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a b s t r a c t

We study the master equation with time-dependent coefficients, a linear kinetic equation
for the Markov chains or for the monomolecular chemical kinetics. For the solution of
this equation a path summation formula is proved. This formula represents the solution
as a sum of solutions for simple kinetic schemes (kinetic paths), which are available in
explicit analytical form. The relaxation rate is studied and a family of estimates for the
relaxation time and the ergodicity coefficient is developed. To calculate the estimates we
introduce the multi-sheeted extensions of the initial kinetics. This approach allows us to
exploit the internal (‘‘micro’’) structure of the extended kinetics without perturbation of
the base kinetics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem

First-order kinetics form the simplest and well-studied class of kinetic systems. It includes the continuous-time Markov
chains [1,2] (the master equation [3]), kinetics of monomolecular and pseudomonomolecular reactions [4], provides a
natural language for description of fluxes in networks and has many other applications, from physics and chemistry to
biology, engineering, sociology, and even political science.

At the same time, the first-order kinetics are very fundamental and provide the background for kinetic description of
most of nonlinear systems: we almost always start from the master equation (it may be very high dimensional) and then
reduce the description to a lower level but with nonlinear kinetics.

For the description of the first-order kinetics we select the species-concentration language of chemical kinetics, which
is completely equivalent to the state probability language of the Markov chains theory and is a bit more flexible in the
normalization choice: the sum of concentration could be any positive number, while for the Markov chains we have to
introduce special ‘‘incomplete states’’.

The first-order kinetic system is weakly ergodic if it allows the only conservation law: the sum of concentration. Such a
system forgets its initial condition: the distance between any two trajectories with the same value of the conservation law
tends to zero when time goes to infinity. Among all possible distances, the l1 distance (‖x‖l1 =

∑
i |xi|) plays a special role:

it decreases monotonically in time for any first-order kinetic system. Further in this paper, we use the l1 norm on the space
of concentrations.
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Straightforward analysis of the relaxation rate for a linear system includes computation of the spectrum of the operator
of the shift in time. For an autonomous system, we have to find the ‘‘slowest’’ nonzero eigenvalue of the kinetic (generator)
matrix. For a systemwith time-dependent coefficients, we have to solve the linear differential equations for the fundamental
operator (the shift in time). After that, we have to analyze the spectrumof this operator. Beyond the simplest particular cases
there exist no analytical formulas for such calculations.

Nevertheless, there exists the method for evaluation of the contraction rate for the first-order kinetics, based on the
analysis of transition graph. For this evaluation, we need to solve kinetic equations for some irreversible acyclic subsystems
which we call the kinetic paths (10). These kinetic paths are combined from simple fragments of the initial kinetic systems.
For such systems, it is trivial to solve the kinetic equations in quadratures even if the coefficients are time-dependent. The
explicit recurrent formulas for these solutions are given (12).

We construct the explicit formula for the solution of the kinetic equation for an arbitrary system with time-dependent
coefficients by the summation of solutions of an infinite number of kinetic paths (15).

On the basis of this summation formulawe produce a representation of the l1 contraction rate forweakly ergodic systems
(23). Because of monotonicity, any partial sum of this formula gives an estimate for this contraction.

To calculate the estimateswe introduce themulti-sheeted extensions of the initial kinetics. Such amulti-sheeted extension
is a larger Markov chain together with a projection of its (the larger) state space on the initial state space and the following
property: the projection of the extended random walk is a random walk for the initial chain (Section 4.2).

This approach allows us to exploit the internal (‘‘micro’’) structure of the extended kinetics without perturbation of the
base kinetics.

It is difficult to find, who invented the kinetic path approach. We have used it in 1980s [5], but consider this idea as a
scientific ‘‘folklore’’.

In this paper we study the backgrounds of the kinetic path methods. This return to backgrounds is inspired, in particular,
by the series of work [6,7], where the kinetic path summation formula was introduced (independently, on another material
and with different argumentation) and applied to the analysis of large stochastic systems. The method was compared to the
kinetic Gillespie algorithm [8] and onmodel systems it was demonstrated [7] that for ensembles of rare trajectories far from
equilibrium, the path sampling method performs better.

For the linear chains of reversible semi-Markovian processes with nearest neighbors hopping, the path summation
formula was developed with counting all possible trajectories in Laplace space [9]. Higher-order propagators and the
first passage time were also evaluated. This problem statement was inspired, in particular, by the evolving field of single
molecules (for more detail see Ref. [10]).

The idea of kinetic paths with selection of the dominant paths gives an effective generalization of the limiting step
approximation in chemical kinetics [11,12].

2. Basic notions

Let us recall the basic facts about the first-order kinetics. We consider a general network of linear reactions. This
network is represented as a directed graph (digraph) [13,14]: vertices correspond to components Ai (i = 1, 2, . . . , n), edges
correspond to reactions Ai → Aj (i ≠ j). For the set of vertices we use notation A, and for the set of edges notation E . For
each vertex, Ai ∈ A, a positive real variable ci (concentration) is defined. Each reaction Ai → Aj is represented by a pair of
numbers (i, j), i ≠ j. For each reaction Ai → Aj a non-negative continuous bounded function, the reaction rate coefficient
(the variable ‘‘rate constant’’) kji(t) ≥ 0 is given. To follow the standard notation of the matrix multiplication, the order of
indexes in kji is always inverse with respect to reaction: it is kj←i, where the arrow shows the direction of the reaction. The
kinetic equations have the form

dci
dt
=

−
j, j≠i

(kij(t)cj − kji(t)ci), (1)

or in the vector form: ċ = K(t)c. The quantities ci are concentrations of Ai and c is a vector of concentrations. We do not
assume any special relation between constants, and consider them as independent quantities.

For each t , the matrix of kinetic coefficients K has the following properties:

• non-diagonal elements of K are non-negative;
• diagonal elements of K are non-positive;
• elements in each column of K have zero sum.

This family of matrices coincides with the family of generators of finite Markov chains in continuous time [1,2].
A linear conservation law is a linear function defined on the concentrations b(c) =

∑
i bici, whose value is preserved by

the dynamics (1). Eq. (1) always has a linear conservation law: b0(c) =
∑

i ci = const.
Another important and simple property of this equation is the preservation of positivity for the solution of (1) c(t): if

ci(t0) ≥ 0 for all i then ci(t1) ≥ 0 for t1 > t0.
For many technical reasons it is useful to discuss not only positive solutions to (1) and further we do not automatically

assume that ci ≥ 0.
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The time shift operator which transforms c(t0) into c(t) is U(t, t0). This is a column-stochastic matrix:

uij(t, t0) ≥ 0,
−

i

uij(t, t0) = 1 (t ≥ t0).

This matrix satisfies the equation:

dU(t, t0)
dt

= KU(t, t0) or
duil

dt
=

−
j

(kij(t)ujl − kji(t)uil) (2)

with initial conditions U(t0, t0) = 1, where 1 is the unit operator (uij(t0, t0) = δij).
Every stochastic in column operator U is a contraction in the l1 norm on the invariant hyperplanes

∑
i ci = const . It is

sufficient to study the restriction of U on the invariant subspace {x |
∑

i xi = 0}:

‖Ux‖ ≤ δ‖x‖ if
−

i

xi = 0

for some δ ≤ 1. Theminimum of such δ is δU , the norm of the operator U restricted to its invariant subspace {x |
∑

i xi = 0}.
One of the definitions ofweak ergodicity is δ < 1 [15]. The unit ball of the l1 norm restricted to the subspace {x |

∑
i xi = 0}

is a polyhedron with vertices

g ij
=

1
2
(ei − ej), i ≠ j, (3)

where ei are the standard basis vectors in Rn: eik = δik, δik is the Kronecker delta. For a norm with the polyhedral unit ball,
the norm of the operator U is

max
v∈V
‖U(v)‖,

where V is the set of vertices of the unit ball. Therefore, for a ball with vertices (3)

δU = ‖U‖ =
1
2
max
i,j

−
k

|uki − ukj| ≤ 1. (4)

This is a half of the maximum of the l1 distances between columns of U . The ergodicity coefficient [15,16], εU = 1 − δU , is
zero for a matrix with unit norm δU = 1 and one if U transforms any two vectors with the same sum of coordinates in one
vector (δU = 0).

The contraction coefficient δU (4) is a norm of operator and therefore has a ‘‘submultiplicative’’ property: for two
stochastic in column operators U,W the coefficient δUW could be estimated through a product of the coefficients

δUW ≤ δUδW . (5)
We will systematically use this property in such a way. In many estimates we find an upper border 1 ≥ δ(τ ) ≥ δU(t1+τ ,t1),
t2 ≥ t1. In such a case, δU(t1+τ ,t1) → 0 exponentially with τ → ∞. Nevertheless, the estimate δ(τ ) may originally have a
positive limit δ(τ )→ δ∞ > 0 when τ →∞. In this situation we can use δ(τ ) for bounded τ < τ1 and for τ > τ1 exploit
the multiplicative estimate (5). The moment τ1 may be defined, for example, by maximization of the negative Lyapunov
exponent:

τ1 = argmax
τ>0


−

ln(δ(τ ))
τ


. (6)

For a system with external fluxesΠi(t) the kinetic equation has the form
dci
dt
=

−
j

(kij(t)cj − kji(t)ci)+Πi(t). (7)

The Duhamel integral gives for this system with initial condition c(t0):

c(t) = U(t, t0)c(t0)+
∫ t

t0
U(t, τ )Π(τ ) dτ ,

whereΠ(τ ) is the vector of fluxes with componentsΠi(τ ).
In particular, for stochastic in column operators U(t, t0) this formula gives an identity for the linear conservation law−

i

ci(t) =
−

i

ci(t0)+
∫ t

t0

−
i

Πi(τ )dτ , (8)

and an inequality for the l1 norm

‖c(t)‖ ≤ ‖U(t, t0)c(t0)‖ +
∫ t

t0

−
i

‖Π(τ )‖ dτ ≤ ‖c(t0)‖ +
∫ t

t0

−
i

‖Π(τ )‖ dτ . (9)

We need the last formula for the estimation of contraction coefficients when the vector c(t) is not positive.
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3. Kinetic paths

Two vertices are called adjacent if they share a common edge. A directed path is a sequence of adjacent edges where each
step goes in the direction of an edge. A vertex A is reachable from a vertex B, if there exists a directed path from B to A.

Formally, a path in a reaction graph is any finite sequence of indexes (amultiindex) I = {i1, i2, . . . , iq} (q ≥ 1, 1 ≤ ij ≤ n)
such that (ik, ik+1) ∈ E for all k = 1, . . . , q − 1 (i.e. there exists a reaction Aik → Aik+1 ). The number of the vertices |I| in
the path I may be any natural number (including 1), and any vertex Ai can be included in the path I several times. If q = 1
then we call the one-vertex path I degenerated. There is a natural order on the set of paths: J > I if J is continuation of I ,
i.e. I = {i1, i2, . . . , iq} and J = {i1, i2, . . . , iq, . . .}. In this order, the antecedent element (or the parent) for each I is I−, the
pathwhichwe produce from I by deletion of the last step.With this definition of parents I−, the set of the paths with a given
start point is a rooted tree.

Definition 1. For each path I = {i1, i2, . . . , iq}we define an auxiliary set of reaction, the kinetic path PI :

BI
1(i1)

ki2 i1
−−−−→ B2

2(i2)

ki3 i2
−−−−→ · · ·

kiqiq−1
−−−−→ BI

q(iq)κi1 i2 κi2 i3 κiq (10)

The vertices BI
l(il)

of the kinetic path (10) are auxiliary components. Each of them is determined by the path multiindex I and
the position in the path l. There is a correspondence between the auxiliary component BI

l(il)
and the component Ail of the

original network. The coefficient κi is a sum of the reaction rate coefficients for all outgoing reactions from the vertex Ai of
the original network, and the coefficient κij is this sum without the term which corresponds to the reaction Ai → Aj:

κi =
−
l, l≠i

kli, κij =
−
l, l≠i,j

kli.

A quantity, the concentration bIl(il), corresponds to any vertex of the kinetic path BI
l(il)

and a kinetic equation of the standard
form can be written for this path. The end vertex, BI

q(iq), plays a special role in further consideration and we use the special
notations: iI = iq, AI = Aiq , ςI = bIq(iq), κI is the reaction rate coefficient of the last outgoing reactions in (10) (the last vertical
arrow) and kI is the reaction rate coefficient of the last incoming reaction in (10) (the last horizontal arrow).

We use P+I for the incoming flux for the terminal vertex of the kinetic path (10) and P−I for the outgoing flux for this
vertex.

Let us consider the set I1 of all paths with the same start point i1 and the solutions of all the correspondent kinetic
equations with initial conditions:

bI1(i1) = 1, bIl(il) = 0 for l > 1.
For the concentrations of the terminal vertices this self-consistent set of initial conditions gives the infinite chain (or, to be
more precise, the tree) of simple kinetic equations for the set of variables ςI , I ∈ I1:

ς̇1 = −κ1(t)ς1, ς̇I = −κI(t)ςI + kI(t)ςI− , (11)
where index 1 corresponds to the degenerated path which consists of one vertex (the start point only) and corresponds
to Ai1 .

This simple chain of equationswith initial conditions,ς1(t0) = 1 andςI(t0) = 0 for |I| > 1, has a recurrent representation
of solution:

ς1(t) = exp

−

∫ t

t0
κ1(τ ) dτ


,

ςI(t) =
∫ t

t0
exp


−

∫ t

θ

κI(τ ) dτ

kI(θ)ςI−(θ) dθ.

(12)

The analogues of the Kirchhoff rules from the theory of electric or hydraulic circuits are useful for outgoing flux of a path
J ∈ I1 and for incoming fluxes of the paths which I are the one-step continuations of this path (i.e. I− = J):

κJςJ =
−

I, I−=J

kIςI− . (13)

Let us rewrite this formula as a relation between the outgoing flux P−J from the last vertex of J and incoming fluxes P+I for
the last vertices of paths I (I− = J):

P−J =
−

I,I−= J

P+I . (14)

The Kirchhoff rule (14) together with the kinetic equation for given initial conditions immediately implies the following
summation formula.
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Theorem 1. Let us consider the solution to the initial kinetic equations (1) with the initial conditions cj(t0) = δji1 . Then

cj(t) =
−

I∈I1, iI=j

ςI(t). (15)

Proof. To prove this formula let us prove that the sum from the right-hand side (i) exists (ii) satisfies the initial kinetic
equations (1) and (iii) satisfies the selected initial conditions.

Convergence of the series with positive terms follows from the boundedness of the set of the partial sums, which follows
from the Kirchhoff rules. According to them,−

I∈I1

ςI(t) ≡ 1

because I1 consists of the paths with the selected initial point i1 only.
The sum

Cj =
−

I∈I1, iI=j

ςI

satisfies the kinetic equations (1). Indeed, let I1j = {I ∈ I1 | iI = j} be the set of all paths from i1 to j. Let us find the set of
all paths of the form {I− | I ∈ I1j}. This set (we call it I−1j) consists of all paths to all points which are connected to Aj by a
reaction:

I−1j =

(l,j)∈E

I1l.

From this identity and the chain of the kinetic equations (11) we get immediately that

dCi

dt
=

−
j, j≠i

(kij(t)Cj − kji(t)Ci). (16)

The coincidence of the initial conditions for ci and Ci is obvious. Hence, because of the uniqueness theorem for Eqs. (1) we
proved that ci ≡ Ci. �

It is convenient to reformulate Theorem 1 in terms of the fundamental operator U(t, t0). The ith column of U(t, t0) is a
solution of (1) cj(t) = uji(t, t0)(j = 1, . . . , n) with initial conditions cj(t0) = δij. Therefore, we have proved the following
theorem. Let Iij be the set of all paths with the initial vertex Ai and the end vertex Aj and ςI(t) be the solutions of the chain
(11) for i1 = i with initial conditions: ς1(t0) = 1 and ςI(t0) = 0 for |I| > 1.

Theorem 2.

uji(t, t0) =
−
I∈Iij

ςI(t). � (17)

Remark 1. It is important that all the terms in the sum (17) are non-negative, and any partial sum gives the approximation
to uji(t, t0) from below.

Remark 2. If the kinetic coefficients are constant then the Laplace transform gives a very simple representation for solution
to the chain (11) (see also computations in Refs. [9,6]). The kinetic path I (10) is a sequence of elementary links

· · ·
kir ir−1
−−−−→ Br

r(ir )

kir+1 ir
−−−−→ · · ·κir ir+1 (18)

The transfer functionWir (p) for the link (18) is the ratio of the output Laplace Transform to the input Laplace Transform for
the equation. Let the input be a function Xir (t) and the output be Yir (t) = bir (t), where bir (t) is the solution to equation

ḃi1 = −κi1bir + Xi1(t); ḃir = −κir bir + kir ir−1Xir (t) (r > 1)

with zero initial conditions. The Laplace transform gives

Wi1 =
1

p+ κi1
, Wir =

kir ir−1
p+ κir

(r > 1)

for a link (18) and for the whole path (10) we get

WI =
1

p+ κi1

q∏
r=2

kir ir−1
p+ κir

(19)
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(compare, for example, to formula (9) in Ref. [6]). It is worth to mention commutativity of this product: it does not change
after a permutation of internal links. For the infinite chain (11) with initial conditions, ς1(0) = 1 and ςI(0) = 0 for |I| > 1,
the Laplace transformation of solutions is

LςI = WI . (20)

4. Evaluation of ergodicity coefficient

4.1. Preliminaries: weak ergodicity and annihilation formula

4.1.1. Geometric criterion of weak ergodicity
In this subsection, let us consider a reaction kinetic system (1) with constant coefficients kji > 0 for (i, j) ∈ E .
A set E is positively invariant with respect to the kinetic equations (1), if any solution c(t) that starts in E at time t0

(c(t0) ∈ E) belongs to E for t > t0 (c(t) ∈ E if t > t0). It is straightforward to check that the standard simplex
Σ = {c | ci ≥ 0,

∑
i ci = 1} is a positively invariant set for kinetic equations (1): just check that if ci = 0 for some i,

and all cj ≥ 0 then ċi ≥ 0. This simple fact immediately implies the following properties of K :
• All eigenvalues λ of K have non-positive real parts, Reλ ≤ 0, because solutions cannot leaveΣ in positive time.
• If Reλ = 0 then λ = 0, because the intersection ofΣ with any plane is a polygon, and a polygon cannot be invariant with

respect to rotations to sufficiently small angles.
• The Jordan cell of K that corresponds to the zero eigenvalue is diagonal — because all solutions should be bounded inΣ

for positive time.
• The shift in time operator exp(Kt) is a contraction in the l1 norm for t > 0: there exists such a monotonically decreasing

(non-increasing) function δ(t) (t > 0, 0 < δ(t) ≤ 1), that for any two solutions of (1) c(t), c ′(t) ∈ Σ−
i

|ci(t)− c ′i (t)| ≤ δ(t)
−

i

|ci(0)− c ′i (0)|. (21)

Moreover, if for c(t), c ′(t) ∈ Σ the values of all linear conservation laws coincide then
∑

i |ci(t)−c ′i (t)| → 0monotonically
when t →∞.

The first-order kinetic system is weakly ergodic if it allows only the conservation law: the sum of concentration. Such a
system forgets its initial condition: distance between any two trajectories with the same value of the conservation law tends
to zero when time goes to infinity.

The difference between weakly ergodic and ergodic systems is in obligatory existence of a strictly positive stationary
distribution: for an ergodic system, in addition, a strictly positive steady state exists: Kc = 0 and all ci > 0. Examples of
weakly ergodic but not ergodic systems: a chain of reactions A1 → A2 → · · · → An and symmetric random walk on an
infinite lattice.

The weak ergodicity of the network follows from its topological properties.

Theorem 3. The following properties are equivalent (and each one of them can be used as an alternative definition of weak
ergodicity):
(1) There exists a unique independent linear conservation law for kinetic equations (this is b0(c) =

∑
i ci = const).

(2) For any normalized initial state c(0) (b0(c) = 1) there exists a limit state

c∗ = lim
t→∞

exp(Kt) c(0)

that is the same for all normalized initial conditions: For all c,

lim
t→∞

exp(Kt) c = b0(c)c∗.

(3) For each two vertices Ai, Aj(i ≠ j)we can find such a vertex Ak that is reachable both from Ai and from Aj. This means that the
following structure exists:

Ai → · · · → Ak ← · · · ← Aj. (22)

One of the paths can be degenerated: it may be i = k or j = k.
(4) For t > 0 operator exp(Kt) is a strong contraction in the invariant subspace

∑
i ci = 0 in the l1 norm: ‖ exp(Kt)x‖ ≤ δ(t)

< 1, the function δ(t) > 0 is strictly monotonic and δ(t)→ 0 when t →∞. �

The proof of this theorem could be extracted from detailed books about Markov chains and networks [1,17]. In its present
form it was published in Ref. [5] with explicit estimations of the ergodicity coefficients.

Let us demonstrate how to prove the geometric criterion of weak ergodicity, the equivalence 1⇔ 3.
Let us assume that there are several linearly independent conservation laws, linear functionals b0(c), b1(c), . . . , bm(c),

m ≥ 1. The linear transform c → (b1(c), . . . , bm(c)) maps the standard simplex Σn in Rn (ci ≥ 0,
∑

i ci = 1) onto a
polyhedron D ⊂ Rm. Because of linear independence of the system b0(c), b1(c), . . . , bm(c), m ≥ 1, this D has nonempty
interior. Hence, it has no less thanm+ 1 verticesw1, . . . , wq, q > m.
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The preimage of every point x ∈ D in Σn is a positively invariant subset with respect to kinetic equations because the
standard simplex is positively invariant and the functionals bi(c) are the conservation laws. In particular, preimage of every
vertexwq is a positively invariant face ofΣn, Fq; Fq ∩ Fr = ∅ if q ≠ r .

Each vertex vi of the standard simplex corresponds to a component Ai: at this vertex ci = 1 and other cj = 0 there. Let
the vertices from Fq correspond to the components which form a set Sq; Sq ∩ Sr = ∅ if q ≠ r .

For any Ai ∈ Sq and every reaction Ai → Aj the component Aj also belongs to Sq because Fq is positively invariant and a
solution to kinetic equations cannot leave this face. Therefore, if q ≠ r , Ai ∈ Sq and Aj ∈ Sr then there is no such vertex Ak
that is reachable both from Ai and from Aj. We proved the implication 3⇒ 1.

Now, let us assume that statement 3 is wrong and there exist two such components Ai and Aj that no components are
reachable both from Ai and Aj. Let Si and Sj be the sets of components reachable from Ai and Aj (including themselves),
respectively; Si ∩ Sj = ∅.

For every concentration vector c ∈ Rn a limit exists c∗(c) = limt→∞ exp(Kt) c (because all eigenvalues of K have non-
positive real part and the Jordan cell of K that corresponds to the zero eigenvalue is diagonal). The operator c → c∗(c) is a
linear operator in Rn. Let us define two linear conservation laws:

bi(c) =
−
Ar∈Si

c∗r (c), bj(c) =
−
Ar∈Sj

c∗r (c).

These functionals are linearly independent because for a vector c with coordinates cr = δri we get bi(c) = 1, bj(c) = 0 and
for a vector c with coordinates cr = δrj we get bi(c) = 0, bj(c) = 1. Hence, the system has at least two linearly independent
linear conservation laws. Therefore, 1⇒ 3.

4.1.2. Annihilation formula
Let us return to general time-dependent kinetic equations (1).
In this section, we find an exact expression for the contraction coefficients δ(t, t0) for the time evolution operatorU(t, t0)

in l1 norm on the invariant subspace {x |
∑

i xi = 0}. The unit l1-ball in this subspace is a polyhedron with vertices
g ij
=

1
2 (e

i
− ej), where ei are the standard basic vectors in Rn (3). The contraction coefficient of an operator U is its norm on

that subspace (4); this is half of the maximum of the l1 distances between columns of U .
The kinetic path summation formula (17) estimates thematrix elements ofU(t, t0) from below, but this does not give the

possibility to evaluate the difference between these elements. To use the summation formula efficiently, we need another
expression for the contraction coefficient.

The ith column of U(t, t0) is a solution of the kinetic equations (1) cj(t) = uji(t, t0) (j = 1, . . . , n)with initial conditions
cj(t0) = δij. For each j let us introduce the incoming flux for the vertex Aj in this solution:

Π i
j (t) =

−
q

kjq(t)cq(t)

(the upper index indicates the number of column in U(t, t0), the lower index corresponds to the number of vertex Aj).
Formula (4) for the contraction coefficient gives

δ(t, t0) =
1
2
max
i,j
‖U(t, t0)(ei − ej)‖.

U(t, t0)(ei − ej) is a solution to the kinetic equation (1) with initial conditions ci(t0) = 1, cj(t0) = −1 and cq(t0) = 0 for
q ≠ i, j. This is the difference between two solutions, c+q (t) = uqi(t, t0) and c−q (t) = uqj(t, t0). Let us use the notation

Gij(t) =
1
2
U(t, t0)(ei − ej).

For each q we define

Π+q =
−

l,c+l >c−l

kql(c+l − c−l ), Π−q =
−

l,c+l <c−l

kql(c−l − c+l ), Π±q ≥ 0.

The decrease in the l1 norm of c+(t)− c−(t) can be represented as an annihilation of a fluxΠ±q (t)with an equal amount of
concentration c+(t)− c−(t) from the vertex Aq by the following rules:

(1) If cq = c+q (t)− c−q (t) > 0 then the fluxΠ−q annihilates with an equal amount of positive concentration stored at vertex

Aq (Fig. 1(a)).
(2) If cq = c+q (t)− c−q (t) < 0 then the fluxΠ+q annihilates with an equal amount of negative concentration stored at vertex

Aq (Fig. 1(b)).
(3) If cq = c+q (t) − c−q (t) = 0 then the flux min{Π+q ,Π

−
q } annihilates with the equal amount from the opposite flux

(Fig. 1(c)).
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(a) c > 0, the negative flux annihilates. (b) c < 0, the positive flux annihilates. (c) c = 0, the minimal flux annihilates.

Fig. 1. Annihilation of fluxes.

Fig. 2. Redirection of a reaction from one sheet to another with preservation of the base kinetics. The redirected reaction is highlighted by bold.

Let us summarize these rules in one formula:

Proposition 1.

d
dt
‖Gij(t)‖l1 = −

−
q, c+q >c−q

Π−q (t)−
−

q, c+q <c−q

Π+q (t)−
−

q, c+q =c
−
q

min{Π+q (t),Π
−

q (t)}. � (23)

Immediately from (23) we obtain the following integral formula

1− ‖Gij(t)‖l1 =
∫ t

t0

 −
q, c+q >c−q

Π−q (τ )+
−

q, c+q <c−q

Π+q (τ )+
−

q, c+q =c
−
q

min{Π+q (τ ),Π
−

q (τ )}

 dτ . (24)

The annihilation formula gives us a better understanding of the nature of contraction but is not fully constructive because
it uses fluxes from solutions to the initial kinetic equations (1).

4.2. Multi-sheeted extensions of kinetic system

Let us introduce a multi-sheeted extension of a kinetic system.

Definition 2. The vertices of a multi-sheeted extension of the system (1) are A × K where K is a finite or countable set. An
individual vertex is (Ai, l) (l ∈ K ). The corresponding concentration is c(i,l). The reaction rate constant for (Ai, l)→ (Aj, r) is
k(j,r)(i,l) ≥ 0. This system is a multi-sheeted extension of the initial system if an identity holds:−

r

k(j,r)(i,l) = kji for all l. (25)

This means that the flux from each vertex is distributed between sheets, but the sum through sheets is the same as for the
initial system. We call the kinetic behavior of the sum ci =

∑
l c(i,l) the base kinetics.

A simple proposition is important for further consideration.

Proposition 2. If c(i,l)(t) is a solution to the extended multi-sheeted system then

ci(t) =
−

l

c(i,l)(t) (26)

is a solution to the initial system and−
il

|c(i,l)(t)| ≥
−

i

|ci(t)|. (27)

(Here we do not assume positivity of all ci). �

Formula (25) allows us to redirect reactions from one sheet to another (Fig. 2) without any change of the base kinetics. In
the next section we show how to use this possibility for effective calculations.

Formula (26) means that kinetics of the extended system in projection on the initial space is the base kinetics: the
components (Ai, l) are projected in Ai the projected vector of concentrations is ci =

∑
l c(i,l) and the projected kinetics
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is given by the initial master equation with the projected coefficients kji =
∑

r k(j,r)(i,l). ‘‘Recharging’’ is any change of the
non-negative extended coefficients k(j,r)(i,l) which does not change the projected coefficients.

The key role in further estimates plays formula (27). We will apply this formula to the solutions with the zero sums of
coordinates, they are differences between the normalized positive solutions.

4.3. Fluxes and mixers

In this subsection, we present the system of estimates for the contraction coefficient. The main idea is based on the
following property which can be used as an alternative definition of weak ergodicity (Theorem 3): for each two vertices
Ai, Aj(i ≠ j) we can find a vertex Aq that is reachable both from Ai and from Aj. This means that the following structure
exists:

Ai → · · · → Aq ← · · · ← Aj.

One of the paths can be degenerated: it may be i = q or j = q. The positive flux from Ai meets the negative flux from Aj at
point Aq and one of them annihilates with the equal amount of the concentration of opposite sign.

Let us generalize this construction. Let us fix three different vertices: Ai (the ‘‘positive source’’), Aj (the ‘‘negative source’’)
and Aq (the ‘‘mixing point’’). The degenerated case q = i or q = j we discuss separately. Let S+ be such a system of vertices
that Ai ∈ S+, Aq ∉ S+ and there exists an oriented path in S+ ∪ {Aq} from Ai to Aq. Analogously, let S− be such a system of
vertices that Aj ∈ S−, Aq ∉ S− and there exists an oriented path in S− ∪ {Aq} from Aj to Aq. We assume that S+ ∩ S− = ∅.

With each subset of vertices S we associate a kinetic system (subsystem): for Ar ∈ S

ċr =
−

l, Al∈S, r≠l

krlcl −
n−

p=1

kprcr . (28)

In this subsystem, we retain all the outgoing reactions for Ar ∈ S and delete the reactions which lead to vertices in S from
‘‘abroad’’.

The fluxΠ+S from S+ to Aq is

Π+S =
−

r, Ar∈S+
kqrcr(t),

where cr(t) is a component of the solution of (28) for S = S+ with initial conditions cr(t0) = δri. Analogously, we define the
flux

Π−S =
−

r, Ar∈S−
kqrcr(t),

where cr(t) is a component of the solution of (28) for S = S− with initial conditions cr(t0) = δrj. Decrease of the norm
‖Gij(t)‖ is estimated by the following theorem.

The system S+, S−, Aq we call a mixer, that is a device for mixing. An elementary mixer consists of two kinetic paths
Ai → · · · → Aq ← · · · ← Aj (22) with the corespondent outgoing reactions:

Ai1

ki2 i1
−−−−→ · · ·

kir ir−1
−−−−→ Air

kir ir+1
←−−−− · · ·

kir+l−1 ir+l
←−−−−− Air+lκi1 i2 κir κir+l ir+l−1

 (29)

where i1 = i, ir = q, ir+l = j.
The degenerated elementary mixer consists of one kinetic path:

Ai1

ki2 i1
−−−−→ Ai2

ki3 i2
−−−−→ · · ·

kir ir−1
−−−−→ Airκi1 i2 κi2 i3 κir (30)

where i1 = i, ir = j.

Theorem 4.

‖Gij(t)‖ ≤ 1−
∫ t

t0
min{Π+S ,Π

−

S } dt. (31)

Proof. To prove this theorem let us organize a 4-sheeted extension of the initial kinetic system as it is demonstrated in
Fig. 3. Subsystems S± including the positive source (initial concentration+1) and the negative source (initial concentration
−1) belong to level 0. Reactions from S± to Aq are redirected to the sheet f , reactions from S+ to other vertices, which do not
belong to S+, go to sheet+1, reactions from S− to other vertices, which do not belong to S−, go to sheet−1. The incoming
flux to the sheet f isΠ+S −Π

−

S .
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Fig. 3. A mixer: two subsystems, S+ (includes Ai) and S− (includes Aj). There may be outgoing reactions from S± but all incoming reactions to S± from
outside are deleted. A mixing point Aq and two fluxes, positive from S+ (marked by dark color) and negative from S− , meet at the mixing point.

Let us introduce the following notations:

C+S =
−
Ap∈S+

c(p,0) +
n−

q=1

c(q,1);

C−S = −
−
Ap∈S−

c(p,0) −
n−

q=1

c(q,−1);

Cf =

n−
r=1

|c(r,f )|.

We consider solution to the kinetic equations for the multi-sheeted systemwith initial conditions: c(i,0)(t0) = 1, c(j,0)(t0) =
−1 and all other concentrations are equal to zero at time t0. In this case, some of the signs of concentrations are known for
t ≥ t0 due to the organization of the redirection of reactions (Fig. 3):

c(p,0) ≥ 0 for Ap ∈ S+, c(p,0) ≤ 0 for Ap ∈ S−,

c(p,0) = 0 for Ap ∉ S+ ∪ S−,
c(q,1) ≥ 0, c(q,−1) ≤ 0.

(32)

Let us use (8) for S+ with the sheet+1 and for S− with the sheet−1. We get immediately

dC+S
dt
= −Π+S ,

dC−S
dt
= −Π−S . (33)

Analogously, we can use (9) for the sheet f and get

dCf

dt
≤ |Π+S −Π

−

S |. (34)

For the norm of the base vector of concentration c the inequality holds (Proposition 2):

‖c‖ ≤ C+S + C−S + Cf .

Finally, we combine this inequality with (33), (34) and get

‖c(t)‖ ≤ 2− 2
∫ t

t0
min{Π+S (τ ),Π

−

S (τ )} dτ . �

For the degenerate case the path from Ai goes directly to Aj (or inverse). Let us assume that there is a subsystem S+, Ai ∈ S+,
the mixing point Aq coincides with Aj and the fluxΠ+S is

Π+S =
−

r, Ar∈S+
kjrcr(t),

where cr(t) is a component of the solution of (28) for S = S+ with initial conditions cr(t0) = δri.
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Theorem 5.

‖Gij(t)‖ ≤ 1−
∫ min{t,t1}

t0
Π+S (τ ) dτ , (35)

where κj =
∑

p kpj and t1 is a solution to equation∫ t

t0
Π+S (τ ) exp(−κj(t − τ)) dτ = exp(−κjt). (36)

Proof. This theorem is also proved by the construction of the appropriate multi-sheeted extension of the kinetic system.
For the degenerated case we need only two additional sheets: subsystem S+ including the positive source Ai (initial
concentration+1) and the negative sourceAj (initial concentration−1) belong to level 0. Reactions from S+ to other vertices,
which do not coincide with Aj, go to sheet+1, reactions from Aj to other vertices go to sheet−1. The concentration of A(j,0)
is

c(j,0)(t) =
∫ t

t0
Π+S (τ ) exp(−κj(t − τ)) dτ − exp(−κjt).

Let us introduce the following notation:

C+S =
−
Ap∈S+

c(p,0) +
n−

q=1

c(q,1);

C− = −c(j,0) −
n−

q=1

c(q,−1).

For t ≤ t1 concentrations c(j,0)(t) and all c(q,−1) are negative, hence

dC+S
dt
=

dC−

dt
= −Π+S (t) (37)

and for the norm of the correspondent solution for the base system we get the inequality

‖c(t)‖ ≤ 2− 2
∫ min{t,t1}

t0
Π+S (τ ) dτ . � (38)

The kinetic path summation formula gives us a family of estimates ofΠ±S frombelow. For each pair i, jwe can find the best of
available estimates of ‖Gij(t)‖ (the smallest one for various choices of Aq and subsets S±) and then among all pairs of i, jwe
should choose the ‘‘most pessimistic’’ evaluation of ‖Gij(t)‖ (the biggest one). It will give the evaluation of the contraction
coefficient from above.

5. Simple example: irreversible cycle

Let us demonstrate all results for a simple kinetic system, a simple irreversible cycle:

A1
k1
−→ A2

k2
−→ . . .

kn−1
−−→ An

kn
−→ A1. (39)

All ki > 0 and are constant in time. For enumeration of Ai we use the standard cyclic order (mod n): An+j ≡ Aj.
The kinetic equations for this system are: ċ = Kc or

d
dt


c1
c2
...
cn

 =

−k1 0 . . . kn
k1 −k2 . . . 0
...

...
...

...
0 0 0 −kn



c1
c2
...
cn

 . (40)

The characteristic equation for this system is
n∏

i=1

(ki + λ) =
n∏

i=1

ki.

One eigenvalue for matrix K is, obviously, λ = 0, the correspondent left eigenvector is the linear conservation law
l1 = (1, 1, . . . , 1). The right eigenvector for this λ is the steady state r1 = 1∑

i
1
ki

( 1
k1
, 1

k2
, . . . , 1

kn
)T (normalized for l1r1 = 1).
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Other n − 1 roots of the characteristic equations have strictly negative real parts, Reλi < 0 (i > 1) and, in general, cannot
be found explicitly. For a given eigenvalue λ, the eigenvectors have a simple structure:

lλ i+1 = lλ i
λ+ ki

ki
, rλ i =

ψλ i

ki
, ψλ i−1 = ψλ i

λ+ ki
ki

. (41)

With the normalization condition: for eigenvalues λ, λ′: lλrλ′ = δλλ′ , that is 1 for λ = λ′ and 0 for λ ≠ λ′.
Two limit cases allow explicit analysis of eigenvalues and eigenvectors of K .

(1) Systems with limiting steps: one constant is much smaller than others, let it be kn, kn ≪ ki, (i = 1, . . . , n− 1);
(2) Fully symmetric systems, k1 = k2 = · · · = kn.

For systemswith limiting steps (kn ≪ ki, (i = 1, . . . , n−1)) the eigenvalues are close to−k1, . . . ,−kn−1 and the relaxation
is limited by the second constant, the next to the minimal one (detailed analysis is provided in Refs. [11,12]).

For a symmetric system (k1 = k2 = · · · = kn = k), the eigenvalues are: λq = k exp( 2π iqn ) − 1 for q = 1, . . . , n. There
are n distinct eigenvalues, one of them, λn = 0, the other has negative real part: Reλq = k[cos( 2π iqn ) − 1]. Let us further
take k = 1 for this system (include k into dimensionless time). For the left and right eigenvectors (41) we have two waves
moving in opposite directions, lq j+1 = lqj exp(

2π iq
n ), rq j−1 = rq j exp(

2π iq
n ). We can take with respect to the normalization

condition, lqrp = δqp:

lq =

1, exp


2π iq
n


, exp


2
2π iq
n


, . . . , exp


(n− 1)

2π iq
n


,

rq =
1
n


1, exp


−

2π iq
n


, exp


−2

2π iq
n


, . . . , exp


−(n− 1)

2π iq
n

T

.

(42)

For constant coefficients, the operator of shift in time from t0 to t1 depends only on t = t1 − t0: U(t1, t0) = U(t) = exp Kt .
We can use (42) and write

U(t) =
n−

q=1

exp(λqt)|rq⟩⟨lq|,

(U(t))js =
n−

q=1

exp(λqt)rqjlqs

=
1
n

n−
q=1

exp
[
t

cos

2πq
n
− 1

]
cos


(s− j)

2πq
n
+ t sin

2πq
n


. (43)

This explicit formula allows us to compute all the necessary quantities including the contraction coefficient δU(t) (4).
Now, let us produce the approximate formula for the same symmetric system by mixers. First of all, let us represent the

solution for the cycle by the path summation formula. With the convention of cyclic enumeration, the set of paths Ii started
at Ai is the sequence

Ii =



Ai
ki
−→,

Ai
ki
−→ Ai+1

ki+1
−−→,

· · · · · · · · · · · · · · · · · · · · · · · ·

Ai
ki
−→ Ai+1

ki+1
−−→ Ai+2

ki+2
−−→ · · ·

ki+j−1
−−−→ Ai+j+1

ki+j
−−→,

· · · · · · · · · · · · · · · · · · · · · · · ·


. (44)

This sequence of paths corresponds to the multi-sheeted representation presented in Fig. 4. First, we consider an
infinite series of the copies of the cycle. Each vertex of the extended system is numerated by two indexes: (Ai, l), i =
1, 2, . . . , n (mod n), l = 1, 2, 3, . . . is a natural number. The reaction rate constants for copies are the same as for the
initial systems: k(j,r)(i,l) = kjiδrl. This extended system obviously satisfies the definition of the multi-sheeted extension of
the cycle and in its projection on the base we always have the kinetics of the cycle.

Let us select one number i ∈ {1, . . . , n} and recharge the reactions: we annulate the ‘‘horizontal’’ reaction rate constant
for (Ai, l) → (Ai+1, l), k(i+1,l)(i,l) = 0, and instead of this reaction take the reaction between levels, (Ai, l) → (Ai+1, l + 1):
k(i+1,l+1)(i,l) = ki+1 i (see Fig. 4). This is also a multi-sheeted extension of the cycle. Formula (26) for this multi-sheeted
system allows us to use integration of the infinite acyclic system (represented by the spiral in Fig. 4) instead of integration
of the finite cyclic base system.

c(i,l). The reaction rate constant for (Ai, l)→ (Aj, r) is k(j,r)(i,l) ≥ 0. This system is a multi-sheeted extension of the initial
system if an identity holds.
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Fig. 4. Multi-sheeted representation of the path summation formula for a cycle (46): a cycle (the base) is represented by a semi-infinite helix produced
by redirecting reactions between sheets.

Now, let us put all ki = 1. For systems with constant coefficients we use initial time moment t0 = 0. For the set of paths
Ii started at Ai the solution to the chain (11) with the initial conditions ςi(t0) = 1 and ςI = 0 for |I| > 1 is

ςI(t) =
t |I|−1

(|I| − 1)!
e−t . (45)

Obviously,
∑

I∈Ii
ςI = 1. For concentration of Aq, formula (17) gives

uji(t) = e−t
∞−
q=0

tqn+dij

(qn+ dij)!
, (46)

where dij is the length of the shortest oriented path from Ai to Aj (here the length is the number of reactions and the trivial
path from Ai to Ai has the length zero).

For every two vertices Ai, Aj we have only two mixers and both are degenerated: Ai
k
−→ Ai+1

k
−→ · · ·

k
−→ Aj

k
−→, length

j− i mod n and Aj
k
−→ Aj+1

k
−→ · · ·

k
−→ Ai

k
−→, length i− j mod n.

Let us select one mixer A1
k
−→ A2 · · ·

k
−→ Aj

k
−→ for the analysis. Initial conditions are: c1 = 1, cj = −1 and other

concentrations are equal to zero.
For this auxiliary chain with given initial conditions

cp =
tp−1

(p− 1)!
e−t (p = 1, . . . , j− 1),

cj = −e−t

1−

t j−1

(j− 1)!


.

(47)

The estimate (35) ‖Gij(t)‖ ≤ 1−
 t
0 Π

+

S (τ ) dτ is valid until cj changes its sign. Hence, for t wehave a boundary t j−1 ≤ (j−1)!.
The Stirling formula gives a convenient estimate:

t j−1 ≤

2π(j− 1)


j− 1
e

j−1

. (j− 1)!

t ≤ t1 =
j− 1
e
(2π(j− 1))

1
2(j−1) .

(48)

Even a simpler estimate is t < (j− 1)/e. If t satisfies one of these inequalities then concentration cj is negative and we can
use the estimate (35).

For this example,

Π+S (t) = cj−1(t) =
t j−2

(j− 2)!
e−t ,

∫ t

0
Π+S (τ ) dτ = 1− e−t

j−2−
p=0

tp

p!
,

‖Gij(t)‖ ≤ e−t
min{dji,dij}−1−

p=0

tp

p!
, δU(t) ≤ e−t

[
n
2 ]−

p=0

tp

p!
,

(49)
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where [ n2 ] is the integer part of n/2. For t > 0 this estimate gives ‖Gij(t)‖ < 1 and δU(t) < 1 because
∑j−2

p=0
tp
p! < et . We can

use the estimate (49) on an interval [0, t1], for example, on [0, j−1
e ]. Intersection of these intervals for all i, j, i ≠ j is [0, 1

e ]

(j ≥ 2). On this interval, the estimate (49) is valid for all i, j. For extension of such an estimate for t > 1
e the submultiplicative

property (5) can be used.

6. Ergodicity boundary and limitation of ergodicity

In this section we consider a reaction kinetic system (1) with constant coefficients kji > 0 for (i, j) ∈ E .
Let us sort the values of kinetic parameters in decreasing order: k(1) > k(2) > · · · > k(n). The number in parenthesis

is the number of value in this order. Each of the constants k(q) is a reaction rate constant kij for some i, j (and may be for
several of them if values of these constants coincide). Let us also suppose that the network is weakly ergodic. We say that
k(r), 1 ≤ r ≤ n is the ergodicity boundary [18] if the network of reactions with parameters k1, k2, . . . , kr is weakly ergodic,
but the network with parameters k1, k2, . . . , kr−1 is not. In other words, when eliminating reactions in decreasing order of
their characteristic times, starting with the slowest one, the ergodicity boundary is the constant of the first reaction whose
elimination breaks the ergodicity of the reaction digraph.

LetMij(i ≠ j) be a set of elementarymixers (29), (30) between given Ai, Aj. For eachM ∈Mij we can find a cutting reaction
rate constant, cutM :

cutM = min{ki2i1 , . . . , kir ir−1 , kir ir+1 , . . . , kir+l−1ir+l} for (29);

cutM = min{ki2i1 , . . . , kir ir−1} for (30).
(50)

Let us eliminate reactions in increasing orders of their constants (i.e. in decreasing order of their characteristic times),
starting with the smallest one. To cut all elementary mixers between Ai, Aj (i ≠ j), it is necessary and sufficient to eliminate
all kpq ≤ cutM for allM ∈Mij. Therefore, for every pair Ai, Aj (i ≠ j) we can also introduce a cutting constant:

cutij = max
M∈Mij

cutM .

To destroy the weak ergodicity of the network N we have to cut at least one pair Ai, Aj (i ≠ j). The result can be formulate
as the following theorem.

Theorem 6. The ergodicity boundary of a network N is the following constant:

cutN = min
i≠j

cutij. �

This boundary is a minimum (in pairs Ai, Aj) of maxima (in mixersM ∈Mij) of minima (in constants).
Kinetic equations for elementary mixers (29), (30) allow explicit analytic solutions. Nevertheless, explicit estimates in

terms of cutting constants can be also useful.
Let for an elementary mixerM (29) κM be the maximal sum of constants of outgoing reactions:

κM = max{κip | p = i1, i2, . . . , ir+l}, κs =
−
p, p≠s

kps,

or for a degenerated elementary mixerM (30)

κM = max{κip | p = i1, i2, . . . , ir}.

Let us substitute all the constants for horizontal arrows in the elementary mixer M (29), (30) by k = cutM , and all the
constants for vertical arrows (i ≠ ir ) by κ − k, where κ = κM . This change decreases the fluxesΠ±.

To find the estimate we have to solve the kinetic equation for a simple uniform kinetic path:

A1
k

−−−−→ A2
k

−−−−→ · · ·
k

−−−−→ As
k

−−−−→κ−k κ−k κ−k (51)

Similar to the simple cycle (47), we find

cp =
(kt)p−1

(p− 1)!
exp(−κt) (p = 1, . . . , s), (52)

the only difference is in exponents.
For the elementary mixers (29), (30) this formula gives

Π+(t) ≥ k
(kt)r−2

(r − 2)!
exp(−κt), Π−(t) ≥ k

(kt)l−1

(l− 1)!
exp(−κt)
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and the estimates from Theorems 4, 5 (31), (35) become simple analytical expressions after substitution of Π± by their
estimates from below.

Let us find a universal estimate from below for t1. It is

ϑ =
1

k+ κ
.

Indeed, in the degenerated elementary mixer (30) on the way from Ai to Aj there exists at least one reaction with reaction
rate constant k: Ar → · · · . The integral flux through this reaction during the time interval [0, t] is∫ t

0
kcr(τ ) dτ ≥

∫ t

0
Π+(τ ) dτ .

The last inequality holds because all the fluxes in the mixer should go through the reaction Ar → · · · before it enters the
last vertex. On the other hand,

 t
0 kcr(τ ) dτ ≤

 t
0 k exp(−kτ) dτ (the last integral corresponds to the case when all the

concentration is collected at the initial moment at Ar and goes only through the reaction Ar → · · · ). Therefore,∫ t

0
Π+(τ ) dτ ≤ 1− exp(−kτ).

From the condition (36) we find the estimate for t1 from below: t1 ≥ τ1, where τ1 is solution to

1− exp(−kτ) = exp(−κτ).

We use convexity of exponential functions and substitute them in this equation by linear approximation at point τ = 0:
exp(−x) > 1− x (x > 0); this gives us the estimate of τ1 from below: τ1 < ϑ = 1

k+κ .
For t ∈ [0, ϑ], kt < 1 and

1 =
(kt)0

0!
>
(kt)1

1!
> · · · >

(kt)r

r!
> · · · .

For eachmixerM we introduce the length of mixer dM = max{r−2, l−1} for (29) and dM = r−2 for (30). In these notations,
each mixerM ∈Mij gives the estimate: for t ∈ [0, ϑM ]

‖Gij(t)‖ ≤ 1−
∫ t

0
cutM

(cutMτ)dM

(dM)!
exp(−κMτ) dτ , (53)

where

ϑM =
1

cutM + κM
.

For each pair i, j (i ≠ j) we can select the ‘‘critical’’ elementary mixerM ∈Mij with cutM = cutij and put dij = dM , κij = κM .
If there are several critical elementary mixers then we select one with minimal dM , if there are several such mixers with
minimal dM then we select one with minimal κM . In this notation we have

‖Gij(t)‖ ≤ 1−
∫ t

0
cutij

(cutijτ)dij

(dij)!
exp(−κijτ) dτ (54)

for t ∈ [0, ϑij], where

ϑij =
1

cutij + κij
.

Finally, for the whole network N

cutN = min
i,j,i≠j
{cutij}, dN = max

i,j,i≠j
{dij}, κN = max

i,j,i≠j
{κij}, ϑN =

1
cutN + κN

and for the contraction coefficient δ(t) (21) we obtain the estimate

δ(t) ≤ 1−
∫ t

0
cutN

(cutN τ)dN

(dN )!
exp(−κN τ) dτ

= 1−

cutN
κN

dN+1

1−

dN−
p=0

(κN t)p

p!
exp(−κN t)


(55)

for t ∈ [0, ϑN ]. For t outside this interval, the submultiplicative property (5) should be used.
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7. Discussion

The kinetic path summation formula together with the multi-sheeted extension of kinetics provide us with a factory of
estimates. It is difficult to find, who invented this approach.

The analysis of kinetic paths with selection of the most important (dominant) paths allowed us to extract dominant
systems from kinetic equations [11,12]. A robust procedure for simplification of biochemical networks was created [19].
This approach was developed into unified framework for hybrid simplifications of Markov models of multiscale stochastic
gene network dynamics [20]. Dominant subsystemswere analyzed for dynamical models of microRNA action on the protein
translation process [21].

The multi-sheeted extension of kinetics provides us with a simple and useful technique for estimation of relaxation
processes in master equation. This method introduces an internal ‘‘microstructure’’ in the first-order kinetic systems. The
kinetic path summation formula is a particular case of formula (26) (Proposition 2).

Indeed, let us construct the following multi-sheeted extension of the master equation. The set of components is A×K ,
where K = {0} ∪K1 and K1 is the set of all kinetic paths I with lengths |I| > 1 (non-degenerated paths). The connections
between sheets (redirected reactions) are:

AiI− ,I
−

kI
−→ AiI ,I instead of AiI− ,I

−

kI
−→ AiI ,I− .

According to this rule, the reaction that continues the path I− to the path I is redirected and goes from the sheet I− to the
sheet I . For a degenerated I−, we take AiI− ,I

− = AiI− ,0, this means that all paths start on the zero sheet, and all reactions
from this sheet lead to other sheets: Ai → Aj transforms into Ai,0 → Aj,{i,j}, where {i, j} is a path of length 2. Formula (26)
for this multi-sheeted structure coincides with the kinetic path summation formula (17) (Theorem 2) for initial conditions
ci,0 = 1 and other c(j,I) = 0.

This multi-sheeted extension may be considered as a generalization of the Bethe lattices introduced by Bethe in 1935
[22]. For example, if in the initial graph of reactions each vertex has the same number of outgoing edges then the constructed
multi-sheeted extension can be considered as a bundle of the Bethe lattices, each of them starts from one point of the zeroth
sheet. For each starting point, A(i,0) the corresponding Bethe lattice represents the ‘‘Green function’’ uji(t, t0) for given i and
for all possible j.

We produced the kinetic path summation formula for time-dependent kinetic equations and applied this formula for
evaluation of the ergodicity coefficient. The evaluation of the contraction coefficient in the l1 norm is the main tool for
studying the relaxation in time-dependent Markov processes since the seminal works of Dobrushin [15].

Another important context of this study is the analysis of the eigenvalues of the stochasticmatrices [23,24] and, especially
the analysis of these eigenvalues formatriceswith specified graph [25,26]. In chemical kinetics, evaluation of the eigenvalues
through kinetic constants was given in series of work by Cheresiz and Yablonskii [27,28].

Various estimates of eigenvalues of K could be produced from the estimates of contraction (31), (35). The simplest one
follows from (55):

Re(λ) ≤
ln(δ(ϑ))
ϑ

< 0. (56)

Several problems should be resolved to make the use of the path summation formula more effective. Perhaps, the most
important of themwas mentioned in the comment [29]. The amount of the kinetic path needed for accurate estimate of the
solution grows quickly in time for a sufficiently complex system. Hence, we need either special tricks for the analysis of path
sampling or special asymptotic formulas for long paths instead of exact solutions.

Another possible approach to this problem is in the use of more complex exactly solvable systems instead of paths. The
set of reactions is solvable, if there exists a linear transformation of coordinates c → a such that kinetic equations in new
coordinates for all values of reaction constants have the triangle form:

dai
dt
= fi(a1, a2, . . . , ai). (57)

The algorithm for the analysis of reaction network solvability was developed in Ref. [5] (see also Ref. [11]). The simplest
examples of solvable networks give acyclic graphs (reaction trees) and pairs ofmutually inverse reactions. It may be possible
to decompose the complex system of transitions into a sequence of solvable systems.
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