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Abstract

The concept of the limiting step gives the limit simplification: the whole
network behaves as a single step. This is the most popular approach for
model simplification in chemical kinetics. However, in its elementary form
this idea is applicable only to the simplest linear cycles in steady states. For
simple cycles the nonstationary behavior is also limited by a single step, but
not the same step that limits the stationary rate. In this chapter, we develop
a general theory of static and dynamic limitation for all linear multiscale
networks. Our main mathematical tools are auxiliary discrete dynamical
systems on finite sets and specially developed algorithms of “cycles surgery”
for reaction graphs. New estimates of eigenvectors for diagonally dominant
matrices are used.

Multiscale ensembles of reaction networks with well-separated constants
are introduced and typical properties of such systems are studied. For any
given ordering of reaction rate constants the explicit approximation of
steady state, relaxation spectrum and related eigenvectors (“modes”) is
presented. In particular, we prove that for systems with well-separated
constants eigenvalues are real (damped oscillations are improbable). For
systems with modular structure, we propose the selection of such modules
that it is possible to solve the kinetic equation for every module in the
explicit form. All such “solvable” networks are described. The obtained
multiscale approximations, that we call “dominant systems” are
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computationally cheap and robust. These dominant systems can be used for
direct computation of steady states and relaxation dynamics, especially
when kinetic information is incomplete, for design of experiments and
mining of experimental data, and could serve as a robust first approximation
in perturbation theory or for preconditioning.

1. INTRODUCTION

Which approach to model reduction is the most important? Population is not the
ultimate judge, and popularity is not a scientific criterion, but “Vox populi, vox
Dei”, especially in the epoch of citation indexes, impact factors and bibliometrics.
Let us ask Google. It gave on 31st December 2006:

— for “quasi-equilibrium” — 301,000 links;

— for “quasi-steady state” 347,000 and for “pseudo-steady state” 76,200, 42,3000
together;

— for our favorite ““slow manifold” (Gorban and Karlin, 2003, 2005) 29,800 links
only, and for “invariant manifold” slightly more, 98,100;

— for such a framework topic as “singular perturbation” Google gave 361,000 links;

— for “model reduction” even more, as we did expect, 373,000;

— but for “limiting step” almost two times more — 714,000!

Our goal is the general theory of static and dynamic limitation for multiscale
networks. The concept of the limiting step gives, in some sense, the limit
simplification: the whole network behaves as a single step. As the first result of
our chapter we introduce further detail in this idea: the whole network behaves
as a single step in statics, and as another single step in dynamics: even for simplest
cycles the stationary rate and the relaxation time to this stationary rate are limited
by different reaction steps, and we describe how to find these steps.

The concept of limitation is very attractive both for theorists and
experimentalists. It is very useful to find conditions when a selected reaction
step becomes the limiting step. We can change conditions and study the network
experimentally, step-by-step. It is very convenient to model a system with
limiting steps: the model is extremely simple and can serve as a very elementary
building block for further study of more complex systems, a typical situation
both in industry and in systems biology.

In the IUPAC Compendium of Chemical Terminology (2007) one can find two
articles with a definition of limitation.

— Rate-determining step (rate-limiting step) (2007): “These terms are best
regarded as synonymous with rate-controlling step”.

— Rate-controlling step (2007): “A rate-controlling (rate-determining or rate-
limiting) step in a reaction occurring by a composite reaction sequence is an
elementary reaction the rate constant for which exerts a strong effect —
stronger than that of any other rate constant — on the overall rate”.

It is not wise to object to a definition and here we do not object, but, rather,
complement the definition by additional comments. The main comment is that
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usually when people are talking about limitation they expect significantly more:
there exists a rate constant which exerts such a strong effect on the overall rate
that the effect of all other rate constants together is significantly smaller. Of
course, this is not yet a formal definition, and should be complemented by a
definition of “effect”, for example, by “control function” identified by derivatives
of the overall rate of reaction, or by other overall rate “sensitivity parameters”
(Rate-controlling step, 2007).

For the IUPAC Compendium definition a rate-controlling step always exists,
because among the control functions generically exists the biggest one. On the
contrary, for the notion of limitation that is used in practice, there exists a
difference between systems with limitation and systems without limitation.

An additional problem arises: are systems without limitation rare or should
they be treated equitably with limitation cases? The arguments in favor of
limitation typicality are as follows: the real chemical networks are multi-scale with
very different constants and concentrations. For such systems it is improbable to
meet a situation with compatible effects of all different stages. Of course, these
arguments are statistical and apply to generic systems from special ensembles.

During the last century, the concept of the limiting step was revised several
times. First simple idea of a “narrow place” (a least conductive step) could be
applied without adaptation only to a simple cycle of irreversible steps that are of
the first order (see Chapter 16 of the book Johnston (1966) or the paper of Boyd
(1978)). When researchers try to apply this idea in more general situations they
meet various difficulties such as:

— Some reactions have to be “pseudomonomolecular”. Their constants depend
on concentrations of outer components, and are constant only under condition
that these outer components are present in constant concentrations, or change
sufficiently slow. For example, the simplest Michaelis-Menten enzymatic
reaction is E+5—ES— E+P (E here stands for enzyme, S for substrate and P for
product), and the linear catalytic cycle here is S—ES—S. Hence, in general we
must consider nonlinear systems.

— Even under fixed outer components concentration, the simple “narrow place”
behavior could be spoiled by branching or by reverse reactions. For such
reaction systems definition of a limiting step simply as a step with the smallest
constant does not work. The simplest example is given by the cycle: A; <> A, —
Az—A;. Even if the constant of the last step A3;— A; is the smallest one, the
stationary rate may be much smaller than kzb (where b is the overall balance of
concentrations, b = c;+cy+cs), if the constant of the reverse reaction A, — A; is
sufficiently big.

In a series of papers, Northrop (1981, 2001) clearly explained these difficulties
with many examples based on the isotope effect analysis and suggested that the
concept of rate-limiting step is “outmoded”. Nevertheless, the main idea of
limiting is so attractive that Northrop’s arguments stimulated the search for
modification and improvement of the main concept.

Ray (1983) proposed the use of sensitivity analysis. He considered cycles of
reversible reactions and suggested a definition: The rate-limiting step in a reaction
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sequence is that forward step for which a change of its rate constant produces the largest
effect on the overall rate. In his formal definition of sensitivity functions
the reciprocal reaction rate (1/W) and rate constants (1/k;) were used and the
connection between forward and reverse step constants (the equilibrium
constant) was kept fixed.

Ray’s approach was revised by Brown and Cooper (1993) from the system
control analysis point of view (see the book of Cornish-Bowden and Cardenas,
1990). They stress again that there is no unique rate-limiting step specific for an
enzyme, and this step, even if it exists, depends on substrate, product and
effector concentrations. They also demonstrated that the control coefficients

CZV — <ﬁﬂ>
' W 0k; [SLIP]....

where Wis the stationary reaction rate and k; are constants, are additive and obey
the summation theorems (as concentrations do). A simple relation between control
coefficients of rate constants and intermediate concentrations was reported by
Kholodenko et al. (1994). This relation connects two type of experiments:
measurement of intermediate levels and steady-state rate measurements.

For the analysis of nonlinear cycles the new concept of kinetic polynomial was
developed (Lazman and Yablonskii, 1991; Yablonskii et al., 1982). It was proven
that the stationary state of the single-route reaction mechanism of catalytic
reaction can be described by a single polynomial equation for the reaction rate.
The roots of the kinetic polynomial are the values of the reaction rate in the
steady state. For a system with limiting step the kinetic polynomial can be
approximately solved and the reaction rate found in the form of a series in
powers of the limiting-step constant (Lazman and Yablonskii, 1988).

In our approach, we analyze not only the steady-state reaction rates, but also
the relaxation dynamics of multiscale systems. We focused mostly on the case
when all the elementary processes have significantly different timescales. In this
case, we obtain “limit simplification” of the model: all stationary states and
relaxation processes could be analyzed “to the very end”, by straightforward
computations, mostly analytically. Chemical kinetics is an inexhaustible source of
examples of multiscale systems for analysis. It is not surprising that many ideas
and methods for such analysis were first invented for chemical systems.

In Section 2 we analyze a simple example and the source of most
generalizations, the catalytic cycle, and demonstrate the main notions on this
example. This analysis is quite elementary, but includes many ideas elaborated in
full in subsequent sections.

There exist several estimates for relaxation time in chemical reactions
(developed, e.g. by Cheresiz and Yablonskii, 1983), but even for the simplest
cycle with limitation the main property of relaxation time is not widely known.
For a simple irreversible catalytic cycle with limiting step the stationary rate is
controlled by the smallest constant, but the relaxation time is determined by the
second in order constant. Hence, if in the stationary rate experiments for that
cycle we mostly extract the smallest constant, in relaxation experiments another,
the second in order constant will be observed.
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It is also proven that for cycles with well-separated constants damped
oscillations are impossible, and spectrum of the matrix of kinetic coefficients is
real. For general reaction networks with well-separated constants this property is
proven in Section 4.

Another general effect observed for a cycle is robustness of stationary rate and
relaxation time. For multiscale systems with random constants, the standard
deviation of constants that determine stationary rate (the smallest constant for a
cycle) or relaxation time (the second in order constant) is approximately n times
smaller than the standard deviation of the individual constants (where n is the
cycle length). Here we deal with the so-called order statistics. This decrease of the
deviation as n~! is much faster than for the standard error summation, where it
decreases with increasing 1 as n~ /%

In more general settings, robustness of the relaxation time was studied by
Gorban and Radulescu (2007) for chemical kinetics models of genetic and
signaling networks. Gorban and Radulescu (2007) proved that for large
multiscale systems with hierarchical distribution of timescales the variance of
the inverse relaxation time (as well as the variance of the stationary rate) is much
lower than the variance of the separate constants. Moreover, it can tend to 0 faster
than 1/n, where n is the number of reactions. It was demonstrated that similar
phenomena are valid in the nonlinear case as well. As a numerical illustration we
used a model of a signaling network that can be applied to important
transcription factors such as NFkB.

Each multiscale system is characterized by its structure (the system of
elementary processes) and by the rate constants of these processes. To make any
general statement about such systems when the structure is given but the
constants are unknown it is useful to take the constant set as random and
independent. But it is not obvious how to chose the random distribution. The
usual idea to take normal or uniform distribution meets obvious difficulties, the
timescales are not sufficiently well separated.

The statistical approach to chemical kinetics was developed by Li et al.
(2001, 2002), and high-dimensional model representations (HDMR) were
proposed as efficient tools to provide a fully global statistical analysis of a
model. The work of Feng et al. (2004) was focused on how the network properties
are affected by random rate constant changes. The rate constants were
transformed to a logarithmic scale to ensure an even distribution over the large
space.

The log-uniform distribution on sufficiently wide interval helps us to improve
the situation, indeed, but a couple of extra parameters appears: « = min log k
and f =max log k. We have to study the asymptotics «——o0, f— co. This
approach could be formalized by means of the uniform invariant distributions of
log k on R". These distributions are finite-additive, but not countable-additive
(not s-additive).

The probability and measure theory without countable additivity has a long
history. In Euclid’s time only arguments based on finite-additive properties of
volume were legal. Euclid meant by equal area the scissors congruent area. Two
polyhedra are scissors-congruent if one of them can be cut into finitely many
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polyhedral pieces which can be reassembled to yield the second. But all proofs of
the formula for the volume of a pyramid involve some form of limiting process.
Hilbert asked in his third problem: are two Euclidean polyhedra of the same
volume scissors congruent? The answer is “no” (a review of old and recent
results is presented by Neumann, 1998). There is another invariant of cutting and
gluing polyhedra.

Finite-additive invariant measures on non-compact groups were studied by
Birkhoff (1936) (see also the book of Hewitt and Ross, 1963, Chapter 4). The
frequency-based Mises approach to probability theory foundations (von Mises,
1964), as well as logical foundations of probability by Carnap (1950) do not need
c-additivity. Non-Kolmogorov probability theories are discussed now in the
context of quantum physics (Khrennikov, 2002), nonstandard analysis (Loeb,
1975) and many other problems (and we do not pretend provide here is a full
review of related works).

We answer the question: What does it mean “to pick a multiscale system
at random”? We introduce and analyze a notion of multiscale ensemble of
reaction systems. These ensembles with well-separated variables are presented in
Section 3.

The best geometric example that helps us to understand this problem is one of
the Lewis Carroll’s Pillow Problems published in 1883 (Carroll, 1958): “Three
points are taken at random on an infinite plane. Find the chance of their being the
vertices of an obtuse-angled triangle.” (In an acute-angled triangle all angles are
comparable, in an obtuse-angled triangle the obtuse angle is bigger than others
and could be much bigger.) The solution of this problem depends significantly on
the ensemble definition. What does it mean “points are taken at random on an
infinite plane”? Our intuition requires translation invariance, but the normalized
translation invariant measure on the plain could not be s-additive. Nevertheless,
there exist finite-additive invariant measures.

Lewis Carroll proposed a solution that did not satisfy some of modern
scientists. There exists a lot of attempts to improve the problem statement
(Eisenberg and Sullivan, 1996; Falk and Samuel-Cahn, 2001; Guy, 1993; Portnoy,
1994): reduction from infinite plane to a bounded set, to a compact symmetric
space, etc. But the elimination of paradox destroys the essence of Carroll’s
problem. If we follow the paradox and try to give a meaning to “points are taken
at random on an infinite plane” then we replace g-additivity of the probability
measure by finite-additivity and come to the applied probability theory for finite-
additive probabilities. Of course, this theory for abstract probability spaces
would be too poor, and some additional geometric and algebraic structures are
necessary to build rich enough theory.

This is not just a beautiful geometrical problem, but rather an applied
question about the proper definition of multiscale ensembles. We need such a
definition to make any general statement about multiscale systems, and briefly
analyze lessons of Carroll’s problem in Section 3.

In this section, we use some mathematics to define the multiscale ensembles
with well-separated constants. This is necessary background for the analysis of
systems with limitation, and technical consequences are rather simple. We need
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only two properties of a typical system from the multiscale ensemble with well-
separated constants:

(i)  Every two reaction rate constants k, k', are connected by the relation k>>k" or
k«k' (with probability close to 1);

(ii)  The first property persists (with probability close to 1), if we delete two
constants k and k' from the list of constants, and add a number kk’ or a
number k/k’ to that list.

If the reader can use these properties (when it is necessary) without additional
clarification, it is possible to skip reading Section 3 and go directly to more applied
sections. In Section 4 we study static and dynamic properties of linear multiscale
reaction networks. An important instrument for that study is a hierarchy of
auxiliary discrete dynamical system. Let A; be nodes of the network (“compo-
nents”), A;—A; be edges (reactions), and k;j; be the constants of these reactions
(please pay attention to the inverse order of subscripts). A discrete dynamical
system ¢ is a map that maps any node A; in a node Ayg;. To construct a first
auxiliary dynamical system for a given network we find for each A; the maximal
constant of reactions A;— Aj: kg =>kj; for all j, and ¢(i) = i if there are no reactions
A;j— Aj. Attractors in this discrete dynamical system are cycles and fixed points.

The fast stage of relaxation of a complex reaction network could be described
as mass transfer from nodes to correspondent attractors of auxiliary dynamical
system and mass distribution in the attractors. After that, a slower process of
mass redistribution between attractors should play a more important role. To
study the next stage of relaxation, we should glue cycles of the first auxiliary
system (each cycle transforms into a point), define constants of the first derivative
network on this new set of nodes, construct for this new network an (first)
auxiliary discrete dynamical system, etc. The process terminates when we get a
discrete dynamical system with one attractor. Then the inverse process of cycle
restoration and cutting starts. As a result, we create an explicit description of the
relaxation process in the reaction network, find estimates of eigenvalues and
eigenvectors for the kinetic equation, and provide full analysis of steady states for
systems with well-separated constants.

The problem of multiscale asymptotics of eigenvalues of nonself-
adjoint matrices was studied by Vishik and Ljusternik (1960) and Lidskii
(1965). Recently, some generalizations were obtained by idempotent (min-plus)
algebra methods (Akian et al., 2004). These methods provide a natural language
for discussion of some multiscale problems (Litvinov and Maslov, 2005). In the
Vishik-Ljusternik-Lidskii theorem and its generalizations the asymptotics of
eigenvalues and eigenvectors for the family of matrices Aji(¢) = aijaA“' + o(e%) is
studied for ¢>0, e—0.

In the chemical reaction networks that we study, there is no small parameter ¢
with a given distribution of the orders ¢4 of the matrix nodes. Instead of these
powers of ¢ we have orderings of rate constants. Furthermore, the matrices of
kinetic equations have some specific properties. The possibility to operate with
the graph of reactions (cycles surgery) significantly helps in our constructions.
Nevertheless, there exists some similarity between these problems and, even for
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general matrices, graphical representation is useful. The language of idempotent
algebra (Litvinov and Maslov, 2005), as well as nonstandard analysis with
infinitisemals (Albeverio et al., 1986), can be used for description of the multiscale
reaction networks, but now we postpone this for later use.

We summarize results of relaxation analysis and describe the algorithm of
approximation of steady state and relaxation in Section 4.3. After that, several
examples of networks are analyzed. In Section 5 we illustrate the analysis of
dominant systems on a simple example, the reversible triangle of reactions:
Ay Ay > A3 Aq. This simplest example became very popular for the lumping
analysis case study after the well-known work of Wei and Prater (1962). The most
important mathematical proofs are presented in the appendices.

In multiscale asymptotic analysis of reaction network we found several very
attractive zero-one laws. First of all, components eigenvectors are close to 0 or +1.
This law together with two other zero-one laws are discussed in Section 6: “Three
zero-one laws and nonequilibrium phase transitions in multiscale systems”.

A multiscale system where every two constants have very different orders of
magnitude is, of course, an idealization. In parametric families of multiscale
systems there could appear systems with several constants of the same order.
Hence, it is necessary to study effects that appear due to a group of constants of
the same order in a multiscale network. The system can have modular structure,
with different time scales in different modules, but without separation of times
inside modules. We discuss systems with modular structure in Section 7. The full
theory of such systems is a challenge for future work, and here we study
structure of one module. The elementary modules have to be solvable. That
means that the kinetic equations could be solved in explicit analytical form. We
give the necessary and sufficient conditions for solvability of reaction networks.
These conditions are presented constructively, by algorithm of analysis of the
reaction graph.

It is necessary to repeat our study for nonlinear networks. We discuss this
problem and perspective of its solution in the concluding Section 8. Here we
again use the experience summarized in the IUPAC Compendium (Rate-
controlling step, 2007) where the notion of controlling step is generalized onto
nonlinear elementary reaction by inclusion of some concentration into “pseudo-
first-order rate constant”.

2. STATIC AND DYNAMIC LIMITATION IN A LINEAR CHAIN AND
A SIMPLE CATALYTIC CYCLE

2.1 Linear chain

A linear chain of reactions, A; — A, — ... A,, with reaction rate constants k; (for
A; — Aij1), gives the first example of limitation Let the reaction rate constant k;
be the smallest one. Then we expect the following behavior of the reaction chain
in timescale ~ 1/k;: all the components Ay, ..., A; 1 transform fast into A,, and
all the components Ay;1,...,A, 1 transform fast into A,, only two components,
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A, and A, are present (concentrations of other components are small), and the
whole dynamics in this time scale can be represented by a single reaction
A, — A, with reaction rate constant k. This picture becomes more exact when k,
becomes smaller with respect to other constants.

The kinetic equation for the linear chain is

¢ = ki—1ci-1 — kic; (1)

where ¢; is concentration of A; and k;_; for i = 1. The coefficient matrix K of this
equation is very simple. It has nonzero elements only on the main diagonal, and
one position below. The eigenvalues of K are —k; (i =1, ...,n—1) and 0. The left
and right eigenvectors for 0 eigenvalue, I° and °, are:

’=@1,...,1), °=(0,0,...,0,1) )

all coordinates of I° are equal to 1, the only nonzero coordinate of 7 is ) and we
represent vector-column ¥ in row.

Below we use explicit form of K left and right eigenvectors. Let vector-column
' and vector-row I' be right and left eigenvectors of K for eigenvalue —k;.
For coordinates of these elgenvectors we use notation ri and . Let us choose
a normalization condition 7} =I; = 1. It is straightforward to check that 7, =0
(j<i) and 17_0 (j>1), r ]_kr]/(k]+1 ki) (j=i) and l 1 =kialj/ (ki1 —kj)
(j<i), and

Tiem = Hk e K’ 1_[k, ]—k ®)

i+j T 1

It is convenient to introduce formally ky = 0. Under selected normalization
condition, the inner product of eigenvectors is: I Y = 0ij, where 9;; is the
Kronecker delta.

If the rate constants are well separated (i.e. any two constants, k; and k]- are
connected by relation k; > k; or k; < k;,

ki 1, if ki <ki_j; A
ki '—k 0, if ki > kij @
Hence, |lffm| ~ 1 or |l | = 0. To demonstrate that also |”1+m| ~ 1 or |rl+m| ~ (0, we

shift nominators in the product (3) on such a way:
ok T ki

T ki — ki 1 ki — ki

Exactly as in Equation (4), each multiplier
kiyj
(kitj — ki)
here is either almost 1 or almost 0, and
ki
(Kizm — ki)
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is either almost 0 or almost —1. In this zero-one asymptotics

l: —m
if ki,j>ki for all j=1,...,m, else l;_m ~0;
rh=1, rfm ~—1 5)

if kiyj>ki for all j=1,...,m—1
and ki, <k;, else ri m =0

In this asymptotlc, only two coordinates of right eigenvector 7' can have
nonzero values, r; =1 and rj,,, ~ —1 where m is the first such positive integer
that i+m<n and ki <k;. Such m always exists because k, =0. For left
eigenvector ', I ~1 and [ _4-j ~0 where j>0 and ¢ the first such
positive mteger that i—q—1>0 and k, 4-1<k;. It is possible that such g does not
exist. In that case, all l’ i~ 1 for j=0. It is straightforward to check that in this
asymptotic I'f = dij.

The s1mp1est example gives the order k; > ky > - > k1 : [} i_j ~ 1 for j=0,
ri=1, r, ~—1 and all other coordinates of elgenvectors are close to zero.
For the inverse order, k1 < ky € --- < k,_1, [ =1, ' =1, rl, & —1 and all other
coordinates of eigenvectors are close to zero.

For less trivial example, let us find the asymptotic of left and right
eigenvectors for a chain of reactions:

A= Ay 5 Ay —5 Ay - As 5 Ag

where the upper index marks the order of rate constants: ks > ks > kp > k3 > k;
(ki is the rate constant of reaction A; — ...).
For left eigenvectors, rows I', we have the following asymptotics:

I' ~(1,0,0,0,0,0), >~ (0,1,0,0,0,0),
P~ (0,1,1,0,0,0), I*~(0,0,0,1,0,0), (6)
P ~(0,0,0,1,1,0)
For right eigenvectors, columns 7, we have the following asymptotics (we write
vector-columns in rows):
r' 2 (1,0,0,0,0,—1), * ~(0,1,—1,0,0,0),
2 (0,0,1,0,0,—1), 7*~(0,0,0,1,—1,0), @)
r ~(0,0,0,0,1,—1)

The correspondent approximation to the general solution of the kinetic equations
is:

n—1
c(t) = (e + > (I'c(0)r' exp(—kit) ®)

i=1
where c(0) is the initial concentration vector, and for left and right eigenvectors I
and 7' we use their zero-one asymptotic.
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Asymptotic formulas allow us to transform kinetic matrix K to a matrix with
value of diagonal element could not be smaller than the value of any element
from the correspondent column and row.

Let us represent the kinetic matrix K in the basis of approximations to
eigenvectors (7). The transformed matrix is I~<ij =I'K¥ (i, j=0,1,..5):

k 0 0 0 00
ki =k, 0 0 0 0
0 k -k 0 00
K=1"9 o ks —k¢ 0 O
0 0 0 ki —ks O
0 0 0 0 ks O
0 0 0 0 0 0] ©)
0 -k, 0 0 0 0
0k -k 0 0 0
K=1 ki ks -k 0 0
0 0 —ky ks —ki O
0 0 —ky ks —ks —ks

The transformed matrix has an important property
IKij| < min{|Ki. K1}

The initial matrix K is diagonally dominant in columns, but its rows can
include elements that are much bigger than the correspondent diagonal elements.

We mention that a naive expectation I~<,-j ~ d;j is not realistic: some of the
nondiagonal matrix elements K;; are of the same order than min{Kj;, Kj;}. This
example demonstrates that a good approximation to an eigenvector could be not
an approximate eigenvector. If Ke=2%e and |je—f|| is small then f is an
approximation to eigenvector e. If Kf~Af (ie. |[Kf — Af| is small), then f is
an approximate eigenvector for eigenvalue A. Our kinetic matrix K is very
ill-conditioned. Hence, nobody can guarantee that an approximation to eigen-
vector is an approximate eigenvector, or, inverse, an approximate eigenvector
(a “quasimode”) is an approximation to an eigenvector.

The question is, what do we need for approximation of the relaxation process (8).
The answer is obvious: for approximation of general solution (8) with guaranteed
accuracy we need approximation to the genuine eigenvectors (“modes”) with the
same accuracy. The zero-one asymptotic (5) gives this approximation. Below we
always find the modes approximations and not quasimodes.

2.2 General properties of a cycle

The catalytic cycle is one of the most important substructures that we study in
reaction networks. In the reduced form the catalytic cycle is a set of linear
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reactions:
Al — Ay — ... A, — A

Reduced form means that in reality some of these reaction are not
monomolecular and include some other components (not from the list
Aq,...,A,). But in the study of the isolated cycle dynamics, concentrations of
these components are taken as constant and are included into kinetic constants of
the cycle linear reactions.

For the constant of elementary reaction A;— we use the simplified notation k;
because the product of this elementary reaction is known, it is A;,; for i<n and
Aq for i = n. The elementary reaction rate is w; = kjc;, where c; is the concentration
of A;. The kinetic equation is:

Ci = Wi — W; (10
where by definition wy = w,. In the stationary state (¢; = 0), all the w; are equal:
w; = w. This common rate w we call the cycle stationary rate, and
_ b L
k) Ak Tk
where b =} ;c; is the conserved quantity for reactions in constant volume (for
general case of chemical kinetic equations see elsewhere, for example, the book
by Yablonskii et al., 1991). The stationary rate w (11) is a product of the arithmetic

mean of concentrations, b/n, and the harmonic mean of constants (inverse mean
of inverse k;).

w 11)

2.3 Static limitation in a cycle

If one of the constants, kuyin, is much smaller than others (let it be kyin = k),

then
Cy =b<1 —Z%+0<Z%>>,

i<n i<n

k, k,
ci=b<k—i+o<;?i>>, (12)
w=kb(1+0 Zk—"
o z'<nki

or simply in linear approximation

_ B) bR
cn_b<l—zf>, c=b, w=kib (13)

i<n

where we should keep the first-order terms in ¢, in order not to violate the
conservation law.
The simplest zero order approximation for the steady state gives

co=b, ;=0 (i#n) (14)
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This is trivial: all the concentration is collected at the starting point of the
“narrow place”, but may be useful as an origin point for various approximation
procedures.

So, the stationary rate of a cycle is determined by the smallest constant, kpin, if
kmin is sufficiently small:

. kmin
W = kminb if kz <l (15)
i?ﬁkmin

In that case we say that the cycle has a limiting step with constant kmin.

2.4 Dynamical limitation in a cycle

If k,/k; is small for all i<n, then the kinetic behavior of the cycle is extremely
simple: the coefficients matrix on the right-hand side of kinetic equation (10) has
one simple zero eigenvalue that corresponds to the conservation law > ¢;=b
and n—1 nonzero eigenvalues

A = —ki + 0; (i<n) (16)
where 6; — 0 when %, _, (k,/ki) — 0.

It is easy to demonstrate Equation (16): let us exclude the conservation
law (the zero eigenvalue) ) ¢;=b and use independent coordinates c;
(i=1,...,n=1); ¢c,=b—>3,_,ci. In these coordinates the kinetic equation (10)
has the form

¢ = Ke — k,Ac + k,be' (17)
where c is the vector-column with components ¢; (i<n), K the lower triangle
matrix with nonzero elements only in two diagonals: (K); = —ki(i=1,...,n-1),

(K)it1,; =k i=1,..., n—=2) (this is the kinetic matrix for the linear chain of n—1
reactions Ay — A, — ... Ay); A the matrix with nonzero elements only in the
first row: (A);; =1, ¢' the first basis vector (¢ =1, ¢! =0 for 1<i<n). After
that, Equation (16) follows simply from continuous dependence of spectra on
matrix.

The relaxation time of a stable linear system (17) is, by definition,

7= [min{Re(—=2)li=1,...,n —1}]!
For small k,,
t~1/k, k.=min{kili=1,...,n—1)} (18)

In other words, k, is the second slowest rate constant: kpj, <k, < ---

2.5 Relaxation equation for a cycle rate

A definition of the cycle rate is clear for steady states because stationary rates of
all elementary reactions in cycle coincide. There is no common definition of the
cycle rate for nonstationary regimes. In practice, one of steps is the step of
product release (the “final” step of the catalytic transformation), and we can
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consider its rate as the rate of the cycle. Formally, we can take any step and study
relaxation of its rate to the common stationary rate. The single relaxation time
approximation gives for rate w; of any step:

w; = kr(kminb - wi)/'
wi(t) = kminb + e_krt(wi(o) - kminb)

where ki is the limiting (the minimal) rate constant of the cycle and k, the
second in order rate constant of the cycle.

So, for catalytic cycles with the limiting constant ku;,, the relaxation time is
also determined by one constant, but another one. This is k,, the second in order
rate constant. It should be stressed that the only smallness condition is required,
kmin should be much smaller than other constants. The second constant, k, should
be just smaller than others (and bigger than k), but there is no « condition for
k. required.

One of the methods for measurement of chemical reaction constants is the
relaxation spectroscopy (Eigen, 1972). Relaxation of a system after an impact
gives us a relaxation time or even a spectrum of relaxation times. For catalytic
cycle with limitation, the relaxation experiment gives us the second constant k.,
whereas the measurement of stationary rate gives the smallest constant, k. This
simple remark may be important for relaxation spectroscopy of open system.

(19)

2.6 Ensembles of cycles and robustness of stationary rate and
relaxation time

Let us consider a catalytic cycle with random rate constants. For a given
sample constants ki,...,k, the ith order statistics is equal its ith smallest
value. We are interested in the first order (the minimal) and the second order
statistics.

For independent identically distributed constants the variance of
kmin = min{ky, ..., k,} is significantly smaller than the variance of each k;, Var(k).
The same is true for statistic of every order. For many important distributions
(e.g. for uniform distribution), the variance of ith order statistic is of order
~Var(k)/n?. For big n it goes to zero faster than variance of the mean that is of
order ~Var(k)/n. To illustrate this, let us consider #n constants distributed in
interval [a, b]. For each set of constants, ki,...,k, we introduce “symmetric
coordinates” s;: first, we order the constants, a <k; <k, <---kj, <b, then
calculate sy =k;, —a, s; = kl-j+1 —ki (j=1,...,n=1), s, = b —k;,. Transformation
(k1 ..., kn)—>(s0,...,5,) maps a cube [a,b]" onto n-dimensional simplex
Ay =A{(s0,...,84)1> ;5i = b—a} and uniform distribution on a cube transforms
into uniform distribution on a simplex.

For large n, almost all volume of the simplex is concentrated in a small
neighborhood of its center and this effect is an example of measure concentration
effects that play important role in modern geometry and analysis (Gromov, 1999).
All s; are identically distributed, and for normalized variable s =s;/(b — a)
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the first moments are: E(s) = 1/(n+1) = 1/n+0(1/n), E(s*) = 2/[(n + 1)(n + 2)] =
2/n* + o(1/n?),

Var(s) = E(s?) — (E(s))

n 1 N 1)
G O(nz

Hence, for example, Var(kmin) = (b — a)* /n? + o(1/n?). The standard deviation
of kmin goes to zero as 1/n when n increases. This is much faster than 1//n
prescribed to the deviation of the mean value of independent observation (the
“law of errors”). The same asymptotic ~1/# is true for the standard deviation of
the second constant also. These parameters fluctuate much less than individual
constants, and even less than mean constant (for more examples with
applications to statistical physics we address to the paper by Gorban, 2006).

It is impossible to use this observation for cycles with limitation directly,
because the inequality of limitation (15) is not true for uniform distribu-
tion. According to this inequality, ratios k;/kmin should be sufficiently small
(if ki #kmin). To provide this inequality we need to use at least the log-uniform
distribution: k; = exp A; and A; are independent variables uniformly distributed
in interval [o,f] with sufficiently big (f—a)/n.

One can interpret the log-uniform distribution through the Arrhenius law:
k = Aexp(—AG/kT), where AG is the change of the Gibbs free energy inreaction
(it includes both energetic and entropic terms: AG = AH—TAS, where AH the
enthalpy change and AS the entropy change in reaction, T the temperature). The
log-uniform distribution of k corresponds to the uniform distribution of AG.

For log-uniform distribution of constants ki,...,k,, if the interval of
distribution is sufficiently big (i.e. (f—a)/n>>1), then the cycle with these constants
has the limiting step with probability close to one. More precisely we can show
that for any two constants k; and k; the probability P[k;/kj>r or k;j/ki>r] =
(1 —log(r)/(p — ))? approaches one for any fixed r >1 when ff—a— 0. Relaxation
time of this cycle is determined by the second constant k, (also with probability
close to one). Standard deviations of k,;, and k, are much smaller than standard
deviation of single constant k; and even smaller than standard deviation of mean
constant ) _k;/n. This effect of stationary rate and relaxation time robustness seems
to be important for understanding robustness in biochemical networks: behavior of
the entire system is much more stable than the parameters of its parts; even for
large fluctuations of parameters, the system does not change significantly the
stationary rate (statics) and the relaxation time (dynamics).

2.7 Systems with well-separated constants and monotone relaxation

The log-uniform identical distribution of independent constants ki,...,k, with
sufficiently big interval of distribution ((f—a)/n>>1) gives us the first example of
ensembles with well-separated constants: any two constants are connected by
relation > or « with probability close to one. Such systems (not only cycles, but
much more complex networks too) could be studied analytically “up to the end”.
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Some of their properties are simpler than for general networks. For example,
the damping oscillations are impossible, i.e. the eigenvalues of kinetic matrix are
real (with probability close to one). If constants are not separated, damped
oscillations could exist, for example, if all constants of the cycle are equal,
kh=ky=---=k,=k then (1+4+1/k)"=1 and 7, = kiexp2nim/n)—1)
(m=1,...,n—-1), the case m =0 corresponds to the linear conservation law.
Relaxation time of this cycle may be relatively big: © = (1/k) (1 — cos(2n/ n) !~
n?/(2rk) (for big n).

The catalytic cycle without limitation can have relaxation time much bigger
then 1/kmin, where kp,, is the minimal reaction rate constant. For example, if all k
are equal, then for n = 11 we get t~20/k. In more detail the possible relations
between 7 and the slowest constant were discussed by Yablonskii and Cheresiz
(1984). In that paper, a variety of cases with different relationships between the
steady-state reaction rate and relaxation was presented.

For catalytic cycle, if a matrix K — k,A (17) has a pair of complex eigenvalues
with nonzero imaginary part, then for some ge[0, 1] the matrix K — gk,A has a
degenerate eigenvalue (we use a simple continuity argument). With probability
close to one, kmin < ki — kj| for any two k; and k; that are not minimal. Hence,
the kmin-small perturbation cannot transform matrix K with eigenvalues k; (16)
and given structure into a matrix with a degenerate eigenvalue. For proof of this
statement it is sufficient to refer to diagonal dominance of K (the absolute value of
each diagonal element is greater than the sum of the absolute values of the other
elements in its column) and classical inequalities. .

The matrix elements of A in the eigenbasis of K are (A)j = I'A¥. From
obtained estimates for eigenvectors we get |(A);| <1 (with probability close to
one). This estimate does not depend on values of kinetic constants. Now, we can
apply the Gershgorin theorem (see, e.g. the review of Marcus and Minc (1992)
and for more details the book of Varga (2004)) to the matrix K —k,A in
the eigenbasis of K: the characteristic roots of K —k,A belong to discs
|z + ki| < k,R;(A), where R;(A) = Zj|(A)l-]-|. If the discs do not intersect, then each
of them contains one and only one characteristic number. For ensembles with
well-separated constants these discs do not intersect (with probability close to
one). Complex conjugate eigenvalues could not belong to different discs. In this
case, the eigenvalues are real — there exist no damped oscillations.

2.8 Limitation by two steps with comparable constants

If we consider one-parametric families of systems, then appearance of systems
with two comparable constants may be unavoidable. Let us imagine a continuous
path ki(s) (s€[0, 1], s is a parameter along the path) in the space of systems, which
goes from one system with well-separated constants (s =0) to another such
system (s = 1). On this path k;(s) such a point s that ki(s) = k;j(s) may exist, and this
existence may be stable, that is, such a point persists under continuous
perturbations. This means that on a path there may be points where not all the
constants are well separated, and trajectories of some constants may intersect.
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For catalytic cycle, we are interested in the following intersection only:
kmin and the second constant are of the same order, and are much smaller
than other constants. Let these constants be k; and k;, j#l. The limitation
condition is

+ > Zk (20)
il

The steady-state reaction rate and relaxation time are determined by these
two constants. In that case their effects are coupled. For the steady state we get in
first-order approximation instead of Equation (13):

kik kik
- kjirlk, P 2% :k TR
LN PR R
k] + Kk ;é]lk k] + ki (21)
oo B[~ Kk
k]' + Kk oy ki k] + k;

Elementary analysis shows that under the limitation condition (20) the relaxation
time is
1
T=— 22
k]' + ki 22)
The single relaxation time approximation for all elementary reaction rates in a
cycle with two limiting reactions is

w; = kklb — (k + kpw;;

b+e—<k+kl>f(w 0 — 9" b) (23)

wi(t) = K+ K

k+k1

The catalytic cycle with two limiting reactions has the same stationary rate w
(21) and relaxation time (22) as a reversible reaction A< B with k™ = k; and
k™ =k.

In two-parametric families three constants can meet. If three smallest
constants kj,k; and k, have comparable values and are much smaller than
others, then static and dynamic properties would be determined by these
three constants. Stationary rate w and dynamic of relaxation for the whole cycle
would be the same as for 3-reaction cycle A— B — C — A with constants
ki,k; and k,. The damped oscillation here are possible, for example, if
ki =k =ku =k, then there are complex eigenvalues 4 =k(—(3/2) % i(v/3/2)).
Therefore, if a cycle manifests damped oscillation, then at least three slowest
constants are of the same order. The same is true, of course, for more general
reaction networks.
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In N-parametric families of systems N+1 smallest constants can meet, and
near such a “meeting point” a slow auxiliary cycle of N+1 reactions determines
behavior of the entire cycle.

2.9 Irreversible cycle with one inverse reaction

In this subsection, we represent a simple example that gives the key to most of
subsequent constructions of “cycles surgery”. Let us add an inverse reaction to
the irreversible cycle: A1 — ... > AjoAi1 — ... > A, > A;. We use the
previous notation ki, .. ., k, for the cycle reactions, and k; for the inverse reaction
A; < Aiyq. For well-separated constants, influence of k; on the whole reaction is
determined by relations of three constants: k;, k; and k;1. First of all, if k; < kit1
then in the main order there is no such influence, and dynamic of the cycle is the
same as for completely irreversible cycle.

If the opposite inequality is true, k; > ki1, then equilibration between A;
and A;q gives kicix = k; cipq1. If we introduce a lumped component A} with
concentration ¢! =c; +ci11, then ¢ ~kjc!/(ki+k7) and ciy1 ~ kic! /(ki + k).
Using this component instead of the pair A;, A;y; we can consider an irreversible
cycle with n—1 components and 7 reactions A; — ...— A;q — Al —
Aip —> ... —> A, — A;. To estimate the reaction rate constant k} for a new
reaction, A} — Aiyo, let us mention that the correspondent reaction rate should
be ki1cip1 ~ kikic} /(ki + k;7). Hence,

k!~ kipaki/ (ki + k)

For systems with well-separated constants this expression can be simplified: if
ki > k; then k! ~ kiyq and if k; < ki’ then k! ~ k;y1k;/k; . The first case, k; > k; is
limitation in the small cycle (of length two) A; <> Ai11 by the inverse reaction
A;j < Aiy1. The second case, k; < k;, means the direct reaction is the limiting step
in this small cycle.

To estimate eigenvectors, we can, after identification of the limiting step in the
small cycle, delete this step and reattach the outgoing reaction to the beginning of
this step. For the first case, k;>k;, we get the irreversible cycle,
Al —> ...—> A —> A1 —> ... > A, —> A, with the same reaction rate constants.
For the second case, k; < k; we get a new system of reactions: a shortened cycle
Al — ... > A = Ao — ... > A, — Aj and an “appendix” A;;1 — A;. For the
new elementary reaction A; — Aj;» the reaction rate constant is k} ~ kipaki/k; .
All other elementary reactions have the same rate constants, as they have in the
initial system. After deletion of the limiting step from the “big cycle”
Al — ... > A = Ao — ... > A, — Ay, we get an acyclic system that approx-
imate relaxation of the initial system.

So, influence of a single inverse reaction on the irreversible catalytic
cycle with well-separated constants is determined by relations of three constants:
ki,k; and kitq. If ki is much smaller than at least one of k;, ki, then there is
no influence in the main order. If k; > k; and k; > k;;1 then the relaxation



122 AN. Gorban and O. Radulescu

of the initial cycle can be approximated by relaxation of the auxiliary acyclic
system.

Asymptotic equivalence (for k; > ki, kiy1) of the reaction network
Aj e Aiy1 — Aipp with rate constants kj,k; and ki to the reaction network
Ait1 > Aj = Aiyp with rate constants k; (for the reaction A1 — A;) and
kiv1ki/k; (for the reaction A; — A;;») is simple, but slightly surprising fact. The
kinetic matrix for the first network in coordinates c;,c;;1 and ¢y, is

K, K 0
K=| k —(ki +ky) O
0 ki1 0

The eigenvalues are 0 and

1
hnz =g |~ K ki) G+ b+ ki) — ki

1 = —kip1ki(1 +0(1))/k;, 22 = —k; (1 4+ 0o(1)), where 0(1)«1. Right eigenvector r°
for zero eigenvalue is (0, 0, 1) (we write vector columns in rows). For i; the
eigenvector is r! = (1,0, —1) + o(1), and for %, it is 7 = (1,—1,0) + o(1). For the
linear chain of reactions, Aiy1 — A;j — Ajiy, with rate constants k; and ki1ki/k;
eigenvalues are —k; and —k;1k;/k; . These values approximate eigenvalues of the
initial system with small relative error. The linear chain has the same zero-one
asymptotic of the correspondent eigenvectors.

This construction, a small cycle inside a big system, a quasi-steady state in
the small cycle, and deletion of the limiting step with reattaching of reactions
(see Figure 1 below) appears in this chapter many times in much general settings.
The uniform estimates that we need for approximation of eigenvalues and
eigenvectors by these procedures are proven in Appendices.

A kz/v --------- ilkl
i \4 k/' § A
k1/ A l )
Aq k : 2
Kiim ) l k_1
A, ' .

\ \ l Kkj/K;

el —— A]

Figure 1 The main operation of the cycle surgery: on a step back we get a cycle

Ay — ... — A — Ay with the limiting step A; — A; and one outgoing reaction A; — A;. We
should delete the limiting step, reattach (“recharge”) the outgoing reaction A; — A; from A; to
A. and change its rate constant k to the rate constant kkji/k;. The new value of reaction rate
constant is always smaller than the initial one: kkyq, /k; <k if kym #k;. For this operation only
one condition k < k; is necessary (k should be small with respect to reaction A; — A} rate
constant, and can exceed any other reaction rate constant).
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3. MULTISCALE ENSEMBLES AND FINITE-ADDITIVE DISTRIBUTIONS

3.1 Ensembles with well-separated constants, formal approach

In previous section, ensembles with well-separated constants appear. We
represented them by a log-uniform distribution in a sufficiently big interval log
kela, pl, but we were not interested in most of probability distribution properties,
and did not use them. The only property we really used is: if k; > k;, then k; /k; > 1
(with probability close to one). It means that we can assume that k; /k; > a for any
preassigned value of a that does not depend on k values. One can interpret this
property as an asymptotic one for «——00, f— 0.

That property allows us to simplify algebraic formulas. For example, k; + k;
could be substituted by max{k;,k;} (with small relative error), or

ak; + bk]‘ a/c, if ki > kj;
cki+dk; | b/d, if ki <k

for nonzero 4, b, c, d (see, e.g. Equation (4)).

Of course, some ambiguity can be introduced, for example, what is it,
(k1 + ko) — ki, if k1 > ky? If we first simplify the expression in brackets, it is zero,
but if we open brackets without simplification, it is k,. This is a standard
difficulty in use of relative errors for round-off. If we estimate the error in the
final answer, and then simplify, we shall avoid this difficulty. Use of 0 and ¢
symbols also helps to control the error qualitatively: if k; > k,, then we can write
(k1 + k2) = k1(1 + 0o(1)) and k(1 + 0(1)) — k1 = k10(1). The last expression is neither
zero nor absolutely small — it is just relatively small with respect to k;.

The formal approach is: for any ordering of rate constants, we use relations >
and «, and assume that k;/k; > a for any preassigned value of a that does not
depend on k values. This approach allows us to perform asymptotic analysis of
reaction networks. A special version of this approach consists of group ordering:
constants are separated on several groups, inside groups they are comparable, and
between groups there are relations 3> or <. An example of such group ordering
was discussed at the end of previous section (several limiting constants in a cycle).

3.2 Probability approach: finite additive measures

The asymptotic analysis of multiscale systems for log-uniform distribution of
independent constants on an interval log k €[«, ] (—«, f— o) is possible, but
parameters o, f do not present in any answer, they just should be sufficiently big.
A natural question arises, what is the limit? It is a log-uniform distribution on
a line, or, for n independent identically distributed constants, a log-uniform
distribution on R").

It is well known that the uniform distribution on R" is impossible: if a cube
has positive probability ¢>0 (i.e. the distribution has positive density) then the
union of N>1/¢ such disjoint cubes has probability bigger than 1 (here we use
the finite-additivity of probability). This is impossible. But if that cube has
probability zero, then the whole space has also zero probability, because it can be
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covered by countable family of the cube translation. Hence, translation
invariance and c-additivity (countable additivity) are in contradiction (if we
have no doubt about probability normalization).

Nevertheless, there exists finite-additive probability which is invariant with
respect to Euclidean group E(n) (generated by rotations and translations). Its
values are densities of sets.

Let / be the Lebesgue measure and D C R" be a Lebesgue measurable subset.
Density of D is the limit (if it exists):

. ADNBY)
p(D) = lim = 5
where B) is a ball with radius r and center at origin. Density of R" is 1, density of
every half-space is Y2, density of bounded set is zero, density of a cone is its solid
angle (measured as a sphere surface fractional area). Density (24) and translation
and rotational invariant. It is finite-additive: if densities p(D) and p(H) (24) exist
and DnH = J then p(DUH) exists and p(DUH) = p(D)+p(H).

Every polyhedron has a density. A polyhedron could be defined as the union
of a finite number of convex polyhedra. A convex polyhedron is the intersection
of a finite number of half-spaces. It may be bounded or unbounded. The family of
polyhedra is closed with respect to union, intersection and subtraction of sets. For
our goals, polyhedra form sufficiently rich class. It is important that in definition
of polyhedron finite intersections and unions are used. If one uses countable
unions, he gets too many sets including all open sets, because open convex
polyhedra (or just cubes with rational vertices) form a basis of standard topology.

Of course, not every measurable set has density. If it is necessary, we can use
the Hahn-Banach theorem (Rudin, 1991) and study extensions pg, of p with the
following property:

(24)

p(D) = pex(D) = p(D)

where
.. MDNBY
p(D) =y,
_ . AD N B")
(D) = lim sup————"~
P e SRy

Functionals p(D) and (D) are defined for all measurable D. We should stress
that such extensions are not unique. Extension of density (24) using the Hahn—
Banach theorem for picking up a random integer was used in a very recent work
by Adamaszek (2006).

One of the most important concepts of any probability theory is the
conditional probability. In the density-based approach we can introduce
the conditional density. If densities p(D) and p(H) (24) exist, p(H)#0 and the
following limit p(D | H) exists, then we call it conditional density:

ADNHNBY)

PO =l = n ey )
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For polyhedra the situation is similar to usual probability theory: densities
p(D) and p(H) always exist and if p(H) # 0 then conditional density exists too. For
general measurable sets the situation is not so simple, and existence of p(D) and
p(H)#0 does not guarantee existence of p(D | H).

On a line, convex polyhedra are just intervals, finite or infinite. The
probability defined on polyhedra is: for finite intervals and their finite unions
it is zero, for half-lines x>o or x<uo it is ¥, and for the whole line R the
probability is 1. If one takes a set of positive probability and adds or subtracts a
zero-probability set, the probability does not change.

If independent random variables x and y are uniformly distributed on a line,
then their linear combination z = ax+fy is also uniformly distributed on a line.
(Indeed, vector (x, y) is uniformly distributed on a plane (by definition), a set z>7y
is a half-plane, the correspondent probability is %.) This is a simple, but useful
stability property. We shall use this result in the following form. If independent
random variables ki,...,k, are log-uniformly distributed on a line, then the
monomial []i_, k¥ for real o; is also log-uniformly distributed on a line, if some of

ocl;éO

3.3 Carroll’s obtuse problem and paradoxes of conditioning

Lewis Carroll’s Pillow Problem #58 (Carroll, 1958): “Three points are taken at
random on an infinite plane. Find the chance of their being the vertices of an
obtuse-angled triangle”.

A random triangle on an infinite plane is presented by a point equidistributed
in R®. Owing to the density — based definition, we should take and calculate the
density of the set of obtuse-angled triangles in R®. This is equivalent to the
problem: find a fraction of the sphere S> C R that corresponds to obtuse-angled
triangles. Just integrate .... But there remains a problem. Vertices of triangle are
independent. Let us use the standard logic for discussion of independent trials:
we take the first point A at random, then the second point B and then the third
point C. Let us draw the first side AB. Immediately we find that for almost all
positions of the the third point C the triangle is obtuse-angled (Guy, 1993). Carroll
proposed to take another condition: let AB be the longest side and let C be
uniformly distributed in the allowed area. The answer then is easy — just a ratio
of areas of two simple figures. But there are absolutely no reasons for uniformity
of C distribution. And it is more important that the absolutely standard reasoning
for independently chosen points gives another answer than could be found on
the base of joint distribution. Why these approaches are in disagreement now?
Because there is no classical Fubini theorem for our finite-additive probabilities,
and we cannot easily transfer from a multiple integral to a repeated one.

There exists a much simpler example. Let x and y be independent positive
real number. This means that vector (x, ) is uniformly distributed in the first
quadrant. What is probability that x>1? Following the definition of probability
based on the density of sets, we take the correspondent angle and find
immediately that this probability is 2. This meets our intuition well. But let us
take the first number x and look for possible values of . The result: for given x the
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second number y is uniformly distributed on [0, c0), and only a finite interval
[0, x] corresponds to x>y. For the infinite rest we have x<y. Hence, x <y with
probability 1. This is nonsense because of symmetry. So, for our finite-additive
measure we cannot use repeated integrals (or, may be, should use them in a very
peculiar manner).

3.4 Law of total probability and orderings

For polyhedra, there appear no conditioning problems. The law of total
probabilities holds: if R" = U" H;, H; are polyhedra, p(H;)>0, p(H;NH;) =0
for i#j, and D C R" is a polyhedron, then

p(D) =

m
i=

p(DNH) =) p(DIH)p(H) (26)
1 i=1

Our basic example of multiscale ensemble is log-uniform distribution of
reaction constants in R’} (logk; are independent and uniformly distributed on the
line). For every ordering k; >kj, > --- >k; a polyhedral cone H; ; . ; in R" is
defined. These cones have equal probabilities p(Hj, j,...; ) = 1/n! and probability
of intersection of cones for different orderings is zero. Hence, we can apply the
law of total probability (26). This means that we can study every event D
conditionally, for different orderings, and then combine the results of these
studies in the final answer (26).

For example, if we study a simple cycle then formula (13) for steady state is
valid with any given accuracy with unite probability for any ordering with the
given minimal element k,.

For cycle with given ordering of constants we can find zero-one approxima-
tion of left and right eigenvectors (5). This approximation is valid with any given
accuracy for this ordering with probability one.

If we consider sufficiently wide log-uniform distribution of constants on a
bounded interval instead of the infinite axis then these statements are true with
probability close to 1.

For general system that we study below the situation is slightly more
complicated: new terms, auxiliary reactions with monomial rate constants
k. =T[k;" could appear with integer (but not necessary positive) ¢;, and we
should include these k. in ordering. It follows from stability property that these
monomials are log-uniform distributed on infinite interval, if k; are. Therefore the
situation seems to be similar to ordering of constants, but there is a significant
difference: monomials are not independent, they depend on k; with ¢; #0.

Happily, in the forthcoming analysis when we include auxiliary reactions
with constant k., we always exclude at least one of the reactions with rate
constant k; and ¢; #0. Hence, for we always can use the following statement (for
the new list of constants, or for the old ome): if ki >kj,>--->k; then
ki, > kj, > --- > k; , where a>>b for positive 4, b means: for any given ¢>0 the
inequality ea>b holds with probability one.
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If we use sufficiently wide but finite log-uniform distribution then ¢ could not
be arbitrarily small (this depends on the interval with), and probability is not
unite but close to one. For given ¢>0 probability tends to one when the interval
width goes to infinity. It is important that we use only finite number of auxiliary
reactions with monomial constants, and this number is bounded from above for
given number of elementary reactions. For completeness, we should mention
here general algebraic theory of orderings that is necessary in more sophisticated
cases (Greuel and Pfister, 2002; Robbiano, 1985).

4. RELAXATION OF MULTISCALE NETWORKS AND HIERARCHY OF
AUXILIARY DISCRETE DYNAMICAL SYSTEMS

4.1 Definitions, notations and auxiliary results

4.1.1 Notations

In this section, we consider a general network of linear (monomolecular)
reactions. This network is represented as a directed graph (digraph): vertices
correspond to components A;, edges correspond to reactions A; — A; with kinetic
constants kj; >0. For each vertex, A;, a positive real variable c; (concentratlon) is
defined. A basis vector ¢' corresponds to A; with components e = d;j, where §;; is
the Kronecker delta. The kinetic equation for the system is

dcz Z(chj — ],C) (27)

or in vector form: ¢ = Ke.

To write another form of Equation (27) we use stoichiometric vectors: for a
reaction A; — A; the stoichiometric vector 7ji 18 @ vector in concentration space
with ith coordinate —1, jth coordinate 1 and other coordinates 0. The reaction rate
wj; = kjic;. The kinetic equation has the form

de
)

where c is the concentration vector. One more form of Equation (27) describes
directly dynamics of reaction rates:

dZU'i
dt] ( ji dt) = k]: Z(wzl wy;) (29)

It is necessary to mention that, in general, system (29) is not equivalent to
system (28), because there are additional connections between variables wj;. If
there exists at least one A; with two different outgoing reactions, A; — A; and
A; — A; (j#D), then wj;/wy; = kji /k;. If the reaction network generates a discrete
dynamical system A; — A; on the set of A; (see below), then the variables wj; are
independent, and Equation (29) gives equivalent representation of kinetics.

For analysis of kinetic systems, linear conservation laws and positively
invariant polyhedra are important. A linear conservation law is a linear function
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defined on the concentrations b(c) = > _bic;, whose value is preserved by the
dynamics (27). The conservation laws coefficient vectors b; are left eigenvectors of
the matrix K corresponding to the zero eigenvalue. The set of all the conservation
laws forms the left kernel of the matrix K. Equation (27) always has a linear
conservation law: b°(c) = >~.ci = constant. If there is no other independent linear
conservation law, then the system is weakly ergodic.

A set E is positively invariant with respect to kinetic equations (27), if any
solution c(f) that starts in E at time fo(c(fp) € E) belongs to E for t>t, (c(t)eE
if t>tg). It is straightforward to check that the standard simplex
X ={clc; = 0,) ,ci =1} is positively invariant set for kinetic equation (27): just
to check that if ¢; =0 for some i, and all ¢; > 0 then ¢; > 0. This simple fact
immediately implies the following properties of K:

— All eigenvalues A of K have non-positive real parts, ReA <0, because solutions
cannot leave X in positive time.

— If Rel = 0 then A = 0, because intersection of X~ with any plain is a polygon, and
a polygon cannot be invariant with respect of rotations to sufficiently small
angles.

— The Jordan cell of K that corresponds to zero eigenvalue is diagonal — because
all solutions should be bounded in X for positive time.

— The shift in time operator exp(Kt) is a contraction in the [; norm for ¢>0: for
positive t and any two solutions of Equation (27) c¢(t), c'(t)eZ

D lei®) = )l < Y 1ei0) — c{(0)]

i i

Two vertices are called adjacent if they share a common edge. A path is a
sequence of adjacent vertices. A graph is connected if any two of its vertices are
linked by a path. A maximal connected subgraph of graph G is called a connected
component of G. Every graph can be decomposed into connected components.

A directed path is a sequence of adjacent edges where each step goes in
direction of an edge. A vertex A is reachable by a vertex B, if there exists an
oriented path from B to A.

A nonempty set V of graph vertexes forms a sink, if there are no oriented
edges from A;eV to any A;j¢V. For example, in the reaction graph
A1 < Ay — Aj the one-vertex sets {A1} and {A3} are sinks. A sink is minimal if
it does not contain a strictly smaller sink. In the previous example, {A;} and {A3}
are minimal sinks. Minimal sinks are also called ergodic components.

A digraph is strongly connected, if every vertex A is reachable by any other
vertex B. Ergodic components are maximal strongly connected subgraphs of the
graph, but inverse is not true: there may exist maximal strongly connected
subgraphs that have outgoing edges and, therefore, are not sinks.

We study ensembles of systems with a given graph and independent and
well-separated kinetic constants k;. This means that we study asymptotic
behavior of ensembles with independent identically distributed constants,
log-uniform distributed in sufficiently big interval log keloa, 1, for a——oc0,
p— o0, or just a log-uniform distribution on infinite axis, logk € R.
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4.1.2 Sinks and ergodicity
If there is no other independent linear conservation law, then the system is
weakly ergodic. The weak ergodicity of the network follows from its topological
properties.

The following properties are equivalent and each one of them can be used as
an alternative definition of weak ergodicity:

() There exist the only independent linear conservation law for kinetic
equations (27) (this is b(c) = >_ic; = constant).
(i)  For any normalized initial state c(0) (b°(c) = 1) there exists a limit state

c* = lim exp(Kt)c(0)
t—o00
that is the same for all normalized initial conditions: For all ¢,

tlim exp(Kt)c = v(c)c*

(iii)  For each two vertices A; and A;(i#j) we can find such a vertex A; that is
reachable both by A; and by A;. This means that the following structure
exists:

Ai = o= Ap < o < 4

One of the paths can be degenerated: it may be i =k or j = k.
(iv)  The network has only one minimal sink (one ergodic component).

For every monomolecular kinetic system, the Jordan cell for zero eigenvalue
of matrix K is diagonal and the maximal number of independent linear
conservation laws (i.e. the geometric multiplicity of the zero eigenvalue of the
matrix K) is equal to the maximal number of disjoint ergodic components
(minimal sinks).

Let G ={A;,...,A;} be an ergodic Component Then there exists a unique
vector (normalized invariant distribution) ¢ with the followmg properties:

=0 for i¢{i1,...,i}, ¢ >0 for all i € {iy,..., i}, b°(c®) =1, K€ = 0.

If Gi,...,Gy are all ergodic components of the system, then there exist m
1ndependent positive linear functionals b'(c), ...,b"(c), such that 37" 1b1 =b" and
for each ¢

: _ i\ Gi
tli)r({lo exp(Kt)c = Z b'(c)c (30)

i=1

So, for any solution of kinetic equations (27), c(t) the limit at t— oo is a linear
combination of normalized invariant distributions c¢ with coefficients b'(c(0)). In the
simplest example, A; <— Ay — A3, G1 = {A1}, G2 = {A3}, Components of vectors ¢,
@ are (1, 0, 0) and (0, 0, 1), correspondingly. For functionals b we get:

25 b*(0) = 2 +c3 31

k1 ko
k1 + ko k1 + ko
where k; and k, are rate constants for reaction A; — A; and A; — Aj,
correspondingly. We can mention that for well-separated constants either k; > k;

b)y=ci +——



130 AN. Gorban and O. Radulescu

or k1 < ky. Hence, one of the coefficients ki /(ky + k») and ky/(k1 + k) is close to 0,
another is close to 1. This is an example of the general zero-one law for multiscale
systems: for any I, i, the value of functional b' (30) on basis vector ¢, b'(¢'), is either
close to 1 or close to 0 (with probability close to 1).

We can understand better this asymptotics by using the Markov chain
language. For nonseparated constants a particle in A, has nonzero probability to
reach A; and nonzero probability to reach A;. The zero-one law in this simplest
case means that the dynamics of the particle becomes deterministic: with
probability one it chooses to go to one of vertices A,, A3 and to avoid another.
Instead of branching, A, — A; and A, — A3, we select only one way: either
Ay — Ay or Ay — Asz. Graphs without branching represent discrete dynamical
systems.

4.1.3 Decomposition of discrete dynamical systems

Discrete dynamical system on a finite set V = {A1,A,..., As} is a semigroup
1,¢,¢%, ..., where ¢ is a map ¢:V—-V. A; € V is a periodic pomt if (]5 (Aj) = A, for
some [>0; else A, is a transient point. A cycle of perlod lis a sequence of I distinct
periodic points A, $(A), H2(A),..., "1 (A) with ¢'(A) = A. A cycle of period one
consists of one fixed point, d)(A) = A. Two cycles, C and C’ either coincide or have
empty intersection.

The set of periodic points, V¥, is always nonempty. It is a union of cycles:
VP = U;C;. For each point A€V there exist such a positive integer 7(A) and a cycle
C(A) = C; that ¢7(A) € C; for g=1(A). In that case we say that A belongs to basin
of attraction of cycle C; and use notation Att(C;) = {A|C(A) = C;}. Of course,
C; C Att(C)). For different cycles, Att(C;) N Att(C)) = J. If A is periodic point
then 7(A) = 0. For transient points 7(A)>0.

So, the phase space V is divided onto subsets Att(C;). Each of these subsets
includes one cycle (or a fixed point, that is a cycle of length 1). Sets Att(C;) are
¢-invariant: ¢(Att(C;)) C Att(C;). The set Att(C;)\C; consist of transient points and
there exists such positive integer t that qﬁq(Att(C ) =Cjifg=>r.

4.2 Auxiliary discrete dynamical systems and relaxation analysis

4.2.1 Auxiliary discrete dynamical system
For each A, we define k; as the maximal kinetic constant for reactions
Aj — Aj : x; = max;{k;}. For correspondent j we use notation ¢(i): ¢(i) =
arg max;{k;;}. The function ¢(i) is defined under condition that for A; outgoing
reactions A; — A; exist. Let us extend the definition: ¢ (i) = i if there exist no such
outgoing reactions.

The map ¢ determines discrete dynamical system on a set of components
V = {A;}. We call it the auxiliary discrete dynamical system for a given network
of monomolecular reactions. Let us decompose this system and find the cycles C;
and their basins of attraction, Att(C;)).

Notice that for the graph that represents a discrete dynamic system, attractors
are ergodic components, whereas basins are connected components.
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An auxiliary reaction network is associated with the auxiliary discrete
dynamical system. This is the set of reactions A; — Ay with kinetic constants ;.
The correspondent kinetic equation is

¢ = —KiC; + Z K;Cj (32)
o()=i
or in vector notations (28)
de -
g = Ke= Z Kicitgmis Kij = =505 + 150140 (33)

For deriving of the auxiliary discrete dynamical system we do not need the
values of rate constants. Only the ordering is important. Below we consider
multiscale ensembles of kinetic systems with given ordering and with well-
separated kinetic constants (ks1) > kg(2) > - - - for some permutation o).

In the following, we analyze first the situation when the system is connected
and has only one attractor. This can be a point or a cycle. Then, we discuss the
general situation with any number of attractors.

4.2.2 Eigenvectors for acyclic auxiliary kinetics
Let us study kinetics (32) for acyclic discrete dynamical system (each vertex
has one or zero outgoing reactions, and there are no cycles). Such acyclic
reaction networks have many simple properties. For example, the nonzero
eigenvalues are exactly minus reaction rate constants, and it is easy to find
all left and right eigenvectors in explicit form. Let us find left and right
eigenvectors of matrix K of auxiliary kinetic system (32) for acyclic auxiliary
dynamics. In this case, for any vertex A; there exists an eigenvector. If A; is a
fixed point of the discrete dynamical system (i.e. ¢(i) = i) then this eigenvalue is
zero. If A; is not a fixed point (i.e. ¢(i)#i and reaction A; — Ay has nonzero rate
constant «;) then this eigenvector corresponds to eigenvalue —«;. For left and
right elgenvectors of K that correspond to A; we use notations I (vector-raw)
and ' (vector-column), correspondingly, and apply normalization condition
r=l=1

Flrst let us find the eigenvectors for zero eigenvalue. Dimension of zero
eigenspace is equal to the number of fixed points in the discrete dynamical
system. If A; is a fixed point then the correspondent eigenvalue is zero, and the
right eigenvector ' has only one nonzero coordinate, concentration of A; : r] = 0jj.

To construct the correspondent left eigenvectors I' for zero eigenvalue (for
fixed point A;), let us mention that I could have nonzero value only if there exists
such >0 that ¢7(j) = i (this q is unique because absence of cycles). In that case
(for g>0),

(I'K); = K]l] + K 4)0) =0

Hence, l; = li/)(j) and l]’: =1 if ¢'(j) = i for some q>0.
For nonzero eigenvalues, right eigenvectors will be constructed by recurrence
starting from the vertex A; and moving in the direction of the flow. The
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construction is in opposite direction for left eigenvectors. Nonzero eigenvalues of
K (32) are —«;.

For given i, 7; is the minimal integer such that ¢"(i) = ¢“"'(i) (this is
a relaxation time ie. the number of steps to reach a fixed point). All

indices {¢*()k =0,1,...,1;} are different. For right eigenvector r only coordi-
nates rld)k (i)(k =0,1,...,1;) could have nonzero values, and
(Kri)d)m(i) = — K(/)"'H(i)r:b"'“(i) + K(/)N(i)r:bz\(i)
i
- Klr¢rc+1(i)
Hence,

k )
) K k: . Kgii
RO U
T = ——  —Tgo =1l
¢k+l(l) K¢k+1(1’) — K d)k(’) ]=H0 K(f)iﬂ(i) — Ki
k—1 .
_ Ki K¢7+1 0) (34)
Rolta = Mg Rt T M

The last transformation is convenient for estimation of the product for well-
separated constants (compare to Equation (4)):

1, if K g1y > Kis

K(/JH(I')
K¢/+1(i) — K 0, lf de“(i) < Ki,
. (35)
K; =1, if x; > K gt iy

~

K¢k+1(i) — K;j - 0, if ;< K¢k+1(i)

For left eigenvector I coordinate I could have nonzero value only if there
exists such g>0 that ¢7(j) =i (this g is unique because the auxiliary dynamical
system has no cycles). In that case (for 4>0),

(I'K); = -Kjl;i + K5l 5= —;cil;

Hence,

. [
i Koo 3 (j)
=—"Tly,=]]—"— (36)
Kj — Ki i20 gy — Ki

For every fraction in Equation (36) the following estimate holds:

o' {1’ if Kyi( > K

. 37)
0, if Kty K Ki

K(pk(j) — Kj

As we can see, every coordinate of left and right eigenvectors of K (34), (36) is
either 0 or +1, or close to 0 or to +1 (with probability close to 1). We can write
this asymptotic representation explicitly (analogously to Equation (5)). For left
eigenvectors, [; = 1 and [; = 1 (for i#)) if there exists such g that ¢7(j) =i, and
Kyi(jy > Ki for all d=0,...,9—1, else l; = 0. For right eigenvectors, v; =1 and
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r = —Lif K gk <Ki and for all positive m <k inequality x4n; >x; holds, i.e.
k'is ﬁrst such positive integer that « y, <w; (for fixed point A, we use x, = 0).
Vector 1 has not more than two nonzero coordinates. It is stra1ghtforward to
check that in this asymptotic I'Y/ = dij.

In general, coordinates of eigenvectors l and r] are simultaneously nonzero
only for one value j = i because the aux111ary system is acyclic. However, ' = 0
if i#j, just because that are eigenvectors for different eigenvalues, x; and «;.
Hence, I'Y = 9.

For example, let us find the asymptotic of left and right eigenvectors for a
branched acyclic system of reactions:

A1—7>A2—>A3—>A4—>A5—4>A8, A6—1>A7—3)A4

where the wupper index marks the order of rate constants:
Ke > K4 > K7 > K5 > Ko > K3 > K1 (k; s the rate constant of reaction A; — ...).
For zero eigenvalue, the left and right eigenvectors are

=(1,1,1,1,1,1,1,1,1), * =(0,0,0,0,0,0,0,1)

For left eigenvectors, rows I, that correspond to nonzero eigenvalues we have
the following asymptotics:

I' ~(1,0,0,0,0,0,0,0), I*~(0,1,0,0,0,0,0,0),
P’ ~(0,1,1,0,0,0,0,0), I*~(0,0,0,1,0,0,0,0),
I° ~(0,0,0,1,1,1,1,0), °® ~(0,0,0,0,0,1,0,0),
I’ ~(0,0,0,0,0,1,1,0)

(38)

For the correspondent right eigenvectors, columns ', we have the following
asymptotics (we write vector-columns in rows):

r' ~(1,0,0,0,0,0,0,-1), r* ~(0,1,-1,0,0,0,0,0),
r ~(0,0,1,0,0,0,0,—1), r*~(0,0,0,1,-1,0,0,0),
r ~(0,0,0,0,1,0,0,—1), ° ~(0,0,0,0,0,1,—1,0),
7 ~(0,0,0,0,—1,0,1,0)

39)

4.23 The first case: auxiliary dynamical system is acyclic and has one
attractor

In the simplest case, the auxiliary discrete dynamical system for the reaction

network %" is acyclic and has only one attractor, a fixed point. Let this point be A,

(n is the number of vertices). The correspondent eigenvectors for zero eigenvalue

are r! = 0, and [ = 1. For such a system, it is easy to find explicit analytic

solution of kinetic equation (32).

Acyclic auxiliary dynamical system with one attractor have a characteristic
property among all auxiliary dynamical systems: the stoichiometric vectors of
reactions A; — Ay form a basis in the subspace of concentration space with
>.i¢i=0. Indeed, for such a system there exist n—1 reactions, and their
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stoichiometric vectors are independent. However, existence of cycles implies
linear connections between stoichiometric vectors, and existence of two attractors
in acyclic system implies that the number of reactions is less n—1, and their
stoichiometric vectors could not form a basis in n—1-dimensional space.

Let us assume that the auxiliary dynamical system is acyclic and has only one
attractor, a fixed point. This means that stoichiometric vectors y,;; form a basis in
a subspace of concentration space with ) ,c; = 0. For every reaction A; — A, the
following linear operators Q; can be defined:

Qi) = 11> Qu(Vgpyp) = 0 for p#i (40)

The kinetic equation for the whole reaction network (28) could be transformed
in the form

% - Z (1 + Z ki Qll) Yo ifiCi

i LiZg(m)

1+ > ’Q,, Z%&(m"@ (41)

Ja#dG) 7

kij
1+ > —Q|Ke
iz "

where K is kinetic matrix of auxiliary kinetic equation (33). By construction
of auxiliary dynamical system, kj; < x; if I#¢(i). Notice also that |Qj,| does not
depend on rate constants.

Let us represent system (41) in eigenbasis of K obtained in previous
subsection. Any matrix B in this eigenbasis has the form B = (b;),
bl] =I'Br = qulqbqsr’s, where (bqs) is matrix B in the initial basis, I' and 7
are left and right eigenvectors of K (34), (36). In eigenbasis of K the Gershgorin
estimates of eigenvalues and estimates of eigenvectors are much more efficient
than in original coordinates: the system is stronger diagonally dominant.
Transformation to this basis is an effective preconditioning for perturbation
theory that uses auxiliary kinetics as a first approximation to the kinetics of the
whole system.

First of all, we can exclude the conservation law. Any solution of (41) has the
form c(t) = br'" + &(t), where b = I"c(t) = I"c(0) and >_,i(t) = 0. On the subspace
of concentration space with )".c; = 0 we get

d
d_i = (1 + &)diag{—x1,..., —Ku_1}C (42)

where & = (&), || <1 and diag{—xi,...,—x,1} is diagonal matrix with
—K1,...,—Ky_1 on the main diagonal. If |¢;] <« 1 then we can use the Gershgorin
theorem and state that eigenvalues of matrix (1 + &)diag{—x1, ..., —k,—1} are real
and have the form A; = —k; + 0; with |0;| < k;.

To prove inequality |e;| < 1 (for ensembles with well-separated constants, with
probability close to 1) we use that the left and right eigenvectors of K (34), (36)
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are uniformly bounded under some non-degeneracy conditions and those
conditions are true for well-separated constants. For ensembles with well-
separated constants, for any given positive g<1 and all 7, j (i) the following
inequality is true with probability close to 1: |k; — k;j| > gx;. Let us select a value of
g and assume that this diagonal gap condition is always true. In this case, for every
fraction in (34), (36) we have estimate

K 1

— <
[ — il &

Therefore, for coordinates of right and left eigenvectors of K (34), (36) we get

o |;|<81”’<81" (43)

We can estimate |¢;| and |0;|/x; from above as constant x max;. ) {kis/xs}. So,
the eigenvalues for kinetic matrix of the whole system (41) are real and close to
eigenvalues of auxiliary kinetic matrix K (33). For eigenvectors, the Gershgorin
theorem gives no result, and additionally to diagonal dominance we must
assume the diagonal gap condition. Based on this assumption, we proved the
Gershgorin type estimate of eigenvectors in Appendix 1. In particular, according
to this estimate, eigenvectors for the whole reaction network are arbitrarily close
to eigenvectors of K (with probability close to 1).

So, if the auxiliary discrete dynamical system is acyclic and has only one
attractor (a fixed point), then the relaxation of the whole reaction network could
be approximated by the auxiliary kinetics (32):

i
|7’¢;;+1(i)| < ? <

n—1

o(t) = (") + > _(I'c(0))r* exp(—rit) (44)

i=1

For I' and ' one can use exact formulas (34) and (36) or zero-one asymptotic
representations based on Equations (37) and (35) for multiscale systems. This
approximation (44) could be improved by iterative methods, if necessary.

4.2.4 The second case: auxiliary system has one cyclic attractor

The second simple particular case on the way to general case is a reaction
network with components A, ..., A, whose auxiliary discrete dynamical system
has one attractor, a cycle with period t1>1: Ay_cy1 = An—ri2 = ... Ap = An—ca
(after some change of enumeration). We assume that the limiting step in this cycle
(reaction with minimal constant) is A, — A,_.+1. If auxiliary discrete dynamical
system has only one attractor then the whole network is weakly ergodic. But the
attractor of the auxiliary system may not coincide with a sink of the reaction
network.

There are two possibilities:

(i)  In the whole network, all the outgoing reactions from the cycle have the
form A, _..i— A,y (i, j>0). This means that the cycle vertices A,_..q,
A,_140,..., A, form a sink for the whole network.
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(ii)  There exists a reaction from a cycle vertex A,_.; to A, m<n—t. This
means that the set {A,_.+1, An_i2,..., Ayl is not a sink for the whole
network.

In the first case, the limit (for t - o0) distribution for the auxiliary kinetics is
the well-studied stationary distribution of the cycle A, .11, A4—c42,...,As
described in Section 2 (11)—(13), (15). The set {A;_.1+1, Au—142, - .., Ay} is the only
ergodic component for the whole network too, and the limit distribution for that
system is nonzero on vertices only. The stationary distribution for the cycle
Ap—rp1 = Ay_ryp = ... Ay — Ay approximates the stationary distribution
for the whole system. To approximate the relaxation process, let us delete the
limiting step A, — A,_.4+1 from this cycle. By this deletion we produce an acyclic
system with one fixed point, A,, and auxiliary kinetic equation (33) transforms
into

= I~<0C = Z Kiciy¢(i)i (45)

i=1

As it is demonstrated, dynamics of this system approximates relaxation of the
whole network in subspace ) ,c; = 0. Eigenvalues for Equation (45) are —«;
(i<n), the corresponded eigenvectors are represented by Equations (34), (36) and
zero-one multiscale asymptotic representation is based on Equations (37) and
(35).

In the second case, the set

{Aﬂ—‘H—l) Al’l—r+29 ) Al’l}

is not a sink for the whole network. This means that there exist outgoing reactions
from the cycle, A, .1 — A; with Aj¢{A, 11,Auci2,...,As}. For every cycle
vertex A,_.;; the rate constant x,_.;; that corresponds to the cycle reaction
Ay_vyi — Ap—ryiy1 is much bigger than any other constant kj, .,; that
corresponds to a “side” reaction A,_,; — A;j Fn—1t+i+1): Ky_ryi > Kjn_ryi. This
is because definition of auxiliary discrete dynamical system and assumption of
ensemble with well-separated constants (multiscale asymptotics). This inequality
allows us to separate motion and to use for computation of the rates of outgoing
reaction A,_.y; — A; the quasi-steady-state distribution in the cycle. This means
that we can glue the cycle into one vertex A} 4+1 with the correspondent
concentration c}1_f +1 = D 1<i<:Cn—r+i and substitute the reaction A, . — A; by
A,_.1—Aj with the rate constant renormalization: kj, . =
Kjn— r+zC§ST i /cn «4+1- By the superscript QS we mark here the quasi-stationary
concentrations for given total cycle concentration c,__ ;. Another possibility is to
recharge the link A, _.,; — A; to another vertex of the cycle (usually to A,): we
can substitute the reaction An,Hi — A by the reaction A, ., — A; with the rate
constant renormalization:

k]n g = Kjn—1+iC,_ r+l/C" —t+q (46)
The new rate constant is smaller than the initial one: kj nettq < k] n—r4i, because
Qs QS
Cooesi < CiZeyq due to definition.
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We apply this approach now and demonstrate its applicability in more details
later in this section. For the quasi-stationary distribution on the cycle we get
Cr—rti = Cnkp/Ky—rti (1<i<7). The original reaction network is transformed
by gluing the cycle {A,_.11,An—rt2,...,A,}, into a point ALTH. We say that
components A,_;41,Ay—r42,...,A, of the original system belong to the
component A;_.,; of the new system. All the reactions A; — A; with ij<n—t
remain the same with rate constant kj;. Reactions of the form A; — A; with
i<n—t, j>n—1 (incoming reactions of the cycle {A,_.11,An—112,...,A,}) trans-
form into A; — A]__,; with the same rate constant k;. Reactions of the form
Ai— Aj  with  i>n—t, j<n—t (outgoing reactions of the cycle
{A, i1, An—ty2,...,A,}) transform into reactions A}HT +1 — A;j with the “quasi-
[
Ji

stationary” rate constant = kjikn/Kn—cyi. After that, we select the maximal

k](-?s for given j: k](-}n)_f = maxi>n71k]§?5. This k]ﬁln)_f .1 18 the rate constant for reaction
Al 41—~ 4j in the new system. Reactions A; — A; with ij>n—1 (internal

reactions of the site) vanish.

Among rate constants for reactions of the form A, ;i > Ay, (m=n—1) we
find
Kfql_)m = Hl}ix{km,n—rﬂkn/’{n—r-&-i} 47)
Let the correspondent i, m be iy, m;.

After that, we create a new auxiliary discrete dynamical system for the
new reaction network on the set {A1,... ,A,1,T,A,11_T +1)- We can describe this new
auxiliary system as a result of transformation of the first auxiliary discrete
dynamical system of initial reaction network. All the reactions from this
first auxiliary system of the form A; — A; with ij<n—17 remain the same
with rate constant x;. Reactions of the form A; — A; with i<n—r1, j>n—1
transform into A; — A} ., with the same rate constant x; One more reac-
tion is to be added: A .., — A, with rate constant K;llr +i- We “glued” the cycle

, and added new reaction from this vertex to A,, with

into one vertex, A} . +1
maximal possible constant (47). Without this reaction the new auxiliary

dynamical system has only one attractor, the fixed point A, .. ;. With this
additional reaction that point is not fixed, and a new cycle appears:
Amy = o Al = Ay

Again we should analyze, whether this new cycle is a sink in the new
reaction network, etc. Finally, after a chain of transformations, we should come
to an auxiliary discrete dynamical system with one attractor, a cycle, that is the
sink of the transformed whole reaction network. After that, we can find
stationary distribution by restoring of glued cycles in auxiliary kinetic system
and applying formulas (11)-(13) and (15) from Section 2. First, we find the
stationary state of the cycle constructed on the last iteration, after that for each
vertex A;‘ that is a glued cycle we know its concentration (the sum of all
concentrations) and can find the stationary distribution, then if there remain
some vertices that are glued cycles we find distribution of concentrations in these
cycles, etc. At the end of this process we find all stationary concentrations with
high accuracy, with probability close to one.
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As a simple example we use the following system, a chain supplemented by
three reactions:

Ar =5 Ay 25 Ay = Ay —25 As —> As,

6 7 8 (48)
A6 —> A4, A5 —> A2 and A3 —> A1

where the upper index marks the order of rate constants.
Auxiliary discrete dynamical system for the network (48) includes the chain
and one reaction:

A= Ay 25 Ay Ay =25 As =5 Ay A,

It has one attractor, the cycle A4—4>A5 i>A6—6>A4. This cycle is not a
sink for the whole system, because there exists an outgoing reaction As R As.

By gluing the cycle A4 —4>A5 —5>A6—6>A4 into a vertex A; we get new
network with a chain supplemented by two reactions:

Al —5 Ay 25 A3 AL AL A and As — A (49)

Here the new rate constant is k(214) = koske /K5 (kK6 = kue is the limiting step of the
cycle A4 —4> A5 —5> A6 —6> A4, K5 = k65).

Here we can make a simple but important observation: the new constant
k;4 = kopske /K5 has the same log-uniform distribution on the whole axis as
constants ks, k¢ and ks have. The new constant k;4 depends on kys and the
internal cycle constants k¢ and x5, and is independent from other constants.

Of course, kY <is, but relations between kY and k;; are a priori unknown.
Both orderings, k(214)>k13 and k(214) <ki3, are possible, and should be considered
separately, if necessary. But for both orderings the auxiliary dynamical system for
network (49) is

A5 Ay B A2 AL L A

2
(of course, ;cil)<;c3<;c2<rc1). It has one attractor, the cycle A, —

Aj —3> A}l —?> A>. This cycle is not a sink for the whole system, because there
exists an outgoing reaction Az N Ajy. The limiting constant for this cycle is
KS) = k(214) = koskye/kes. We glue this cycle into one point, A%. The new transformed
system is very simple, it is just a two-step cycle: A; R Al R Aj. The new reac-

k(122) = k13K(41)/K3 = k13k25k46/(k65?k43). The auxiliary discrete

tion constant is
dynamical system is the same graph A, R A} — A, this is a cycle, and we
do not need further transformations.

Let us find the steady state on the way back, from this final auxiliary system

to the original one. For steady state of each cycle we use formula (13).

The steady state for the final system is c; = bk(lzz) /k»1 and qc% =b(1 - k(lzz) [ka1).
The component A3 includes the cycle Ay — A3 —> A; — Ay. The steady
state of this cycle is ¢ = ¢k ks, 3 = K ks and Y = 21 — &)/

k3o — k(214) /ks3). The component A}l includes the cycle Ay — As — Ag —> As.
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The steady state of this cycle is ¢4 = C4 k46 Jkss, C5= cff)k% /kes and
C6 = Cff)ﬂ — kao /kss — ke /Kes).

For one catalytic cycle, relaxation in the subspace >_,c; = 0 is approximated by
relaxation of a chain that is produced from the cycle by cutting the limiting step
(Section 2). For reaction networks under consideration (with one cyclic attractor
in auxiliary discrete dynamical system) the direct generalization works: for
approximation of relaxation in the subspace ) ;c; = 0 it is sufficient to perform
the following procedures:

e to glue iteratively attractors (cycles) of the auxiliary system that are not sinks of
the whole system;

e to restore these cycles from the end of the first procedure to its beginning.
For each of cycles (including the last one that is a sink) the limited step should
be deleted, and the outgoing reaction should be reattached to the head of the
limiting steps (with the proper normalization), if it was not deleted before as a
limiting step of one of the cycles.

The heads of outgoing reactions of that cycles should be reattached to the
heads of the hm1t1ng steps. Let for a cycle this limiting step be A,, — A;. If for a
glued cycle A* there exists an outgoing reaction A* — Aj with the constant K (47),
then after restoration we add the outgoing reactlon Ap — A;j with the rate
constant . Kinetic of the resulting acyclic system approximates relaxation of the
initial networks (under assumption of well-separated constants, for given
ordering, with probability close to 1).

Let us construct this acyclic network for the same example (48). The final cycle
is Ay —> Al = Aj. The limiting step in this cycle is A3 — A1 After cutting we
get A — A3. The component A2 is glued cycle Ay — A, N Ay R A;. The re-
action A; — A2 corresponds to the reaction A; N A, (in this case, this is the
only reaction from A; to cycle; in other case one should take the reactlon from A,
to cycle with maximal constant) The limiting step in the cycle is A} R Ay. After
cutting, we get a system A; LN Ay — A3 — A}. The component A1 is the glued
cycle Ay — As — Ag —> A4 from the previous step. The limiting step in this
cycle is Ag —> A4. After restoring this cycle and cutting the limiting step, we get
an acyclic system A, LN Ay —> Az — Ay — As —5> A (as one can guess from
the beginning: this coincidence is provided by the simple constant ordering
selected in Equation (48)). Relaxation of this system approximates relaxation of
the whole initial network.

To demonstrate possible branching of described algorithm for cycles surgery

(gluing, restoring and cutting) with necessity of additional orderings, let us
consider the following system:

A —> A= Ay 25 Ay A As, Ag—> Ay (50)
The auxiliary discrete dynamical system for reaction network (50) is

A= Ay =S Ay Ay = As 5 A,
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It has only one attractor, a cycle A3 —2> Ay —> As LN As. This cycle is not a
sink for the whole network (50) because reaction Ay — A leads from that cycle.
After gluing the cycle into a vertex A; we get the new network
Al — Ay — A; —> A;. The rate constant for the reaction A; — Ay, is
k;3 = koskss /ks4, where kj; is the rate constant for the reaction A; — A; in the
initial network (k35 is the cycle limiting reactlon) The new network coincides
with its auxiliary system and has one cycle, A, LN A = Aj. This cycle is a sink,
hence, we can start the back process of cycles restoring and cutting. One
question arises immediately: which constant is smaller, ks, or kj; The smallest
of them is the limiting constant, and the answer depends on this choice.
Let us consider two possibilities separately: (1) ks >kj; and (2) ks <kis.
Of course, for any choice the stationary concentration of the source component
A; vanishes: ¢c; = 0.

(1) Let us assume that k3 >kj,. In this case, the steady state of the Cycle
A, —> A —> A2 is (according to Equation (13)) = bk23 /k32
and ¢} = b(1 — k3 /k3,), where b = 3" ¢;. The component A} is a glued cycle
As — Ay — As — As. ts steady state is c3 = cikss /kas, ca = cikss/ksa and
s = c§(1 — kas /kaz — kas /ksa).

Let us construct an acyclic system that approximates relaxation of
Equation (50) under the same assumptlon (1) k32 >ky;. The final auxiliary system
after gluing cycles is A; LN Ay N A; N Ajy. Let us delete the hmltmg reaction
A} —> A, from the cycle. We get an acyclic system A LN A N A}. The
component A} is the glued cycle A; —> Ay = As —4>A3. Let us restore this
cycle and delete the limiting reaction A5 — A3. We get an acyclic system
Ay — Ay — A3 — A4 —> As. Relaxation of this system approximates relaxa-
tion of the initial network (50) under additional condition kzy >kbs.

(2) Let as assume now that ks, <kbs. In this case, the steady state of the cycle
A LN A —> Ay is (according to Equation (13)) ¢ = b(1 — ks, /k23) and
c} = bkzy /kys. The further analysis is the same as it was above: c3 = clkss/
k43, Cqg = C%k35/k54 and C5 = C%(l — k35/k43 — k35/k54) (Wlth another C3).

Let us construct an acyclic system that approximates relaxation of Equation
(50) under assumption (2) k3, <k;3 The final auxiliary system after gluing cycles
is the same, Ay —1> Ay —> A —7> A, but the limiting step in the Cycle is different,
Ay N Aj. After cutting this step, we get acyclic system A; — A, <— A}, where

the last reaction has rate constant ky,.
The component A} is the glued cycle

A3—2>A4—>A5—4>A3
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. T . 4
Let us restore this cycle and delete the limiting reaction As — Aj. The
9
connection from glued cycle Al!— A, with constant kj; transforms into
?

connection As — A, with the same constant k.
We get the acyclic system:

A= Ay As =2 Ay — As—> Ay

The order of constants is now known: ki > kg3 > ks >k;3, and we can sub-
. . 2 3 4
stitute the sign “?” by “4”: A3 — Ay — As — Ao.
For both cases, k3 >k;3(k§3 = koakss /kss) and k32<k;3 it is easy to find the
eigenvectors explicitly and to write the solution to the kinetic equations in
explicit form.

4.3 The general case: cycles surgery for auxiliary discrete dynamical
system with arbitrary family of attractors

In this subsection, we summarize results of relaxation analysis and describe the
algorithm of approximation of steady state and relaxation process for arbitrary
reaction network with well-separated constants.

43.1 Hierarchy of cycles gluing

Let us consider a reaction network ¥ with a given structure and fixed ordering
of constants. The set of vertices of #" is ./ and the set of elementary reactions
is #. Each reaction from # has the form A; — Aj, A;, Aj € /. The correspondent
constant is kj;. For each A; € .o/ we define x; = max;{k;;} and ¢(i) = arg max;{k;;}.
In addition, ¢(i) =1 if k; = 0 for all j.

The auxiliary discrete dynamical system for the reaction network %" is the
dynamical system ® = @, defined by the map ¢ on the set .«7. Auxiliary reaction
network ¥ = 7", has the same set of vertices ./ and the set of reactions
A; — Ayi with reaction constants k;. Auxiliary kinetics is described by
c= I~<C, where I~<ij = —K]'(sjj + Kjaid)(j)'

Every fixed point of ®,- is also a sink for the reaction network #". If all
attractors of the system ®, are fixed points As,Ap,... € .o/ then the set of
stationary distributions for the initial kinetics as well as for the auxiliary kinetics
is the set of distributions concentrated the set of fixed points {As1, Ap, .. .}. In this
case, the auxiliary reaction network is acyclic, and the auxiliary kinetics
approximates relaxation of the whole network #".

In general case, let the system ®, have several attractors that are not fixed
points, but cycles Cy,Cy, ... with periods 11,13,... >1. By gluing these cycles in
points, we transform the reaction network %" into #!. The dynamical system ®-
is transformed into ®!. For these new system and network, the connection
@' = 1 persists: @' is the auxiliary discrete dynamical system for %

For each cycle, C;, we introduce a new vertex A'. The new set of vertices,
A = of U{A, A2, N\ (U;C) (we delete cycles C; and add vertices Ad.
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All the reaction between A — B(A, B € o/) can be separated into 5 groups:

@d) both A, B¢U;C;;

(>i1) A¢U,C;, but Be C;
(iii) A € C;, but B¢U;C;;
(v) AeCyBeC,i#
w) A,BeC;.

Reactions from the first group do not change. Reaction from the second group
transforms into A — A’ (to the whole glued cycle) with the same constant.
Reaction of the third type changes into A' — B with the rate constant
renormalization (46): let the cycle C' be the following sequence of reactions
A1 — Ay — ... A;, > A, and the reaction rate constant for A; — A1 is k; (k;, for
A, — Aq). For the limiting reaction of the cycle C; we use notation ki, ;. If A = A;
and k is the rate reaction for A—B, then the new reaction A’ — B has the rate
constant kkjr, ;/kj. This corresponds to a quasi-stationary distribution on the
cycle (13). It is obvious that the new rate constant is smaller than the initial one:
kkim i/kj <k, because kim ;<k;j due to definition of limiting constant. The same
constant renormalization is necessary for reactions of the fourth type. These
reactions transform into A’ — A/. Finally, reactions of the fifth type vanish.

After we glue all the cycles of auxiliary dynamical system in the reaction
network #°, we get #''. Strictly speaking, the whole network % is not
necessary, and in efficient realization of the algorithm for large networks the
computation could be significantly reduced. What we need, is the correspondent
auxiliary dynamical system ®' = @, with auxiliary kinetics.

To find the auxiliary kinetic system, we should glue all cycles in the first
aux1hary system, and then add several reactions: for each Al it is necessary to find
in #! the reaction of the form A’ — B with maximal constant and add this
reaction to the auxiliary network. If there is no reaction of the form A' — B for
given i then the point A’ is the fixed point for %! and vertices of the cycle C; form
a sink for the initial network.

After that, we decompose the new auxiliary dynamical system, find cycles
and repeat gluing. Terminate when all attractors of the auxiliary dynamical
system @" become fixed points.

4.3.2 Reconstruction of steady states
After this termination, we can find all steady-state distributions by restoring
cycles in the auxiliary reaction network 7. Let Afj, Ap, ... be fixed points of ®™.
The set of steady states for ¥™ is the set of all distributions on the set of fixed
points {A}’},A}g,. .J. Let us take one of these distributions, ¢ = (¢ 1o f2’ .
(we mark the concentrations by the same indexes as the vertex has; other ¢; =0).
To make a step of cycle restoration we select those vertexes Af' that are glued
cycles and substitute them in the list Afj, Af, . .. by all the vertices of these cycles.
For each of those cycles we find the limiting rate constant and redistribute
the concentration c’ between the vertices of the correspondent cycle by the rule
(13) (with b=c]}). As a result, we get a set of vertices and a distribution on
this set of vertices. If among these vertices there are glued cycles, then we repeat
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the procedure of cycle restoration. Terminate when there is no glued cycles in the
support of the distribution. The resulting distribution is the approximation to
a steady state of #7, and all steady states for #" can be approximated by this
method.

To construct the approximation to the basis of stationary distributions of #", it
is sufficient to apply the described algorithm to distributions concentrated on a
single fixed point Aﬁ , f‘ = (),], for every i.

The steady-state approximation on the base of the rule (13) is a linear func-
tion of the restored-and-cut cycles rate-limiting constants. It is the first-order
approximation.

The zero-order approximation also makes sense. For one cycle gives
Equation (14): all the concentration is collected at the start of the limiting step.
The algorithm for the zero-order approximation is even simpler than for the first
order. Let us start from the distributions concentrated on a single fixed point A,
cf' =0 for some i. If this point is a glued cycle then restore that cycle,
and find the limiting step. The new distribution is concentrated at the starting
vertex of that step. If this vertex is a glued cycle, then repeat. If it is not then
terminate. As a result we get a distribution concentrated in one vertex of .«7.

4.3.3 Dominant kinetic system for approximation of relaxation

To construct an approximation to the relaxation process in the reaction network
W', we also need to restore cycles, but for this purpose we should start from the
whole glued network 7™ on /™ (not only from fixed points as we did for the
steady-state approximation). On a step back, from the set ./ to ./""~! and so on
some of glued cycles should be restored and cut. On each step we build an acyclic
reaction network, the final network is defined on the initial vertex set and
approximates relaxation of #".

To make one step back from 7™ let us select the vertices of ./ that are glued
cycles from 7" 1. Let these vertlces be AT, Ay, ... Each A" corresponds to a glued
cycle from v, An—1 . An-! AL T A'” !, of the length 7;. We assume
that the limiting steps in these Cycles are A" ! A ~*. Let us substitute each
vertex A" m 7™ by 1; vertices Ajj~ 1 VAL ],. AL i and add to ¥ reactions
ATt > AU — LA (that are the cycle reactions without the limiting step)
with correspondent constants from 7!

If there exists an outgoing reaction A" — B in ¥ then we substitute it by the
reaction Am ! — B with the same constant, i.e. outgoing reactions A} — ... are
reattached to the heads of the limiting steps. Let us rearrange reactions from s
of the form B — A". These reactions have prototypes in 7"~ (before the last
gluing). We simply restore these reactions. If there exists a reaction A;" — A7
then we find the prototype in #™~!, A—B and substitute the reaction by
A;’ji’l — B with the same constant, as for A" — A"

After that step is performed, the vertices set is /™1 but the reaction set
differs from the reactions of the network 7! the limiting steps of cycles are
excluded and the outgoing reactions of glued cycles are included (reattached to
the heads of the limiting steps). To make the next step, we select vertices of .«/" !
that are glued cycles from 7" ~2, substitute these vertices by vertices of cycles,
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delete the limiting steps, attach outgoing reactions to the heads of the limiting
steps, and for incoming reactions restore their prototypes from 72 and so on.

After all, we restore all the glued cycles, and construct an acyclic reaction
network on the set .&/. This acyclic network approximates relaxation of the
network #". We call this system the dominant system of #" and use notation dom
mod (#).

4.4 Example: a prism of reactions

Let us demonstrate work of the algorithm on a typical example, a prism of
reaction that consists of two connected cycles (Figures 2 and 3). Such systems
appear in many areas of biophysics and biochemistry (see, e.g. the paper of
Kurzynski, 1998).

For the first example we use the reaction rate constants ordering presented in
Figure 2a. For this ordering, the auxiliary dynamical system consists of two cycles
(Figure 2b) with the limiting constants ks4 and ks,, correspondingly. These cycles
are connected by four reactions (Figure 2c). We glue the cycles into new
components Al and A} (Figure 2d), and the reaction network is transformed
into Al & Al. Following the general rule (k' = kkyjn, /kj), we determine the rate
constants: for reaction A} — A)

ks = max{ksksa/ka1, ko, keskaa/kis)

Ay A—— A

1M 1, A 1M
N N LGJ”

VA

SR
N

\0
m4>> w

Nl—‘
— 2

(o)
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[{e]}
J>> w
L

(o]

YA ——> Ay b A—>A; 0
Ll A 4 =5 Al /Al\ Al k‘21/A1v\k13
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T’ K,

?1 |7 K,
9.'A4‘\'2 . El k
) Asl/”__,_s_” > A o [A—>As h A k65\A€

Figure 2 Gluing of cycles for the prism of reactions with a given ordering of rate constants
in the case of two attractors in the auxiliary dynamical system: (a) initial reaction network,

(b) auxiliary dynamical system that consists of two cycles, (c) connection between cycles,

(d) gluing cycles into new components, (e) network #' with glued vertices and (f) an example
of dominant system in the case when kj, = kqiks /kn and k), >kj, (by definition,

k.|2-| = max{k41k32/k21,k52,k63k32/k13} and k}Z = k36k54/k46), the order of constants in the
dominant system is: ky; > ks > k13 > ks > karksy /ka.
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Figure 3 Gluing of a cycle for the prism of reactions with a given ordering of rate constants
in the case of one attractors in the auxiliary dynamical system: (a) initial reaction network,
(b) auxiliary dynamical system that has one attractor, (c) outgoing reactions from a cycle,

(d) gluing of a cycle into new component, (e) network %' with glued vertices and (f) an
example of dominant system in the case when k' = ky, and, therefore k' > k4 (by definition,
k" = max{kakss /kz, kas}); this dominant system is a linear chain that consists of some
reactions from the initial system (no nontrivial monomials among constants). Only one
reaction rate constant has in the dominant system new number (number 5 instead of 9).

and for reaction A) — Aj
K1y = kseksa/Kas

There are six possible ordermgs of the constant combinations: three
possibilities for the choice of kj; and for each such a choice there exist two
possibilities: ky, >k;, or ky, <ki,.

The zero-order approx1mat10n of the steady state depends only on the sign
of inequality between kj, and kj,. If ky; > k;, then almost all concentration
in the steady state is accumulated 1n51de A,y. After restoring the cycle
Ay - As - A¢ — A4 we find that in the steady state almost all concentration
is accumulated in A, (the component at the beginning of the limiting step of this
cycle, Ay — As). Finally, the eigenvector for zero eigenvalue is estimated as the
vector column with coordinates (0,0,0,1,0,0).

If, inverse, ky; <« kj, then almost all concentration in the steady state is
accumulated inside A}. After restoring the cycle Ay — A - A3 — A; we find
that in the steady state almost all concentration is accumulated in A,
(the component at the beginning of the limiting step of this cycle, A, — As3).
Finally, the eigenvector for zero eigenvalue is estimated as the vector column
with coordinates (0,1,0,0,0,0).

Let us find the first-order (in rate limiting constants) approximation to
the steady states. If ky, >k}, then kj, is the rate-limiting constant for the
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cycle A} <> A} and almost all concentration in the steady state is accumulated
inside Al:cl~1—ki,/ky and cl ~kj,/ky. Let us restore the glued cycles
(Figure 2). In the upper cycle the rate-limiting constant is ks, hence, in steady
state almost all concentration of the upper cycle, ¢!, is accumulated in A, : c; ~
C%(l — k32/k13 — k32/k21), 3~ C%k32/k13 and ¢ ~ C%k3z/k21. In the bottom Cycle the
rate—limiting constant is k54, hence, ¢4 ~ C%(l — k54/k65 — k54/k46), Cs X C%k54/k65
and Co ~ C%k54/k46.

If, inverse, ky; < kj, then k), is the rate-limiting constant for the cycle
A} <A, and almost all concentration in the steady state is accumulated
inside Al:cl ~1—k)y/kl, and c} ~ Kk}, /ki,. For distributions of concentra-
tions in the upper and lower cycles only the prefactors c! and ¢! change their
values.

For analysis of relaxation, let us analyze one of the six particular cases
separately.

1. ky = katksp/kxn and ky >k,

In this case, the finite acyclic auxiliary dynamical system, ®" = ®', is
A% — A% with reaction rate constant k;l = kyiksz /ko1, and #~ T is A%HA%. We
restore both cycles and delete the limiting reactions A, — A3 and A4 — As. This
is the common step for all cases. Following the general procedure, we substitute
the reaction A% — A; by A, — A4 with the rate constant kél = karksp /ko1 (because
A is the head of the limiting step for the cycle A; — A, — A3 — A;, and the
prototype of the reaction A} — A is in that case A; — Aj.

We find the dominant system for relaxation description: reactions
A3 - Ay —> Ay and As - Ag — A4 with original constants, and reaction
A2 —> A4 with the rate constant k;l = k41 k32/k21.

This dominant system graph is acyclic and, moreover, represents a discrete
dynamical system, as it should be (not more than one outgoing reaction for any
component). Therefore, we can estimate the eigenvalues and eigenvectors on the
base of formulas (35) and (37). It is easy to determine the order of constants
because k;l = ka1ksp /kp1: this constant is the smallest nonzero constant in
the obtained acyclic system. Finally, we have the following ordering of constants:
A3—>A1 —>A2—5>A4 and A5—>A6—2>A4.

So, the eigenvalues of the prism of reaction for the given ordering are
(with high accuracy, with probability close to one) —ky < —kg< —kiz<
—k65 < — k41k32/k21. The relaxation time is 7 ~ k21/(k41k32). ) )

We use the same notations as in previous sections: eigenvectors I' and '
correspond to the eigenvalue —«; where k; is the reaction rate constant for the
reaction A; — ... The left eigenvectors I' are:

I' ~(1,0,0,0,0,0), *~(1,1,1,0,0,0),
P~ (0,0,1,0,0,0), I*~(1,1,1,1,1,1), (51)
P’ ~(0,0,0,0,1,0), I°~(0,0,0,0,0,1)
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The right eigenvectors 7' are (we represent vector columns as rows):
r' ~(1,-1,0,0,0,0), r*~(0,1,0,-1,0,0),
r ~(0,-1,1,0,0,0), r*~(0,0,0,1,0,0), (52)
r ~(0,0,0,—1,1,0), r°~(0,0,0,—1,0,1)

The vertex A, is the fixed point for the discrete dynamical system. There is no
reaction A4 — ... For convenience, we include the eigenvectors * and #* for zero
eigenvalue, 14 = 0. These vectors correspond to the steady state: * is the steady-
state vector, and the functional [ is the conservation law.

The correspondent approximation to the general solution of the kinetic
equation for the prism of reaction (Figure 2a) is:

6
o(t) =>_ (I, c(0)) exp(—rit) (53)
i=1

Analysis of other five particular cases is similar. Of course, some of the
eigenvectors and eigenvalues can differ.

Of course, different ordering can lead to very different approximations. For
example, let us consider the same prism of reactions, but with the ordering of
constants presented in Figure 3a. The auxiliary dynamical system has one cycle
(Figure 3b) with the limiting constant kse. This cycle is not a sink to the initial
network, there are outgoing reactions from its vertices (Figure 3c). After gluing,
this cycles transforms into a vertex Al (Figure 3d). The glued network, %
(Figure 3e), has two vertices, A4 and A% the rate constant for the reaction A4 — A%
is ks4, and the rate constant for the reaction A% — Ay is k' = max{kaksg Jko1, ky ).
Hence, there are not more than four possible versions: two possibilities for the
choice of k' and for each such a choice there exist two possibilities: k' > ks, or
k' <kss (one of these four possibilities cannot be realized, because kg > ks4).

Exactly as it was in the previous example, the zero-order approximation of
the steady state depends only on the sign of inequality between k' and ks,
If k' « ksy then almost all concentration in the steady state is accumulated
inside A'. After restoring the cycle A3 - A1 — Ay - As - A¢ — Az we find that
in the steady state almost all concentration is accumulated in Ag (the component at
the beginning of the limiting step of this cycle, A, — A3). The eigenvector for zero
eigenvalue is estimated as the vector column with coordinates (0,0,0,0,0,1).

If k' > ks, then almost all concentration in the steady state is accumulated inside
A*. This vertex is not a glued cycle, and immediately we find the approximate
eigenvector for zero eigenvalue, the vector column with coordinates (0,0,0,1,0,0).

Let us find the first-order (in rate-limiting constants) approximation to the
steady states. If k' < ks4 then k' is the rate-limiting constant for the cycle A} <> Ay
and almost all concentration in the steady state is accumulated inside Aj:
c% ~1—k /kss and ¢4 =~ k! /kss. Let us restore the glued cycle (Figure 3).
The limiting constant for that cycle is ks, 6 ~ (1 — kso/k13 — kae/ko1 — kze/
ksy — ksg /kes), c3 = C%k36/k13/ 1~ C%ksé/kzll Gy ~ C%kae/k& and ¢s ~ C%k36/k65-
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If k' > kss then ksy is the rate-limiting constant for the cycle A1 — A, and
almost all concentration in the steady state is accumulated 1n51de Ay
g~ 1 —ksy /k and c1 ~ ksy /k1 In distribution of concentration inside the cycle
only the prefactor ¢} changes.

Let us analyze the relaxation process for one of the possibilities: k! = kg, and,
therefore k! >ks4. We restore the cycle, delete the limiting step, transform the

reaction A1 — Ay into reaction Ag — Ay w1th the same Constant k' = = k46 and get
the chain with ordered constants: Az —3> Aq —> A, —> As —> Ag —> A4. Here the
nonzero rate constants k;; have the same value as for the initial system (Figure 3a).
The relaxation time is 7 &~ 1/ky. Left eigenvectors are (including I* for the zero
eigenvalue):

l1 ~ (1,0,0,0,0,0), I*=~(1,1,1,0,0,0),
~(0,0,1,0,0,0), I*~(1,1,1,1,1,1), (54)
~ (0,0,0,0,1,0) 1° ~(1,1,1,0,1,1)

Right eigenvectors are (including r* for the zero eigenvalue):
r! ~(1,-1,0,0,0,0), *~(0,1,0,0,0,—1),
r* ~(0,-1,1,0,0,0), *~(0,0,0,1,0,0), (55)
r ~(0,0,0,0,1,—1), r°~(0,0,0,—1,0,1)

Here we represent vector columns as rows.
For the approximation of relaxation in that order we can use Equation (53).

5. THE REVERSIBLE TRIANGLE OF REACTIONS: THE SIMPLE
EXAMPLE CASE STUDY

In this section, we illustrate the analysis of dominant systems on a simple
example, the reversible triangle of reactions.

Al (—)Az > A3 (—>A1 (56)

This triangle appeared in many works as an ideal object for a case study.
Our favorite example is the work of Wei and Prater (1962). Now in our study
the triangle (56) is not obligatory a closed system. We can assume that it is
a subsystem of a larger system, and any reaction A; — A; represents a reaction
of the form ---+ A; — Aj+---, where unknown but slow components are
substituted by dots. This means that there are no obligatory relations between
reaction rate constants, first of all, no detailed balance relations, and six reaction
rate constants are arbitrary nonnegative numbers.

There exist 6! = 720 orderings of six reaction rate constants for this triangle,
but, of course, it is not necessary to consider all these orderings. First of all,
because of the permutation symmetry, we can select an arbitrary reaction as
the fastest one. Let the reaction rate constant k»; for the reaction A; — A, is the
largest. (If it is not, we just have to change the enumeration of reagents.)
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\:‘(a>‘,

Attractors

Figure 4 Four possible auxiliary dynamical systems for the reversible triangle of reactions
with I(2'| >k,‘j for (I,j);ﬁ(z,-l) (a) k]z >k32, k23 >k13; (b) k]z >k32, k'|3 >k23; (C) k32 >k12, k23 >k13 and
(d) ksz > kia, ki3 >ka3. For each vertex the outgoing reaction with the largest rate constant is
represented by the solid bold arrow, and other reactions are represented by the dashed
arrows. The digraphs formed by solid bold arrows are the auxiliary discrete dynamical systems.
Attractors of these systems are isolated in frames.

First of all, let us describe all possible auxiliary dynamical systems for the
triangle (56). For each vertex, we have to select the fastest outgoing reaction.
For A, it is always A; — A, because of our choice of enumeration (the higher
scheme in Figure 4). There exist two choices of the fastest outgoing reaction for
two other vertices and, therefore, only four versions of auxiliary dynamical
systems for Equation (56) (Figure 4).

Because of the choice of enumeration, the vectors of logarithms of reaction
rate constants form a convex cone in R® which is described by the system of
inequalities Inky; > Ink;;, (i,/)#(2,1). For each of the possible auxiliary systems
(Figure 4) additional inequalities between constants should be valid, and we get
four correspondent cones in R®. These cones form a partitions of the initial one
(we neglect intersections of faces which have zero measure). Let us discuss
the typical behavior of systems from these cones separately. (Let us remind that
if in a cone for some values of coefficients 0;;, C,]Z 0;i lnkl]<zijCij Ink;j;, then,

typically in this cone }_;0; Ink; <K+ 3, Inkj; for any positive K. This means
that typically Hl]kl]” < ]_L]kg”

5.1 Auxiliary system (a): Al Ay < As; I('|2>I(32, k23 >I(]3

5.1.1 Gluing cycles

The attractor is a cycle (with only two vertices) A; <> A,. This is not a sink,
because two outgoing reactions exist: A; — A3z and A, — Asz. They are relatively
slow: k31 < k1 and ksp < kip. The limiting step in this cycle is A, — A; with
the rate constant ki,. We have to glue the cycle A; < A; into one new component
A} and to add a new reaction A} — A3 with the rate constant

ki = max{ks, ksikio/ko1} (57)
This is a particular case of Equations (46) and (47).
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As a result, we get a new system, A% «— A3 with reaction rate constants kél
(for A} — A3) and initial kp3 (for Al < A3). This cycle is a sink, because it has no
outgoing reactions (the whole system is a trivial example of a sink).

5.1.2 Steady states

To find the steady state, we have to compute the stationary concentrations for the
cycle Aj <> A3, ¢} and c3. We use the standard normalization condition ¢} + ¢3 = 1.
On the base of the general formula for a simple cycle (11) we obtain:

1 ;T w w
= =—, (3=-— (58)
A/ +(1/ks)” ' K

ko3
After that, we can calculate the concentrations of A; and A, with normal-
ization ¢1 + 2 = c}. Formula (11) gives:

1 / /
, Cq w w

T Ak + k)’ Tk 2 Tk

We can simplify the answer using inequalities between constants, as it was
done in formulas (12) and (13). For example, (1/k21) + (1/k21) =~ (1/k»1), because
ka1 > kip. It is necessary to stress that we have used the inequalities between
constants ky; > k;; for (i,/)#(2,1), k12> ks> and ka3 > ki3 to obtain the simple answer
(58), (59), hence if we even do not use these inequalities for the further
simplification, this does not guarantee the higher accuracy of formulas.

(59)

5.1.3 Eigenvalues and eigenvectors

At the next step, we have to restore and cut the cycles. First cycle to cut is the
result of cycle gluing, A} <> A;. It is necessary to delete the limiting step, i.e. the
reaction with the smallest rate constant. If k31 >kp3, then we get A — As. If,
inverse, k»3 >k31, then we obtain A] <~ As.

After that, we have to restore and cut the cycle which was glued into the
vertex A]. This is the two-vertices cycle A1 <> Ay. The limiting step for this cycle is
A~ Az, because k1 > kyp. If k31 >kp3, then following the rule visualized by
Figure 1, we get the dominant system A; — A, — Az with reaction rate constants
ko1 for A1 — A, and k31 for Ay, — Ajz. If ko3 >k31 then we obtain A1 — A, < Aj
with reaction rate constants kp; for Ay — A, and kys for A, < Asz. All the
procedure is illustrated by Figure 5.

A 1

Ko1 kay
. k311 = Al—> A, = Aq
Ar A A if kgy > kg

@ = ke .
“‘A3‘/ S k23?1:> AL, Ay <k—A3

Ay if ke3> ki

Figure 5 Dominant systems for case (a) (defined in Figure 4).
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The eigenvalues and the correspondent eigenvectors for dominant systems in
case (a) are represented below in zero-one asymptotic.

1. k;l >kp3, the dominant system A; — A, — As,
Jo=0, P~ (0,01, I’=@1,1,1);
h~ —ky, ra~(1,-1,0), I'~(1,0,0); (60)
o~ —ky, *a(0,1,-1), P~(1,1,0)

2. ko >ké1, the dominant system A; — A; < A3,
Jo =0, P~ (0,1,0, I=(@1,1,1);
o~ —kn, rM=~(1,-1,0, I'~(1,0,0); 61)
I~ —ky, 1 A(0,—-1,1), P*=~(0,0,1)

Here, the value of k3, is given by formula (57).
With higher accuracy, in case (a)

0 W w w)
P —,—,— (62)
(k21 k12" ko3
where
1 , cl . w

W=——g 1 W= s 0=
(1/k31) + (1/kz3) (1/ky) + (1/kyp) k3
in according to Equations (58), (59).

5.2 Auxiliary system (b): A3 — A > Ay; ki > k3, ki3 >k

5.2.1 Gluing cycles

The attractor is a cycle A; <> Ay again, and this is not a sink. We have to glue the
cycle Ay <> A, into one new component A} and to add a new reaction Aj — A
with the rate constant k3, given by formula (57). As a result, we get a new system,
A} A; with reaction rate constants ki, (for A] — A;) and initial kq3
(for A] < Aj). At this stage, the only difference from the case (a) is the reaction
A} < Aj rate constant ki3 instead of kjs.

5.2.2 Steady states
For the steady states we have to repeat formulas (58) and (59) with minor changes
(just use ki3 instead of ky3):
w ! A= ="
=1 < 1 <> =71 > 3=7 >
)+ /)" 1k ko
1 ’ (63)
, o w w

W=—— (1=, (=—
/K + Uk Rt 7 ke

/
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1

M Koy kay
1 1.::>A1 —_— A = A3
A=A L " = 31A3 if kgy > kyg
\‘(b)‘ = ka1 n Kiz & A
As” As k131|1:>A3&> Al& A,
As  ifkyg> kg

Figure 6 Dominant systems for case (b) (defined in Figure 4).

5.2.3 Eigenvalues and eigenvectors
The structure of the dominant system depends on the limiting step of the
cycle Al A3 (Figure 6). If k3, >ki3, then in the dominant system remains the
reaction A] — A; from this cycle. After restoring the glued cycle A; < A, it is
necessary to delete the slowest reaction from this cycle too. This is always
A1 < Ay, because A; — A, is the fastest reaction. The reaction A% — Az
transforms into A, — Az, because A; is the head of the limiting step A; < A
(see Figure 1). Finally, we get A; — A, — As.

If ki3 >k§1, then in the dominant system remains the reaction A3 — A;, and
the dominant system is A3 — A; — A, (Figure 6).

The eigenvalues and the correspondent eigenvectors for dominant systems in
case (b) are represented below in zero-one asymptotic.

@{) k;l > ki3, the dominant system A; — A; — As,
Jo=0, P~ (0,0,1), I=(@111)
h~—ky, rM=x~(1,-1,0), I'~(1,0,0); (64)
Ja~—ky, rPa(0,1,-1), P~(1,1,0)

(1) k3 >k;l, the dominant system Az — A; — Ay,
Jo =0, P02 (0,1,0, 1=(1,11)
i~ —kn, r'a~(1,-1,0), I'~(1,0,0); (65)
Jo ~ —kiz, Pa~(0,-1,1), >~(0,0,1)

Here, the value of kj, is given by formula (57). The only difference from case (a) is
the rate constant ky3 instead of k3.
With higher accuracy, in case (b)

PN (www> (66)
ko1 " k12 " kis

where w and w'’ are given by formula (63).

53 Auxiliary system (C)Z Al — Ay o A;; I(32>k'|2, I(23 >I('|3

5.3.1 Gluing cycles
The attractor is a cycle A, < Az. This is not a sink, because two outgoing reactions
exist: Ap - A; and Az — A;. We have to glue the cycle A, < A3 into one new
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component A} and to add a new reaction A} — A; with the rate constant kj,.
The definition of this new constant depends on the normalized steady-state
distribution in this cycle. If ¢35, ¢j are the steady-state concentrations (with
normalization c3 + ¢§ = 1), then

1 o
ki, &~ max{kiacs, kizcs)

If we use limitation in the glued cycle explicitly, then we get the direct analog of
Equation (57) in two versions: one for ks > kj3, another for ky; > k3. But we can
skip this simplification and write

k}, ~ max{kipw* /ksz, kizw* /ks) (67)
where
N 1
NN =E—
(1/ks2) + (1/k23)

5.3.2 Steady states
Exactly as in the cases (a) and (b) we can find approximation of steady state using
steady states in cycles A; <> Al and A, < As:

w 1 C1 w C w N

=1 < . > =1 > 1=7 >

/k) + (1 /kn)” 2 K, ka1
1 / / (68)

, Cy w w

Ww=——2 = (3=-—
(1/k32) + (1/k23) 2Tk ks

5.3.3 Eigenvalues and eigenvectors
The limiting step in the cycle A; <> A} in known, this is A; < A}. There are two
possibilities for the choice on limiting step in the cycle Ay« As. If ksp> ko3,
then this limiting step is A, < Az, and the dominant system is A; — Ay — As.
If ko3> k3p, then the dominant system is A; — A, < A3 (Figure 7).

The eigenvalues and the correspondent eigenvectors for dominant systems in
case (b) are represented below in zero-one asymptotic.

@) ksp > kp3, the dominant system A; — Ay — As,
Jo=0, 0~ (0,01, I=(@1,1,1);
h~ —ky, r~(1,-1,0), I'~(1,0,0); (69)
Jo & —kyp, P x~(0,1,-1), P=~(1,1,0)

(i) ko3 >ksp, the dominant system A; — A; < As,
Jo =0, P~ (0,1,0, =(@111);
I~ —ky, r'x~(1,-1,0), I'~(1,0,0); (70)
Jo & —ky, P ~(0,-1,1), =~(0,0,1)
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k
A, X A, 2o A,
A .
A T . AL T kg > ko
*.. (©) = kn n K, = k211
) k k
A% A% A, Ay — A

it kog > kap

Figure 7 Dominant systems for case (c) (defined in Figure 4).

With higher accuracy the value of ° is given by formula of the steady-state
concentrations (68).

5.4 Auxiliary system (d) Al —> Ay > A3 = Aj; I(32>I(12, I(13 >k23

This is a simple cycle. We discussed this case in details several times. To get the
dominant system it is sufficient just to delete the limiting step. Everything
is determined by the choice of the minimal constant in the couple {ks,ki3}.
Formulas for steady state are well known too: Equations (11)—(13).

This is not necessary to discuss all orderings of constants, because some of
them are irrelevant to the final answer. For example, in this case (d) interrelations
between constants k3, kp3 and kq; are not important.

5.5 Resume: zero-one multiscale asymptotic for the reversible
reaction triangle

We found only three topologically different version of dominant systems
for the reversible reaction triangle: (i) A; — Ay — As, (1) A1 — Ay < A3
and (iii) A3 — A; — Aj. Moreover, there exist only two versions of zero-one
asymptotic for eigenvectors: the fastest eigenvalue is always —k; (because our
choice of enumeration), the correspondent right and left eigenvectors (fast mode)
are: ' ~ (1,—1,0) and I' = (1,0, 0). (The difference between systems (ii) and (iii)
appears in the first order of the slow/fast constants ratio.)

If in the steady state (almost) all mass is concentrated in A, (this means that
0 2 (0,1,0), dominant systems (ii) or (iii)), then r*> 2 (0,—1,1) and I* ~ (0,0, 1).
If in the steady state (almost) all mass is concentrated in A; (this means that
10 2 (0,0, 1), dominant system (i), then 72 ~ (0,1, —1) and I* ~ (0,1,0). We can see
that the dominant systems of the forms (ii) and (iii) produce the same zero-one
asymptotic of eigenvectors. Moreover, the right eigenvectors r* ~ (0, 1, —1) coincide
for all cases (there is no difference between 7* and —?), and the difference appears
in the left eigenvector I>. Of course, this peculiarity (everything is regulated by the
steady-state asymptotic) results from the simplicity of this example.

In the zero-one asymptotic, the reversible reaction triangle is represented by
one of the reaction mechanisms, (i) or (iii). The rate constant of the first reaction
A1 — A, is always kip. The direction of the second reaction is determined by
a system of linear uniform inequalities between logarithms of rate constants.
The logarithm of effective constant of this reaction is the piecewise linear function
of the logarithms of reaction rate constants, and the switching between different
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pieces is regulated by linear inequalities. These inequalities are described in
this section, and most of them are represented in Figures 4-7. One can obtain the
first-order approximation of eigenvectors in the slow/fast constants ratio from
the Appendix 1 formulas.

6. THREE ZERO-ONE LAWS AND NONEQUILIBRIUM PHASE
TRANSITIONS IN MULTISCALE SYSTEMS

6.1 Zero-one law for steady states of weakly ergodic reaction
networks

Let us take a weakly ergodic network #" and apply the algorithms of auxiliary
systems construction and cycles gluing. As a result we obtain an auxiliary dynamic
system with one fixed point (there may be only one minimal sink). In the algorithm
of steady-state reconstruction (Section 4.3) we always operate with one cycle (and
with small auxiliary cycles inside that one, as in a simple example in Section 2.9).
In a cycle with limitation almost all concentration is accumulated at the start of the
limiting step (13), (14). Hence, in the whole network almost all concentration will
be accumulated in one component. The dominant system for a weekly ergodic
network is an acyclic network with minimal element. The minimal element is such
a component A, that there exists an oriented path in the dominant system from
any element to Ap,,. Almost all concentration in the steady state of the network #~
will be concentrated in the component Apin.

6.2 Zero-one law for nonergodic multiscale networks

The simplest example of nonergodic but connected reaction network is A; <
A, — Az with reaction rate constants k; and k,. For this network, in addition to
b(c) = c1 + 2 + ¢3 a kinetic conservation law exist, b*(c) = (&1 /k1) — (c3/kz). The
result of time evolution, lim;_, o, exp(Kt)c (30), is described by simple formula (31):

lim exp(Kt)c = b'(c)(1,0,0) + b*(c)(0,1,1)

where b'(c) + b*(c) = b°(c) and ((ky + k2)/k1)b(c) — (k1 + ko) /ko)bP(c) = b"(c). If
ki >k, then b'(c)~c;+c, and b2(c) ~c3. If ky <k, then b (¢c)~c; and
b*(c) ~ c5 + c5. This simple zero-one law (either almost all amount of A, transforms
into A;, or almost all amount of A, transforms into A3) can be generalized onto all
nonergodic multiscale systems.

Let us take a multiscale network and perform the iterative process of
auxiliary dynamic systems construction and cycle gluing, as it is prescribed in
Section 4.3. After the final step the algorithm gives the discrete dynamical system
@™ with fixed points A

The fixed points A of the discrete dynamical system @™ are the glued ergodic
components G; C .o/ of the initial network #". At the same time, these points
are attractors of ®". Let us consider the correspondent decomposition of this
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system with partition /" = U;Att(Ag). In the cycle restoration during construc-
tion of dominant system dom mod(#") this partition transforms into partition
of o/ : o/ =U;U;, Att(A]’}Z) transforms into U; and G; C U; (and U; transforms into
Att(Ag) in hierarchical gluing of cycles).

It is straightforward to see that during construction of dominant systems for
" from the network ¥ no connection between U; are created. Therefore, the
reaction network dom mod(#") is a union of networks on sets U; without any
link between sets.

If Gy,...,Gy are all ergodic components of the system, then there exist m
independent positive linear functionals b'(c), . .., b"(c), that describe asymptotical
behavior of kinetic system when t— co (30). For dom mod(#") these functionals
are: b[(c) => Act,Ca where c4 is concentration of A. Hence, for the initial reaction
network %~ with well-separated constants

By~ ca (71)

AEU]

This is the zero-one law for multiscale networks: for any i, the value of
functional b' (30) on basis vector ¢, bl(ei), is either close to one or close to zero
(with probability close to 1). We already mentioned this law in discussion of a
simple example (31). The approximate equality (71) means that for each reagent
A € o there exists such an ergodic component G of #~ that A transforms when
t— oo preferably into elements of G even if there exist paths from A to other
ergodic components of #".

6.3 Dynamic limitation and ergodicity boundary

Dominant systems are acyclic. All the stationary rates in the first order are limited
by limiting steps of some cycles. Those cycles are glued in the hierarchical
cycle gluing procedure, and their limiting steps are deleted in the cycles surgery
procedures (see Section 4.3 and Figure 1).

Relaxation to steady state of the network is multiexponential, and now we are
interested in estimate of the longest relaxation time t:

7 =1/ min{—Rel;|; #0} (72)

Is there a constant that limits the relaxation time? The general answer for
multiscale system is: 1/7 is equal to the minimal reaction rate constant of the
dominant system. It is impossible to guess a priori, before construction of the
dominant system, which constant it is. Moreover, this may be not a rate constant
for a reaction from the initial network, but a monomial of such constants.

Nevertheless, sometimes it is possible to point the reaction rate constant that
is limiting for the relaxation in the following sense. For known topology of
reaction network and given ordering of reaction rate constants we find such a
constant (ergodicity boundary) k, that

TR — (73)
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with <1 is a function of constants k; > k.. This means that 1/k; gives the lower
estimate of the relaxation time, but 7 could be larger. In addition, we show that
there is a zero-one alternative too: if the constants are well separated then either
ax1 orakl.

We study a multiscale system with a given reaction rate constants ordering,
ki >kj,> --- >k; . Let us suppose that the network is weakly ergodic (when there
are several ergodic components, each one has its longest relaxation time that can
be found independently). We say that k; , 1<r<n is the ergodicity boundary k.
if the network of reactions with parameters k; ,kj,, ..., k; (when km =k =0)
is weakly ergodic, but the network with parameters k;.kj,...,kj 1 (when
ki = ij =...kj =0) it is not. In other words, when eliminating reactions in
decreasing order of their characteristic times, starting with the slowest one, the
ergodicity boundary is the constant of the first reaction whose elimination breaks
the ergodicity of the reaction digraph. This reaction we also call the “ergodicity
boundary”.

Let us describe the possible location of the ergodicity boundary in the general
multiscale reaction network (#7). After deletion of reactions with constants
ki.kj ...,k from the network two ergodic components (minimal sinks) appear,
G; and G,. The ergodicity boundary starts in one of the ergodic components, say
Gy, and ends at the such a reagent B that another ergodic component, G,, is
reachable by B (there exists an oriented path from B to some element of Gy).

An estimate of the longest relaxation time can be obtained by applying the
perturbation theory for linear operators to the degenerated case of the zero
eigenvalue of the matrix K. We have K= K, (kj,kj,....kj 1) +k; Q+o(k,),
where K., is obtained from K by letting k, = k.41 =...k, =0, Q is a constant
matrix of rank 1, and o(k,) includes terms that are negligible relative to k.
The zero eigenvalue is twice degenerate in K., and not degenerate in K., + k.Q.
One gets the following estimate:

dklrzrzzklr (74)

where 4 and a >0 are some positive functions of ki,kp,...,k_; (and of the
reaction graph topology).
Two simplest examples demonstrate two types of dependencies of 7 on k.:

(i)  For the reaction mechanism Figure 8a
min{—Rel} = ¢
A#0
if e<ky +ky.
(ii)  For the reaction mechanism Figure 8b
min{—ReZ) = ska/(ki + ko) +0(c)
if e<ky+ko. For well-separated parameters there exists as a zero-one

(trigger) alternative: if k; < kp then min; .o{ —Rel} = ¢; if, inverse, k1 > k;
then min;.o{—Rel} = o(¢).
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a) ’ b)
Figure 8 Two basic examples of ergodicity boundary reaction: (a) Connection between
ergodic components and (b) Connection from one ergodic component to element that is
connected to the both ergodic components by oriented paths. In both cases, for ¢ = 0, the

ergodic components are {A,} and {As}.

In general multiscale network, two type of obstacles can violate approximate
equality t~ 1/k. Following the zero-one law for nonergodic multiscale
networks (previous subsection) we can split the set of all vertices into two
subsets, U; and U,. The dominant reaction network dom mod(#") is a union of
networks on sets U, without any link between sets.

If the ergodicity boundary reaction starts in the ergodic component G; and
ends at B which does not belong to the “opposite” basin of attraction U,, then
7> 1/k;. This is the first possible obstacle.

Let the ergodicity boundary reaction start at A € G; and end at B € U,. We
define the maximal linear chain of reactions in dominant system with start at
B: B— ... This chain belongs to U,. Let us extend this chain from the left by the
ergodicity boundary: A->B— .. Relaxation time for the network of r reactions
(with the kinetic matrix K<, = K-,(kj,kj,,...,kj -1) +k; Q) is, approximately,
the relaxation time of this chain, i.e. 1/ k, where k is the minimal constant in
the chain. There may appear a monomial constant k < k.. In that case, v > 1/k;,
and relaxation is limited by this minimal k or by some of constants k; , p>r or by
some of their combinations. This existence of a monomial constant k <L k; in
the maximal chain A—B— ... from the dominant system is the second possible
obstacle for approximate equality 7 ~ 1/k..

If there is neither the first obstacle, nor the second one, then 7~ 1/k..
The possibility of these obstacles depends on the definition of multiscale
ensembles we use. For example for the log-uniform distribution of rate
constants in the ordering cone k; >kj, > --- >k; (Section 3.3) the both obstacles
have nonzero probability, if they are topologically possible. However, if we
study asymptotic of relaxation time at ¢—0 for k; = ¢k; 1 for given values
of kj,kj,,...,kj-1, then for sufficiently small ¢>0 the second obstacle is
1mp0551b1e

Thus, the well-known concept of stationary reaction rates limitation by
“narrow places” or “limiting steps” (slowest reaction) should be complemented
by the ergodicity boundary limitation of relaxation time. It should be stressed that
the relaxation process is limited not by the classical limiting steps (narrow
places), but by reactions that may be absolutely different. The simplest example
of this kind is an irreversible catalytic cycle: the stationary rate is limited by the
slowest reaction (the smallest constant), but the relaxation time is limited by
the reaction constant with the second lowest value (in order to break the weak
ergodicity of a cycle two reactions must be eliminated).
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6.4 Zero-one law for relaxation modes (eigenvectors) and
lumping analysis

For kinetic systems with well-separated constants the left and right eigenvectors
can be explicitly estimated. Their coordinates are close to +1 or 0. We analyzed
these estimates first for linear chains and cycles (5) and then for general acyclic
auxiliary dynamical systems (34), (36) (35), (37). The distribution of zeros and +1
in the eigenvectors components depends on the rate constant ordering and may
be rather surprising. Perhaps, the simplest example gives the asymptotic
equivalence (for k; > ki, k1) of the reaction network A;«<> A1 — Aiyp with
rate constants k;, k; and ki;; to the reaction network Ay — A; — Aijo with
rate constants k; (for the reaction A1 — A;) and kipq1ki/k; (for the reaction
A; — Ai;p) presented in Section 2.9.

For reaction networks with well-separated constants coordinates of left
eigenvectors I’ are close to 0 or 1. We can use the left eigenvectors for coordinate
change. For the new coordinates z; = I'c (eigenmodes) the simplest equations
hold: z; = /;z;. The zero-one law for left eigenvectors means that the eigenmodes
are (almost) sums of some components: z; = } .y, ¢; for some sets of numbers V.
Many examples, Equations (6), (38), (51), (54), demonstrate that some of z; can
include the same concentrations: it may be that V;NV;# J for some i#j.
Aggregation of some components (possibly with some coefficients) into new
group components for simplification of kinetics is the major task of lumping
analysis.

Wei and Kuo studied conditions for exact (Wei and Kuo, 1969) and
approximate (Kuo and Wei, 1969) linear lumping. More recently, sensitivity
analysis and Lie group approach were applied to lumping analysis (Li and
Rabitz, 1989; Toth et al., 1997), and more general nonlinear forms of lumped
concentrations are used (e.g. z; could be rational function of ¢). The power of
lumping using a timescale-based approach was demonstrated by Whitehouse
et al. (2004) and by Liao and Lightfoot (1988). This computationally cheap
approach combines ideas of sensitivity analysis with simple and useful grouping
of species with similar lifetimes and similar topological properties caused by
connections of the species in the reaction networks. The lumped concentrations
in this approach are simply sums of concentrations in groups.

Kinetics of multiscale systems studied in this chapter and developed theory of
dynamic limitation demonstrates that in multiscale limit lumping analysis can
work (almost) exactly. Lumped concentrations are sums in groups, but these
groups can intersect and usually there exist several intersections.

6.5 Nonequilibrium phase transitions in multiscale systems

For each zero-one law specific sharp transitions exist: if two systems in a one-
parametric family have different zero-one steady states or relaxation modes, then
somewhere between a point of jump exists. Of course, for given finite values of
parameters this will be not a point of discontinuity, but rather a thin zone of fast
change. At such a point the dominant system changes. We can call this change a
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nonequilibrium phase transition. Here we identify a “multiscale nonequilibrium
phase” with a dominant system.

A point of phase transition can be a point where the order of parameters
changes. But not every change of order causes the change of dominant systems.
However, change of order of some monomials can change the dominant system
even if the order of parameters persists (examples are presented in previous
section). Evolution of a parameter-dependent multiscale reaction network can
be represented as a sequence of sharp change of dominant system. Between such
sharp changes there are periods of evolution of dominant system parameters
without qualitative changes.

7. LIMITATION IN MODULAR STRUCTURE AND
SOLVABLE MODULES

7.1 Modular limitation

The simplest one-constant limitation concept cannot be applied to all systems.
There is another very simple case based on exclusion of “fast equilibria” A; = A;.
In this limit, the ratio of reaction constants Kj; =k;/k; is bounded,
0<a<Kj;j<b<oo, but for different pairs (i,j), (/,5) one of the inequalities k;; < ki
or kjj > kj; holds. (One usually calls these K “equilibrium constant”, even if there
is no relevant thermodynamics.) Ray (1983) discussed that case systematically
for some real examples. Of course, it is possible to create the theory for that case
very similarly to the theory presented above. This should be done, but it is worth
to mention now that the limitation concept can be applied to any modular
structure of reaction network. Let for the reaction network ¥~ the set of
elementary reactions # is partitioned on some modules: # = U;%;. We can
consider the related multiscale ensemble of reaction constants: let the ratio of any
two-rate constants inside each module be bounded (and separated from zero, of
course), but the ratios between modules form a well-separated ensemble. This
can be formalized by multiplication of rate constants of each module #; on a
timescale coefficient k;. If we assume that Ink; are uniformly and independently
distributed on a real line (or k; are independently and log-uniformly distributed
on a sufficiently large interval) then we come to the problem of modular
limitation. The problem is quite general: describe the typical behavior of
multiscale ensembles for systems with given modular structure: each module has
its own timescale and these time scales are well separated.

Development of such a general theory is outside the scope of our chapter,
and here we just find building blocks for the future theory, solvable reaction
modules. There may be many various criteria of selection of the reaction
modules. Here are several possible choices: individual reactions (we developed
the theory of multiscale ensembles of individual reactions in this chapter),
couples of mutually inverse reactions, as we mentioned earlier, acyclic reaction
networks, ...

Among the possible reasons for selection the class of reaction mechanisms for
this purpose, there is one formal, but important: the possibility to solve the
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kinetic equation for every module in explicit analytical (algebraic) form with
quadratures. We call these systems “solvable”.

7.2 Solvable reaction mechanisms

Let us describe all solvable reaction systems (with mass action law), linear and
nonlinear.

Formally, we call the set of reaction solvable, if there exists a linear
transformation of coordinates ca such that kinetic equation in new coordinates
for all values of reaction constants has the triangle form:

dﬂ,‘

E = f’,(ﬂbaz, Ce ,ﬂi) 75)

This system has the lower triangle Jacobian matrix da;/da;.
To construct the general mass action law system we need: the list of
components, o/ = {A1,...,A,} and the list of reactions (the reaction mechanism):

Z ariAi —> Z ﬁrkAk (76)
i k

where 7 is the reaction number, o,; and f,, nonnegative integers (stoichiometric
coefficients). Formally, it is possible that all ;, =0 or all «; = 0. We allow such
reactions. They can appear in reduced models or in auxiliary systems.

A real variable c; is assigned to every component A;, ¢; is the concentration of
A; and c the concentration vector with coordinates c¢;. The reaction kinetic
equations are

= S w0 77)

where y, is the reaction stoichiometric vector with coordinates y,; = f3,; — o, wy(c)
is the reaction rate. For mass action law,

wy(c) =k, H ¢ (78)

where k, is the reaction constant.
Physically, equations (77) correspond to reactions in fixed volume, and in
more general case a multiplier V (volume) is necessary:

d(V
o OWEXC

Here we study the systems (77) and postpone any further generalization.
The first example of solvable systems give the sets of reactions of the form

Oﬁr,'A,' — Z ﬁrkAk (79)
kJ>i

(components A; on the right-hand side have higher numbers k than the
component A; on the left-hand side, i <k). For these systems, kinetic equations
(77) have the triangle form from the very beginning.
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The second standard example gives the couple of mutually inverse reactions:
Z A= Z ﬁkAk (80)
i k

these reactions have stoichiometric vectors +7, y; = f§; — ;. The kinetic equation
¢ = (w" — w™)y has the triangle form Equation (75) in any orthogonal coordinate
system with the last coordinate a, = (y,c) = > _;7,¢c;. Of course, if there are several
reactions with proportional stoichiometric vectors, the kinetic equations have the
triangle form in the same coordinate systems.

The general case of solvable systems is essentially a combination of that two
Equations (79) and (80), with some generalization. Here we follow the book by
Gorban et al. (1986) and present an algorithm for analysis of reaction network
solvability. First, we introduce a relation between reactions “rth reaction directly
affects the rate of sth reaction” with notation » — s: r — s if there exists such A;
that y,;05#0. This means that concentration of A; changes in the rth reaction
(7,;#0) and the rate of the sth reaction depends on A; concentration (o #0).
For that relation we use r — s. For transitive closure of this relation we use
notation r3=s (“rth reaction affects the rate of sth reaction”): r:=s if there exists
such a sequence s1,5y,...,8; that r — 51 — o — ..., — s.

The hanging component of the reaction network #" is such A; € ./ that for all
reactions o, =0. This means that all reaction rates do not depend on
concentration of A;. The hanging reaction is such element of # with number r
that 7>=s only if y; = Ay, for some number L. An example of hanging components
gives the last component A, for the triangle network (79). An example of hanging
reactions gives a couple of reactions (80) if they do not affect any other reaction.

To check solvability of the reaction network #” we should find all hanging
components and reactions and delete them from ./ and %, correspondingly.
After that, we get a new system, #"; with the component set .71 and the reaction
set #1. Next, we should find all hanging components and reactions for #"; and
delete them from .2/; and #;. Iterate until no hanging components or hanging
reactions could be found. If the final set of components is empty, then the reaction
network 7" is solvable. If it is not empty, then #" is not solvable.

For example, let us consider the reaction mechanism with o7 = {A;, Ay, A3, A4}
and reactions A + A, — 2A3, A1 + Ay — Az + Ay, A3 — Ay and Ay — As. There
are no hanging components, but two hanging reactions, A3 — A4 and Ay — As.
After deletion of these two reactions, two hanging components appear, Aj
and A,. After deletion these two components, we get two hanging reactions,
A1+ Ay — 0and A1 + Ay — 0 (they coincide). We delete these reactions and get
two components A; and A, without reactions. After deletion these hanging
components we obtain the empty system. The reaction network is solvable.

An oriented cycle of the length more than two is not solvable. For each
number of vertices one can calculate the set of all maximal solvable mechanisms.
For example, for five components there are two maximal solvable mechanisms of
monomolecular reactions:

() A1 — Ay — Ay, Ay — Ay, Ay = A3, Ay — Az — A5, A1 = As, Ay As and
() A1 — Ay Al = Az, A > Ay, Ay — As, Ay > Az, Ay As.
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It is straightforward to check solvability of these mechanisms. The first
mechanism has a couple of hanging reactions, A; <> As. After deletion of these
reactions, the system becomes acyclic, of the form Equation (79). The second
mechanism has two couples of hanging reactions, A; <> A3 and A4 < As. After
deletion of these reactions, the system also transforms into the triangle form
Equation (79). It is impossible to add any new monomolecular reactions between
{A1, A2, Az, A4, As} to these mechanisms with preservation of solvability, and any
solvable monomolecular reaction network with five reagents is a subset of one
of these mechanisms.

Finally, we should mention connections between solvable reaction
networks and solvable Lie algebras (de Graaf, 2000; Jacobson, 1979). Let us
remind that matrices My,...,M, generate a solvable Lie algebra if and only
if they could be transformed simultaneously into a triangle form by a change of
basis.

The Jacobian matrix for the mass action law kinetic equation (77) is:

]

where
11 1 1
=v.0 diagd —,—,...,— ¢ = —M,,
o= ding| G = M,

M?’j = Ofrj“/r@jT (82)
rT is the vector row (a,1,...,0m), ¢/ the jth basis vector row with coordinates
]T

e ik+
k ]

The Jacobian matrix (81) should have the lower triangle form in coordinates «;
(75) for all nonnegative values of rate constants and concentrations. This is
equivalent to the lower triangle form of all matrices M,; in these coordinates.
Because usually there are many zero matrices among M,;, it is convenient to
describe the set of nonzero matrices.

For the rth reaction I, = {i|a,; #0}. The reaction rate w, depends on c; if and
only if i € I,. For each i = 1,..., n we define a matrix

myi= [0,0,..., 7, ,...,0
——

i

The ith column of this matrix coincides with the vector column y,. Other
columns are equal to zero. For each r we define a set of matrices .#, = {m,|i € I,}
and .# = U,.#,. The reaction network ¥ is solvable if and only if the finite set of
matrices ./# generates a solvable Lie algebra.

Classification of finite dimensional solvable Lie algebras remains a difficult
problem (de Graaf, 2000, 2005). It seems plausible that the classification of
solvable algebras associated with reaction networks can bring new ideas into this
field of algebra.
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8. CONCLUSION: CONCEPT OF LIMIT SIMPLIFICATION IN
MULTISCALE SYSTEMS

In this chapter, we study networks of linear reactions. For any ordering of
reaction rate constants we look for the dominant kinetic system. The dominant
system is, by definition, the system that gives us the main asymptotic terms of the
stationary state and relaxation in the limit for well-separated rate constants.
In this limit any two constants are connected by the relation > or <

The topology of dominant systems is rather simple; they are those networks
which are graphs of discrete dynamical systems on the set of vertices. In such
graphs each vertex has no more than one outgoing reaction. This allows us to
construct the explicit asymptotics of eigenvectors and eigenvalues. In the limit
of well-separated constants, the coordinates of eigenvectors for dominant
systems can take only three values: +1 or 0. All algorithms are represented
topologically by transformation of the graph of reaction (labeled by reaction rate
constants). We call these transformations “cycles surgery”, because the main
operations are gluing cycles and cutting cycles in graphs of auxiliary discrete
dynamical systems.

In the simplest case, the dominant system is determined by the ordering of
constants. But for sufficiently complex systems we need to introduce auxiliary
elementary reactions. They appear after cycle gluing and have monomial
rate constants of the form k. = [[;k;". The dominant system depends on the place
of these monomial values among the ordered constants.

Construction of the dominant system clarifies the notion of limiting
steps for relaxation. There is an exponential relaxation process that lasts much
longer than the others in Equations (44) and (53). This is the slowest relaxation
and it is controlled by one reaction in the dominant system, the limiting step.
The limiting step for relaxation is not the slowest reaction, or the second
slowest reaction of the whole network, but the slowest reaction of the dominant
system. That limiting step constant is not necessarily a reaction rate constant
for the initial system, but can be represented by a monomial of such constants
as well.

The idea of dominant subsystems in asymptotic analysis was proposed by
Newton and developed by Kruskal (1963). A modern introduction with some
historical review is presented by White. In our analysis we do not use the powers
of small parameters (as it was done by Akian et al., 2004; Kruskal, 1963; Lidskii,
1965; Vishik and Ljusternik, 1960; White, 2006), but operate directly with the rate
constants ordering.

To develop the idea of systems with well-separated constants to the state of a
mathematical notion, we introduce multiscale ensembles of constant tuples. This
notion allows us to discuss rigorously uniform distributions on infinite space and
gives the answers to a question: what does it mean “to pick a multiscale system
at random”.

Some of results obtained are rather surprising and unexpected. First of all is
the zero-one asymptotic of eigenvectors. Then, the good approximation to
eigenvectors does not give approximate eigenvectors (the inverse situation is
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more common: an approximate eigenvector could be far from the eigenvector).
The almost exact lumping analysis provided by the zero-one approximation of
eigenvectors has an unexpected property: the lumped groups for different
eigenvalues can intersect. Rather unexpected seems the change of reaction
sequence when we construct the dominant systems. For example, asymptotic
equivalence (for k; > ki, ki+1) of the reaction network A; A1 — Ao with
rate constants k;, k; and ki to the reaction network A;y; — A; — Ai;» with rate
constants k; (for the reaction A1 — A;) and kij1ki/k; (for the reaction
Aj — Aiyp) is simple, but surprising (Section 2.9). And, of course, it was
surprising to observe how the dynamics of linear multiscale networks transforms
into the dynamics on finite sets of reagent names.

Now we have the complete theory and the exhaustive construction of
algorithms for linear reaction networks with well-separated rate constants. There
are several ways of using the developed theory and algorithms:

@d) For direct computation of steady states and relaxation dynamics; this may
be useful for complex systems because of the simplicity of the algorithm
and resulting formulas and because often we do not know the rate
constants for complex networks, and kinetics that is ruled by orderings
rather than by exact values of rate constants may be very useful.

(i)  For planning of experiments and mining the experimental data — the
observable kinetics is more sensitive to reactions from the dominant
network, and much less sensitive to other reactions, the relaxation
spectrum of the dominant network is explicitly connected with the
correspondent reaction rate constants, and the eigenvectors (“modes”) are
sensitive to the constant ordering, but not to exact values.

(iii)  The steady states and dynamics of the dominant system could serve as a
robust first approximation in perturbation theory or as a preconditioning
in numerical methods.

The developed methods are computationally cheap, for example, the
algorithm for construction of dominant system has linear complexity (~ number
of reactions). From a practical point of view, it is attractive to use exact rational
expressions for the dominant system modes (3), (34) and (36) instead of the
zero-one approximation. Also, we can use exact formula (11) for irreversible
cycle steady state instead of linear approximation (13). These improvements are
computationally cheap and may enhance accuracy of computations.

From a theoretical point of view the outlook is more important. Let us answer
the question: what has to be done, but is not done yet? Three directions for
further development are clear now:

() Construction of dominant systems for the reaction network that has a
group of constants with comparable values (without relations > between
them). We considered cycles with several comparable constants in
Section 2.2, but the general theory still has to be developed.

(i)  Construction of dominant systems for reaction networks with modular
structure. We can assume that the ratio of any two-rate constants inside
each module be bounded and separated from zero, but the ratios between



166 AN. Gorban and O. Radulescu

modules form a well-separated ensemble. A reaction network that has
a group of constants with comparable values gives us an example of the
simplest modular structure: one module includes several reactions and
other modules arise from one reaction. In Section 7.7 we describe all
solvable modules such that it is possible to solve the kinetic equation
for every module in explicit analytical (algebraic) form with quadratures
(even for nonconstant in time reaction rate constants).

(iii)  Construction of dominant systems for nonlinear reaction networks. The
first idea here is the representation of a nonlinear reaction as a
pseudomonomolecular reaction: if for reaction A+B— ... concentrations
ca and cp are well separated, say, cs > cg, then we can consider this
reaction as B— ... with rate constant dependent on c4. The relative change
of c, is slow, and we can consider this reaction as pseudomonomolecular
until the relation c4 > cp changes to c4 ~ cg. We can assume that in the
general case only for small fraction of nonlinear reactions the pseudomo-
nomolecular approach is not applicable, and this set of genuinely
nonlinear reactions changes in time, but remains small. For nonlinear
systems, even the realization of the limiting step idea for steady states
of a one-route mechanism of a catalytic reaction is nontrivial and was
developed through the concept of kinetic polynomial (Lazman and
Yablonskii, 1988).

Finally, the concept of “limit simplification” will be developed. For multiscale
nonlinear reaction networks the expected dynamical behavior is to be approxi-
mated by the system of dominant networks. These networks may change in time
but remain small enough.

This hypothetical picture should give an answer to a very practical question:
how to describe kinetics beyond the standard quasi-steady-state and quasi-
equilibrium approximations (Schnell and Maini, 2002). We guess that the answer
has the following form: during almost all time almost everything could be
simplified and the whole system behaves as a small one. But this picture is also
nonstationary: this small system change in time. Almost always “something is
very small and something is very big”, but due to nonlinearity this ordering can
change in time. The whole system walks along small subsystems, and constants
of these small subsystems change in time under control of the whole system
state. The dynamics of this walk supplements the dynamics of individual small
subsystems.

The corresponding structure of fast-slow time separation in phase space
is not necessarily a smooth slow invariant manifold, but may be similar to a
“crazy quilt” and may consist of fragments of various dimensions that do not join
smoothly or even continuously.
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APPENDIX 1. ESTIMATES OF EIGENVECTORS FOR DIAGONALLY
DOMINANT MATRICES WITH DIAGONAL GAP
CONDITION

The famous Gershgorin theorem gives estimates of eigenvalues. The estimates of
correspondent eigenvectors are not so well-known. In the chapter we use some
estimates of eigenvectors of kinetic matrices. Here we formulate and prove these
estimates for general matrices. Below A = (a;) is a complex n xn matrix,
P, = Zj,j _ilaij| (sums of nondiagonal elements in rows), Q; = Zj’j ilajil (sums of
nondiagonal elements in columns).

Gershgorin theorem (Marcus and Minc, 1992, p. 146): The characteristic roots
of A lie in the closed region G” of the z-plane

GF = LiJGf’(Gf = {zllz — a;ii| < Pj}) (83)
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Analogously, the characteristic roots of A lie in the closed region G% of the
z-plane

G2 = UG (G2{zllz —ail = Q1}) (84)

Areas G' and GQ are the Gershgorin discs.

Gershgorm discs G (i=1,...,n) are isolated, if G/ N GP & for i#j. If discs
G (i=1,..,n) are 1solated then the spectrum of A’ is simple, and each
Gershgorln ChSC G! contains one and only one eigenvalue of A (Marcus and Minc,
1992, p. 147). The same is true for discs G

Below we assume that Gershgorin discs GQ (i=1,...,n) are isolated, this
means that for all i,j

laii — aj| > Q; + Q (85)

Let us introduce the following notations:

Q; laj]
b=, = (6= 0]
|ezii] | 7

n 11 ]]
j |aii]

(86)
=&

Usually, we consider ¢; and y;; as sufficiently small numbers. In contrary,
gi should not be small, (this is the gap condition). For example, if for
any two diagonal elements a; and aj; either a; > a; or a; < aj, then ¢;21
for all i.

Let 2; € GlQ be the eigenvalue of A (|41 —a11]<Q;). Let us estimate the
correspondent right eigenvector xV = (x;): Ax) = J;xV. We take x; =1 and
write equations for x; (i#1):

(@i — a1 — O)x; + > ayx; = —ap 87)
Jj#Li
where 91 = /l1 — ai1, |91|<Q1.
Let us introduce new variables

X=(), Xxi=xi(a; —ap) (i=2,...,n)
In these variables,
01 - aji -
(l — )X,‘ + Z J Xj = —an (88)
aji — ain ]»#Liﬂjj —an
or in matrix notations: (1 — B)X = —d;, where d; is a vector column with

coordinates ;1. Because of gap condition and smallness of ¢ and y; we can
consider matrix B as a small matrix, assume that |B|| <1 and (1—B) is reversible
(for detailed estimate of ||B|| see below).

For X we obtain:

¥= -4 —B1-B)'i (89)
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and for residual estimate

IBIl
1T— Bl
For eigenvector coordinates we get from Equation (89):

L ___a _(BA-B)y'a) o)
: aii — a1 aij — a1

IB(1 —B) & < Al (90)

and for residual estimate

(B —B)"'a;| _ Bl il

< 92)
la;; — an| 1 — Bl laji — a1l

Let us give more detailed estimate of residual. For vectors we use [; norm:
x|l = > |xil. The correspondent operator norm of matrix B is

IBIl = max [[Bx| = Zmax|b1,|

With the last estimate for matrix B (88) we find:
o & & < e

| <— _
lai —a1| — g1 g
Xij
—Lﬂ—< i)
laj —anl| — g

|bll

E

(93)
|bij| =

where &= max;s;, y = max; i and g = min,-gl-. By definition, ¢>y, and for
all ij the simple estimate holds: |b;| <e&/g. Therefore, |Bx|<ne/g and
|BIl/(1—| Bl)<ne/(g-ne) (under condition g>mne). Finally, ||4;]| = Q; and for
residual estimate we get:

ne2

g@—n)

More accurate estimate can be produced from inequalities (93), if it is
necessary. For our goals it is sufficient to use the following consequence of
Equation (94):

ai
aii — an

xi + (i#1) (94)

ne?

£
lxi] <=+ ——=(i#1) (95)
T @ e)
With this accuracy, eigenvectors of A coincide with standard basis vectors, i.e.
with eigenvectors of diagonal part of A, diag{ai1,...,aum}.

APPENDIX 2. TIME SEPARATION AND AVERAGING IN CYCLES

In Section 2, we analyzed relaxation of a simple cycle with limitation as a
perturbation of the linear chain relaxation by one more step that closes the chain
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into the cycle. The reaction rate constant for this perturbation is the smallest one.
For this analysis we used explicit estimates (5) of the chain eginvectors for
reactions with well-separated constants.

Of course, one can use estimates (34)—(37) to obtain a similar perturbation
analysis for more general acyclic systems (instead of a linear chain). If we add a
reaction to an acyclic system (after that a cycle may appear) and assume that the
reaction rate constant for additional reaction is smaller than all other reaction
constants, then the generalization is easy.

This smallness with respect to all constants is required only in a very special
case when the additional reaction has a form A; — A; (with the rate constant k;;)
and there is no reaction of the form A; — ... in the nonperturbed system. In
Section 7 and Appendix 1 we demonstrated that if in a nonperturbed acyclic
system there exists another reaction of the form A; — ... with rate constant x;,
then we need inequality kj; < «; only. This inequality allows us to get the uniform
estimates of eigenvectors for all possible values of other rate constants (under the
diagonally gap condition in the nonperturbed system).

For substantiation of cycle’s surgery we need additional perturbation analysis
for zero eigenvalues. Let us consider a simple cycle A; - A, - ... > A, —> A;
with reaction A; — ... rate constants k;. We add a perturbation A; — 0 (from A,
to nothing) with rate constant ex;. Our goal is to demonstrate that the zero
eigenvalue moves under this perturbation to 19 = —sw*(1 + y,,), the correspon-
dent left and right eigenvectors ° and I are ) = c*(1 + z,;) and I =1 + z;;, and
Xw, ¥y and y; are uniformly small for a given sufficiently small ¢ under all
variations of rate constants. Here, w* is the stationary cycle reaction rate and c;
are stationary concentrations for a cycle (11) normalized by condition ) ;¢ = 1.
The estimate ew* for —Ag is e-small with respect to any reaction of the cycle:
w* = kicf <k; for all i (because ¢} <1) and ew* < k; for all i.

The kinetic equation for the perturbed system is:

él = - (1 + S)chl + KnCn,

. | 96)
¢ = — K¢ +xi_1¢i1 (for i#1)

In the matrix form we can write
¢ = Kc = (Ko — ekie'e!M)e 97)

where K, is the kinetic matrix for nonperturbed cycle. To estimate the right
perturbed eigenvector * and eigenvalue A, we are looking for transformation of
matrix K into the form K = K, — 0re! T, where K is a kinetic matrix for extended
reaction system with components Ay, ..., A,, K;r =0 and > ;#; = 1. In that case,
r is the eigenvector, and 4 = —0r; is the correspondent eigenvalue.

To find vector r, we add to the cycle new reactions A; — A; with rate
constants exq7; and subtract the correspondent kinetic terms from the perturba-
tion term se'e!Tc. After that, we get K = K, — Ore'T with 6 = ¢k; and

(Kyc)y = —kicr — eka(1 — r)cqr + kucn,

98
(Kyc); = — kici + ekqrics + ki—icioq for i>1 (98)
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We have to find a positive normalized solution r;>0, ) ;ri =1 to equation
K,r = 0. This is the fixed-point equation: for every positive normalized r there
exists unique positive normalized steady state c*(r): K.c*(r)=0, ¢;>0 and

.5 (r) = 1. We have to solve the equation r = c*(r). The solution exists because
the Brauer fixed point theorem.

If r=c*(r) then kyr;i —ekiriri = ki—1rie1. We use notation w}(r) for the
correspondent stationary reaction rate along the “nonperturbed route”:
wi(r) = kir;i. In this notation, wj(r) — er;wi(r) = w} {(r). Hence, |w!(r) —wi(r)|
<ewi(r) (or |kiri —kiri|<ekiry). Assume &<1/4 (to provide 1-2e<1/
(1+¢) <1+2¢). Finally,

. 1 14y
bk (1/k)
j

= (1+ )] (99)

where the relative errors |y;| <3¢ and ¢} = ¢}(0) is the normalized steady state for
the nonperturbed system. For cycles with limitation, #; = (1 + j,)kim/ki with
l%;1 <3e. For the eigenvalue we obtain

Ao = —ewi(r) = —ewi(r)(1 +¢)
= —ew" (14 y) = —ekic; (0)(1 + y)

for all i, with |¢;|<eand |y | <3e. | x| <3e. Therefore, Aq is ¢-small rate constant k;
of the nonperturbed cycle. This implies that %, is e-small with respect to the
real part of every nonzero eigenvalue of the nonperturbed kinetic matrix Ky
(for given number of components n). For the cycles from multiscale ensembles
these eigenvalues are typically real and close to —k; for nonlimiting rate
constants, hence we proved for Ay even more than we need.

Let us estimate the correspondent left eigenvector I° (a vector row). The
eigenvalue is known, hence it is easy to do just by solution of linear equations.
This system of n—1 equations is:

—h(1 + o)k + bky = Aol

(100)

kit Lk = ol i =2, n—1 (101)
For normalization, we take [; = 1 and find:
L= (2t14e)l, L= (241 i>2 102)
k1 ki

Formulas (99), (100) and (102) give the backgrounds for surgery of cycles with
outgoing reactions. The left eigenvector gives the slow variable: if there are some
incomes to the cycle, then

él = - (1 + S)chl + KnCy + d)l(t)/ (103)
¢ = — Ki¢i +Ki_1¢i—1 + ¢;(t) (for i#1)
and for slow variable ¢ = )" lic; we get
de .
P s Z ligi(t) (104)
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This is the kinetic equation for a glued cycle. In the leading term, all the
outgoing reactions A; — 0 with rate constants k = ¢k; give the same eigenvalue
—ew* (100).

Of course, similar results for perturbations of zero eigenvalue are valid for
more general ergodic chemical reaction network with positive steady state, and
not only for simple cycles, but for cycles we get simple explicit estimates, and this
is enough for our goals.
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