and right eigenvectors in explicit form. Let us find left and right
eigenvectors of matrix ~K of auxiliary kinetic system (32) for acyclic auxiliary
dynamics. In this case, for any vertex Ai there exists an eigenvector. If Ai is a
fixed point of the discrete dynamical system (i.e. f(i) ¼ i) then this eigenvalue is
zero. If Ai is not a fixed point (i.e. f(i) 6¼i and reaction Ai ! AfðiÞ has nonzero rate
constant ki) then this eigenvector corresponds to eigenvalue �ki. For left and
right eigenvectors of ~K that correspond to Ai we use notations li (vector-raw)
and ri (vector-column), correspondingly, and apply normalization condition
ri

i ¼ lii ¼ 1.
First, let us find the eigenvectors for zero eigenvalue. Dimension of zero

eigenspace is equal to the number of fixed points in the discrete dynamical
system. If Ai is a fixed point then the correspondent eigenvalue is zero, and the
right eigenvector ri has only one nonzero coordinate, concentration of Ai : ri

j ¼ dij.
To construct the correspondent left eigenvectors li for zero eigenvalue (for

fixed point Ai), let us mention that lij could have nonzero value only if there exists
such qX0 that fq

ðjÞ ¼ i (this q is unique because absence of cycles). In that case
(for qW0),

ðli ~KÞj ¼ �kjl
i
j þ kjl

i
fðjÞ ¼ 0

Hence, lij ¼ lifðjÞ and li
j ¼ 1 if fq

ðjÞ ¼ i for some qW0.
For nonzero eigenvalues, right eigenvectors will be constructed by recurrence

starting from the vertex Ai and moving in the direction of the flow. The
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construction is in opposite direction for left eigenvectors. Nonzero eigenvalues of
~K (32) are �ki.

For given i, ti is the minimal integer such that ftiðiÞ ¼ ftiþ1
ðiÞ (this is

a relaxation time i.e. the number of steps to reach a fixed point). All
indices ffk

ðiÞjk ¼ 0; 1; . . . ; tig are different. For right eigenvector ri only coordi-
nates ri

fk
ðiÞ
ðk ¼ 0; 1; . . . ; tiÞ could have nonzero values, and

ð ~KriÞfkþ1
ðiÞ ¼ � kfkþ1

ðiÞr
i
fkþ1
ðiÞ
þ kfk

ðiÞr
i
fk
ðiÞ

¼ � kir
i
fkþ1
ðiÞ

Hence,

ri
fkþ1
ðiÞ
¼

kfk
ðiÞ

kfkþ1
ðiÞ � ki

ri
fk
ðiÞ
¼
Yk

j¼0

kfj
ðiÞ

kfjþ1
ðiÞ � ki

¼
ki

kfkþ1
ðiÞ � ki

Yk�1

j¼0

kfjþ1
ðiÞ

kfjþ1
ðiÞ � ki

ð34Þ

The last transformation is convenient for estimation of the product for well-
separated constants (compare to Equation (4)):

kfjþ1
ðiÞ

kfjþ1
ðiÞ � ki

�

1; if kfjþ1
ðiÞ � ki;

0; if kfjþ1
ðiÞ � ki;

8<
:

ki

kfkþ1
ðiÞ � ki

�

�1; if ki � kfkþ1
ðiÞ;

0; if ki � kfkþ1
ðiÞ

8<
:

(35)

For left eigenvector li coordinate li
j could have nonzero value only if there

exists such qX0 that fq
ð jÞ ¼ i (this q is unique because the auxiliary dynamical

system has no cycles). In that case (for qW0),

ðli ~KÞj ¼ �kjl
i
j þ kjl

i
fð jÞ ¼ �kil

i
j

Hence,

lij ¼
kj

kj � ki
li
fð jÞ ¼

Yq�1

k¼0

kfk
ðjÞ

kfk
ðjÞ � ki

(36)

For every fraction in Equation (36) the following estimate holds:

kfk
ð jÞ

kfk
ð jÞ � ki

�

1; if kfk
ð jÞ � ki;

0; if kfk
ð jÞ � ki

(
(37)

As we can see, every coordinate of left and right eigenvectors of ~K (34), (36) is
either 0 or 71, or close to 0 or to 71 (with probability close to 1). We can write
this asymptotic representation explicitly (analogously to Equation (5)). For left
eigenvectors, li

i ¼ 1 and lij ¼ 1 (for i 6¼j) if there exists such q that fq
ð jÞ ¼ i, and

kfd
ð jÞ4ki for all d ¼ 0,y, q�1, else lij ¼ 0. For right eigenvectors, ri

i ¼ 1 and
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ri
fk
ðiÞ
¼ �1 if kfk

ðiÞoki and for all positive mok inequality kfm
ðiÞ4ki holds, i.e.

k is first such positive integer that kfk
ðiÞoki (for fixed point Ap we use kp ¼ 0).

Vector ri has not more than two nonzero coordinates. It is straightforward to
check that in this asymptotic lirj ¼ dij.

In general, coordinates of eigenvectors li
j and ri

j are simultaneously nonzero
only for one value j ¼ i because the auxiliary system is acyclic. However, lirj ¼ 0
if i 6¼j, just because that are eigenvectors for different eigenvalues, ki and kj.
Hence, lirj ¼ dij.

For example, let us find the asymptotic of left and right eigenvectors for a
branched acyclic system of reactions:

A1�!
7

A2�!
5

A3�!
6

A4�!
2

A5�!
4

A8; A6�!
1

A7�!
3

A4

where the upper index marks the order of rate constants:
k64k44k74k54k24k34k1 (ki is the rate constant of reaction Ai ! . . .).

For zero eigenvalue, the left and right eigenvectors are

l8
¼ ð1; 1; 1; 1; 1; 1; 1; 1; 1Þ; r8 ¼ ð0; 0; 0; 0; 0; 0; 0; 1Þ

For left eigenvectors, rows li, that correspond to nonzero eigenvalues we have
the following asymptotics:

l1
� ð1; 0; 0; 0; 0; 0; 0; 0Þ; l2

� ð0; 1; 0; 0; 0; 0; 0; 0Þ;

l3
� ð0; 1; 1; 0; 0; 0; 0; 0Þ; l4

� ð0; 0; 0; 1; 0; 0; 0; 0Þ;

l5
� ð0; 0; 0; 1; 1; 1; 1; 0Þ; l6

� ð0; 0; 0; 0; 0; 1; 0; 0Þ;

l7
� ð0; 0; 0; 0; 0; 1; 1; 0Þ

(38)

For the correspondent right eigenvectors, columns ri, we have the following
asymptotics (we write vector-columns in rows):

r1 � ð1; 0; 0; 0; 0; 0; 0;�1Þ; r2 � ð0; 1;�1; 0; 0; 0; 0; 0Þ;

r3 � ð0; 0; 1; 0; 0; 0; 0;�1Þ; r4 � ð0; 0; 0; 1;�1; 0; 0; 0Þ;

r5 � ð0; 0; 0; 0; 1; 0; 0;�1Þ; r6 � ð0; 0; 0; 0; 0; 1;�1; 0Þ;

r7 � ð0; 0; 0; 0;�1; 0; 1; 0Þ

(39)

4.2.3 The first case: auxiliary dynamical system is acyclic and has one
attractor

In the simplest case, the auxiliary discrete dynamical system for the reaction
network W is acyclic and has only one attractor, a fixed point. Let this point be An

(n is the number of vertices). The correspondent eigenvectors for zero eigenvalue
are rn

j ¼ dnj and ln
j ¼ 1. For such a system, it is easy to find explicit analytic

solution of kinetic equation (32).
Acyclic auxiliary dynamical system with one attractor have a characteristic

property among all auxiliary dynamical systems: the stoichiometric vectors of
reactions Ai ! AfðiÞ form a basis in the subspace of concentration space withP

ici ¼ 0. Indeed, for such a system there exist n�1 reactions, and their
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stoichiometric vectors are independent. However, existence of cycles implies
linear connections between stoichiometric vectors, and existence of two attractors
in acyclic system implies that the number of reactions is less n�1, and their
stoichiometric vectors could not form a basis in n�1-dimensional space.

Let us assume that the auxiliary dynamical system is acyclic and has only one
attractor, a fixed point. This means that stoichiometric vectors gfðiÞi form a basis in
a subspace of concentration space with

P
ici ¼ 0. For every reaction Ai ! Al the

following linear operators Qil can be defined:

QilðgfðiÞiÞ ¼ gli; QilðgfðpÞpÞ ¼ 0 for pai (40)

The kinetic equation for the whole reaction network (28) could be transformed
in the form

dc

dt
¼
X

i

1þ
X

l;lafðiÞ

kli

ki
Qil

 !
gfðiÞ ikici

¼ 1þ
X

j;lðlafðjÞÞ

klj

kj
Qjl

0
@

1
AX

i

gfðiÞikici

¼ 1þ
X

j;lðlafðjÞÞ

klj

kj
Qjl

0
@

1
A ~Kc

(41)

where ~K is kinetic matrix of auxiliary kinetic equation (33). By construction
of auxiliary dynamical system, kli � ki if l 6¼f(i). Notice also that jQjlj does not
depend on rate constants.

Let us represent system (41) in eigenbasis of ~K obtained in previous
subsection. Any matrix B in this eigenbasis has the form B ¼ ð~bijÞ,
~bij ¼ liBrj ¼

P
qsl

i
qbqsr

j
s, where (bqs) is matrix B in the initial basis, li and rj

are left and right eigenvectors of ~K (34), (36). In eigenbasis of ~K the Gershgorin
estimates of eigenvalues and estimates of eigenvectors are much more efficient
than in original coordinates: the system is stronger diagonally dominant.
Transformation to this basis is an effective preconditioning for perturbation
theory that uses auxiliary kinetics as a first approximation to the kinetics of the
whole system.

First of all, we can exclude the conservation law. Any solution of (41) has the
form cðtÞ ¼ brn þ ~cðtÞ, where b ¼ lncðtÞ ¼ lncð0Þ and

P
i~ciðtÞ ¼ 0. On the subspace

of concentration space with
P

ici ¼ 0 we get

dc

dt
¼ ð1þ EÞdiagf�k1; . . . ;�kn�1gc (42)

where E ¼ ð�ijÞ, j�ijj � 1 and diagf�k1; . . . ;�kn�1g is diagonal matrix with
�k1; . . . ;�kn�1 on the main diagonal. If j�ijj � 1 then we can use the Gershgorin
theorem and state that eigenvalues of matrix ð1þ EÞdiagf�k1; . . . ;�kn�1g are real
and have the form li ¼ �ki þ yi with jyij � ki.

To prove inequality j�ijj � 1 (for ensembles with well-separated constants, with
probability close to 1) we use that the left and right eigenvectors of ~K (34), (36)
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are uniformly bounded under some non-degeneracy conditions and those
conditions are true for well-separated constants. For ensembles with well-
separated constants, for any given positive go1 and all i, j (i 6¼j) the following
inequality is true with probability close to 1: jki � kjj4gki. Let us select a value of
g and assume that this diagonal gap condition is always true. In this case, for every
fraction in (34), (36) we have estimate

ki

jkj � kij
o

1

g

Therefore, for coordinates of right and left eigenvectors of ~K (34), (36) we get

jri
fkþ1
ðiÞ
jo

1

gk
o

1

gn
; jli

jjo
1

gq
o

1

gn
(43)

We can estimate j�ijj and jyij=ki from above as constant�maxlafðsÞfkls=ksg. So,
the eigenvalues for kinetic matrix of the whole system (41) are real and close to
eigenvalues of auxiliary kinetic matrix ~K (33). For eigenvectors, the Gershgorin
theorem gives no result, and additionally to diagonal dominance we must
assume the diagonal gap condition. Based on this assumption, we proved the
Gershgorin type estimate of eigenvectors in Appendix 1. In particular, according
to this estimate, eigenvectors for the whole reaction network are arbitrarily close
to eigenvectors of ~K (with probability close to 1).

So, if the auxiliary discrete dynamical system is acyclic and has only one
attractor (a fixed point), then the relaxation of the whole reaction network could
be approximated by the auxiliary kinetics (32):

cðtÞ ¼ ðlncð0ÞÞrn þ
Xn�1

i¼1

ðlicð0ÞÞri expð�kitÞ (44)

For li and ri one can use exact formulas (34) and (36) or zero-one asymptotic
representations based on Equations (37) and (35) for multiscale systems. This
approximation (44) could be improved by iterative methods, if necessary.
4.2.4 The second case: auxiliary system has one cyclic attractor
The second simple particular case on the way to general case is a reaction
network with components A1; . . . ;An whose auxiliary discrete dynamical system
has one attractor, a cycle with period tW1: An�tþ1 ! An�tþ2 ! . . .An ! An�tþ1

(after some change of enumeration). We assume that the limiting step in this cycle
(reaction with minimal constant) is An ! An�tþ1. If auxiliary discrete dynamical
system has only one attractor then the whole network is weakly ergodic. But the
attractor of the auxiliary system may not coincide with a sink of the reaction
network.

There are two possibilities:

(i) In the whole network, all the outgoing reactions from the cycle have the
form An�t+i-An�t+j (i, jW0). This means that the cycle vertices An�t+1,
An�t+2,y, An form a sink for the whole network.
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(ii) There exists a reaction from a cycle vertex An�t+i to Am, mpn�t. This
means that the set {An�t+1, An�t+2,y, An} is not a sink for the whole
network.

In the first case, the limit (for t-N) distribution for the auxiliary kinetics is
the well-studied stationary distribution of the cycle An�tþ1;An�tþ2; . . . ;An

described in Section 2 (11)–(13), (15). The set fAn�tþ1;An�tþ2; . . . ;Ang is the only
ergodic component for the whole network too, and the limit distribution for that
system is nonzero on vertices only. The stationary distribution for the cycle
An�tþ1 ! An�tþ2 ! . . .An ! An�tþ1 approximates the stationary distribution
for the whole system. To approximate the relaxation process, let us delete the
limiting step An ! An�tþ1 from this cycle. By this deletion we produce an acyclic
system with one fixed point, An, and auxiliary kinetic equation (33) transforms
into

dc

dt
¼ ~K0c ¼

Xn�1

i¼1

kicigfðiÞi (45)

As it is demonstrated, dynamics of this system approximates relaxation of the
whole network in subspace

P
ici ¼ 0. Eigenvalues for Equation (45) are �ki

(ion), the corresponded eigenvectors are represented by Equations (34), (36) and
zero-one multiscale asymptotic representation is based on Equations (37) and
(35).

In the second case, the set

fAn�tþ1;An�tþ2; . . . ;Ang

is not a sink for the whole network. This means that there exist outgoing reactions
from the cycle, An�tþi ! Aj with AjefAn�tþ1;An�tþ2; . . . ;Ang. For every cycle
vertex An�tþi the rate constant kn�tþi that corresponds to the cycle reaction
An�tþi ! An�tþiþ1 is much bigger than any other constant kj;n�tþi that
corresponds to a ‘‘side’’ reaction An�tþi ! Aj (j 6¼n�t+i+1): kn�tþi � kj;n�tþi. This
is because definition of auxiliary discrete dynamical system and assumption of
ensemble with well-separated constants (multiscale asymptotics). This inequality
allows us to separate motion and to use for computation of the rates of outgoing
reaction An�tþi ! Aj the quasi-steady-state distribution in the cycle. This means
that we can glue the cycle into one vertex A1

n�tþ1 with the correspondent
concentration c1

n�tþ1 ¼
P

1	i	tcn�tþi and substitute the reaction An�tþi ! Aj by
A1

n�tþ1 ! Aj with the rate constant renormalization: k1
j;n�tþ1 ¼

kj;n�tþic
QS
n�tþi=c1

n�tþ1. By the superscript QS we mark here the quasi-stationary
concentrations for given total cycle concentration c1

n�tþ1. Another possibility is to
recharge the link An�tþi ! Aj to another vertex of the cycle (usually to An): we
can substitute the reaction An�tþi ! Aj by the reaction An�tþq ! Aj with the rate
constant renormalization:

kj;n�tþq ¼ kj;n�tþic
QS
n�tþi=cQS

n�tþq (46)

The new rate constant is smaller than the initial one: kj;n�tþq 	 kj;n�tþi, because
cQS

n�tþi 	 cQS
n�tþq due to definition.
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We apply this approach now and demonstrate its applicability in more details
later in this section. For the quasi-stationary distribution on the cycle we get
cn�tþi ¼ cnkn=kn�tþi (1piot). The original reaction network is transformed
by gluing the cycle fAn�tþ1;An�tþ2; . . . ;Ang, into a point A1

n�tþ1. We say that
components An�tþ1;An�tþ2; . . . ;An of the original system belong to the
component A1

n�tþ1 of the new system. All the reactions Ai ! Aj with i,jpn�t
remain the same with rate constant kji. Reactions of the form Ai ! Aj with
ipn�t, jWn�t (incoming reactions of the cycle fAn�tþ1;An�tþ2; . . . ;Ang) trans-
form into Ai ! A1

n�tþ1 with the same rate constant kji. Reactions of the form
Ai ! Aj with iWn�t, jpn�t (outgoing reactions of the cycle

fAn�tþ1;An�tþ2; . . . ;Ang) transform into reactions A1
n�tþ1 ! Aj with the ‘‘quasi-

stationary’’ rate constant kQS
ji ¼ kjikn=kn�tþi. After that, we select the maximal

kQS
ji for given j: kð1Þj;n�tþ1 ¼ maxi4n�tk

QS
ji . This kð1Þj;n�tþ1 is the rate constant for reaction

A1
n�tþ1 ! Aj in the new system. Reactions Ai ! Aj with i,jWn�t (internal

reactions of the site) vanish.
Among rate constants for reactions of the form An�tþi ! Am (mXn�t) we

find

kð1Þn�tþi ¼ max
i;m
fkm;n�tþikn=kn�tþig (47)

Let the correspondent i, m be i1, m1.
After that, we create a new auxiliary discrete dynamical system for the

new reaction network on the set fA1; . . . ;An�t;A
1
n�tþ1g. We can describe this new

auxiliary system as a result of transformation of the first auxiliary discrete
dynamical system of initial reaction network. All the reactions from this
first auxiliary system of the form Ai ! Aj with i,jpn�t remain the same
with rate constant ki. Reactions of the form Ai ! Aj with ipn�t, jWn�t
transform into Ai ! A1

n�tþ1 with the same rate constant ki. One more reac-
tion is to be added: A1

n�tþ1 ! Am1
with rate constant kð1Þn�tþi. We ‘‘glued’’ the cycle

into one vertex, A1
n�tþ1, and added new reaction from this vertex to Am1

with
maximal possible constant (47). Without this reaction the new auxiliary
dynamical system has only one attractor, the fixed point A1

n�tþ1. With this
additional reaction that point is not fixed, and a new cycle appears:
Am1 ! . . .A1

n�tþ1 ! Am1 .
Again we should analyze, whether this new cycle is a sink in the new

reaction network, etc. Finally, after a chain of transformations, we should come
to an auxiliary discrete dynamical system with one attractor, a cycle, that is the
sink of the transformed whole reaction network. After that, we can find
stationary distribution by restoring of glued cycles in auxiliary kinetic system
and applying formulas (11)–(13) and (15) from Section 2. First, we find the
stationary state of the cycle constructed on the last iteration, after that for each
vertex Ak

j that is a glued cycle we know its concentration (the sum of all
concentrations) and can find the stationary distribution, then if there remain
some vertices that are glued cycles we find distribution of concentrations in these
cycles, etc. At the end of this process we find all stationary concentrations with
high accuracy, with probability close to one.
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As a simple example we use the following system, a chain supplemented by
three reactions:

A1�!
1

A2�!
2

A3�!
3

A4�!
4

A5�!
5

A6;

A6�!
6

A4; A5�!
7

A2 and A3�!
8

A1

(48)

where the upper index marks the order of rate constants.
Auxiliary discrete dynamical system for the network (48) includes the chain

and one reaction:

A1�!
1

A2�!
2

A3�!
3

A4�!
4

A5�!
5

A6�!
6

A4

It has one attractor, the cycle A4�!
4

A5�!
5

A6�!
6

A4. This cycle is not a

sink for the whole system, because there exists an outgoing reaction A5�!
7

A2.

By gluing the cycle A4�!
4

A5�!
5

A6�!
6

A4 into a vertex A1
4 we get new

network with a chain supplemented by two reactions:

A1�!
1

A2�!
2

A3�!
3

A1
4; A1

4�!
?

A2 and A3�!
?

A1 (49)

Here the new rate constant is kð1Þ24 ¼ k25k6=k5 (k6 ¼ k46 is the limiting step of the
cycle A4�!

4
A5�!

5
A6�!

6
A4, k5 ¼ k65).

Here we can make a simple but important observation: the new constant
k1

24 ¼ k25k6=k5 has the same log-uniform distribution on the whole axis as
constants k25, k6 and k5 have. The new constant k1

24 depends on k25 and the
internal cycle constants k6 and k5, and is independent from other constants.

Of course, kð1Þ24 ok5, but relations between kð1Þ24 and k13 are a priori unknown.
Both orderings, kð1Þ244k13 and kð1Þ24ok13, are possible, and should be considered
separately, if necessary. But for both orderings the auxiliary dynamical system for
network (49) is

A1�!
1

A2�!
2

A3�!
3

A1
4�!

?
A2

(of course, kð1Þ4 ok3ok2ok1). It has one attractor, the cycle A2�!
2

A3�!
3

A1
4�!

?
A2. This cycle is not a sink for the whole system, because there

exists an outgoing reaction A3�!
?

A1. The limiting constant for this cycle is

kð1Þ4 ¼ kð1Þ24 ¼ k25k46=k65. We glue this cycle into one point, A2
2. The new transformed

system is very simple, it is just a two-step cycle: A1�!
1

A2
2�!

?
A1. The new reac-

tion constant is kð2Þ12 ¼ k13k
ð1Þ
4 =k3 ¼ k13k25k46=ðk65k43Þ. The auxiliary discrete

dynamical system is the same graph A1�!
1

A2
2�!

?
A1, this is a cycle, and we

do not need further transformations.
Let us find the steady state on the way back, from this final auxiliary system

to the original one. For steady state of each cycle we use formula (13).

The steady state for the final system is c1 ¼ bkð2Þ12 =k21 and c2
2 ¼ bð1� kð2Þ12 =k21Þ.

The component A2
2 includes the cycle A2�!

2
A3�!

3
A1

4�!
?

A2. The steady

state of this cycle is c2 ¼ cð2Þ2 kð1Þ24 =k32, c3 ¼ cð2Þ2 kð1Þ24 =k43 and cð1Þ4 ¼ cð2Þ2 ð1� kð1Þ24 =

k32 � kð1Þ24 =k43Þ. The component A1
4 includes the cycle A4�!

4
A5�!

5
A6�!

6
A4.
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The steady state of this cycle is c4 ¼ cð1Þ4 k46=k54, c5 ¼ cð1Þ4 k46=k65 and

c6 ¼ cð1Þ4 ð1� k46=k54 � k46=k65Þ.
For one catalytic cycle, relaxation in the subspace

P
ici ¼ 0 is approximated by

relaxation of a chain that is produced from the cycle by cutting the limiting step
(Section 2). For reaction networks under consideration (with one cyclic attractor
in auxiliary discrete dynamical system) the direct generalization works: for
approximation of relaxation in the subspace

P
ici ¼ 0 it is sufficient to perform

the following procedures:

� to glue iteratively attractors (cycles) of the auxiliary system that are not sinks of
the whole system;
� to restore these cycles from the end of the first procedure to its beginning.

For each of cycles (including the last one that is a sink) the limited step should
be deleted, and the outgoing reaction should be reattached to the head of the
limiting steps (with the proper normalization), if it was not deleted before as a
limiting step of one of the cycles.

The heads of outgoing reactions of that cycles should be reattached to the
heads of the limiting steps. Let for a cycle this limiting step be Am ! Aq. If for a
glued cycle Ak there exists an outgoing reaction Ak

! Aj with the constant k (47),
then after restoration we add the outgoing reaction Am ! Aj with the rate
constant k. Kinetic of the resulting acyclic system approximates relaxation of the
initial networks (under assumption of well-separated constants, for given
ordering, with probability close to 1).

Let us construct this acyclic network for the same example (48). The final cycle

is A1�!
1

A2
2�!

?
A1. The limiting step in this cycle is A2

2�!
?

A1. After cutting we

get A1�!
1

A2
2. The component A2

2 is glued cycle A2�!
2

A3�!
3

A1
4�!

?
A2. The re-

action A1�!
1

A2
2 corresponds to the reaction A1�!

1
A2 (in this case, this is the

only reaction from A1 to cycle; in other case one should take the reaction from A1

to cycle with maximal constant). The limiting step in the cycle is A1
4�!

?
A2. After

cutting, we get a system A1�!
1

A2�!
2

A3�!
3

A1
4. The component A1

4 is the glued

cycle A4�!
4

A5�!
5

A6�!
6

A4 from the previous step. The limiting step in this

cycle is A6�!
6

A4. After restoring this cycle and cutting the limiting step, we get

an acyclic system A1�!
1

A2�!
2

A3�!
3

A4�!
4

A5�!
5

A6 (as one can guess from

the beginning: this coincidence is provided by the simple constant ordering

selected in Equation (48)). Relaxation of this system approximates relaxation of

the whole initial network.
To demonstrate possible branching of described algorithm for cycles surgery

(gluing, restoring and cutting) with necessity of additional orderings, let us
consider the following system:

A1�!
1

A2�!
6

A3�!
2

A4�!
3

A5�!
4

A3; A4�!
5

A2 (50)

The auxiliary discrete dynamical system for reaction network (50) is

A1�!
1

A2�!
6

A3�!
2

A4�!
3

A5�!
4

A3
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It has only one attractor, a cycle A3�!
2

A4�!
3

A5�!
4

A3. This cycle is not a

sink for the whole network (50) because reaction A4�!
5

A2 leads from that cycle.

After gluing the cycle into a vertex A1
3 we get the new network

A1�!
1

A2�!
6

A1
3�!

?
A2. The rate constant for the reaction A1

3 ! A2 is

k1
23 ¼ k24k35=k54, where kij is the rate constant for the reaction Aj ! Ai in the

initial network (k35 is the cycle limiting reaction). The new network coincides

with its auxiliary system and has one cycle, A2�!
6

A1
3�!

?
A2. This cycle is a sink,

hence, we can start the back process of cycles restoring and cutting. One

question arises immediately: which constant is smaller, k32 or k1
23. The smallest

of them is the limiting constant, and the answer depends on this choice.

Let us consider two possibilities separately: (1) k324k1
23 and (2) k32ok1

23.

Of course, for any choice the stationary concentration of the source component

A1 vanishes: c1 ¼ 0.

(1) Let us assume that k324k1
23. In this case, the steady state of the cycle

A2�!
6

A1
3�!

?
A2 is (according to Equation (13)) c2 ¼ bk1

23=k32

and c1
3 ¼ bð1� k1

23=k32Þ, where b ¼
P

ci. The component A1
3 is a glued cycle

A3�!
2

A4�!
3

A5�!
4

A3. Its steady state is c3 ¼ c1
3k35=k43, c4 ¼ c1

3k35=k54 and

c5 ¼ c1
3ð1� k35=k43 � k35=k54Þ.

Let us construct an acyclic system that approximates relaxation of

Equation (50) under the same assumption (1) k324k1
23. The final auxiliary system

after gluing cycles is A1�!
1

A2�!
6

A1
3�!

?
A2. Let us delete the limiting reaction

A1
3�!

?
A2 from the cycle. We get an acyclic system A1�!

1
A2�!

6
A1

3. The

component A1
3 is the glued cycle A3�!

2
A4�!

3
A5�!

4
A3. Let us restore this

cycle and delete the limiting reaction A5�!
4

A3. We get an acyclic system

A1�!
1

A2�!
6

A3�!
2

A4�!
3

A5. Relaxation of this system approximates relaxa-

tion of the initial network (50) under additional condition k324k1
23.

(2) Let as assume now that k32ok1
23. In this case, the steady state of the cycle

A2�!
6

A1
3�!

?
A2 is (according to Equation (13)) c2 ¼ bð1� k32=k1

23Þ and

c1
3 ¼ bk32=k1

23. The further analysis is the same as it was above: c3 ¼ c1
3k35=

k43, c4 ¼ c1
3k35=k54 and c5 ¼ c1

3ð1� k35=k43 � k35=k54Þ (with another c1
3).

Let us construct an acyclic system that approximates relaxation of Equation

(50) under assumption (2) k32ok1
23. The final auxiliary system after gluing cycles

is the same, A1�!
1

A2�!
6

A1
3�!

?
A2, but the limiting step in the cycle is different,

A2�!
6

A1
3. After cutting this step, we get acyclic system A1�!

1
A2 �

?
A1

3, where

the last reaction has rate constant k1
23.

The component A1
3 is the glued cycle

A3�!
2

A4�!
3

A5�!
4

A3
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Let us restore this cycle and delete the limiting reaction A5�!
4

A3. The

connection from glued cycle A1
3�!

?
A2 with constant k1

23 transforms into

connection A5�!
?

A2 with the same constant k1
23.

We get the acyclic system:

A1�!
1

A2;A3�!
2

A4�!
3

A5�!
?

A2

The order of constants is now known: k214k434k544k1
23, and we can sub-

stitute the sign ‘‘?’’ by ‘‘4’’: A3�!
2

A4�!
3

A5�!
4

A2.
For both cases, k324k1

23ðk
1
23 ¼ k24k35=k54Þ and k32ok1

23 it is easy to find the
eigenvectors explicitly and to write the solution to the kinetic equations in
explicit form.
4.3 The general case: cycles surgery for auxiliary discrete dynamical
system with arbitrary family of attractors

In this subsection, we summarize results of relaxation analysis and describe the
algorithm of approximation of steady state and relaxation process for arbitrary
reaction network with well-separated constants.

4.3.1 Hierarchy of cycles gluing
Let us consider a reaction network W with a given structure and fixed ordering
of constants. The set of vertices of W is A and the set of elementary reactions
is R. Each reaction from R has the form Ai ! Aj, Ai;Aj 2A. The correspondent
constant is kji. For each Ai 2A we define ki ¼ maxjfkjig and fðiÞ ¼ arg maxjfkjig.
In addition, f(i) ¼ i if kji ¼ 0 for all j.

The auxiliary discrete dynamical system for the reaction network W is the
dynamical system F ¼ FW defined by the map f on the set A. Auxiliary reaction
network V ¼VW has the same set of vertices A and the set of reactions
Ai ! AfðiÞ with reaction constants ki. Auxiliary kinetics is described by
_c ¼ ~Kc, where ~Kij ¼ �kjdij þ kjdifðjÞ.

Every fixed point of FW is also a sink for the reaction network W. If all
attractors of the system FW are fixed points Af1;Af2; . . . 2A then the set of
stationary distributions for the initial kinetics as well as for the auxiliary kinetics
is the set of distributions concentrated the set of fixed points fAf1;Af2; . . .g. In this
case, the auxiliary reaction network is acyclic, and the auxiliary kinetics
approximates relaxation of the whole network W.

In general case, let the system FW have several attractors that are not fixed
points, but cycles C1;C2; . . . with periods t1; t2; . . .41. By gluing these cycles in
points, we transform the reaction network W into W1. The dynamical system FW

is transformed into F1. For these new system and network, the connection
F1 ¼ FW1 persists: F1 is the auxiliary discrete dynamical system for W1.

For each cycle, Ci, we introduce a new vertex Ai. The new set of vertices,
A1 ¼A [ fA1;A2; :::gnð[iCiÞ (we delete cycles Ci and add vertices Ai).
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All the reaction between A! BðA;B 2AÞ can be separated into 5 groups:

(i) both A;Be[iCi;
(ii) Ae[iCi, but B 2 Ci;
(iii) A 2 Ci, but Be[iCi;
(iv) A 2 Ci, B 2 Cj, i 6¼j;
(v) A;B 2 Ci.

Reactions from the first group do not change. Reaction from the second group
transforms into A! Ai (to the whole glued cycle) with the same constant.
Reaction of the third type changes into Ai

! B with the rate constant
renormalization (46): let the cycle Ci be the following sequence of reactions
A1 ! A2 ! . . .Ati

! A1, and the reaction rate constant for Ai ! Aiþ1 is ki (kti
for

Ati
! A1). For the limiting reaction of the cycle Ci we use notation klim i. If A ¼ Aj

and k is the rate reaction for A-B, then the new reaction Ai
! B has the rate

constant kklim i=kj. This corresponds to a quasi-stationary distribution on the
cycle (13). It is obvious that the new rate constant is smaller than the initial one:
kklim i=kjok, because klim iokj due to definition of limiting constant. The same
constant renormalization is necessary for reactions of the fourth type. These
reactions transform into Ai

! Aj. Finally, reactions of the fifth type vanish.
After we glue all the cycles of auxiliary dynamical system in the reaction

network W, we get W1. Strictly speaking, the whole network W1 is not
necessary, and in efficient realization of the algorithm for large networks the
computation could be significantly reduced. What we need, is the correspondent
auxiliary dynamical system F1 ¼ FW1 with auxiliary kinetics.

To find the auxiliary kinetic system, we should glue all cycles in the first
auxiliary system, and then add several reactions: for each Ai it is necessary to find
in W1 the reaction of the form Ai

! B with maximal constant and add this
reaction to the auxiliary network. If there is no reaction of the form Ai

! B for
given i then the point Ai is the fixed point for W1 and vertices of the cycle Ci form
a sink for the initial network.

After that, we decompose the new auxiliary dynamical system, find cycles
and repeat gluing. Terminate when all attractors of the auxiliary dynamical
system Fm become fixed points.

4.3.2 Reconstruction of steady states
After this termination, we can find all steady-state distributions by restoring
cycles in the auxiliary reaction network Vm. Let Am

f1;A
m
f2; . . . be fixed points of Fm.

The set of steady states for Vm is the set of all distributions on the set of fixed
points fAm

f1;A
m
f2; . . .g. Let us take one of these distributions, c ¼ ðcm

f1; c
m
f2; . . .Þ

(we mark the concentrations by the same indexes as the vertex has; other ci ¼ 0).
To make a step of cycle restoration we select those vertexes Am

fi that are glued
cycles and substitute them in the list Am

f1;A
m
f2; . . . by all the vertices of these cycles.

For each of those cycles we find the limiting rate constant and redistribute
the concentration cm

fi between the vertices of the correspondent cycle by the rule
(13) (with b ¼ cm

fi ). As a result, we get a set of vertices and a distribution on
this set of vertices. If among these vertices there are glued cycles, then we repeat
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the procedure of cycle restoration. Terminate when there is no glued cycles in the
support of the distribution. The resulting distribution is the approximation to
a steady state of W, and all steady states for W can be approximated by this
method.

To construct the approximation to the basis of stationary distributions of W, it
is sufficient to apply the described algorithm to distributions concentrated on a
single fixed point Am

fi , cm
fj ¼ dij, for every i.

The steady-state approximation on the base of the rule (13) is a linear func-
tion of the restored-and-cut cycles rate-limiting constants. It is the first-order
approximation.

The zero-order approximation also makes sense. For one cycle gives
Equation (14): all the concentration is collected at the start of the limiting step.
The algorithm for the zero-order approximation is even simpler than for the first
order. Let us start from the distributions concentrated on a single fixed point Am

fi ,
cm

fj ¼ dij for some i. If this point is a glued cycle then restore that cycle,
and find the limiting step. The new distribution is concentrated at the starting
vertex of that step. If this vertex is a glued cycle, then repeat. If it is not then
terminate. As a result we get a distribution concentrated in one vertex of A.

4.3.3 Dominant kinetic system for approximation of relaxation
To construct an approximation to the relaxation process in the reaction network
W, we also need to restore cycles, but for this purpose we should start from the
whole glued network Vm on Am (not only from fixed points as we did for the
steady-state approximation). On a step back, from the set Am to Am�1 and so on
some of glued cycles should be restored and cut. On each step we build an acyclic
reaction network, the final network is defined on the initial vertex set and
approximates relaxation of W.

To make one step back from Vm let us select the vertices of Am that are glued
cycles from Vm�1. Let these vertices be Am

1 ;A
m
2 ; ::: Each Am

i corresponds to a glued
cycle from Vm�1, Am�1

i1 ! Am�1
i2 ! . . .Am�1

iti
! Am�1

i1 , of the length ti. We assume
that the limiting steps in these cycles are Am�1

iti
! Am�1

i1 . Let us substitute each
vertex Am

i in Vm by ti vertices Am�1
i1 ;Am�1

i2 ; . . . ;Am�1
iti

and add to Vm reactions
Am�1

i1 ! Am�1
i2 ! . . .Am�1

iti
(that are the cycle reactions without the limiting step)

with correspondent constants from Vm�1.
If there exists an outgoing reaction Am

i ! B in Vm then we substitute it by the
reaction Am�1

iti
! B with the same constant, i.e. outgoing reactions Am

i ! . . . are
reattached to the heads of the limiting steps. Let us rearrange reactions from Vm

of the form B! Am
i . These reactions have prototypes in Vm�1 (before the last

gluing). We simply restore these reactions. If there exists a reaction Am
i ! Am

j

then we find the prototype in Vm�1, A-B and substitute the reaction by
Am�1

iti
! B with the same constant, as for Am

i ! Am
j .

After that step is performed, the vertices set is Am�1, but the reaction set
differs from the reactions of the network Vm�1: the limiting steps of cycles are
excluded and the outgoing reactions of glued cycles are included (reattached to
the heads of the limiting steps). To make the next step, we select vertices of Am�1

that are glued cycles from Vm�2, substitute these vertices by vertices of cycles,
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delete the limiting steps, attach outgoing reactions to the heads of the limiting
steps, and for incoming reactions restore their prototypes from Vm�2 and so on.

After all, we restore all the glued cycles, and construct an acyclic reaction
network on the set A. This acyclic network approximates relaxation of the
network W. We call this system the dominant system of W and use notation dom
mod (W).
4.4 Example: a prism of reactions

Let us demonstrate work of the algorithm on a typical example, a prism of
reaction that consists of two connected cycles (Figures 2 and 3). Such systems
appear in many areas of biophysics and biochemistry (see, e.g. the paper of
Kurzynski, 1998).

For the first example we use the reaction rate constants ordering presented in
Figure 2a. For this ordering, the auxiliary dynamical system consists of two cycles
(Figure 2b) with the limiting constants k54 and k32, correspondingly. These cycles
are connected by four reactions (Figure 2c). We glue the cycles into new
components A1

1 and A1
2 (Figure 2d), and the reaction network is transformed

into A1
12A1

2. Following the general rule (k1
¼ kklim=kj), we determine the rate

constants: for reaction A1
1 ! A1

2

k1
21 ¼ maxfk41k32=k21; k52; k63k32=k13g
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Figure 2 Gluing of cycles for the prism of reactions with a given ordering of rate constants

in the case of two attractors in the auxiliary dynamical system: (a) initial reaction network,

(b) auxiliary dynamical system that consists of two cycles, (c) connection between cycles,

(d) gluing cycles into new components, (e) network W1 with glued vertices and (f) an example

of dominant system in the case when k1
21 ¼ k41k32=k21 and k1

214k1
12 (by definition,

k1
21 ¼ maxfk41k32=k21; k52; k63k32=k13g and k1

12 ¼ k36k54=k46), the order of constants in the

dominant system is: k214k464k134k654k41k32=k21.
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Figure 3 Gluing of a cycle for the prism of reactions with a given ordering of rate constants

in the case of one attractors in the auxiliary dynamical system: (a) initial reaction network,

(b) auxiliary dynamical system that has one attractor, (c) outgoing reactions from a cycle,

(d) gluing of a cycle into new component, (e) network W1 with glued vertices and (f) an

example of dominant system in the case when k1
¼ k46, and, therefore k14k54 (by definition,

k1
¼ maxfk41k36=k21; k46g); this dominant system is a linear chain that consists of some

reactions from the initial system (no nontrivial monomials among constants). Only one

reaction rate constant has in the dominant system new number (number 5 instead of 9).
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and for reaction A1
2 ! A1

1

k1
12 ¼ k36k54=k46

There are six possible orderings of the constant combinations: three
possibilities for the choice of k1

21 and for each such a choice there exist two
possibilities: k1

214k1
12 or k1

21ok1
12.

The zero-order approximation of the steady state depends only on the sign
of inequality between k1

21 and k1
12. If k1

21 � k1
12 then almost all concentration

in the steady state is accumulated inside A1
2. After restoring the cycle

A4 ! A5 ! A6 ! A4 we find that in the steady state almost all concentration
is accumulated in A4 (the component at the beginning of the limiting step of this
cycle, A4 ! A5). Finally, the eigenvector for zero eigenvalue is estimated as the
vector column with coordinates (0,0,0,1,0,0).

If, inverse, k1
21 � k1

12 then almost all concentration in the steady state is
accumulated inside A1

1. After restoring the cycle A1 ! A2 ! A3 ! A1 we find
that in the steady state almost all concentration is accumulated in A2

(the component at the beginning of the limiting step of this cycle, A2 ! A3).
Finally, the eigenvector for zero eigenvalue is estimated as the vector column
with coordinates (0,1,0,0,0,0).

Let us find the first-order (in rate limiting constants) approximation to
the steady states. If k1

21 � k1
12 then k1

12 is the rate-limiting constant for the
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cycle A1
12A1

2 and almost all concentration in the steady state is accumulated
inside A1

2 : c1
2 � 1� k1

12=k1
21 and c1

1 � k1
12=k1

21. Let us restore the glued cycles
(Figure 2). In the upper cycle the rate-limiting constant is k32, hence, in steady
state almost all concentration of the upper cycle, c1

1, is accumulated in A2 : c2 �

c1
1ð1� k32=k13 � k32=k21Þ, c3 � c1

1k32=k13 and c1 � c1
1k32=k21. In the bottom cycle the

rate-limiting constant is k54, hence, c4 � c1
2ð1� k54=k65 � k54=k46Þ, c5 � c1

2k54=k65

and c6 � c1
2k54=k46.

If, inverse, k1
21 � k1

12 then k1
21 is the rate-limiting constant for the cycle

A1
12A1

2 and almost all concentration in the steady state is accumulated
inside A1

1 : c1
1 � 1� k1

21=k1
12 and c1

2 � k1
21=k1

12. For distributions of concentra-
tions in the upper and lower cycles only the prefactors c1

1 and c1
2 change their

values.
For analysis of relaxation, let us analyze one of the six particular cases

separately.

1. k1
21 ¼ k41k32=k21 and k1

214k1
12

In this case, the finite acyclic auxiliary dynamical system, Fm ¼ F1, is
A1

1 ! A1
2 with reaction rate constant k1

21 ¼ k41k32=k21, and W1 is A1
12A1

2. We
restore both cycles and delete the limiting reactions A2 ! A3 and A4 ! A5. This
is the common step for all cases. Following the general procedure, we substitute
the reaction A1

1 ! A1
2 by A2 ! A4 with the rate constant k1

21 ¼ k41k32=k21 (because
A2 is the head of the limiting step for the cycle A1 ! A2 ! A3 ! A1, and the
prototype of the reaction A1

1 ! A1
2 is in that case A1 ! A4.

We find the dominant system for relaxation description: reactions
A3 ! A1 ! A2 and A5 ! A6 ! A4 with original constants, and reaction
A2 ! A4 with the rate constant k1

21 ¼ k41k32=k21.
This dominant system graph is acyclic and, moreover, represents a discrete

dynamical system, as it should be (not more than one outgoing reaction for any
component). Therefore, we can estimate the eigenvalues and eigenvectors on the
base of formulas (35) and (37). It is easy to determine the order of constants
because k1

21 ¼ k41k32=k21: this constant is the smallest nonzero constant in
the obtained acyclic system. Finally, we have the following ordering of constants:

A3�!
3

A1�!
1

A2�!
5

A4 and A5�!
4

A6�!
2

A4.
So, the eigenvalues of the prism of reaction for the given ordering are

(with high accuracy, with probability close to one) �k21o� k46o� k13o
�k65o� k41k32=k21. The relaxation time is t � k21=ðk41k32Þ.

We use the same notations as in previous sections: eigenvectors li and ri

correspond to the eigenvalue �ki, where ki is the reaction rate constant for the
reaction Ai ! . . . The left eigenvectors li are:

l1 � ð1; 0; 0; 0; 0; 0Þ; l2
� ð1; 1; 1; 0; 0; 0Þ;

l3 � ð0; 0; 1; 0; 0; 0Þ; l4
� ð1; 1; 1; 1; 1; 1Þ;

l5 � ð0; 0; 0; 0; 1; 0Þ; l6
� ð0; 0; 0; 0; 0; 1Þ

(51)
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The right eigenvectors ri are (we represent vector columns as rows):

r1 � ð1;�1; 0; 0; 0; 0Þ; r2 � ð0; 1; 0;�1; 0; 0Þ;

r3 � ð0;�1; 1; 0; 0; 0Þ; r4 � ð0; 0; 0; 1; 0; 0Þ;

r5 � ð0; 0; 0;�1; 1; 0Þ; r6 � ð0; 0; 0;�1; 0; 1Þ

(52)

The vertex A4 is the fixed point for the discrete dynamical system. There is no
reaction A4 ! . . . For convenience, we include the eigenvectors l4 and r4 for zero
eigenvalue, k4 ¼ 0. These vectors correspond to the steady state: r4 is the steady-
state vector, and the functional l4 is the conservation law.

The correspondent approximation to the general solution of the kinetic
equation for the prism of reaction (Figure 2a) is:

cðtÞ ¼
X6

i¼1

riðli; cð0ÞÞ expð�kitÞ (53)

Analysis of other five particular cases is similar. Of course, some of the
eigenvectors and eigenvalues can differ.

Of course, different ordering can lead to very different approximations. For
example, let us consider the same prism of reactions, but with the ordering of
constants presented in Figure 3a. The auxiliary dynamical system has one cycle
(Figure 3b) with the limiting constant k36. This cycle is not a sink to the initial
network, there are outgoing reactions from its vertices (Figure 3c). After gluing,
this cycles transforms into a vertex A1

1 (Figure 3d). The glued network, W1

(Figure 3e), has two vertices, A4 and A1
1 the rate constant for the reaction A4 ! A1

1

is k54, and the rate constant for the reaction A1
1 ! A4 is k1

¼ maxfk41k36=k21; k46g.
Hence, there are not more than four possible versions: two possibilities for the
choice of k1 and for each such a choice there exist two possibilities: k14k54 or
k1ok54 (one of these four possibilities cannot be realized, because k464k54).

Exactly as it was in the previous example, the zero-order approximation of
the steady state depends only on the sign of inequality between k1 and k54.
If k1

� k54 then almost all concentration in the steady state is accumulated
inside A1. After restoring the cycle A3 ! A1 ! A2 ! A5 ! A6 ! A3 we find that
in the steady state almost all concentration is accumulated in A6 (the component at
the beginning of the limiting step of this cycle, A6 ! A3). The eigenvector for zero
eigenvalue is estimated as the vector column with coordinates (0,0,0,0,0,1).

If k1
� k54 then almost all concentration in the steady state is accumulated inside

A4. This vertex is not a glued cycle, and immediately we find the approximate
eigenvector for zero eigenvalue, the vector column with coordinates (0,0,0,1,0,0).

Let us find the first-order (in rate-limiting constants) approximation to the
steady states. If k1

� k54 then k1 is the rate-limiting constant for the cycle A1
12A4

and almost all concentration in the steady state is accumulated inside A1
1:

c1
1 � 1� k1=k54 and c4 � k1=k54. Let us restore the glued cycle (Figure 3).

The limiting constant for that cycle is k36, c6 � c1
1ð1� k36=k13 � k36=k21 � k36=

k52 � k36=k65Þ, c3 � c1
1k36=k13, c1 � c1

1k36=k21, c2 � c1
1k36=k52 and c5 � c1

1k36=k65.



148 A.N. Gorban and O. Radulescu

Author's personal copy
If k1
� k54 then k54 is the rate-limiting constant for the cycle A1

12A4 and
almost all concentration in the steady state is accumulated inside A4:
c4 � 1� k54=k1 and c1

1 � k54=k1. In distribution of concentration inside the cycle
only the prefactor c1

1 changes.
Let us analyze the relaxation process for one of the possibilities: k1

¼ k46, and,
therefore k14k54. We restore the cycle, delete the limiting step, transform the

reaction A1
1 ! A4 into reaction A6 ! A4 with the same constant k1

¼ k46 and get

the chain with ordered constants: A3�!
3

A1�!
1

A2�!
4

A5�!
2

A6�!
5

A4. Here the

nonzero rate constants kij have the same value as for the initial system (Figure 3a).

The relaxation time is t � 1=k46. Left eigenvectors are (including l4 for the zero

eigenvalue):

l1 � ð1; 0; 0; 0; 0; 0Þ; l2
� ð1; 1; 1; 0; 0; 0Þ;

l3 � ð0; 0; 1; 0; 0; 0Þ; l4
� ð1; 1; 1; 1; 1; 1Þ;

l5 � ð0; 0; 0; 0; 1; 0Þ l6 � ð1; 1; 1; 0; 1; 1Þ

(54)

Right eigenvectors are (including r4 for the zero eigenvalue):

r1 � ð1;�1; 0; 0; 0; 0Þ; r2 � ð0; 1; 0; 0; 0;�1Þ;

r3 � ð0;�1; 1; 0; 0; 0Þ; r4 � ð0; 0; 0; 1; 0; 0Þ;

r5 � ð0; 0; 0; 0; 1;�1Þ; r6 � ð0; 0; 0;�1; 0; 1Þ

(55)

Here we represent vector columns as rows.
For the approximation of relaxation in that order we can use Equation (53).
5. THE REVERSIBLE TRIANGLE OF REACTIONS: THE SIMPLE
EXAMPLE CASE STUDY

In this section, we illustrate the analysis of dominant systems on a simple
example, the reversible triangle of reactions.

A12A22A32A1 (56)

This triangle appeared in many works as an ideal object for a case study.
Our favorite example is the work of Wei and Prater (1962). Now in our study
the triangle (56) is not obligatory a closed system. We can assume that it is
a subsystem of a larger system, and any reaction Ai ! Aj represents a reaction
of the form � � � þ Ai ! Aj þ � � �, where unknown but slow components are
substituted by dots. This means that there are no obligatory relations between
reaction rate constants, first of all, no detailed balance relations, and six reaction
rate constants are arbitrary nonnegative numbers.

There exist 6! ¼ 720 orderings of six reaction rate constants for this triangle,
but, of course, it is not necessary to consider all these orderings. First of all,
because of the permutation symmetry, we can select an arbitrary reaction as
the fastest one. Let the reaction rate constant k21 for the reaction A1 ! A2 is the
largest. (If it is not, we just have to change the enumeration of reagents.)
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Figure 4 Four possible auxiliary dynamical systems for the reversible triangle of reactions

with k214kij for (i,j) 6¼(2,1): (a) k124k32, k234k13; (b) k124k32, k134k23; (c) k324k12, k234k13 and

(d) k324k12, k134k23. For each vertex the outgoing reaction with the largest rate constant is

represented by the solid bold arrow, and other reactions are represented by the dashed

arrows. The digraphs formed by solid bold arrows are the auxiliary discrete dynamical systems.

Attractors of these systems are isolated in frames.
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First of all, let us describe all possible auxiliary dynamical systems for the
triangle (56). For each vertex, we have to select the fastest outgoing reaction.
For A1, it is always A1 ! A2, because of our choice of enumeration (the higher
scheme in Figure 4). There exist two choices of the fastest outgoing reaction for
two other vertices and, therefore, only four versions of auxiliary dynamical
systems for Equation (56) (Figure 4).

Because of the choice of enumeration, the vectors of logarithms of reaction
rate constants form a convex cone in R6 which is described by the system of
inequalities ln k214 ln kij, (i,j)6¼(2,1). For each of the possible auxiliary systems
(Figure 4) additional inequalities between constants should be valid, and we get
four correspondent cones in R6. These cones form a partitions of the initial one
(we neglect intersections of faces which have zero measure). Let us discuss
the typical behavior of systems from these cones separately. (Let us remind that
if in a cone for some values of coefficients yij, zij

P
ijyij ln kijo

P
ijzij ln kij, then,

typically in this cone
P

ijyij ln kijoK þ
P

ijzij ln kij for any positive K. This means

that typically
Q

ijk
yij

ij �
Q

ijk
zij

ij .)

5.1 Auxiliary system (a): A12A2  A3; k124k32, k234k13

5.1.1 Gluing cycles
The attractor is a cycle (with only two vertices) A12A2. This is not a sink,
because two outgoing reactions exist: A1 ! A3 and A2 ! A3. They are relatively
slow: k31 � k21 and k32 � k12. The limiting step in this cycle is A2 ! A1 with
the rate constant k12. We have to glue the cycle A12A2 into one new component
A1

1 and to add a new reaction A1
1 ! A3 with the rate constant

k1
31 ¼ maxfk32; k31k12=k21g (57)

This is a particular case of Equations (46) and (47).
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As a result, we get a new system, A1
12A3 with reaction rate constants k1

31

(for A1
1 ! A3) and initial k23 (for A1

1  A3). This cycle is a sink, because it has no
outgoing reactions (the whole system is a trivial example of a sink).

5.1.2 Steady states
To find the steady state, we have to compute the stationary concentrations for the
cycle A1

12A3, c1
1 and c3. We use the standard normalization condition c1

1 þ c3 ¼ 1.
On the base of the general formula for a simple cycle (11) we obtain:

w ¼
1

ð1=k1
31Þ þ ð1=k23Þ

; c1
1 ¼

w

k1
31

; c3 ¼
w

k23
(58)

After that, we can calculate the concentrations of A1 and A2 with normal-
ization c1 þ c2 ¼ c1

1. Formula (11) gives:

w0 ¼
c1

1

ð1=k21Þ þ ð1=k12Þ
; c1 ¼

w0

k21
; c2 ¼

w0

k12
(59)

We can simplify the answer using inequalities between constants, as it was
done in formulas (12) and (13). For example, ð1=k21Þ þ ð1=k21Þ � ð1=k21Þ, because
k21 � k12. It is necessary to stress that we have used the inequalities between
constants k214kij for (i,j) 6¼(2,1), k124k32 and k234k13 to obtain the simple answer
(58), (59), hence if we even do not use these inequalities for the further
simplification, this does not guarantee the higher accuracy of formulas.

5.1.3 Eigenvalues and eigenvectors
At the next step, we have to restore and cut the cycles. First cycle to cut is the
result of cycle gluing, A1

12A3. It is necessary to delete the limiting step, i.e. the
reaction with the smallest rate constant. If k1

314k23, then we get A1
1 ! A3. If,

inverse, k234k1
31, then we obtain A1

1  A3.
After that, we have to restore and cut the cycle which was glued into the

vertex A1
1. This is the two-vertices cycle A12A2. The limiting step for this cycle is

A1  A2, because k21 � k12. If k1
314k23, then following the rule visualized by

Figure 1, we get the dominant system A1 ! A2 ! A3 with reaction rate constants
k21 for A1 ! A2 and k1

31 for A2 ! A3. If k234k1
31 then we obtain A1 ! A2  A3

with reaction rate constants k21 for A1 ! A2 and k23 for A2  A3. All the
procedure is illustrated by Figure 5.
A1

A3

A2
(a)

1A1

A1 A3

A3
A1 A2

A2

1A1

1A1A3

A3

A3
k23

k23

k23

k23k21

k21

1k31

1k31
1k31

1k31

1k31

k23

if

if

>

>

Figure 5 Dominant systems for case (a) (defined in Figure 4).
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The eigenvalues and the correspondent eigenvectors for dominant systems in
case (a) are represented below in zero-one asymptotic.

1. k1
314k23, the dominant system A1 ! A2 ! A3,

l0 ¼ 0; r0 � ð0; 0; 1Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k1
31; r2 � ð0; 1;�1Þ; l2 � ð1; 1; 0Þ

(60)

2. k234k1
31, the dominant system A1 ! A2  A3,

l0 ¼ 0; r0 � ð0; 1; 0Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k23; r2 � ð0;�1; 1Þ; l2 � ð0; 0; 1Þ

(61)
Here, the value of k1
31 is given by formula (57).

With higher accuracy, in case (a)

r0 �
w0

k21
;

w0

k12
;

w

k23

� �
(62)

where

w ¼
1

ð1=k1
31Þ þ ð1=k1

23Þ
; w0 ¼

c1
1

ð1=k1
21Þ þ ð1=k1

12Þ
; c1

1 ¼
w

k1
31

in according to Equations (58), (59).
5.2 Auxiliary system (b): A3 ! A12A2; k124k32, k134k23

5.2.1 Gluing cycles
The attractor is a cycle A12A2 again, and this is not a sink. We have to glue the
cycle A12A2 into one new component A1

1 and to add a new reaction A1
1 ! A3

with the rate constant k1
31 given by formula (57). As a result, we get a new system,

A1
12A3 with reaction rate constants k1

31 (for A1
1 ! A3) and initial k13

(for A1
1  A3). At this stage, the only difference from the case (a) is the reaction

A1
1  A3 rate constant k13 instead of k23.

5.2.2 Steady states
For the steady states we have to repeat formulas (58) and (59) with minor changes
(just use k13 instead of k23):

w ¼
1

ð1=k1
31Þ þ ð1=k1

13Þ
; c1

1 ¼
w

k1
31

; c3 ¼
w

k13
;

w0 ¼
c1

1

ð1=k1
21Þ þ ð1=k1

12Þ
; c1 ¼

w0

k21
; c2 ¼

w0

k12

(63)
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Figure 6 Dominant systems for case (b) (defined in Figure 4).
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5.2.3 Eigenvalues and eigenvectors
The structure of the dominant system depends on the limiting step of the
cycle A1

12A3 (Figure 6). If k1
314k13, then in the dominant system remains the

reaction A1
1 ! A3 from this cycle. After restoring the glued cycle A12A2 it is

necessary to delete the slowest reaction from this cycle too. This is always
A1  A2, because A1 ! A2 is the fastest reaction. The reaction A1

1 ! A3

transforms into A2 ! A3, because A2 is the head of the limiting step A1  A2

(see Figure 1). Finally, we get A1 ! A2 ! A3.
If k134k1

31, then in the dominant system remains the reaction A3 ! A1, and
the dominant system is A3 ! A1 ! A2 (Figure 6).

The eigenvalues and the correspondent eigenvectors for dominant systems in
case (b) are represented below in zero-one asymptotic.

(i) k1
314k13, the dominant system A1 ! A2 ! A3,

l0 ¼ 0; r0 � ð0; 0; 1Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k1
31; r2 � ð0; 1;�1Þ; l2 � ð1; 1; 0Þ

(64)

(ii) k134k1
31, the dominant system A3 ! A1 ! A2,

l0 ¼ 0; r0 � ð0; 1; 0Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k13; r2 � ð0;�1; 1Þ; l2
� ð0; 0; 1Þ

(65)
Here, the value of k1
31 is given by formula (57). The only difference from case (a) is

the rate constant k23 instead of k13.
With higher accuracy, in case (b)

r0 �
w0

k21
;

w0

k12
;

w

k13

� �
(66)

where w and wu are given by formula (63).

5.3 Auxiliary system (c): A1 ! A22A3; k324k12, k234k13

5.3.1 Gluing cycles
The attractor is a cycle A22A3. This is not a sink, because two outgoing reactions
exist: A2 ! A1 and A3 ! A1. We have to glue the cycle A22A3 into one new



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 153

Author's personal copy
component A1
2 and to add a new reaction A1

2 ! A1 with the rate constant k1
12.

The definition of this new constant depends on the normalized steady-state
distribution in this cycle. If c�2, c�3 are the steady-state concentrations (with
normalization c�2 þ c�3 ¼ 1), then

k1
12 � maxfk12c�2; k13c�3g

If we use limitation in the glued cycle explicitly, then we get the direct analog of
Equation (57) in two versions: one for k324k23, another for k234k32. But we can
skip this simplification and write

k1
12 � maxfk12w�=k32; k13w�=k23g (67)

where

w� ¼
1

ð1=k32Þ þ ð1=k23Þ

5.3.2 Steady states
Exactly as in the cases (a) and (b) we can find approximation of steady state using
steady states in cycles A12A1

2 and A22A3:

w ¼
1

ð1=k1
12Þ þ ð1=k21Þ

; c1
2 ¼

w

k1
12

; c1 ¼
w

k21
;

w0 ¼
c1

2

ð1=k32Þ þ ð1=k23Þ
; c2 ¼

w0

k32
; c3 ¼

w0

k23

(68)

5.3.3 Eigenvalues and eigenvectors
The limiting step in the cycle A12A1

2 in known, this is A1  A1
2. There are two

possibilities for the choice on limiting step in the cycle A22A3. If k324k23,
then this limiting step is A2  A3, and the dominant system is A1 ! A2 ! A3.
If k234k32, then the dominant system is A1 ! A2  A3 (Figure 7).

The eigenvalues and the correspondent eigenvectors for dominant systems in
case (b) are represented below in zero-one asymptotic.

(i) k324k23, the dominant system A1 ! A2 ! A3,

l0 ¼ 0; r0 � ð0; 0; 1Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k32; r2 � ð0; 1;�1Þ; l2 � ð1; 1; 0Þ

(69)

(ii) k234k32, the dominant system A1 ! A2  A3,

l0 ¼ 0; r0 � ð0; 1; 0Þ; l0 ¼ ð1; 1; 1Þ;

l1 � �k21; r1 � ð1;�1; 0Þ; l1 � ð1; 0; 0Þ;

l2 � �k23; r2 � ð0;�1; 1Þ; l2 � ð0; 0; 1Þ

(70)
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Figure 7 Dominant systems for case (c) (defined in Figure 4).
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With higher accuracy the value of r0 is given by formula of the steady-state
concentrations (68).

5.4 Auxiliary system (d): A1 ! A2 ! A3 ! A1; k324k12, k134k23

This is a simple cycle. We discussed this case in details several times. To get the
dominant system it is sufficient just to delete the limiting step. Everything
is determined by the choice of the minimal constant in the couple fk32; k13g.
Formulas for steady state are well known too: Equations (11)–(13).

This is not necessary to discuss all orderings of constants, because some of
them are irrelevant to the final answer. For example, in this case (d) interrelations
between constants k31, k23 and k12 are not important.

5.5 Resume: zero-one multiscale asymptotic for the reversible
reaction triangle

We found only three topologically different version of dominant systems
for the reversible reaction triangle: (i) A1 ! A2 ! A3, (ii) A1 ! A2  A3

and (iii) A3 ! A1 ! A2. Moreover, there exist only two versions of zero-one
asymptotic for eigenvectors: the fastest eigenvalue is always �k21 (because our
choice of enumeration), the correspondent right and left eigenvectors (fast mode)
are: r1 � ð1;�1; 0Þ and l1

¼ ð1; 0; 0Þ. (The difference between systems (ii) and (iii)
appears in the first order of the slow/fast constants ratio.)

If in the steady state (almost) all mass is concentrated in A2 (this means that
r0 � ð0; 1; 0Þ, dominant systems (ii) or (iii)), then r2 � ð0;�1; 1Þ and l2 � ð0; 0; 1Þ.
If in the steady state (almost) all mass is concentrated in A3 (this means that
r0 � ð0; 0; 1Þ, dominant system (i)), then r2 � ð0; 1;�1Þ and l2

� ð0; 1; 0Þ. We can see
that the dominant systems of the forms (ii) and (iii) produce the same zero-one
asymptotic of eigenvectors. Moreover, the right eigenvectors r2 � ð0; 1;�1Þ coincide
for all cases (there is no difference between r2 and �r2), and the difference appears
in the left eigenvector l2. Of course, this peculiarity (everything is regulated by the
steady-state asymptotic) results from the simplicity of this example.

In the zero-one asymptotic, the reversible reaction triangle is represented by
one of the reaction mechanisms, (i) or (iii). The rate constant of the first reaction
A1 ! A2 is always k12. The direction of the second reaction is determined by
a system of linear uniform inequalities between logarithms of rate constants.
The logarithm of effective constant of this reaction is the piecewise linear function
of the logarithms of reaction rate constants, and the switching between different
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pieces is regulated by linear inequalities. These inequalities are described in
this section, and most of them are represented in Figures 4–7. One can obtain the
first-order approximation of eigenvectors in the slow/fast constants ratio from
the Appendix 1 formulas.
6. THREE ZERO-ONE LAWS AND NONEQUILIBRIUM PHASE
TRANSITIONS IN MULTISCALE SYSTEMS

6.1 Zero-one law for steady states of weakly ergodic reaction
networks

Let us take a weakly ergodic network W and apply the algorithms of auxiliary
systems construction and cycles gluing. As a result we obtain an auxiliary dynamic
system with one fixed point (there may be only one minimal sink). In the algorithm
of steady-state reconstruction (Section 4.3) we always operate with one cycle (and
with small auxiliary cycles inside that one, as in a simple example in Section 2.9).
In a cycle with limitation almost all concentration is accumulated at the start of the
limiting step (13), (14). Hence, in the whole network almost all concentration will
be accumulated in one component. The dominant system for a weekly ergodic
network is an acyclic network with minimal element. The minimal element is such
a component Amin that there exists an oriented path in the dominant system from
any element to Amin. Almost all concentration in the steady state of the network W
will be concentrated in the component Amin.
6.2 Zero-one law for nonergodic multiscale networks

The simplest example of nonergodic but connected reaction network is A1  

A2 ! A3 with reaction rate constants k1 and k2. For this network, in addition to
b0
ðcÞ ¼ c1 þ c2 þ c3 a kinetic conservation law exist, bk

ðcÞ ¼ ðc1=k1Þ � ðc3=k2Þ. The
result of time evolution, limt!1 expðKtÞc (30), is described by simple formula (31):

lim
t!1

expðKtÞc ¼ b1
ðcÞð1; 0; 0Þ þ b2

ðcÞð0; 1; 1Þ

where b1
ðcÞ þ b2

ðcÞ ¼ b0
ðcÞ and ððk1 þ k2Þ=k1Þb

1
ðcÞ � ððk1 þ k2Þ=k2Þb

2
ðcÞ ¼ bk

ðcÞ. If
k1 � k2 then b1

ðcÞ � c1 þ c2 and b2
ðcÞ � c3. If k1 � k2 then b1

ðcÞ � c1 and
b2
ðcÞ � c2 þ c3. This simple zero-one law (either almost all amount of A2 transforms

into A1, or almost all amount of A2 transforms into A3) can be generalized onto all
nonergodic multiscale systems.

Let us take a multiscale network and perform the iterative process of
auxiliary dynamic systems construction and cycle gluing, as it is prescribed in
Section 4.3. After the final step the algorithm gives the discrete dynamical system
Fm with fixed points Am

fi .
The fixed points Am

fi of the discrete dynamical system Fm are the glued ergodic
components Gi �A of the initial network W. At the same time, these points
are attractors of Fm. Let us consider the correspondent decomposition of this
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system with partition Am ¼ [iAttðAm
fi Þ. In the cycle restoration during construc-

tion of dominant system dom mod(W) this partition transforms into partition
of A :A ¼ [iUi, AttðAm

fi Þ transforms into Ui and Gi � Ui (and Ui transforms into
AttðAm

fi Þ in hierarchical gluing of cycles).
It is straightforward to see that during construction of dominant systems for

W from the network Vm no connection between Ui are created. Therefore, the
reaction network dom mod(W) is a union of networks on sets Ui without any
link between sets.

If G1; . . . ;Gm are all ergodic components of the system, then there exist m
independent positive linear functionals b1

ðcÞ; . . . ; bm
ðcÞ, that describe asymptotical

behavior of kinetic system when t-N (30). For dom mod(W) these functionals
are: bl

ðcÞ ¼
P

A2Ul
cA where cA is concentration of A. Hence, for the initial reaction

network W with well-separated constants

bl
ðcÞ �

X
A2Ul

cA (71)

This is the zero-one law for multiscale networks: for any l,i, the value of
functional bl (30) on basis vector ei, bl

ðeiÞ, is either close to one or close to zero
(with probability close to 1). We already mentioned this law in discussion of a
simple example (31). The approximate equality (71) means that for each reagent
A 2A there exists such an ergodic component G of W that A transforms when
t-N preferably into elements of G even if there exist paths from A to other
ergodic components of W.
6.3 Dynamic limitation and ergodicity boundary

Dominant systems are acyclic. All the stationary rates in the first order are limited
by limiting steps of some cycles. Those cycles are glued in the hierarchical
cycle gluing procedure, and their limiting steps are deleted in the cycles surgery
procedures (see Section 4.3 and Figure 1).

Relaxation to steady state of the network is multiexponential, and now we are
interested in estimate of the longest relaxation time t:

t ¼ 1=minf�Relijlia0g (72)

Is there a constant that limits the relaxation time? The general answer for
multiscale system is: 1/t is equal to the minimal reaction rate constant of the
dominant system. It is impossible to guess a priori, before construction of the
dominant system, which constant it is. Moreover, this may be not a rate constant
for a reaction from the initial network, but a monomial of such constants.

Nevertheless, sometimes it is possible to point the reaction rate constant that
is limiting for the relaxation in the following sense. For known topology of
reaction network and given ordering of reaction rate constants we find such a
constant (ergodicity boundary) kt that

t �
1

akt
(73)
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with at1 is a function of constants kj4kt. This means that 1=kt gives the lower
estimate of the relaxation time, but t could be larger. In addition, we show that
there is a zero-one alternative too: if the constants are well separated then either
aE1 or a�1.

We study a multiscale system with a given reaction rate constants ordering,
kj1
4kj2

4 � � �4kjn
. Let us suppose that the network is weakly ergodic (when there

are several ergodic components, each one has its longest relaxation time that can
be found independently). We say that kjr

, 1prpn is the ergodicity boundary kt
if the network of reactions with parameters kj1

; kj2
; . . . ; kjr

(when kjrþ1
¼ . . . kjn

¼ 0)
is weakly ergodic, but the network with parameters kj1

; kj2
; . . . ; kjr�1 (when

kjr
¼ kjrþ1

¼ . . . kjn
¼ 0) it is not. In other words, when eliminating reactions in

decreasing order of their characteristic times, starting with the slowest one, the
ergodicity boundary is the constant of the first reaction whose elimination breaks
the ergodicity of the reaction digraph. This reaction we also call the ‘‘ergodicity
boundary’’.

Let us describe the possible location of the ergodicity boundary in the general
multiscale reaction network (W). After deletion of reactions with constants
kjr
; kjrþ1

; . . . ; kjn
from the network two ergodic components (minimal sinks) appear,

G1 and G2. The ergodicity boundary starts in one of the ergodic components, say
G1, and ends at the such a reagent B that another ergodic component, G2, is
reachable by B (there exists an oriented path from B to some element of G2).

An estimate of the longest relaxation time can be obtained by applying the
perturbation theory for linear operators to the degenerated case of the zero
eigenvalue of the matrix K. We have K ¼ Korðkj1

; kj2
; . . . ; kjr�1Þ þ kjr

Qþ oðkrÞ,
where Kor is obtained from K by letting kr ¼ krþ1 ¼ . . . kn ¼ 0, Q is a constant
matrix of rank 1, and oðkrÞ includes terms that are negligible relative to kr .
The zero eigenvalue is twice degenerate in Kor and not degenerate in Kor þ krQ.
One gets the following estimate:

ā
1

kt
 t  a

1

kt
(74)

where ā and a40 are some positive functions of k1; k2; . . . ; kr�1 (and of the
reaction graph topology).

Two simplest examples demonstrate two types of dependencies of t on kt:

(i) For the reaction mechanism Figure 8a

min
la0
f�Relg ¼ �

if �ok1 þ k2.
(ii) For the reaction mechanism Figure 8b

min
la0
f�Relg ¼ �k2=ðk1 þ k2Þ þ oð�Þ

if �ok1 þ k2. For well-separated parameters there exists as a zero-one
(trigger) alternative: if k1 � k2 then minla0f�Relg � �; if, inverse, k1 � k2

then minla0f�Relg ¼ oð�Þ.
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Figure 8 Two basic examples of ergodicity boundary reaction: (a) Connection between

ergodic components and (b) Connection from one ergodic component to element that is

connected to the both ergodic components by oriented paths. In both cases, for e ¼ 0, the

ergodic components are {A2} and {A3}.
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In general multiscale network, two type of obstacles can violate approximate
equality t � 1=kt. Following the zero-one law for nonergodic multiscale
networks (previous subsection) we can split the set of all vertices into two
subsets, U1 and U2. The dominant reaction network dom mod(W) is a union of
networks on sets U1;2 without any link between sets.

If the ergodicity boundary reaction starts in the ergodic component G1 and
ends at B which does not belong to the ‘‘opposite’’ basin of attraction U2, then
t� 1=kt. This is the first possible obstacle.

Let the ergodicity boundary reaction start at A 2 G1 and end at B 2 U2. We
define the maximal linear chain of reactions in dominant system with start at
B: B-y This chain belongs to U2. Let us extend this chain from the left by the
ergodicity boundary: A-B-y Relaxation time for the network of r reactions
(with the kinetic matrix K	r ¼ Korðkj1

; kj2
; . . . ; kjr�1Þ þ kjr

Q) is, approximately,
the relaxation time of this chain, i.e. 1/k, where k is the minimal constant in
the chain. There may appear a monomial constant k� kt. In that case, t� 1=kt,
and relaxation is limited by this minimal k or by some of constants kjp

, pWr or by
some of their combinations. This existence of a monomial constant k� kt in
the maximal chain A-B-y from the dominant system is the second possible
obstacle for approximate equality t � 1=kt.

If there is neither the first obstacle, nor the second one, then t � 1=kt.
The possibility of these obstacles depends on the definition of multiscale
ensembles we use. For example for the log-uniform distribution of rate
constants in the ordering cone kj1

4kj2
4 � � �4kjn

(Section 3.3) the both obstacles
have nonzero probability, if they are topologically possible. However, if we
study asymptotic of relaxation time at e-0 for kir ¼ �kjr�1 for given values
of kj1

; kj2
; . . . ; kjr�1, then for sufficiently small eW0 the second obstacle is

impossible.
Thus, the well-known concept of stationary reaction rates limitation by

‘‘narrow places’’ or ‘‘limiting steps’’ (slowest reaction) should be complemented
by the ergodicity boundary limitation of relaxation time. It should be stressed that
the relaxation process is limited not by the classical limiting steps (narrow
places), but by reactions that may be absolutely different. The simplest example
of this kind is an irreversible catalytic cycle: the stationary rate is limited by the
slowest reaction (the smallest constant), but the relaxation time is limited by
the reaction constant with the second lowest value (in order to break the weak
ergodicity of a cycle two reactions must be eliminated).
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6.4 Zero-one law for relaxation modes (eigenvectors) and
lumping analysis

For kinetic systems with well-separated constants the left and right eigenvectors
can be explicitly estimated. Their coordinates are close to 71 or 0. We analyzed
these estimates first for linear chains and cycles (5) and then for general acyclic
auxiliary dynamical systems (34), (36) (35), (37). The distribution of zeros and 71
in the eigenvectors components depends on the rate constant ordering and may
be rather surprising. Perhaps, the simplest example gives the asymptotic
equivalence (for k�i � ki; kiþ1) of the reaction network Ai2Aiþ1 ! Aiþ2 with
rate constants ki, k�i and kiþ1 to the reaction network Aiþ1 ! Ai ! Aiþ2 with
rate constants k�i (for the reaction Aiþ1 ! Ai) and kiþ1ki=k�i (for the reaction
Ai ! Aiþ2) presented in Section 2.9.

For reaction networks with well-separated constants coordinates of left
eigenvectors li are close to 0 or 1. We can use the left eigenvectors for coordinate
change. For the new coordinates zi ¼ lic (eigenmodes) the simplest equations
hold: _zi ¼ lizi. The zero-one law for left eigenvectors means that the eigenmodes
are (almost) sums of some components: zi ¼

P
i2Vi

ci for some sets of numbers Vi.
Many examples, Equations (6), (38), (51), (54), demonstrate that some of zi can
include the same concentrations: it may be that Vi \ Vja+ for some i 6¼j.
Aggregation of some components (possibly with some coefficients) into new
group components for simplification of kinetics is the major task of lumping
analysis.

Wei and Kuo studied conditions for exact (Wei and Kuo, 1969) and
approximate (Kuo and Wei, 1969) linear lumping. More recently, sensitivity
analysis and Lie group approach were applied to lumping analysis (Li and
Rabitz, 1989; Toth et al., 1997), and more general nonlinear forms of lumped
concentrations are used (e.g. zi could be rational function of c). The power of
lumping using a timescale-based approach was demonstrated by Whitehouse
et al. (2004) and by Liao and Lightfoot (1988). This computationally cheap
approach combines ideas of sensitivity analysis with simple and useful grouping
of species with similar lifetimes and similar topological properties caused by
connections of the species in the reaction networks. The lumped concentrations
in this approach are simply sums of concentrations in groups.

Kinetics of multiscale systems studied in this chapter and developed theory of
dynamic limitation demonstrates that in multiscale limit lumping analysis can
work (almost) exactly. Lumped concentrations are sums in groups, but these
groups can intersect and usually there exist several intersections.
6.5 Nonequilibrium phase transitions in multiscale systems

For each zero-one law specific sharp transitions exist: if two systems in a one-
parametric family have different zero-one steady states or relaxation modes, then
somewhere between a point of jump exists. Of course, for given finite values of
parameters this will be not a point of discontinuity, but rather a thin zone of fast
change. At such a point the dominant system changes. We can call this change a
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nonequilibrium phase transition. Here we identify a ‘‘multiscale nonequilibrium
phase’’ with a dominant system.

A point of phase transition can be a point where the order of parameters
changes. But not every change of order causes the change of dominant systems.
However, change of order of some monomials can change the dominant system
even if the order of parameters persists (examples are presented in previous
section). Evolution of a parameter-dependent multiscale reaction network can
be represented as a sequence of sharp change of dominant system. Between such
sharp changes there are periods of evolution of dominant system parameters
without qualitative changes.
7. LIMITATION IN MODULAR STRUCTURE AND
SOLVABLE MODULES

7.1 Modular limitation

The simplest one-constant limitation concept cannot be applied to all systems.
There is another very simple case based on exclusion of ‘‘fast equilibria’’ Ai Ð Aj.
In this limit, the ratio of reaction constants Kij ¼ kij=kji is bounded,
0oaoKijobo1, but for different pairs (i,j), (l,s) one of the inequalities kij � kls

or kij � kls holds. (One usually calls these K ‘‘equilibrium constant’’, even if there
is no relevant thermodynamics.) Ray (1983) discussed that case systematically
for some real examples. Of course, it is possible to create the theory for that case
very similarly to the theory presented above. This should be done, but it is worth
to mention now that the limitation concept can be applied to any modular
structure of reaction network. Let for the reaction network W the set of
elementary reactions R is partitioned on some modules: R ¼ [iRi. We can
consider the related multiscale ensemble of reaction constants: let the ratio of any
two-rate constants inside each module be bounded (and separated from zero, of
course), but the ratios between modules form a well-separated ensemble. This
can be formalized by multiplication of rate constants of each module Ri on a
timescale coefficient ki. If we assume that ln ki are uniformly and independently
distributed on a real line (or ki are independently and log-uniformly distributed
on a sufficiently large interval) then we come to the problem of modular
limitation. The problem is quite general: describe the typical behavior of
multiscale ensembles for systems with given modular structure: each module has
its own timescale and these time scales are well separated.

Development of such a general theory is outside the scope of our chapter,
and here we just find building blocks for the future theory, solvable reaction
modules. There may be many various criteria of selection of the reaction
modules. Here are several possible choices: individual reactions (we developed
the theory of multiscale ensembles of individual reactions in this chapter),
couples of mutually inverse reactions, as we mentioned earlier, acyclic reaction
networks,y

Among the possible reasons for selection the class of reaction mechanisms for
this purpose, there is one formal, but important: the possibility to solve the
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kinetic equation for every module in explicit analytical (algebraic) form with
quadratures. We call these systems ‘‘solvable’’.
7.2 Solvable reaction mechanisms

Let us describe all solvable reaction systems (with mass action law), linear and
nonlinear.

Formally, we call the set of reaction solvable, if there exists a linear
transformation of coordinates c 7!a such that kinetic equation in new coordinates
for all values of reaction constants has the triangle form:

dai

dt
¼ f iða1; a2; . . . ; aiÞ (75)

This system has the lower triangle Jacobian matrix @_ai=@aj.
To construct the general mass action law system we need: the list of

components, A ¼ fA1; . . . ;Ang and the list of reactions (the reaction mechanism):X
i

ariAi !
X

k

brkAk (76)

where r is the reaction number, ari and brk nonnegative integers (stoichiometric
coefficients). Formally, it is possible that all bk ¼ 0 or all ai ¼ 0. We allow such
reactions. They can appear in reduced models or in auxiliary systems.

A real variable ci is assigned to every component Ai, ci is the concentration of
Ai and c the concentration vector with coordinates ci. The reaction kinetic
equations are

dc

dt
¼
X

r

grwrðcÞ (77)

where gr is the reaction stoichiometric vector with coordinates gri ¼ bri � ari, wrðcÞ
is the reaction rate. For mass action law,

wrðcÞ ¼ kr

Y
i

cari

i (78)

where kr is the reaction constant.
Physically, equations (77) correspond to reactions in fixed volume, and in

more general case a multiplier V (volume) is necessary:

dðVcÞ

dt
¼ V

X
r

grwrðcÞ

Here we study the systems (77) and postpone any further generalization.
The first example of solvable systems give the sets of reactions of the form

ariAi !
X
k;k4i

brkAk (79)

(components Ak on the right-hand side have higher numbers k than the
component Ai on the left-hand side, iok). For these systems, kinetic equations
(77) have the triangle form from the very beginning.
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The second standard example gives the couple of mutually inverse reactions:X
i

aiAi!
X

k

bkAk (80)

these reactions have stoichiometric vectors 7g, gi ¼ bi � ai. The kinetic equation
_c ¼ ðwþ � w�Þg has the triangle form Equation (75) in any orthogonal coordinate
system with the last coordinate an ¼ ðg; cÞ ¼

P
igici. Of course, if there are several

reactions with proportional stoichiometric vectors, the kinetic equations have the
triangle form in the same coordinate systems.

The general case of solvable systems is essentially a combination of that two
Equations (79) and (80), with some generalization. Here we follow the book by
Gorban et al. (1986) and present an algorithm for analysis of reaction network
solvability. First, we introduce a relation between reactions ‘‘rth reaction directly
affects the rate of sth reaction’’ with notation r! s: r! s if there exists such Ai

that griasia0. This means that concentration of Ai changes in the rth reaction
ðgria0Þ and the rate of the sth reaction depends on Ai concentration ðasia0Þ.
For that relation we use r! s. For transitive closure of this relation we use
notation rks (‘‘rth reaction affects the rate of sth reaction’’): rks if there exists
such a sequence s1; s2; . . . ; sq that r! s1 ! s2 ! . . . sq ! s.

The hanging component of the reaction network W is such Ai 2A that for all
reactions ari ¼ 0. This means that all reaction rates do not depend on
concentration of Ai. The hanging reaction is such element of R with number r
that rks only if gs ¼ lgr for some number l . An example of hanging components
gives the last component An for the triangle network (79). An example of hanging
reactions gives a couple of reactions (80) if they do not affect any other reaction.

To check solvability of the reaction network W we should find all hanging
components and reactions and delete them from A and R, correspondingly.
After that, we get a new system, W1 with the component set A1 and the reaction
set R1. Next, we should find all hanging components and reactions for W1 and
delete them from A1 and R1. Iterate until no hanging components or hanging
reactions could be found. If the final set of components is empty, then the reaction
network W is solvable. If it is not empty, then W is not solvable.

For example, let us consider the reaction mechanism with A ¼ fA1;A2;A3;A4g

and reactions A1 þ A2 ! 2A3, A1 þ A2 ! A3 þ A4, A3 ! A4 and A4 ! A3. There
are no hanging components, but two hanging reactions, A3 ! A4 and A4 ! A3.
After deletion of these two reactions, two hanging components appear, A3

and A4. After deletion these two components, we get two hanging reactions,
A1 þ A2 ! 0 and A1 þ A2 ! 0 (they coincide). We delete these reactions and get
two components A1 and A2 without reactions. After deletion these hanging
components we obtain the empty system. The reaction network is solvable.

An oriented cycle of the length more than two is not solvable. For each
number of vertices one can calculate the set of all maximal solvable mechanisms.
For example, for five components there are two maximal solvable mechanisms of
monomolecular reactions:

(i) A1 ! A2 ! A4, A1 ! A4, A2 ! A3, A1 ! A3 ! A5, A1 ! A5, A42A5 and
(ii) A1 ! A2, A1 ! A3, A1 ! A4, A1 ! A5, A22A3, A42A5.
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It is straightforward to check solvability of these mechanisms. The first
mechanism has a couple of hanging reactions, A42A5. After deletion of these
reactions, the system becomes acyclic, of the form Equation (79). The second
mechanism has two couples of hanging reactions, A22A3 and A42A5. After
deletion of these reactions, the system also transforms into the triangle form
Equation (79). It is impossible to add any new monomolecular reactions between
fA1;A2;A3;A4;A5g to these mechanisms with preservation of solvability, and any
solvable monomolecular reaction network with five reagents is a subset of one
of these mechanisms.

Finally, we should mention connections between solvable reaction
networks and solvable Lie algebras (de Graaf, 2000; Jacobson, 1979). Let us
remind that matrices M1; . . . ;Mq generate a solvable Lie algebra if and only
if they could be transformed simultaneously into a triangle form by a change of
basis.

The Jacobian matrix for the mass action law kinetic equation (77) is:

J ¼
@ci

@cj

� �
¼
X

r

wrJr ¼
X

rj

wr

cj
Mrj (81)

where

Jr ¼ gra
>
r diag

1

c1
;

1

c2
; . . . ;

1

cn

� 	
¼
X

j

1

cj
Mrj;

Mrj ¼ arjgre
j> ð82Þ

a>r is the vector row ðar1; . . . ; arnÞ, e j> the jth basis vector row with coordinates

e
j>
k ¼ djk.

The Jacobian matrix (81) should have the lower triangle form in coordinates ai

(75) for all nonnegative values of rate constants and concentrations. This is
equivalent to the lower triangle form of all matrices Mrj in these coordinates.
Because usually there are many zero matrices among Mrj, it is convenient to
describe the set of nonzero matrices.

For the rth reaction Ir ¼ fijaria0g. The reaction rate wr depends on ci if and
only if i 2 Ir. For each i ¼ 1,y, n we define a matrix

mri ¼ 0; 0; . . . ; gr|{z}
i

; . . . ; 0

2
4

3
5

The ith column of this matrix coincides with the vector column gr . Other
columns are equal to zero. For each r we define a set of matrices Mr ¼ fmriji 2 Irg

and M ¼ [rMr. The reaction network W is solvable if and only if the finite set of
matrices M generates a solvable Lie algebra.

Classification of finite dimensional solvable Lie algebras remains a difficult
problem (de Graaf, 2000, 2005). It seems plausible that the classification of
solvable algebras associated with reaction networks can bring new ideas into this
field of algebra.
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8. CONCLUSION: CONCEPT OF LIMIT SIMPLIFICATION IN
MULTISCALE SYSTEMS

In this chapter, we study networks of linear reactions. For any ordering of
reaction rate constants we look for the dominant kinetic system. The dominant
system is, by definition, the system that gives us the main asymptotic terms of the
stationary state and relaxation in the limit for well-separated rate constants.
In this limit any two constants are connected by the relation � or �.

The topology of dominant systems is rather simple; they are those networks
which are graphs of discrete dynamical systems on the set of vertices. In such
graphs each vertex has no more than one outgoing reaction. This allows us to
construct the explicit asymptotics of eigenvectors and eigenvalues. In the limit
of well-separated constants, the coordinates of eigenvectors for dominant
systems can take only three values: 71 or 0. All algorithms are represented
topologically by transformation of the graph of reaction (labeled by reaction rate
constants). We call these transformations ‘‘cycles surgery’’, because the main
operations are gluing cycles and cutting cycles in graphs of auxiliary discrete
dynamical systems.

In the simplest case, the dominant system is determined by the ordering of
constants. But for sufficiently complex systems we need to introduce auxiliary
elementary reactions. They appear after cycle gluing and have monomial
rate constants of the form kB ¼

Q
ik
Bi

i . The dominant system depends on the place
of these monomial values among the ordered constants.

Construction of the dominant system clarifies the notion of limiting
steps for relaxation. There is an exponential relaxation process that lasts much
longer than the others in Equations (44) and (53). This is the slowest relaxation
and it is controlled by one reaction in the dominant system, the limiting step.
The limiting step for relaxation is not the slowest reaction, or the second
slowest reaction of the whole network, but the slowest reaction of the dominant
system. That limiting step constant is not necessarily a reaction rate constant
for the initial system, but can be represented by a monomial of such constants
as well.

The idea of dominant subsystems in asymptotic analysis was proposed by
Newton and developed by Kruskal (1963). A modern introduction with some
historical review is presented by White. In our analysis we do not use the powers
of small parameters (as it was done by Akian et al., 2004; Kruskal, 1963; Lidskii,
1965; Vishik and Ljusternik, 1960; White, 2006), but operate directly with the rate
constants ordering.

To develop the idea of systems with well-separated constants to the state of a
mathematical notion, we introduce multiscale ensembles of constant tuples. This
notion allows us to discuss rigorously uniform distributions on infinite space and
gives the answers to a question: what does it mean ‘‘to pick a multiscale system
at random’’.

Some of results obtained are rather surprising and unexpected. First of all is
the zero-one asymptotic of eigenvectors. Then, the good approximation to
eigenvectors does not give approximate eigenvectors (the inverse situation is



Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited 165

Author's personal copy
more common: an approximate eigenvector could be far from the eigenvector).
The almost exact lumping analysis provided by the zero-one approximation of
eigenvectors has an unexpected property: the lumped groups for different
eigenvalues can intersect. Rather unexpected seems the change of reaction
sequence when we construct the dominant systems. For example, asymptotic
equivalence (for k�i � ki; kiþ1) of the reaction network Ai2Aiþ1 ! Aiþ2 with
rate constants ki, k�i and kiþ1 to the reaction network Aiþ1 ! Ai ! Aiþ2 with rate
constants k�i (for the reaction Aiþ1 ! Ai) and kiþ1ki=k�i (for the reaction
Ai ! Aiþ2) is simple, but surprising (Section 2.9). And, of course, it was
surprising to observe how the dynamics of linear multiscale networks transforms
into the dynamics on finite sets of reagent names.

Now we have the complete theory and the exhaustive construction of
algorithms for linear reaction networks with well-separated rate constants. There
are several ways of using the developed theory and algorithms:

(i) For direct computation of steady states and relaxation dynamics; this may
be useful for complex systems because of the simplicity of the algorithm
and resulting formulas and because often we do not know the rate
constants for complex networks, and kinetics that is ruled by orderings
rather than by exact values of rate constants may be very useful.

(ii) For planning of experiments and mining the experimental data — the
observable kinetics is more sensitive to reactions from the dominant
network, and much less sensitive to other reactions, the relaxation
spectrum of the dominant network is explicitly connected with the
correspondent reaction rate constants, and the eigenvectors (‘‘modes’’) are
sensitive to the constant ordering, but not to exact values.

(iii) The steady states and dynamics of the dominant system could serve as a
robust first approximation in perturbation theory or as a preconditioning
in numerical methods.

The developed methods are computationally cheap, for example, the
algorithm for construction of dominant system has linear complexity (B number
of reactions). From a practical point of view, it is attractive to use exact rational
expressions for the dominant system modes (3), (34) and (36) instead of the
zero-one approximation. Also, we can use exact formula (11) for irreversible
cycle steady state instead of linear approximation (13). These improvements are
computationally cheap and may enhance accuracy of computations.

From a theoretical point of view the outlook is more important. Let us answer
the question: what has to be done, but is not done yet? Three directions for
further development are clear now:

(i) Construction of dominant systems for the reaction network that has a
group of constants with comparable values (without relations � between
them). We considered cycles with several comparable constants in
Section 2.2, but the general theory still has to be developed.

(ii) Construction of dominant systems for reaction networks with modular
structure. We can assume that the ratio of any two-rate constants inside
each module be bounded and separated from zero, but the ratios between
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modules form a well-separated ensemble. A reaction network that has
a group of constants with comparable values gives us an example of the
simplest modular structure: one module includes several reactions and
other modules arise from one reaction. In Section 7.7 we describe all
solvable modules such that it is possible to solve the kinetic equation
for every module in explicit analytical (algebraic) form with quadratures
(even for nonconstant in time reaction rate constants).

(iii) Construction of dominant systems for nonlinear reaction networks. The
first idea here is the representation of a nonlinear reaction as a
pseudomonomolecular reaction: if for reaction A+B-y concentrations
cA and cB are well separated, say, cA � cB, then we can consider this
reaction as B-y with rate constant dependent on cA. The relative change
of cA is slow, and we can consider this reaction as pseudomonomolecular
until the relation cA � cB changes to cA � cB. We can assume that in the
general case only for small fraction of nonlinear reactions the pseudomo-
nomolecular approach is not applicable, and this set of genuinely
nonlinear reactions changes in time, but remains small. For nonlinear
systems, even the realization of the limiting step idea for steady states
of a one-route mechanism of a catalytic reaction is nontrivial and was
developed through the concept of kinetic polynomial (Lazman and
Yablonskii, 1988).

Finally, the concept of ‘‘limit simplification’’ will be developed. For multiscale
nonlinear reaction networks the expected dynamical behavior is to be approxi-
mated by the system of dominant networks. These networks may change in time
but remain small enough.

This hypothetical picture should give an answer to a very practical question:
how to describe kinetics beyond the standard quasi-steady-state and quasi-
equilibrium approximations (Schnell and Maini, 2002). We guess that the answer
has the following form: during almost all time almost everything could be
simplified and the whole system behaves as a small one. But this picture is also
nonstationary: this small system change in time. Almost always ‘‘something is
very small and something is very big’’, but due to nonlinearity this ordering can
change in time. The whole system walks along small subsystems, and constants
of these small subsystems change in time under control of the whole system
state. The dynamics of this walk supplements the dynamics of individual small
subsystems.

The corresponding structure of fast–slow time separation in phase space
is not necessarily a smooth slow invariant manifold, but may be similar to a
‘‘crazy quilt’’ and may consist of fragments of various dimensions that do not join
smoothly or even continuously.
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APPENDIX 1. ESTIMATES OF EIGENVECTORS FOR DIAGONALLY
DOMINANT MATRICES WITH DIAGONAL GAP
CONDITION

The famous Gershgorin theorem gives estimates of eigenvalues. The estimates of
correspondent eigenvectors are not so well-known. In the chapter we use some
estimates of eigenvectors of kinetic matrices. Here we formulate and prove these
estimates for general matrices. Below A ¼ ðaijÞ is a complex n� n matrix,
Pi ¼

P
j;jaijaijj (sums of nondiagonal elements in rows), Qi ¼

P
j;jaijajij (sums of

nondiagonal elements in columns).
Gershgorin theorem (Marcus and Minc, 1992, p. 146): The characteristic roots

of A lie in the closed region GP of the z-plane

GP
¼ [

i
GP

i GP
i ¼ zj z� aiij j 	 Pif g


 �
(83)
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Analogously, the characteristic roots of A lie in the closed region GQ of the
z-plane

GQ
¼ [

i
GQ

i GQ
i zj z� aiij j 	 Qi

� � �
(84)

Areas GP
i and GQ

i are the Gershgorin discs.
Gershgorin discs GP

i (i ¼ 1,y, n) are isolated, if GP
i \ GP

j ¼+ for i6¼j. If discs
GP

i (i ¼ 1,y, n) are isolated, then the spectrum of A is simple, and each
Gershgorin disc GP

i contains one and only one eigenvalue of A (Marcus and Minc,
1992, p. 147). The same is true for discs GQ

i .
Below we assume that Gershgorin discs GQ

i (i ¼ 1,y, n) are isolated, this
means that for all i,j

jaii � ajjj4Qi þQj (85)

Let us introduce the following notations:

Qi

jaiij
¼ �i;

jaijj

jajjj
¼ wij �i ¼

X
l

dli

 !
;

min
j

jaii � ajjj

jaiij
¼ gi

(86)

Usually, we consider ei and wij as sufficiently small numbers. In contrary,
gi should not be small, (this is the gap condition). For example, if for
any two diagonal elements aii and ajj either aii � ajj or aii � ajj, then gi\1
for all i.

Let l1 2 GQ
1 be the eigenvalue of A ðjl1 � a11joQ1Þ. Let us estimate the

correspondent right eigenvector xð1Þ ¼ ðxiÞ: Axð1Þ ¼ l1xð1Þ. We take x1 ¼ 1 and
write equations for xi (i 6¼1):

ðaii � a11 � y1Þxi þ
X

j;ja1;i

aijxj ¼ �ai1 (87)

where y1 ¼ l1 � a11, jy1joQ1.
Let us introduce new variables

~x ¼ ð~xiÞ; ~xi ¼ xiðaii � a11Þ ði ¼ 2; . . . ; nÞ

In these variables,

1�
y1

aii � a11

� �
~xi þ

X
j;ja1;i

aij

ajj � a11

~xj ¼ �ai1 (88)

or in matrix notations: ð1� BÞ~x ¼ �~a1, where ~a1 is a vector column with
coordinates ai1. Because of gap condition and smallness of ei and wij we can
consider matrix B as a small matrix, assume that 8B8o1 and (1�B) is reversible
(for detailed estimate of 8B8 see below).

For ~x we obtain:

~x ¼ �~a1 � Bð1� BÞ�1 ~a1 (89)
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and for residual estimate

kBð1� BÞ�1 ~a1k 	
kBk

1� kBk
k~a1k (90)

For eigenvector coordinates we get from Equation (89):

xi ¼ �
ai1

aii � a11
�
ðBð1� BÞ�1 ~a1Þi

aii � a11
(91)

and for residual estimate

jðBð1� BÞ�1 ~a1Þij

jaii � a11j
	
kBk

1� kBk

k~a1k

jaii � a11j
(92)

Let us give more detailed estimate of residual. For vectors we use l1 norm:
kxk ¼

P
jxij. The correspondent operator norm of matrix B is

kBk ¼ max
jxj¼1
kBxk 	

X
i

max
j
jbijj

With the last estimate for matrix B (88) we find:

jbiij 	
Q1

jaii � a11j
	
�1

g1

	
�

g
;

jbijj ¼
jaijj

jajj � a11j
	

wij

gj

	
w
g
ðiajÞ

(93)

where � ¼ maxi�i, w ¼ maxi;jwij and g ¼ minigi. By definition, eXw, and for
all i,j the simple estimate holds: jbijj 	 �=g. Therefore, 8Bx8pne/g and
8B8/(1�8B8)pne/(g-ne) (under condition gWne). Finally, k~a1k ¼ Q1 and for
residual estimate we get:

xi þ
ai1

aii � a11

����
���� 	 n�2

gðg� n�Þ
ðia1Þ (94)

More accurate estimate can be produced from inequalities (93), if it is
necessary. For our goals it is sufficient to use the following consequence of
Equation (94):

jxij 	
w
g
þ

n�2

gðg� n�Þ
ðia1Þ (95)

With this accuracy, eigenvectors of A coincide with standard basis vectors, i.e.
with eigenvectors of diagonal part of A, diagfa11; . . . ; anng.
APPENDIX 2. TIME SEPARATION AND AVERAGING IN CYCLES

In Section 2, we analyzed relaxation of a simple cycle with limitation as a
perturbation of the linear chain relaxation by one more step that closes the chain
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into the cycle. The reaction rate constant for this perturbation is the smallest one.
For this analysis we used explicit estimates (5) of the chain eginvectors for
reactions with well-separated constants.

Of course, one can use estimates (34)–(37) to obtain a similar perturbation
analysis for more general acyclic systems (instead of a linear chain). If we add a
reaction to an acyclic system (after that a cycle may appear) and assume that the
reaction rate constant for additional reaction is smaller than all other reaction
constants, then the generalization is easy.

This smallness with respect to all constants is required only in a very special
case when the additional reaction has a form Ai ! Aj (with the rate constant kji)
and there is no reaction of the form Ai ! . . . in the nonperturbed system. In
Section 7 and Appendix 1 we demonstrated that if in a nonperturbed acyclic
system there exists another reaction of the form Ai ! . . . with rate constant ki,
then we need inequality kji � ki only. This inequality allows us to get the uniform
estimates of eigenvectors for all possible values of other rate constants (under the
diagonally gap condition in the nonperturbed system).

For substantiation of cycle’s surgery we need additional perturbation analysis
for zero eigenvalues. Let us consider a simple cycle A1 ! A2 ! . . .! An ! A1

with reaction Ai ! . . . rate constants ki. We add a perturbation A1 ! 0 (from A1

to nothing) with rate constant ek1. Our goal is to demonstrate that the zero
eigenvalue moves under this perturbation to l0 ¼ ��w�ð1þ wwÞ, the correspon-
dent left and right eigenvectors r0 and l0 are r0

i ¼ c�i ð1þ wriÞ and l0i ¼ 1þ wli, and
ww, wri and wli are uniformly small for a given sufficiently small e under all
variations of rate constants. Here, w� is the stationary cycle reaction rate and c�i
are stationary concentrations for a cycle (11) normalized by condition

P
ic
�
i ¼ 1.

The estimate �w� for �l0 is e-small with respect to any reaction of the cycle:
w� ¼ kic

�
i oki for all i (because c�i o1) and �w� � ki for all i.

The kinetic equation for the perturbed system is:

_c1 ¼ � ð1þ �Þk1c1 þ kncn,

_ci ¼ � kici þ ki�1ci�1 ðfor ia1Þ
(96)

In the matrix form we can write

_c ¼ Kc ¼ ðK0 � �k1e1e1>Þc (97)

where K0 is the kinetic matrix for nonperturbed cycle. To estimate the right
perturbed eigenvector r0 and eigenvalue l0 we are looking for transformation of
matrix K into the form K ¼ Kr � yre1>, where K is a kinetic matrix for extended
reaction system with components A1; . . . ; An, Krr ¼ 0 and

P
iri ¼ 1. In that case,

r is the eigenvector, and l ¼ �yr1 is the correspondent eigenvalue.
To find vector r, we add to the cycle new reactions A1 ! Ai with rate

constants ek1ri and subtract the correspondent kinetic terms from the perturba-
tion term �e1e1>c. After that, we get K ¼ Kr � yre1> with y ¼ �k1 and

ðKrcÞ1 ¼ � k1c1 � �k1ð1� r1Þc1 þ kncn,

ðKrcÞi ¼ � kici þ �k1ric1 þ ki�1ci�1 for i41
(98)
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We have to find a positive normalized solution ri40,
P

iri ¼ 1 to equation
Krr ¼ 0. This is the fixed-point equation: for every positive normalized r there
exists unique positive normalized steady state c�ðrÞ: Krc�ðrÞ ¼ 0, c�i 40 andP

ic
�
i ðrÞ ¼ 1. We have to solve the equation r ¼ c�ðrÞ. The solution exists because

the Brauer fixed point theorem.
If r ¼ c�ðrÞ then kiri � �k1rir1 ¼ ki�1ri�1. We use notation w�i ðrÞ for the

correspondent stationary reaction rate along the ‘‘nonperturbed route’’:
w�i ðrÞ ¼ kiri. In this notation, w�i ðrÞ � �riw�1ðrÞ ¼ w�i�1ðrÞ. Hence, jw�i ðrÞ � w�1ðrÞj
o�w�1ðrÞ (or jkiri � k1r1jo�k1r1). Assume eo1/4 (to provide 1�2eo1/
(17e)o1+2e). Finally,

ri ¼
1

ki

1þ wiP
j

ð1=kjÞ
¼ ð1þ wiÞc

�
i (99)

where the relative errors jwijo3� and c�i ¼ c�i ð0Þ is the normalized steady state for
the nonperturbed system. For cycles with limitation, ri � ð1þ wiÞklim=ki with
jwijo3�. For the eigenvalue we obtain

l0 ¼ � �w
�
1ðrÞ ¼ ��w

�
i ðrÞð1þ BiÞ

¼ � �w�ð1þ wÞ ¼ ��kic
�
i ð0Þð1þ wÞ

(100)

for all i, with jBijo� and |w|o3e. |w|o3e. Therefore, l0 is e-small rate constant ki

of the nonperturbed cycle. This implies that l0 is e-small with respect to the
real part of every nonzero eigenvalue of the nonperturbed kinetic matrix K0

(for given number of components n). For the cycles from multiscale ensembles
these eigenvalues are typically real and close to �ki for nonlimiting rate
constants, hence we proved for l0 even more than we need.

Let us estimate the correspondent left eigenvector l0 (a vector row). The
eigenvalue is known, hence it is easy to do just by solution of linear equations.
This system of n�1 equations is:

�l1ð1þ �Þk1 þ l2k1 ¼ l0l1

�liki þ liþ1ki ¼ l0li; i ¼ 2; . . . ;n� 1
(101)

For normalization, we take l1 ¼ 1 and find:

l2 ¼
l0

k1
þ 1þ �

� �
l1; liþ1 ¼

l0

ki
þ 1

� �
li i42 (102)

Formulas (99), (100) and (102) give the backgrounds for surgery of cycles with
outgoing reactions. The left eigenvector gives the slow variable: if there are some
incomes to the cycle, then

_c1 ¼ � ð1þ �Þk1c1 þ kncn þ f1ðtÞ,

_ci ¼ � kici þ ki�1ci�1 þ fiðtÞ ðfor ia1Þ
(103)

and for slow variable ~c ¼
P

lici we get

d~c

dt
¼ l0~cþ

X
i

lifiðtÞ (104)
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This is the kinetic equation for a glued cycle. In the leading term, all the
outgoing reactions Ai ! 0 with rate constants k ¼ �ki give the same eigenvalue
��w� (100).

Of course, similar results for perturbations of zero eigenvalue are valid for
more general ergodic chemical reaction network with positive steady state, and
not only for simple cycles, but for cycles we get simple explicit estimates, and this
is enough for our goals.
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