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ABSTRACT 

A new approach to the problem of reduced description for 
Boltzmann-type systems is developed. It involves a 
direct solution of two main problems: thermodynamici ty 
and dynamic invariance of reduced description. A 
universal construction is introduced, which gives a 
thermodynamic parameterization of an almost arbitrary 
approximation. Newton-type procedures of successive 
approximations are developed which correct dynamic 
noninvariance. The method is applied to obtain 
corrections to the local Maxwell manifold uSlng 
parametrics expansions instead of Taylor series into 
powers of Knudsen number. In particular, the high 
frequency acoustic spectra is obtained. 

1. INTRODUCTION 

In this paper we introduce a new method of 

succeSSlve approximations for solving the problem of 

reduced description for Boltzmann-type kinetic 
equations. The method is concordant with the H-theorem 
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at each iteration. It 1S based on rapidly converging 

procedures of the Newton type. The method is free of any 

essential restrictions upon the choice of the ini hal 

approximation. In its basis it does not require any 

small par arne ters. 

The method to be developed will be applicable to 

any dissipative system with a global convex Lyapunov 

function (e. g. the Boltzmann equation provided with 

suitable boundary conditions, chemical kinetic equations 

for closed systems, the Fokker-planck equation, etc). 

In this section we give a short 

difficulties of classical methods of 

equation theory. 

survey of some 

the Boltzmann 

The main difficulty of the Chapman-Enskog method 

[1] are "nonphysical" properties of high-order 

approximations. This was stated by a number of authors 

and was discussed ln detail in [2]. In particular, as it 

was noted in [3], the Burnett approximation resul ts 1n a 

short-wave instability of the acoustic spectra. This 

fact contradicts the H-theorem (cf. in [3]). 

The Hilbert expansion contains secular terms [2]. 

The latter contradicts the H-theorem. However, we are 

not sure this question was discussed in detail. 

The other difficulties of both of these methods 

are: the restriction upon the choice of initial 

approximation (the local. equilibrium approximation), the 

demand for a small parameter, and the usage of slowly 

converging Taylor expansions. These difficul ties never 

allow a direct transfer of these methods on essentially 

nonequilibrium si tua tions. 

The main difficulty of the Grad method [4] 1S the 

uncontrollability of the chosen approximation. An 

extension of the list of moments can result in a certain 

success, but it can also give nothing. Difficul ties of 

moment expansions in the problems of shock waves and 
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sound propagation c an be seen 1ft [2]. 
~ Many .attempis were made to make these methods more 

perfect. For· the chapman-Enskog and Hilbert. methods 

these attempts are based in general on some "good' 
rearrangement of expansions (e. g. neglecting high-order 
derivatives [2], reexpanding [2], pade approximations 

and partial summing [5-7], etc.). This type of work with 

formal series is wide spread in physics. sometimes the 
results are surprisingly good - from the renormalization 

theory in quantum fields to the percus-Yevick equation 
and the ring-operator 

one should realize 

in statistical mechanics. However, 
that a success 1S not at all 

guaranteed. Moreover, rearrangements never remove the 
restrictian upan the choice of the initial local 

equilibrium appraximatian. 
A t tempts ta imprave the Grad me thad are based on 

quasi-equilibrium appraximatians [8,9]. It was found 1n 
[10] that Grad distributions are linearized versions of 

appropriate quasi-equilibrium appraximations. A method 

which treats fluxes (e. g. maments with respect ta 
collision integrals) as independent variables 1n a 
quasi-equilibrium 

[7,11,12]. 

descriptian was introduced 1n 

An impartant feature ,Of quasi-equilibrium appraX1-
mations is that they are always thermadynamic, 1. e. they 
are concardant with the H-theorem due to their 

constructian. This question was discussed in detail 1n 

[13, 14]. Hawever, quasi-equilibrium 

not remove the uncantrallability of 

approximatioris da 
the Grad me thad. 

Quasi-equilibrium appraximations were criticized 1n 
[15]. This criticism halds also far the Grad methad. 

we 
Finishing this shart 

pay attention to the 
survey of classical methods, 
fact that there exist some 

approximations which are assumed ad hoc, and which are 



562 GORBAN AND KARLIN 

not inserted into any successive procedure. The most 

famous of these approximations is the Tamm-Mot t-Smi th 

approximation in the shock wave problem [2]. 

It is convenient to formulate the problem of 

reduced description In a uniform way (a more precise 

formulation will be given In section 2. 1). Let an 

approximated reduced description is chosen. This means 

that a manifold (a "surface") is fixed in the space of 

distributions. Here we arrive at two general problems: 

1. Thermodynamicity. We must define macroscopic dynamics 

on the manifold. In order to do this, we must project 

the Boltzmann equation onto some macroscopic parameters. 

The first problem lS: how and onto which macroscopic 

parameters should one perform this projection? which 

projector would make physical sense and will preserve 

the thermodynamicity (the concordance with the 

H-theorem) at the chosen macroscopic level? 

2. Dynamic invariance. We understand that the chosen 

manifold lS not a dynamic invariant manifold of the 

Bol tzmann equation. The notion "dynamic invariant 

manifold" appears In most of dynamic theories: a 

manifold is called dynamic invariant if the vector field 

of the dynamic system lS tangent to this manifold in 

every point. Hence, we are willing to improve the chosen 

manifold In order to make it "more invariant". The 

second problem is: how to obtain these corrections In a 

general case (e. g. when there are no small parame ters or 

other simplifications)? We hope that the solution of the 

second problem would be a method of successive 

approximations which would not require a too strong 

restriction upon the choice of the initial manifold. 

The general problem of classical methods is that 

none of them glves a successive removal of dynamic 

noninvariance of reduced description with preservation 

of its thermodynamici ty. The Grad method and its 
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generalizat~ons 

However, if one 

initial condition 

[=0, then for bo 

glve thermodynamic approximations. 
takes the Grad distribution as an 

for the Bol tzmann equation at the time 

the trajectory of the kinetic equation 

"takes off" from the initial manifold. One can neither 
obtain the corrections caused by this "take off", nor 
even evaluate them. On the other han~ the 
chapman-Enskog and the Hilbert methods do not guarantee 
thermodynamicity. The question about the correction of 

noninvariance is also unclear for them. 
In classical mechanics the problem of invariant 

manifolds was developed essentially by the famous 

Kolmogorov-Arnold-Moser theory (KAM) [16-18]. Two points 
of KAM methods are of prime importance: i) to construct 

directly an invariant manifold rather than a solution, 
and, ii) to use rapidly converging Newton method instead 
of Taylor expansions for this constructing. 

We understand the problem of reduction for the 

Boltzmann equation as a problem of constructing a 
dynamic invarian t manifold 
manifold. 

from a given initial 

However, a direct appl ica tion of the KAM me thods 

faces many problems. The most essential of these 

problems is that at every iteration we should obtain 

approxima tions which are concordant with the H-theorem 
(the problem of thermodynamicity). If not, then the 

practical sense of these approximations is unclear. 

In this paper we show how to solve this and some 

other problems and how to reduce the problem of 
reduction to solving linear problems. These linear 

problems are of one type in their esience. 

In section 2 we introduce a general method for 

constructing dynamic invariant manifolds for dissipative 

systems with a global convex Lyapunov function. In 
Section 3 we develop this method for the Boltzmann 
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equation. section 3 serves for an intermediate between 

the general theory of section 2 and section 4 where we 

apply it to the problem of derivation of hydrodynamics 
from the Bol tzmann equation. In section 4 we apply the 

technique of pseudodifferential and Fourier integral 
operators to solve the equation of the first Newton-type 

iteration. In particular. we consider a simple 

application of the method to the problem of acoustic 

spectra. As it was mentioned above, the short-wave 

instability is a typical problem of the Chapman-Enskog 
expanS1on. Usual methods of remov1ng this phenomenon 

always require some ad hoc assumptions on the character 
of the improvement. All these methods are of a recipe 
character. A more general basis is required for making 

the regularization free of arbitrary assumptions. The 
method of invariant manifolds yields the improvement 
without any a pr1or1 assumption. Results are compared 

wi th the Burnett approximation and with a method of 

partial summing [5-7]. 

2. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS 

FOR DISSIPATIVE SYSTEMS 

In this section we introduce a formal general 

scheme for constructing dynamic invariant manifolds for 
an abstract dissipative system. Basic notions we use are 

not r1gorous 1n mathematical sense but they are 

sufficiently clear to understand the procedure, and to 

deal with its particular and more rigorous realizations. 

2. 1 Dynamic Invariance and Thermodynamicity 

We denote as F a convex domain in a linear space E, 

and consider an equation in F: 

df/dt=J(f) ( 2. 1) 
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Here fEF, t is the time, and J{f) is the vector field (a 

-2 smooth mapping . F->E: f~J(fn. Further, we call F the 

pbase space of system (2. 1). We assume that the domain F 

is positively invariant with respect to equation (2.1): 

if f
t 

is a solution of eq. (2.1) and fOEF, then ftEF for 

all t?;o. 

Equation (2.1) will be called the dissipative 

syste~ if a strictly convex functional H(f) is defined 

in F, for which the following inequality is valid: 

dH(f)/dt= DfH(f) ·J(f) ~o (2.2) 

Here DfH(f) 1S the linear functional (the differential 

of the functional H(f) in the point f). 

Denote as A a domain 1n a linear space B, and 

consider a smooth immersion A->F: a~f(a), where aEA, 

and f(a)EF. The set of points f(a), where a runs the 

domain A, will be called the manifold with internal 

coordinates a (or the manifold for short). The manifold 

will be denoted as {f(a)} if we want to stress the 

coordinate dependence, or as 'lit if we are not interested 

in this dependence. The elements of the manifold will be 

denoted either as f(a) or as f m. 

Thus, we can say that the immersion a~f(a) equips 

the manifold 'lit with the coordinate system. The 

coordinates a identify the points on the manifold. 

For a given manifold 'lit, we denote as Tf the linear 
m 

tangent space to 'lit at the point fmE'lIt. We always can 

identify T f with some linear subspace of the space E. 
m 

Further, we will make no distinction between these two 

objects. The tangent space Tf(a) is constructively 

defined as the image of the linear operator D f( a), the a 
latter 1S the differential of the immersion A->F at 

the point f(a). For the finite-dimensional case (i. e. 

when A is the domain in the finite-dimensional space B), 

the tangent space Tf(a) 1S defined as the linear 
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envelope of partial differentials D f( aI' ... ,a ), where a . n 
~ 

i= 1, ... ,n, and n=dimB. 

Let the manifold m 1S given. The problem which 

always arises in applications is: how to 

dynamics induced with the vector field 

determine the 

J(f) on the 

manifold m? In the Boltzmann equation (BE) theory, 

problem appears when one deals with a manifold 

this 

of 

distributions, and which approximates a solution of BE. 

For exampl e, the Tamm-Mott-smi th (TMS) 

approximation gives us the manifold {f(a_, a+)} which 

consists of distributions 

f(a_, a+) = a f + a+f+ (2.3) 

Here a and a+ (the coordinates on the manifold 

mTM S={f(a_, a+)}) are non-negative real functions of the 

posi tion vector t and f and f are fixed Maxwellians. 
- + 

The problem of induced dynamics for mTMS is as follows: 
-> 

considering a_ and a+ as values of the functions a_ex, t) 

and a+(t t), to obtain dynamic equations for these 

functions induced with BE. 
-> 

Next example 1S the manifold {fen, U, T)} which 

consists of local Maxwellians (LM): 

-> [2'1Gc BT)-3/2 { 
fen, u,T)=n m exp - (2. 4) 

-> -> 
The coord ina tes n, u, and Tare func tions of x. The 

problem of induced dynamics for the LM manifold mLM is 
-> 

the same as for mTMS: considering n, u, and T as the 

values of the functions n(t t), ~(t t), and T(t t), to 

obtain dynamic equations for these functions from BE. 

Remark. When speaking about manifolds for BE, we 

usually deal with distributions which are labeled with a 

finite number of parameters for every spatial position 
-> 

vector x. Distributions (2.3) and (2.4) illustrate this 

si t ua tion. Further, when speaking abou t such 
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locally Iinite-dimensional manifolds, w.ewill omit the 

term" local "(see remark (i )in section 3). 

The problem of induced dynamics is to construct 

vectors in the tangent spaces Tf . m 
induced with vectors 

J(f m) for every fmE»l More precisely, for every fEm we 
m ' 

have to introduce a projector Pf :E~Tf which 
m m 

projects 

the vector J(fm ) into the tangent space T f : 
Ill. 

( 2. 5) 

The result of these projections for all fmEm will give 
us a vector field of induced dynamics, and thus it will 

define the time evolution induced inside the manifold m. 
We may expect that the projectors P might be different 

fm 

for different points fmEm. Because of the immersion 
A~F, we can identify the induced vector field ln the 

tangent spaces with a certain vector field ln the space 

B, and thus we can obtain the equation for the 

coordina tes 8. 

It should be stressed that the problem of induced 

dynamics itself is not a mathematical problem: one can 
choose any 

P f (J(fm) )=0 
m 

mathematical 

projector 

for all 

Even monsters, such 

do not contradict 

as 

the 

viewpoint while they are absolutely 
senseless for solving a physical problem. On the other 
hand, the ambiguousness· of the choice of P f makes us to 

m 
search for additional requirements upon the induced 
dynamics. 

The only case, when no problems 
induced dynamics, occurs when the vectors 

the tangent spaces T f for all fmEm. The 
m 

arise with the 
J(fm) belong to 

manifold m with 

this property will be called the dynamic invariant 
manifold of equa tion (2. 1): 

for all f Em 
m (2. 6) 



568 GORBAN AND KARLIN 

However, In the majority of cases, one deals with 

manifolds which lack the property of dynamic invariance 

(2. 6). In applications, one usually solves the problem 

of induced dynamics by introducing the projectors P 
fm 

based on a tradjtion and (or) physical motivation. For 

example, In the case of LM manifold, one usually defines 

the projector P ~ as: 
fen, u, T) 

~ { 1 
P ~ (J)=f(n, u, T) 1 f? 

fen, u,T) n -

m 3 
----:C

1
-:C/-=-2f (v .-u .)Jd v, 

(2k
B

nT) ~ ~ 
i=l, 2, 3 

(2. 7) 

For the TMS manifold, different types of projectors 

P f( a , a +) were considered in [2, 19, 20 J, and the choice 

of projector is the subject of an old discus~ion [2]. 

The example of LM manifold is remarkable: one can 

interpret the coordinates as the values of linear 

operators 

1 f 3 M .(f)=- v .Jd V· 
~ n ~ , 

The la Her are defined in a neighborhood of }fiLM' and 

projector P ~ is generated with the differentials 
f(n,u, T) 

of these operators. The values of operators Mk(f), 

k=o, . .. ,4, are naturally interpreted as macroscopic 

parameters (i. e. the density, the flow velocity, and 

the temperature). This example brings us to a general 

way of constructing the projector Pf . 
m 
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For a given manifoldm, we define th.e projector P l 
m 

in two steps. 

step 1.. We introduce a parameterization with 

macroscop1C parameters M for the manifold ~ Denote as 

Um a neighborhood of the manifold m in F: mcumcF. Let 
-

M( 0) be a smooth mapping M: Um->M, where M 1S a linear 

space. We assume that M( 0) has two properties: 

1. e. the 1mage of the neighborhood Um coincides with the 

1mage of the manifold m, and 

(ii) The restriction of M ( 0 ) to m, MIDt· has a smooth 

reverse mapping M(Dt)->Dt which maps M(l) into l(M)Em: 

(2. Sb) 

The mapp1ng M( ') with these two properties will be 

called the macroscopic mapping. 

In order to stress the parameterization of the 

manifold Dt with macroscopic parameters M, we write it as 

{l(M)}. Note that, due to the properties (i) and (ii), 

the mapping M( 0) gives a (nonlinear) projection of the 

neighborhood um into Dt according to the rule: 

Um -> M(m) -> Dt 
(2. 9) 

l ~~ M(l) ~~ l(M) 

step 2. Given a manifold {l(M)}, we define the 

projector Pf(M) as 

Pf(M) (J)=OMf(M) OOfM(f) I oJ 
f=f(M) 

(2. 10) 

Here 0Mf(M) is the differential of the immersion M(Dt)->F 

1n the point f(M), and OfM(f) I is the differential 
f=f(M) 

of the mapP1ng M(f) 1n the point f(M). Obviously, 

Pi(M)(J)=Pf(M)(J) because f(M(f))=f if fE~ 
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projector (2.10) glves us the vector field of 

induced dynamics: 

P f(M) (J(f(M») (2. 1 1 ) 

operator Pf(M) projects the vector J(fCM») into the 

tangent space Tf(M)' the latter being the image of the 

operator DMf(M). Definition (2.11) yields the equation 

of induced dynamics in terms of macroscopic parameters M 

dM 
dt = DfM(f) I ·J(f(M») 

f=f(M) 
(2. 12) 

If we have fixed a manifold {f(a)} using some 

immersion A~F, then the introduction of parameteriza­

tion with macroscopic parameters M assumes the smooth 

isomorphism M( {f(a) } <----7 A established with the relation 

af- .... M(f(a) )=M(a). In this case we say that M(!) equ1ps 

the manifold {f(a)} with a new coordinate system Mea), 

and we write it as {fCM(a»}. Then formula (2.12) is 

rewri t ten as follows: 

d~ia) = DfM(f) I 'J(f(M(a))) 
f=f(M(a») 

(2.12a) 

The latter equation can be considered as the induced 

equation for the coordinates a on the manifold {f( a)}, 

created with macroscopic mapping M(f). Due to the smooth 

isomorphism af- .... M(a) assumed, we can rewrite it as: 

[
DMcal]oda_ I Da dt - DfM(f) . 'J(f(M(a))) 

f=f(M(a) ) 
(2. 12b) 

Here [D~~a)] 1S the derivative of the isomorphism 

af- .... M(a). 

The notion "macroscopic parameters" used reflects 

the situation with BE: the values of operator M(f) can 

be interpreted as observable physical quantities. It is 

necessary to distinguish the parameterization of m with 

macroscopic parameters from that with the coordinates a. 
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In the latter case we do not undertake a consideration 

of the neighborhood Vm' For example, natural coordinates 

of the LM manifold are macroscopic parameters, while the 

coordinates a and a of the TMS manifold are not (i. e. - + 
they are not defined as the values of some macroscopic 

mapping with properties (2. 8a) and (2. 8b)). 

Further we consider only the approach to obtain the 

induced dynamics via macroscopic parameterization. It 

should be stressed here that this approach does not yet 

sol ves the problem of ambiguousness in the choice of 

Pf We 
TIt 

projector have only reformulated this 

ambiguousness by replacing it into the choice of the 

macroscopic mapping M(f). Hence, we have to search for 

addi tional restrictions upon the choice of M(f) for a 

given manifold m. 
up to flOW, all 

any equation ( 2. 1 ), 

considerations were appropriate to 

regardless of whether it lS the 

dissipative system or not. The 

dissipative systems is the inequality 

H-theorem for BE). 

maln feature of 

(2.2) (this is the 

Hence, it is natural to introduce the 

conservation of the type of dynamics In 

principle of 

the induced 

dynamics. For dissipative systems, this principle states 

that the vector field of induced dynamics should 

preserve the inequality (2.2). 

For a given manifold m and for its macroscopic 

parameterization {f(M)}, we denote as H(M) the function 

H(f(M)), and we assume that H(M) lS smooth for all 

MEM(m). Parameterization {f(M)} of the manifold m will 

be called thermodynamic (for short, manifold {f(M)} will 

be called thermodynamic as well), if the following 

inequality is valid for all MEM(m): 

(2. 13) 
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Here D0(M) is t.he differential of t.he functional H(M). 

In other words, the principle of conservation of 

the type of dynamics for dissipative systems 1S 

expressed with inequality (2.13) as a request upon the 

choice of macroscopic mapping M(r) in the neighborhood 

of the given ma'nifold m. We stress here that the request 

on thermodynamicity 1S directed to the mapping M(') 

(i. e. to the choice of induced dynamics) rather than to 

the manifold m itself. of course, not any manifold m is 

suitable for creating the thermodynamic parameteriza­

tion, but the restriction upon the choice of sui table m 
is incomparably weaker than that of the thermodynamic 

parameteriza tion (see next section). obviously, not 

every choice of M(r) for given m satisfies inequality 

(2. 13), and thus the request on thermodynamicity of 

parameterization is not trivial. Thermodynamicity of 
* parameterization will be stressed with the asterisks 

* • {r (M)} for the manifold, and M (') for macroscop1C 

mapping. Dynamic invariant manifold of dissipative 

system is obviously thermodynamic for any choice of M(r) 

1n its neighborhood. 

The request on conservation of the type of dynamics 

1S very important. For example, if we consider 

Hamil tonian systems instead of dissipative ones, then 

this request means that the induced vector field should 

have the Hamiltonian structure. 

We consider the request on thermodynamicity as the 

pr1me restriction upon the choice of projectors P r ' 
TIl 

other (additional) restrictions depend on the particular 

type of the dissipative system under consideration. For 

BE, these additional restrictions may respond, for 

example, to usual conservation laws Ci. e. to 

conservation of the number of particles, of momentum, 

and of energy). 
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A specific family ofappr.oxim.ati.ons for dissipative 

:} systems consists of quasi-equilibrium manifolds. Let U 

be an .open convex domain in F. consider a smooth mapping 

M('): U-M, where M is a linear space. We assume that 

1) For every MEM (u), there exis ts an unique solution 
• f (M)EU of the variational problem: 

H(f)- min for M(f)=M (2.14) 

• 
2) There exists a smooth reverse mapp1ng Mf-.+f (M) for 

every MEM(U), and this is a smooth immersion M(U)-F . 
• The manifold {f (M)}, which consists of solutions of the 

varia tional prob 1 em (2. 14), is called the quasi-

equilibrium manifold. I t is easy to see that the mapping 

M( .), for which assumptions 1) and 2) are valid, holds 

at a time the properties (2. sa) and (2. sb). Vector field 

of induced dynamics for quasi-equilibrium manifold 
• 

{f (M)} is determined with projector P • (2.10). 
f (M) 

Quasi-equilibrium manifolds are thermodynamic due to 

their construction (see elsewhere, for example 

[S, 9,13,14]). However, usually 1n applications, 

quasi-equilibrium manifolds are not dynamic invariant. 

The general problem 1S to construct a dynamic 

invarian t manifold, starting with a glven initial 

dynamic noninvariant manifold. For dissipative systems 

this problem consists of two main parts: 

Problem 1. For a given manifold 'In, one has to determine 
* the thermodynamic parameterization {f (M)}. 

* Problem 2. For a given manifold {f (M)}, one has to 

obtain a correction which decreases its deviation from a 

dynamic invariant manifold (i. e. to make the initial 

manifold "more invariant'). 

These two problems are interconnected. On the one 

hand, the search for thermodynamic parameterization 

glves us the projector p. and thus defines the 
f (M) 

defect caused with noninvariance. On the other hand, a 
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correction of dynamic noninvariance gives us a new 

manifold, and we have to determine the induced dynamics 

for this new manifold. 
It is convenient to rewrite the condition (2. 6) 1n 

other form, utilizing the projector Pf(M): 

/:'(f(M)) =" Pf(M) (J(f(M) )-J(f(M) )=0 (2.15a) 

or, 1n detail notation: 

/:,(f(M)) - DMf(M)ODfM(f) \ 'J(f(M))-J(f(M))=O (2. Isb) 
f=f(M) 

According to Problem 2, we 
as the nonlinear equation 

consider expreSS10n (2. lSa) 
(the invariance equation) 

which we have to solve starting with a given initial 

manifold mo' Thus, we have to develop a method of 
succeSS1ve approximations to solve equation (2. 15a). 

According to Problem 1, we have to create thermodynamic 
parameterization for each of these approximations, 

including the initial approximation mo' 
Thus, the problem of reduced description for 

dissipative systems consists of Problems 1 and 2. 

In next section we solve problem 1 (the problem of 

thermodynamic parameterization) for an almost arbitrary 

manifold m, for dissipative systems of the general type. 

In section 2.3 we develop Newton-type methods to solve 
equation (2. 15a), and this methods will be combined with 

the method of thermodynamic parameterization. 

2. 2 Thermodynamic Parameterization 

In this section we introduce a universal 
construction which gives the thermodynamic parameteriza-

* tion {f (M)} for the manifold m. This construction is 
based on a specific choice of the thermodynamic 

* macroscopic mapping M (f) in the neighborhood U CF The 
1ll 



METHOD OF INVARIANT MANIFOLDS 575 

mostly important features of our construction are: 

" 1) This construction depends only on R(f) but not on 

J(f) (i. e. it is universal for all dissipative systems 

(2.1) with given R(f)). 

2) This construction is the only universal one (i. e. 

this ~s the unique construction with property 1). 

In order to fulfill this program, we firstly 

introduce a method of constructing the macroscopic 

mapping M(f) with the properties (2.8a) and (2.8b). 

Macroscopic mapplng M(f) will be constructed ln two 

steps: 

step 1. For every fEUm, using linear in f equations, we 

search for the point fmEm which satisfies the condition 

M(f)=M(f
m

) 

step 2. For every fmEm, we define parameters M(fm ) so 

that smooth reverse mapping M(m)~m should exist, and it 

should be a smooth immersion M(m)-4F. 

In other words, in step I, we define a projection 

of the neighborhood Um onto the manifold lit (see also 

(2. 9». In step 2 we create a coordinate system on the 

manifold m and, in accordance with step I, this will be 

the parameterization with macroscopic parameters. 

In step I, for every f mEm, we define linear 

transforms Mf (f) which depend smoothly on fm' and we 
m 

take: 

(2.16) 

Here fEUm. In other words, we give the value M(f
m

) to 

fEUm if f-fm belongs to the kernel of Mf (f): 
m 

The 

M(f)=M(fm ), if f-fmEkerM
f 

TIl 

sufficient condition for the 

sol vabili ty of linear equations Mf (f-fm)=O 
m 

can choose a sufficiently small U) 
TIl 

(2.16a) 

univalent 

(we 

the 
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lransversality condition: 

kerMf + Tf = E, 
m m 

kerM f nT f = {O} 
Tn m 

The essence of the method proposed for constructing 

macroscopic mapping M(f) is a description of kerMf ln 
TIl 

(2. 16). step 1 has the principal meaning because for a 

given m one can introduce many different transforms 

M
f 

(f). step 2 is usually straightforward after Mf (f) 
m Tn 

was chosen. usually in applications, in step 2, we are 

able to identify Mf (f) with M(f) (i. e. we can create 
Tn 

the coordinate system on III using the values Mf (fm )). In 
Tn 

this case we can take: 

(2.17) 

For example, ln the case of LM manifold, we take Mf (f) 
m 

as the direct sum of five linear mappings: 

These do not 

kerM ... 
fen, u, T) 

depend on 

are the 

... 
fen, u, T)EmLM, and the kernels ... 
same for all fen, u, T)EmLM. 

... 
M ... (f-f(n, u, T) )=0 
fen, u, T) 

physically, condition gives 

those distributions f which have the density, the flow 

velocity, and the temperature equal to corresponding ... . ... 
parameters ~ u, and T of the local Maxweillan f(~ ll, T). 

For the given manifold m, the derivation of the 
'" thermodynamic macroscopic mapping M (f) ln accordance 

wi th the procedure proposed requires a specific choice 
* of linear transforms Mfm(f) in Um. We will now introduce 

a condition under which the transforms Mf (f) will be 
m 

thermodynamic. Next we will discuss the sufficiency and 

the necessity of this condition. 
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Denoie aSllf the dual vari.able: 

IlrDfH(f) (2. 18) 

Here DfH(f) is the linear functional: the differential 
of the functional H(f) in the point f. Due to the strict 
convexity of H(f), there exists a one-into-one relation 

Il<---> f. 

for 
Macroscopic 

all fmEm, 

mapping M(f) will be thermodynamic if, 
the equalities 

imply 

where 

Thus, the condition of thermodynamicity ~s: 

M(f)=M(fm) => f-fm
E kerllf m 

(2.19) 

Here fEUm. In other words, the linear transform Mf Cf) 
T!( 

in (2. 16) will be thermodynamic, if 

kerMf (f)Ckerllf 
m m 

(2. 20) 

Equations Ilf '(f-fm)=O are solvable with respect to 
III 

fT!(' for every f from some neighborhood of m, only if the 

manifold m is not tangent to the level of the functional 

HCf) in any point fm' This transversalit.v condition is 
the only principal constraint on the choice of m. 

Further, we assume this transversalit.v condition ~s 

satisfied. 

condi tion (2.19) (or (2.20)) initializes the 

construction of Mf (f) In ( 2. 16 ) for the a priori given 
m 

manifoldm. The standard description of kerllf lS given 
m 
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* by functionals Mf (f): 
m 

(2. 21 ) 

Here fEUm. Linear transform M
f 

(f) will give thermo­
TIl 

* dynamicity if kerMf (f)ckerMf (f). Obviously, if we take 
TIl TIl 

* , kerMf (f)=kerMf (f)nkerMf (f), 
TIl TIl TIl 

arbi trary linear mapping, 

where Mf (f) 
TIl 

then implication 

is an 

(2. 19) 

remains valid for Mf (f). This 
TIl 

complete step 2, and to construct 
* macroscoplC mapplng M (f) in the 

makes possible to 

the thermodynamic 

manner of (2. 17). 

usually ln applications, the following strategy of 

constructing of thermodynamic kerMf (f) is convenient: 
* TIl 

one takes kerMf (f) and intersects it with a sufficient 
TIl 

number of kerL, where kerL are kernels of some linear 

mappings L(f), so that (2. 17) gives a coordinate system 

on m. Linearity plays no key role. 

We will now consider the sufficiency and the 

necessity of condition (2. 19). 

Condi tion (2. 19) is sufficient for thermodynamici ty 
* of M (f) because of the following duality principle: 

fm is the unique solution of the variational problem: 

H(f)~min for fE Umn(kerf.1,f +fm) 
m 

This is so because: 

i) H(f) 1S the strictly convex functional, and 

(2. 23) 

ii) Kf =Umn(kerf.1,f +fm), is the convex neighborhood of fm 
TIl TIl 

in (kerf.1,f +fm) (if necessary, one can always take for um 
TIl 

a smaller neighborhood of m). 

In other words, fm gives the only m1nlma of H(f) in 

the convex domain Kf which belongs to the hyperplane 
TIl 
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Taking into accoun t (2. 19) and (2. 23), we see that 

f 1S also the unique solution of the variational m 
problem: 

• • H(f)-*min for M (f)=M (fm) (2. 25) 

This is so because, due to (2. 20), Kf m 
wider than Um()( kerM f +fm ), 

m 
and according to (2. 23)· 

glves the only minima to H(f) in Kf . 
m 

is 

Finally, as we have defined fm as the solution of 
varia tional problem (2. 25), the thermodynamici ty of 

• M (f) can be proved straightforwardly in the same manner 

as for quasi-equilibrium manifolds 

elsewhere, for example [8,9,13,14]). 

• 
{f (M)} (2.14) (see 

An important particular case 

manifold m 1S a quasi-equilibrium 

1S that when the 
* manifold {f (M)} 

(2. 14). Then no new macroscopic mapping is required. 
* Quasi-equilibrium manifold {f (M)} is thermodynamic due 

to its construction because 

kerDfM(f)/ * ckeril * 
f=f (M) f (M) 

Due to the duality principle (2. 23), one can consider an 

arbitrary manifold m as if it was a quasi-equilibrium 
manifold after the appropriate parameterization. 

It is remarkable that condition (2.19) accounts 
only the Lyapunov functional H but not the vector field 
of dissipative systems. Now we will demonstrate the 
necessity of this condition. In order to do this, we 
have to turn to a consideration of a whole family of 
dissipative systems with a given functional H. 

Denote as 3H the family of vector fields J(') which 
define dissipative systems (2. 1) with the given Lyapunov 
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functional O. Due to inequality (2. 2), vector JEE can 

represent a vector J(f) for some J(' )E3
0 

if it belongs 

to the allowed half-space E}h: 

E}h={JEEI ~f'J~O} 
The interior of E}h will be called the strictly allowed 

half-space Ei: 

condition ~f'J=O defines a partition 

half -spaces, E=E}huE;, where E; 1S 

forbidden half-space: 

of E 

the 

into two 

strictly 

Et={JEEI ~f'J>O} 
None of vectors from E; can represent a vector J(f) for 

any J(')E3
0

' 

Dealing with the whole family 3
0

, it is convenient 

to reformulate the request on thermodynamicity of 

induced dynamics. Same as for the space E, we define the 

allowed, the strictly allowed, and the strictly 

forbidden half-subspaces of T
f 

: 
m 

Projector Pf m 

Note that, 

will 

due 

be called uniformly thermodynamic if 

Pf (E}h)ST}h (2.26) 
TIl Tn Tn 

to the transversality condition 

formulated above, the latter inclusion is an equality: 
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and th.at two similar equalities also take place: 

+ + - -
Pf (Ef )=Tf 

Tn Tn Tn 

In other words, the uniformly thermodynamic projectors 

transform 
E th into 

fm 

all "physically allowed microscopic vectors" 

"physically allowed macroscopic vectors" Tih, 
Tn 

and thus they give thermodynamic induced dynamics for 

all representatives of the family 3
9

, 

consider the family 3
9 

and a manifold m. Condition 

(2. 19) is necessary for thermodynamic parameterization 

in the following sense: this is the unique condition in 

step 1 which defines the thermodynamic parameterization 

of m for all dissipative vector fields 3
9

, In other 

words, projector defined by condition (2.19) is the only 

uniformly thermodynamic projector. 

In fact, let us consider a parameterization of m 
defined with some macroscopic mapping N('), different 

* from M (') defined via condition (2.19). It means that 

kerVf 1:kerf.1,f 
Tn rn 

for some frnEm. 

Here V f =DfN(f) If=f . 
m Tn 

which J oEkerV f' and 

Then there 

J oookerf.1,f . 
Tn 

Denoting as 

exists JOEEf' for 
m 

Let U
J 

eEl- be a 
a m 

the projector 
Tn 

neighborhood of J o' Pv 
fm 

defined by the macroscopic mapping N('), we see that the 

image Pv (U J )CT f is a neighborhood of zero In 
frn a rn 

and, hence, 

In other words, there exist strictly allowed vectors 

J(fm) that transform into strictly forbidden vectors 
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T
f
+ under the action of projector Pv On contrary, a 

m f m 
strictly allowed neighborhood U

J 
always transforms into 

o 
a strictly allowed neighborhood under a projection which 

satisfies condition (2.19). 

The uniform character of condition (2.19) might be 

illustrated with the following example. consider .all 

kinetic equations with the Bol tzmann H-function (i. e. 

all BE with all possible collision integrals including 

rigid spheres, Lennard-Johnes, BGK, etc) and a fixed 

manifold (say, the TMS manifold). Then, if we derive the 

induced dynamics for mTMS using only linear mappings 

(such as fv;fd 3v, fv~fd3v, etc; see [2 J), then, for some 

there exist collision integrals for which the 

dynamics will not satisfy the thermodynamicity 

condition in the point fm (see in this connection the 

paper [21 J ). The only condition which will glve 

thermodynamic induced dynamics fOT all BE 1S the 

realization of condition (2.19) for mTMS [20J. 

Thus, in this section, we have introduced a method 

for constructing the thermodynamic parameterization in 

the general case, and thus we have solved the problem 1 

of section 2. 1. In the next section we will consider an 

approach to correct dynamic noninvariance. 

2. 3 Iterative Methods for Invariance Equation 

In this section we introduce Newton-type procedures 

for a search of corrections to a dynamic noninvariant 

manifold m. We consider the case when the manifold is 

parameterized with macroscopic parameters M: ~{f(M)}. 

In the preceding section we have learned to construct 

thermodynamic macroscopic parameterization. Thus, when 

we are developing procedures of corrections, we are free 
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to pay no attention to whether {f(M)} 15 thermodynamic 

or not: thermodynamicity .can be always arranged in the 

end of calculations. The .1nvariance equation (2.15a) is 

completely geometric, it contains no explicit time 

dependence. The latter appears only when we derive the 

induced dynamics, and only at this step we have to apply 

the principle of thermodynamic parameterization. 

We start with the invariance equation (2. Isb). Let 

the manifold {f 0 (M)} is given. Its dynamic noninvariance 

means that the defect ~(fO(M)) is not identical to zero. 

In order to correct the manifold {forM)}' we search 

for a new manifold {f 1 (M)}, representing f 1 (M) as 

This search 

fl (M)~fo(M). 

requ1re' 

(2. 27) 

a one-in to-one relation should glVe 

In order to arrange this relation, we 

Df 1 (M)E kerp[ (M) 
o 

(2. 28) 

In other words, we search for the new point fl (M) 

labeled with the same value M as the point forM). 

We are going to obtain the correction to {fo(M)} 

via a method of successive approximations. We want that 

this method would not requlre neither any strong 

restriction upon the choice of {f 0 (M)}, nor small 

parameters, etc. We represent two methods of this type. 

Method 1. substituting expression (2.27) into 

(2.1Sb) instead of f(M), and next preserving linear in 

Bf
1

(M) terms, we obtain a formal linear in Bf
1

(M) 

equation: 
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(2. 29) 

Here O}M(f) I. is a bilinear operator (the second 
f=fo(M) 

differential of M(f)), and O~(f)1 is the linear 
f=fo(M) 

operator (the differential of the mapping J(f): E-E). 

Equation (2.29) 1S the first iteration of the 

Newton method [22J as applied to equation (2. ISb). 

constraint (2.28) is the additional condition for 
unambiguous solvability of 

(2.28) initializes the 

approximations 

(2. 1 5b). 

for solving 

equation 
method 

(2.29). Equation 
of successive 

the 
. . equation 1nvar1ance 

It 1S clear that the first and the second terms in 

(2.29) give the linear variation of the projector: the 

first term gives the variation of the image of the 

projector, while the second term glves the variation of 
its kernel. The rest of the terms in (2.29) give the 
variation of the vector field. 

Method 2. We search for a new manifold {f
1 
(M)} 

where the vector field J(f
1
(M)) ~s parallel to the 

tangent space T f (M)' In linear approximation, we obtain 
o 

an equation for the first correction Of1(M) (2.27) as: 

kf (M)(')-l)(J(fo(M)+OfJ(f)1 (Of1(M)))=0 (2.30) 
o f=fo(M) 

Additional condition for this equation 1S agaln the 
constraint (2. 28). 

In order to demonstrate the sense of the two 
methods proposed, we will consider the case of linear 
manifolds for linear dissipative systems. 

consider real Hilbert space G with the scalar 
product (f,g), and a linear dissipative system 
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df/dt=Af 

with ihefunctional H(f) 

H(f)=~(f, f) 

585 

(2. 31 ) 

(2.32) 

In (2.31), A lS a linear, 

and selfadjoint' operator, 

spectra of A consists of 

A(m)' m=O,1, .... 

negatively defined, bounded, 

A: G->G. We assume that the 

non-degenerated eigentvalues 

The dual variable ~f ('2. 18) is 

~rf; ~f'!?= (f, !?) (2. 33) 

consider linear manifolds me=ae, where (e, e)= 1, and 

aEIR (i. e. me is a line in G, defined with the unit 

vector e). 

Invariance equation (2. 1Sb) for me 1S: 

ere, Ae)-Ae=O (2. 34) 

Normalized solutions of equation (2.34) are unit vectors 

which define the eigentspaces m =ae 
e(m) (m) 

of opera tor A, corresponding to eigen t val ues A (m)' 

Assume that we have chosen the linear manifold 

me =ae o' and eo is not the eigentvector of operator A. 
o 

We have to correct the initial manifold m in order to 
eO 

make it closer to a solution of equation (2.34). 

We search for a new linear manifold m =ae
1

. It is e
1 

sufficient to find any vector x1Em, then e
1 

mel=a(Xldx111). We search for Xl in the form (2.27): 

x
1
=e o+6x

1 
(2.35) 

Additional condition (2.28) yields: 

(6x l' eo )=0 

Method 1 (formula (2.29)) gives: 

(2. 36) 

(A-(e o' Aeo)Id)(eo+6x1)=2eo(6x1' (A-(e o' Aeo)Id)eo ) (2.37) 
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Here Id 

condition 

is the 

(2.36), 

equation (2.37): 

identy operator. Using 

we obtain the unlque 

additional 

solution of 

(2. 38) 

Being rewritten in the basis elm)' expresslon (2.38) 

glves: 

0: e (e rm ), eo) 
1:: (m) 'A 

(m) (m)-(e o' Ae o ) 
(2. 39) 

We see that the leading term of the series (2.39) 
• corresponds to the number m which gives the minima to 

the function z(m)=I'Acm)-(eo,Aeo)l. In other words, the 

leading term corresponds to the eigentspace m * which 
elm ) 

is the "nearest nei!?hbor" of the linear manifold me . 
o 

Thus, Method 1 gives a search of the eigentvector e •. 
(m ) 

Method 2 (formula (2.30) glves: 

(Id-eo(e o' '»A(e o+<h 1 )=0 (2.40) 

Taking into account the additional condition (2.36), we 

obtain the unique solution of equation (2.40): 

In the basis elm) we obtain: 

(e(m),e o) 
e O+ox 1 0: 1:: e 

(m) (m) 'A 
(m) 

(2. 41) 

(2. 42) 

The leading term of the expansion (2. 42) corresponds to 

the number m. which labels the eigentvalue with the 

minimal module. Thus, Method 2 results in a search for 

the eigentvector e(m.) which is the direction of the 

"slowest relaxation" to the equilibrium point x=O. 

The example of linear manifolds for linear 

dissipative systems considered shows the difference 
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between the two methods for obtaining corrections. The 

choice of a .method in particular applications depends on 
the physical sense of the problem. In particular,Method 

2 1S preferable when one searches for invariant 
manifolds with slowest relaxation properties, and it 

will be used 1n section 4 for derivation of 

hydrodynamics from the Boltzmann equation .. 
Thus, we have introduced the two ma1n objectives 

for constructing dynamic invariant manifolds for 
dissipative systems: the method of thermodynamic 

parameterization (Section 2.2) and Newton-type 
succeSS1ve procedures to correct the dynamic 

noninvariance (Section 2.3). In the next section we will 

combine these two procedures into the algorithm of 

constructing dynamic invariant manifolds for dissipative 

systems (the method of invariant manifold). 

2. 4 Description of the Method of Invariant Manifold 

The algorithm starts with the choice of an initial 

manifold mo' This choice depends on the particular 
physical problem, and we are not able to consider this 

question in general. However, the rest of the algorithm 

does not essentially depend on this choice. Here we 
assume only that mo satisfies the transversality 
condition of Section 2. 2. 

step 1. Choose the initial manifold mo' 
step 2. Construct the thermodynamic parameterization 

* {fo(M)} for the manifold mo 1n accordance with 
the algorithm of section 2. 2. 

* step 3. Calculate the defect },(fo(M)) (2. 15a). If 
* },(f
o 

(M) 1'=0, then mo 1S a dynamic invariant 
• manifold. If !'!.(fO(M))to, then search for a mew 

manifold m
1 

1n accordance with Method 1 or 
Method 2 of section 2. 3. 

step 4. Construct the thermodynamic parameterization 
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* {f 1 (M)} for the manifold m1 in accordance with 

the algorithm of section 2.2. 

Then the procedure is continued (go to step 3). 

In the next section we will discuss physical ideas 

behind the method of invariant manifold. 

2. 5 physical and Geometrical Interpretation 

The method introduced In section 2. 4 is based on 

two points: 1) 

2. 2) and, 2 ) 

noninvariance 

thermodynamic parameterization (Section 

successive corrections of the dynamic 

(Section 2.3). These points reflect the 

Problem 1 and the problem 2 outlined in section 2. 1, and 

they give the immediate formalization to the two general 

macroscopic kinetics: assumptions of 

1) The choice 

(i. e. of any 

of any approximated reduced description 

manifold) always involves an implicit 

assumption on decomposition of times of relaxation. 

2) A dynamic invariant manifold of slow motions lS 

located in a neighborhood of the chosen . 
When obtaining the thermodynamic 

for the initial manifold m, we act 

approxima tion. 

parameterization 

as if a times 

hierarchy hypotheses corresponded to the choice. This 

means that we act as if a "rapid" relaxation to the 

states fmEm occurs in some neighborhood of the manifold 

m, and then a "slow" motion along m takes place. During 

relaxation, the Lyapunov functional H(f) decreases, and 

a t the end of rapid processes it reaches a minimum on 

manifolds of rapid motions. The gradient of the Liapunov 

functional is normal to these manifolds of rapid motions 

at the mlnlma points. Therefore, In linear 

approximation, equation f."f ·f=f."f 'fm is valid for those 
m m 

points f which relax to the point fm in rapid processes. 

In other words, In linear approxima tion, rapid 

relaxation occurs on hyperplanes of rapid motions r f 
m 
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(2.24), the latter are linear approximations to the 

~ manifolds of rapid motions. 

Duality principle (2.23) states that the point fm 

lS the only point of minima of the functional on the 

hyperplane of rapid motions r f. In general, the 
m 

hyperplanes of rapid motions r f are nonparallel for 
m 

different points fmE~t 

In order to create a coordinate system on m, we 

simply have to add some macroparameters M(f). This 

addition is almost arbitrary, one should only supply the 
• independence and completeness of the set {Mf (f), M(f)} 
m 

in the neighborhood of m. Then the manifold m will be 
• parameterized with the set {Mf (fm ), M(fm )}. 
m 

* The choice of the set {M f (t), M(f))} 'yields the 
m 

following picture of rapid relaxation In the 

neighborhood of the manifold m: the system relaxes 

towards m along the planes of rapid motions Rf . The 
m 

plane of rapid motions Rf which includes the point fm 
m 

lS the cross-section of the hyperplane of rapid motions 

r fm with the planes {fIDfM(f) I f=f • (f-fm )=o} 
m 

Rf ={fIM; (f-fm)=o; DfM(f) I . (f-fm)=O} 
m m ~f . m 

The simplest case occurs when M(f) is a set of linear 

functionals. 

The hyperplane of rapid motions r f lS the only 
m 

hyperplane where the levels of the functional Hef) 
"surround" the point f m. This illustrates the duality 

principle (2.23). 

Thus, in step 2 of section 2. 4, we take (for a 

while) that the initially chosen manifold is already a 

"good" manifold of slow motions, and this alone yields 
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the proper induced dynamics. Naturally, we understand 

that the decomposition of motions assumed might be only 

approximate. Hence, in step 2, which immediately follows 

step 1, we reject this picture of relaxation, and we 

approximately correct the dynamic noninvariance. Then, 

in step 4, we again act as if the corrected manifold is 

a manifold of slow motions, etc. 

The problem of dynamic invariant manifolds has a 

very specific sound for dissipative kinetics. Namely, 

one should expect that these manifolds are manifolds of 

slow motion. This is rather a fine point, and we give 

some additional explanations. 

usually when one talks about decomposition of 

motions (i. e. about the times hierarchy), then one keeps 

in mind the existence of a small parameter. This small 

parameter should express the ratio of the time of rapid 

relaxation to the time of macroscopic observation. One 

may expect that the rapid relaxation results 1n a 

"sufficiently good" manifold of slow motions (i. e. 1n a 

"sufficiently invariant" manifold). 

However, this situation is far from being simple. 

There is always a place to 

parameter 1S sufficiently 

doubt on whether the chosen 

small. Even for finite-

dimensional dissipative systems (e. g. chemical kinetics) 

the steady-state manifolds might not always be. referred 

as to good approximations (see a precise study "The 

steady-state Approximations, Fact or Fiction?" by E. 

Farrow and D. Edelson [23], and also [24]). 

On the other hand, there are no small parameters ln 

the general case, but still one can construct a "good" 

approximation which approximately describes the 

evolution at a considerable period. For example, the TMS 

approximation illustrates this situation: a small 

parameter lacks in the strong shock wave problem but, 

nevertheless, one can consider the TMS approximation as 
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a suitable approximation for this problem. Hence, we 

should take that the two assumptions mentioned above are 

appropriate to the TMS approximation (at least 

approximately). 
Fora chosen approximated reduced description, one 

can not say beforehand whether the decomposition of 

motions indeed corresponds to the choice. Nevertheless, 
"good" we act as if the chosen manifold is already a 

manifold of slow motions. This immediately leads to 

definition 

principle 

of 

of 

hyperplanes 
decrease of 

of 
the 

rapid motions Vla 

Lyapunov functional 

the 

the 
In 

rapid relaxation as described above in section 2. 2. It 

lS important that the method of invariant manifold 

avoids a search for small parameters for constructing 

the manifolds of rapid motions. We obtain thermodynamic 
parameterization for the initial manifold. At the same 
time we remember that the chosen approximation is not a 

dynamic invariant manifold. We are able to measure the 

error f.(fm) caused by noninvariance, and we are able to 

approximately correct this error by solving the linear 
equation of the first Newton-type iteration. Then we 

agaln act as if the corrected manifold is a good 
manifold of slow motions, etc. 

In the next section we apply the method of 
invariant manifold to the Boltzmann equation. 

3. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS 

FOR THE BOLTZMANN EQUATION 

In this section we apply the method of invariant 

manifold to the Boltzmann equation (BE). Firstly, we 

will interpret the key notions of section 2 for BE. 
The phase space F (section 2.1) consists of 

distribution functions f(t,~) which depend on the 
~ ~ 

spatial variable x and on velocity variable v. The 
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variable -; spans an open domain iJ s;IR3, and the variable 
-> 3 xx ->-> 
v spans the space IRv' We require that f(v, X)EF are 

nonnegative functions, and also that the following 

integrals are finite for every -;EiJ (the existence of x 
moments and of the entropy): 

(i1iz i 3) _ i 1 i z i3 -> -> 3 . >- . >- . >-. 
I-> (f)-fv 1 v 2 v 3 f(v, x)d v, ~l/'O, ~2/'O, ~3/'O, (3. 1a) 

x 

f
->-> ->-> 3 f 3 H->(f)= f(v, x)(lnf(v, x)-l)d v, HCf)= H->(f)d x (3.1b) 

x x 
Here and below integration in ~ 
is made over Ox in -;. For every 

is made over 

fixed -;EO , x 

might be treated as functionals defined in F. 

IR3 
v' r .. 

-'> 
X 

and it 

and H-,> 
x 

We wri te BE in the form of (2. 1) uSlng standard 

notations [2]: 

Bf 
JCf)=-vs Bxs + O(f,f) (3. Z ) 

Here and further a summation in two repeated indices is 

assumed, and O(f, f) stands for the Boltzmann collision 

integral [1]. The latter represents the dissipative part 

of the vector field J(f) (3. Z). 

In this paper we consider the case when boundary 

conditions for equation (3. Z) are relevant to the local 

with respect to -; form of the H-theorem. 

For every fixed -;, we denote as H~(f) the space of 
x 

linear functionals 

-'> 
where ¢i(V) represent summational invariants of a 

collision [l,Z] C¢O=l, ¢.=v., i=1,2,3, ¢=v 2
). We write 

~ ~ 4 
(modH~(f)) if an expression is valid within the accuracy 

x 
of adding a functional from H~(f). The local H-theorem 

x 
states: for any functional 

(3. 3) 
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the following inequality is valid: 

f I 
->-> 3 

dH->(f)/dl= O(f, f) -> -> lnf(v, x)d v~o 
x f=f(v, X) 

(3. 4) 

Expression (3. 4) lS equal to zero if and only if 
4 -> '-> 

lnf= I: a .(X)<P .(V). 
i= 0:1 :1 

Al though all functionals (3. 3) are equivalent In 

the sense of the Ii-theorem, it is convenient to deal 

with the functional H->(f)=ff(~, ;)(lnf(~, ;)-1)d 3v. 
x 

All what was said in section 2 can be applied to BE 

(3.2) with no significant changes. Now we will discuss 

some specific points. 

i) Local manifolds. Al though the general description of 

manifolds mCF (section 2. 1) holds as well for BE, a 

specific class of manifolds might be defined due to the 

different character of spatial and of velocity 

dependencies in BE vector field (3. 2). These manifolds 

will be called local manifolds, and they are constructed 

as follows. Denote as Floc the set of functions f(t) 
with finite integrals 

(i 1i 2i 3 ) il i2 i3 -> 3 . >- . >- . >-
a) I (f)=f v

1 
v

2 
v3 f(v)d v, :1

1
",0, :1

2
",0, :1

3
",0; 

(3.5) 

In order to construct. a local manifold in F, we, 

firstly, consider a manifold in FI . Namely, we define oc 
a domain ACB, where B is a linear space, and consider a 

smooth immersion A-->F
loc

: a~f(a, ~). The set of functions 

f(a, V)EFloc ' where a spans the domain A, is a manifold 

in Floc' secondly, we consider all bounded and 

sufficiently smooth functions at;): fJ -->A, and we define x 
the local manifold in F as the set of functions 

fear;), ~). Roughly speaking, the local manifold is a set 

of functions which are parameterized with ;-dependent 
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... 
functions a(x). A local manifold will be called a 

locally finite-dimensional manifold if B is a finite-

dimensional linear space. 

Locally finite-dimensional manifolds are a natural 

source of initial approximations for constructing 

dynamic invariant manifolds in BE theory. For example, 

the TMS manifold (2. 3) and the LM manifold (2. 4) are 

locally finite-dimensional manifolds. They are 

parameterized with finite sets of !-dependent functions. 

The LM manifold is parameterized with five macroscopic 

parameters (i. e. with five hydrodynamic moments), the 

TMS manifold is parameterized with two coordinates, 
... ... 

a_ex) and a+(x). Further, 

to the function fear!), ~) 
all expressions corresponding 

will be labeled with a(!). 

ii) Thermodynamic parameterization. The specificity of 

thermodynamic parameterization for manifolds In BE 

theory is due to the type of the Boltzmann H-function. 

Namely, the functionals H ... (f) (3.3) are homogeneolls: for 
x 

any~, where O<~<OO, we have: 

H ... (Af)=~H ... (f) (modH~(f)) 
x x x 

The dual variable flf (2. 18) is: 

flfl ...... =DfH(f) I ... .., = DfH.., (f) I .., .., = 
f=f(x, V) f=f(x, V) x f=f(x, V) 

... .., 
=lnf(v, X) 

* consider the local form of Mf (f) (2.21): 

* ...... m...... 3 
M... (f)=ff(v, x)lnfm(v,x)d V 
x,fm 

The value of the functional 

equal to: 

* f"'*-+ -)~ 3_ 
M... (fm)= fm(v, x)lnfm(v,x)d v=H ... (fm ) 

x, fm x 
Thus, equation (2. 12) for the macroscoplC 

( 3. 6) 

(3. 7) 

(3. 8) 

( 3. 9) 

parameter 
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* M-,> (fm) is the entropy balance equation. 
x, fm . 

It is necessary to s tress here tha t, In spite of 

external simplicity of this result (the entropy balance 

equation is indeed "natural"), the idea to use 

func tionals (3. 8) for constructing the thermodynamic 

projector is not evident. Indeed, functionals (3. 8) are 

neither usual moment functionals (3. Ia) nor the entropy 

(3. Ib) in the neighborhood of the manifold m. According 

to the physical interpretation (section 2.5), the 

entropy balance equation appears immediately from the 

idea of decomposition of motions in the neighborhood of 

the manifold m. 
Let {f(a(-;), t)} be a locally r-dimensional mani­

fold, where a(!)=(al(h, ... , a
r
(-;). We now give explicit 

expreSSlons for thermodynamic parameterization of 
7" . - -)-

{f(a(x), V)} in the important particular case when one 

adds r-I independent linear functionals L-,> (f) to the 
* X,1 

functionals M~ (f) (3. 8): 
x,fm 
f 

~ -> -> 3 
L~ . (f)= 1 i(V )f(x, v)d v, 

x, ~ 
i=1, ... , r-1 (3.10) 

The natural source of these linear functionals are, for 

example, the moment funciionals (3. Ia). 
-> -> -> 

For every fixed x, we can consider {f(a(x), V)} as a 

finite-dimensional manifold. 

The thermodynamic macroscopic mapplng lS 

defined as: 

• 
M->(f) = (3. Ila) 

x -+ -7 -+-)0 
=df(x, v)lnf(a(x), v)d 3v, f 

-> ~-> 3 
1 . ( V ) f (X, V) d v, i= 1, ... , r-I ) 
~ 

This mapping equips the manifold {f(a(-;), t)} with a new 

coordina t e sys tern: 
-+ -+ -+ -+ -)- 3 

H(a(x»=ff(a(x), v)lnf(a(x), v)d v, 
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-> I -> ->->3 L .(a(x))= 1 .(v)f(a(x), v)d v, i=l, ... , r-l 
~ . ~ 

(3. lib) 

Thus, in detail notation, we can write 
* ~ ~ -7 -+ 

{f (R ( a (X) ), L 1 ( a (X) ), ... , L r-I ( a (X) ), v) } 

for the manifold {fear!), t)} parameterized with macro­

scopic parameters (3. llb). 
* Thermodynamic projector P -> (J) lS defined as: 

* 
arK) 

P -> (J)= (3.11C) 
a(x) 

* -+ --)0 -) 4-

of (R ( a (X) ), L 1 (a ( x», ... , L -1 ( a C X) ), v) -> -> 3 
-> r Ilnf(a(x), v)Jd v+ 

OR(a(X) ) 

r-l 
+ l: 
i= 1 

* -) -) -7 -7 

of (R(a(X»,LI(a(X» •...• L _1(ac x »),v) -> 3 
r I1 .(v)Jd v 

BL .(a(!)) ~ 
~ 

Dynamic equations for macroscoplC 

(3. lIb) induced with the BE vector 

thermodynamic projector (3. llC) are: 
-> 

BR(a(x) ) 

at 
-> 

OL.(a(x» 
~ 

Bt 
Here 

+ div:7
R

(a(!» = 0( ac!»; 

+ div:7Lc,a(!» = 
~ 

->. -> I-+ -) -+ -) -7 3 
.7R (a(x»= vf(a(x). v)lnf(a(x), v)d v; 

:7 LC,aC!) )=It 1 i(t )f( at;), t )d
3

v; 
~ 

field 

-> I -)-) -)-) -)-) 3 
0(a(x))= lnf(a(x), v)O(f(a(x), V), [(a(x), v))d v; 

-> -> ->-> ->-> 3 
R i ( a ( x) )= I 1 i (V )0 ([ ( a (X), V), [( a (X). V) ) d v 

parameters 

(3. 2) Vla 

(3. lId) 

(3. lIe) 

Equations (3. lId) might be also treated as r dynamic 

equations for unknowns a
l
,··· • ar' 

iii) Dynamic invariance. All considerations of section 2 

concerning construction of dynamic invariant manifolds 

are completely applicable to BE vector field (3. 2). We 
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represent only an equation for the first correction to 

the locally r-dimensional manifoldmo={[o(a(x),~)}. 
We search for a first correction in the form of 

(2.27): 

(3.12a) 

considering the thermodynamic 

given with expressions (3. 11), 

(Method 2 of section 2. 3)): 

parameterization of mo 

we obtain an equation 

0* 0 ... ... ... ... 
(P ... (. )-l)J. ... (6f

1 
(a(x), v) )+L'>(fo(a(x), V) )=0; 

a (X ) lln, a ( x ) 

o 
J . (g)=-v 

1·... s ln, a(x) 

og 
Ox s 

+ L ...... (g); 
fo(a(x), V) 

(3.12b) 

Here L ...... stands for the Boltzmann collision 
fo(a(x), V) 

integral, linearized ln the point 
... ... 

fo(a(x), v), and 
* is defined according to (3. 11C). projector P ... 
a(x) 

Additional conditions (2. 28) for equation (3. 12b) 

are: 
...... ...... 3 

flnf(a(x), v)6f
1 
(a(x), v)d v=O, 

f
... ...... 3 . 

1 i(v)6f
1 
(a(x), v)d v=o, ~-l, ... , r-l (3.12C) 

According to the iterative scheme of section 2. 4, after 

solving equation (3. 12b), we have to introduce new 

thermodynamic parameterization, and next we can make the 

second iteration, etc. In some cases, we can use 

linearizations of vector field different from that in 

equation (3. 12b). For example, instead of the pure 

Newton scheme, we can use its Kantorovich's modification 

[22] (i. e. linearization of operator J(f) in a fixed 

point at every iteration). 

iv) Invariance equation ln a moving reference system. 
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In some cases, it is convenient to consider BE vector 

field in a reference system which moves with the flow 

velocity, In this reference system, we define the BE 

vector field as: 

J (f)=-(v -u 
us'" x,s 

df 
dt = 

(f) ) 

Here u,.,. (f) stands for 
x,s 

velocity: 

Of 
at 

of 
ox 

s 

the 

-1 f ...... 3 u... (f)=n ... (f) v sf(v, x)d v; 
x,s x 

(f) of 
+ u ... ox x, s s 

+ O(f,f) 

s-th component of 

,.,.,.,. 3 
n ... (f)=ff(v, x)d v 

x 

(3.13) 

the flow 

(3. 14) 

In particular, this form of BE vector field lS 

convenient manifold mo consists of ... ,.,. 

when the initial 

functions fm 

° 
which depend explicitly on (v-u ... (f)) 

x 
if functions fm Emo do not change under velocity 

° 
(i. e. , 

• ..--)0 ~-7 -to 
shlfts: V--'>V+C, where C lS a constant vector). 

substituting Ju(f) (3.13) instead of J(f) (3.2) 

into all expreSSlons which depend on the BE vector 

field, we transfer all procedures developed above into 

the moving reference system. In particular, we obtain 

the following analog of the invariance equation of the 

first iteration (3. 12b): 

(pO- -> (')_1)JO 

a (X) u, 

° -1"" f 3 J ... (g)={n ... (fo(a(x))) v gd v+ 
u, 1 in, a (x) x s 

Og 
Ox s 
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..,.~ * ~-i' 
/',( f 0 (a( x), v) )= (P -> (.) -1 )J u (f 0 ( a (X), V) ) 

a(X) 
(3.15) 

Addi tional conditions (3. 12C) do not depend on the 

vector field, and thus they remain valid for equation 

(3.15). 

v) Positivity and normalization. when searching for a 

correction, we should be ready to face two problems that 

are typical for any method of successive approximations 

in BE theory. Namely, the first of this problems is that 

the correction 

fm =fm +Clfm k+l k k+l 

obtained from the linearized invariance equation of the 
k+1-th iteration may be not a non-negatively defined 

function and thus it can not be used directly to define 
the thermodynamic projector for the k+1-th 
approximation. In order to overcome this difficulty, we 

can treat the procedure as a process of correcting the 
dual variable fl.f (3. 9) rather than the process of 

immediate correcting the distribution functions. Then, 
at the k+l-th iteration, we search for new dual 

variables f-L I . f mk + 1' 

f-Lflm =fl.flm + Clf-Lfl m (3.16) 
k+1 k k+l 

Due to the relationship f-Lf~f (3.9), we have: 

(3.17) 

Thus, solving the linear invariance equation of the k-th 
iteration with respect to the unknown function 

we find a correction to the dual variable ~m 
k+1 

and we derive the corrected distributions fm 
k+1 

fm =exp(f-Lfl m +~m )=fm exp(~m ) 
k+l k k+1 k k+1 

as 

(3.18) 

Functions (3.18) are positive, and they satisfy the 
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invariance equation and the additional conditions of the 

type (3. 12C) within the accuracy of (j) mk+1 
However, the second difficul ty which might occur is 

that functions (3. 18) might have no finite integrals 

(3. 1). In partic.ular, this difficul ty can be a resul t of 

some approximations used 

(3.15). Hence, we have 

ln solving equations (3. 12b) or 

to 

(3.18). A sketch of an 

regularization might be as 

"regularize" the functions 

approach to make this 

follows: instead of f mk + I 
(3. 18), we consider functions: 

f(~) =f exp((j) +(j)reg(~)) 
mk + I mk mk + I 

(3. 19) 

Here (j)reg(~) is a function labeled with ~EB, and B is a 

linear space. We assume that integrals (3. Ia) and (3. Ib) 

are finite for all values ~ in (3.19). Then we deriver 

~* from the condition of coincidence of macroscop1C 

parameters 

(3. 20) 

the macroscopic mapPlng of the k-th 

Further consideration of this procedure 

Here Mk 1S 

approxima tion. 

remains out of frames of this paper. 
( ~ * ) 

In particular, 

regularization fm 1S required for the first time only 
1 

at step 4 of section 2. 4 (i. e. 

thermodynamic equations for the first 

two difficulties mentioned here are not 

for obtaining 

correction). The 

specific for the 

approxima te method developed. For exampl e, correc tions 

to the LM distribution in thechapman-Enskog method [IJ 

and the thirteen-moment Grad approximation [4 J 

non-negatively defined functions, while the 

moment quasi-equilibrium approximation [10] 

finite integrals (3. la) and (3. Ib). 

are not 

thirteen­

has no 
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4. CORRECTIONS TO THE LOCAL MAXWELL MANIFOLD 

In this section we apply the method of invariant 

manifold to a particular situation when the initial 

manifold consists of local Maxwellians (2. 4) (the LM 

manifold). This manifold and its corrections play the 

central role In the problem of derivation of 

hydrodynamics from BE. Hence, any method of approximate 

investigation of BE ·should be tested with the LM 

manifold. classical methods (Chapman-Enskog and Hilbert 

methods) use Taylor-type expansions in to powers of a 

small parameter (Knudsen number expansions). However, as 

we have mentioned above, the method of invariant 

manifold, generally speaking, assumes no small 

parameters, at least In its formal part where 

convergency 

develop an 

properties 

appropriate 

are not discussed. We 

technique to consider 

will 

the 

invariance equation of the first iteration in section 

4. 2. This involves ideas of parametrics expansions of 

the theory of pseudodifferential and Fourier integral 

opera tors [25, 26]. This approach will make it possibl e 

to reject the restriction of using small parameters. 

4. 1 Equation of First Iteration 

The LM manifold consists of distributions fo which 
-? 

are labeled with parameters ll, U, and T: 

[
2'1Ck T)-3/2 { -? -? 2} -? B mev-u) 

foell, u, T)=ll m exp - 2k T 
B 

(4. 1) 

... 
Parameters fl, U, and T in (4. 1) are functions 

depending on 1-. In this section we will not indicate 

this dependency explicitly. 

Distribution fo(ll,"tJ, T) 1S the un1que solution of 

the variational problem: 
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for M (f)=f1'fd
3

v=n; 
o (4. 2) 

3 .. 2 3 3nkBT 2 
Mi(f)=Ivifd v=nu i , :1=1,2,3; M

4
(f)=Iv fd v m +nu 

Hence, theLM manifold is a quasi-equilibrium manifold. 
-> considering n, U, and T as five scalar parameters (see 

the remark on locality in section 3), we see that LM 

manifold is parameterized with the values of Ms(f), 

s=o, ... ,4, which are defined in the neighborhood of LM 

manifold. It lS sometimes convenient to consider the 

variables Ms(fo)' s=O, ... , 4, as new coordinates on LM 

manifold. The relationship between the sets {Ms(fo)} and 
-> • 

{n, U, T} lS: 

n=M' 0' 
-1 

U i=MO Mi , i= 1, 2, 3; 
m -1 -1 

T=~MO (M 4-MO MiMi) 
B 

the parameterization 

(4. 3) 

According to (4. 2), 

M
O
(fo ), ... ,M

4
(fo) (or, which 

T) is thermodynamic. 

-> 
is the same, with ~ U, 

with 

and 

Thermoaynamic projector P -> (J) 
f 0 (n, u, T) 

onto the 

tangent space T -> 

f 0 (n, U, T) 
lS defined as: 

(4. 4) 

-> Here we have assumed tha t n, u, and T are functions of 
MO"" ,M4 (see relationship (4.3)), and 

tl\ ,1\ . . 2 
't'0=1, 't'i=v i , :1=1,2,3, <J.l

4
=v (4. 5) 

calculating derivatives in (4.4), and next returning to 
. 1 -> varlab es n, u, and T, we obtain: 

P -> (J)=f 0 (n, 11, T){[~ 
f 0 (n, u, T) 

-~T)] II 'Jd
3

v+ [n~BT( v r U i) 



• 

METHOD OF INV ARlANT MANIFOLDS 603 

+m (mct-tI) 2 _ L), fv 2 Jd3v} 
3nkB 2k T2 2T 

B . 
(4. 6 a) 

It is sometimes convenient to rewrite (4. 6a) as: 

Here 
Ih( 0 ) _ -1/2 
'+' ~ -fl , 

fo(n, u, T) 

11,(i) =(1)1/2. 
't' -> n c~, 
fo(n, u, T) 

i= 1, 2, 3, 

l\J(4) =(L)1/2(C 2 _.l). 
-> 3n 2 ' 

fo(n,U,T) 
(4. 7) 

It is easy to check that 

(4. 8) 

Here ak1 is the Kronecker delta. 

The defect of the LM manifold at the point 
f 

-> • 
o(n,U,T) 1S: 

-> -> 

( 
Ofo(n,U,T)) ofo(n,U,T) 

=p -> -(Vs-Us) a +(V -u) a 
fo(n, u, T) Xs S S Xs 

(4. 9) 

Substituting (4. 6a) into (4.9), we obtain: 

au } + kmT«(V .-u .)(V -u )-~31 . (t_~)2)~ S 
B ~ ~ S S ~S uX i 

(4. 10) 

The LM manifold is not a dynamic invariant manifold 
of the Boltzmann equation (the defect (4.10) is not 
identical to zero). 
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We search for a correction to the LM manifold as: 
--)0 --?- 4-

f
1

(ll,U, T)=fo(ll,U, T) + 6f
1

(ll,U,T) (4.11) 

In this paper we will use the. Method 2 (see section 2. 3) 

for obtaining the correction 6f
1

(ll, ~,T) because we 
search for a manifold of slow (hydrodynamic) motions. We 
introduce the representation: 

(4. 12) 

Then the equation of the first iteration ln the form of 
-, 

(3.17) for the correction «l(D,U,T) is: 
~ 

{ } 

OfO(ll, U, T) 
P ~ (. )-1 (-(V s-Us ) Ox + 

fO(ll, U, T) S 

~ O(fo(ll, u, T)«l) 
+fo(ll,U,T)L ~ (ep) - (Vs-Us ) ax -

fo(ll,U,T) s 

(4. 13 a) 

-c> 
Here forD, u, T)L ~ (ep) is the linearized Boltzmann 

fo(ll,U,T) 

collision integral: 

(4. 14) 

-t, ...::;, I-C> ~ 
and W(V ,VI V,V

I
) is the kernel of the Boltzmann 

collision integral, standard notations label the 

velocities before and after a collision. 
Additional condition (3.14C) for equation (4. 13a) 

has the form: 
~ 

p ~ (fo(ll, U,T)ep)=O 
fo(ll, u, T) 

(4. 15) 

In detail notation: 

~ 3 f ~ 3 
fI'fo(ll,U,T)«ld v=O, vifo(ll,U,T)epd v=O, i=I,2,3, 
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J 2 -> 3 
V fO (n, .U, T)CPd v=o 

Eliminating in (4. 13a) the terms 

fv sfo(n, 7J, T)CPd
3

v and ffo(n, 7J, T)CPd 3
v with 

(4. 16), we obtain the following form 

(4. 13a): 
-> 

{ } 

Bfo(n,U,T) 
P ( • ) -1 (- (V -u) '" + 

-> S S ux 
fo(n, u, T) s 

605 

(4.16) 

containing 

the aid of 

of equation 

-> 
-> B(fo(n, u, T)CP) 

+fo(n, u, T)L -> (CP) - (Vs-Us ) Bx )=0 (4. 13b) 
. fo(n, u, T) s 

In order to consider the properties of equation 

(4. 13b), it is useful to introduce real Hilbert spaces 

o -> with scalar products: 
fo(n,U,T) 

(CP,¢) -> = ffo(n, 7J, T)cp¢d
3

v 
fo(n,U,T) 

(4. 17) 

Each Hilbert space is associated with the corresponding 
-> 

LM distribution fo(n, u,T). 

The projector P -> (4. 6b) is associated with a 
f 0 (n, u, T) 

projector IT -> which acts in the space 0 -> 
fo(n, u, T) fo(n, ll, T) 

IT -1 -> -> 
-> (CP)=fo (n, U,T)P -> (fo(n, ll, T)CP) 

fo(n, U,T) fo(n, U,T) 
(4. 18) 

It is an orthogonal projector because 

Here ¢(S) -> are given by the expression (4. 7). 
fo(n, ll, T) 

We can rewrite the equation of the first iteration 

(4. 13b) in the form: 
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L -> Cep) + K ->Cep) = 
fOCll,u,T) fOCll,U,T) 

Notations used here are; 

K -> Cep)= 
fOCll,li, T) 

=CTI -> C')-I) 
fOCll,li, T) 

-> 
-1 -> O(fO(ll, U, T)ep) 

f 0 (ll, U, T) ( v s -Us) ox 
s 

(4. 21) 

The additional condition for equation (4.20) 1S; 

Now we will list the properties of the equation 

(4.20) for usual models of a collision [1]; 

a) The linear integral operator L -> 1S 
foell, Ii,T) 

selfadjoint in the scalar product C',') -> and 
fOCll, Ii, T) 

the quadric form (cp,L -> (ep)) is negatively defined 
fO(ll,Ii, T) 

1n ImL -> 
foell, u,T) 

b) The kernel of 
-> 

L -> does not depend on foell, Ii, T), 
f 0 (ll, Ii, T) 

is the linear envelope of the polynomials lj)o= 1, 

i=1, 2, 3, and lj)4=v
2

. 

C) The RHS D -> is orthogonal to kerL -> 1n 
fO(ll,Ii,T) fO(ll,Ii,T) 

the sense of the scalar product ( " • ) -> 
fO(ll,Ii,T) 

is the selfadjoint d) The projecting operator IT -> 
foell, Ii, T) 

projector onto kerL ->; 

fO(ll,U,T) 

kerL -> 

focn,Ii,T) 
(4. 23) 
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projector n -'> projects orthogonally. 
. fo(n,li,T) 

e) The image of the operator K -'> is ort.hogonal to 
fo(n,li,T) 

kerL -'> 

fO(n, li, T) 
f) Additional condition (4. 22) requue the solution of 

equa tion (4. 20) to be orthogonal to kerL -'> 

fo(n, li, T) 
These properties result in the necessity condition 

for solving the equation (4.20) with the additional 

constraint (4.22). This means the following: equation 

(4.20), provided with constraint (4.22), satisfies the 

necessary condition for to have an unique solution in 

ImL -'> 

fo(n,li,T) 
Remark. Because of the differential 

K . -'> ' we are not able to 
fo(n,li,T) 

part of the 

apply the 

operator 

Fredholm 

alternative to obtain the necessary and slifficient 

conditions for solvability of equation (4.22). Thus, the 

condi tion mentioned here lS, rigorously speaking, only 

the necessity condition. Nevertheless, we will still 

develop a formal procedure for solving the equation 

(4. 20). 

To this end, we paid no attention to the dependency 
-'> 

of all functions, spaces, operators, etc, on x. It lS 

useful to rewrite once· agaln the equation (4.20) In 

order to separate the local in -; operators from those 

differential. Furthermore, we will replace the subscript 

fo(n, t, T) with the subscript -; in all expressions. We 

represen t (4. 20) as: 
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{1\(O)=n- 1 / 2 {1\(S)=(1)1!2 c .(-; t) 1 2 3 '+'7 ,'+',. n ~" s= , , , 
X X 

{[ 
...... 2 ] ...... m(v-u) 5 oInT 

D(X, V)= 2k T - 2 (Vi-Ui)ox. + 
B ~ ou 

m 1 ...... 2 s} + k T( ( (V ·-u .) (V -u ) --"-63 . (V-U) )-0 
B ~ ~ s s ~s xi 

1.) BlnT). 
2 ax ' 

S 

(4. 24) 

... 
Here we have omitted the dependence on x In the 

u i C-;), and T(-;). Further, if no 

discrepancy might occur, we will always assume this 

functions 
... 

D( x), 

dependence, and we 

The additional 
will not indicate it explicitly. 

condition for this equation is: 

II ... CCP)=o 
x 

Equation (4.24) lS linear in cp. However, the maln 

difficulty in solving this equation is caused with the 

differential in -; operator Adiff which does not 
commutate with the local in -; operator Aloc ' 

4. 2 Parametrics Expansion 

In this section we introduce a procedure to 
construct approximate solutions of equation (4.23). This 
procedure involves an expanSlon similar to the 

parametrics expansion In the theory of pseudo­

differential (PDO) and Fourier integral operators (FlO). 
considering Cj)ElmL ... , we write a formal solution of 

x 
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equation (4. 24) as: 

~~ .~'> "'0 ~ -1 ~~ 
(jl(X, V)=(Aloc(X' V)-Adiff(X,-::;, V)) (-D(X, V)) 

OX 
(4. 25) 

It is useful to extract the differential 
a operator a; 

from 
. ... a ~ 

out the operator Ad·ff(X,-::;, v): 
1 Ox 

(4. 26) 

Notations used here are: 

~ ~ -1 ~ ~ 7 ~ 
(jll (X,V)=A I (X, v)(-D(x, V))= oc oc 

... 11'" -1'" ... 
=[-L ... (V)-( ... (V)-l)r ... l (-D(x,v)); 

x x x 
-1 ... ~ ... ~ 11'" 

B (X,V)=Aloc(X,V)( ... (V)-l)(V
S

-ll
S

)= 
S x 

(4. 27) 

~ 11 ~ -1 11 ~ 
=[-L ... (V)-( ~(v)-l)r~l ( ... (V)-l)(V s -Us ) 

x x x x 
We will now discuss 1n more detail the character of 

expressions in (4.27). 
~ 

For every x, the function 
... 

~ ~ 

(jlloc(X, v), considered as 
a function of v, 1S an element of the Hilbert space G~. 

x 
It glves a solution to the integral equation: 

... 11~ ~~ 
-L~(V)(jlloc-( ... (V)-l)(r ... (jlloc)=(-D(X, V)) 

x x x 
(4. 28) 

This latter linear integral equation has an un1que 
solution in imL ... (~). Indeed, 

+ ~ ... x ~ ~ + 
kerA l (X, v)=ker(L~(v)+(11 ... (v)-l)r~) = 

oc x x x 
~ + 11'" + =ker(L ... (v)) nker(( ... CV)-l)r ... ) = 

x x x 
~ + ~ 

=ker(L~(V)) nker(r .• (11 ... (V)-l)), and G ... n11 ... (~)G~={O}. 
x x x x x x 

Thus, the existence of the unique solution of equation 

(4.28) follows from the Fredholm alternative. 
~ a ... 

consider the operator R(x,--, v): a; 
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70 7 7·-'>0-1 
R(X, -=;, V)= (l-B

S
(X, V)OX ) 

Ox s 
(4. 29) 

One can represent it as a formal serles: 
00 

707 770 m 
R(X,-=;, V)= ~ [Bs(X, V)ox 1 

ox m=o s 
(4. 30) 

Here 

(4. 31 ) 

Every term of the type (4. 31) can be represented as a 

finite sum of operators which are superpositions of the 
7 

following two operations: of the integral ln v 
7 

operations with kernels depending on x, and of 

differential in x operations. 

Our goal is to obtain an explicit representation of 
7 a 7 

the operator R(X,-=;, V) (4.29) as an integral operator. 
Ox 
777 

If the operator Bs(X, V) would not depend on x (i. e. if 

no dependence on spatial variables would occur ln 
7 7 

kernels of integral operators, ln Bs(X' V)), then we 

could reach our goal via usual Fourier transformation. 
-7 7 B 

However, operators B (X, v) and ~ do not commutate, and s vX
k 

thus this elementary approach does not work. We will 

develop a method to obtain the required explicit 

representation using the ideas of PDO and IOF technique. 

We start with the representation (4.30). Our 

strategy is to transform every summand (4.31) in order 
777 

to place integral ln V operators Bs(X, v) left to 

differen tial opera tors gx k' The transposition of every 

pair 
077 
Ox Bs(X' V) 

k 
yields an elementary transform: 

770 
--> B (X, v)~ s VXk 

(4. 32) 

Here [M, NJ=MN-NM denotes the commutator of operators M 

and N. We can represen t (4. 31) as: 
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-'> -'> 0 m -> -'> -'> -> 0 0 
[Bs(X, V)ox 1 = B (X, F) ... B (X, V)OX ... """O'-X-

s s 1 Sm s 
Slm 

+ 

o ->-'> {) 
+ ([Bs.cx,V)'~{)-x-l) 

1. sk 
(4. 33 ) 

-'> -'> 0 
Here O( [Bs . (X, V), OX ]) denotes the terms which con tain 

1. S k 
one or more pairs of bracke ts [',.]. The first term in 
(4.33) contains no these brackets. We can continue this 
process of selection and extract the first-order in the 
number of palrs of brackets terms, the second-order 
terms, etc. Thus, we arrive at the expansion into powers 

of commutator of the expressions (4. 31 ). 
In this paper we will consider explicitly the 

zeroth-order term of this commutator expansion. 

Neglecting all terms with brackets in (4.33), we write: 

Here the 

respect 

-'> -> -> -'> 0 0 
= BS1 (X, v) ... Bs (X, V)OX .. ·~o'-x-

m sl sm 
(4.33a) 

subscript zero indicates 

to the number of brackets. 

the zeroth order with 

We now substitute . -> -'> 0 m 
expresslons [Bs(X, V)ox 1 0 

-'> -'> 0 m ~ 
(4.33a) instead of expreSSlons [Bs(X,V)OX

s
1 (4.31) uto 

the series (4.30): 

(4.30a) 

The action of every summand (4. 33a) might be defined via 

the Fourier transform with respect to spatial variables. 

Denote as F the direct Fourier transform of a 
f t · -'>-'> unc lon ft(x, V): 

Fft(t "tr=;(k, "t)=fft(t "t)exPC-iksXs)dPx (4.34a) 

Here p lS the spatial dimension. Then the inverse 
Fourier transform is: 

-'>-> -lAl-> - pA l-'> p ~Cx, v)=F ft( ,V)=(2~) fg(, v)exp(ik X )d k s s (4. 34 b) 
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The action of the operator (4.33a) on a function g(;,;) 

is defined as: 

(4. 35) 

The account of (4.35) in the formula (4.30a) yields the 

following definition of the operator RO: 

ik x 1~ -) ~ -PI s S . ~ -+ - i' -) P 
RO!t(X, V)=(2'1l:) e (1-~kjBj(X, V)) g(K, v)d k (4.36) 

This 1S the Fourier integral operator 

kernel of this integral operator depends 

(note tha t 

on k and on 

the 
-> 
X). 

The commutator expansion introduced above is a verS10n 

of the parametrics expansion [25, 26], while expression 

(4. 36) is the leading term of this expansion. The kernel 

(l-ikjBj(;' t))-1 1S called the maln symbol of the 

parametrics. 

The account of (4.36) 1n the formula (4.26) yields 
-> ... 

the zeroth-order term of parametrics expansion ~o(X, V): 

-> -> -1 . -> -> -1 
~o(X, v)=F (1-~kjBj(X, V)) ~loc (4. 37) 

In detail notation: 

~o(;, ;)=(2'1l:)-PIIexp(iks (xs - Ys))X 

X(I-iks [-L ... (;)-(TI->(;)-l)r->l-l(TI->(t)-I)(Vs -Us (;)))-lx 
x x x x 

x [_ L ... (; ) - (TI-> (; ) -1 ) r ... ]-1 ( -D (V, ;) ) d Pyd P k 
Y Y Y 

We now will list the steps to 

function ~o(;, t) (4.38). 

step 1. Solve the linear integral equation 
-> TI -) -) -) -) -) 

[-L->(v)-( ... (V)-1 )r"']~lo (X, v)=-D(x, V) 
x x x c 

(4. 38) 

calculate the 

(4.39a) 



METHOD OF INY ARIANT MANIFOLDS 613 

. " - ~ ~ 

and obtain the function CPl·· (X, V). 

step 2. Calculate the Four~~r transform ~lOC (1 ~): 

~loc(l~)=fCPloc(Y' ~)exp(-iksVs)dPy (4.39b) 

step 3. solve the linear integral equation 
~ -}o -+ A ?-t-)o A-io-t-+ 

[-L .. (v)-(II .• (V)-l )(r->+iks(v s-u (X)) ]CPa(X, K, V)=-O(X, K, V); 
X X X S 

~->-t-> -> -> ~-t'" 
-O(X, K, V)=[-L ... (v)-(II ... (v)-l)r ... ]CPl (K, V) 

X X X oc 
(4.39c) 

and obtain the function ~a(~,1, ~). 
-> ... 

step 4. calculate the inverse Fourier transform CPo (X, V): 

(4. 3 9d ) 

Completing these four steps, we obtain an explicit 

expression for the zeroth-order term of parametrics 
. ... ... 

expanSlon CPa(X, V) (4.37). 

As we have already mentioned above, 

(4.39a) of step 1 has an unique solution in 

Equa tion (4. 3 9C) of step 3 has the same 

equation 
. -> 
lmL->(v). 

X 
property. 

-t ~"'-t ... Indeed, for every K, the RHS -O(X, K, V) is orthogonal to 

imII ... (~), and thus the existence and the uniqueness of 
X ~ -> -t ... 

formal solution CPa (x, K, V) follows agaln from the 

Fredholm alternative. 

Thus, in step 3, we obtain the unlque solution 

~o(~,l~). For every 1, this is a function which belongs 
• -7 • -)0 -7 -7 -7 -7 -»-7 

to lmL ... (v). Accountlng that falx, v)=fa(fl(x), U(X), T(X), V) 
X 

expose no explicit dependency 

inverse Fourier transform 
-7 -7. ..... 

CPo (x, V)ElmL ... (V). 
x 

Equations (4. 39a)-(4. 39d) 

scheme of constructing the 

-> 
on x, we see 

of step 

provide us 

zeroth-order 

that the 

4 gives 

with the 

term of 

parametrics expansion. Finishing this section, we will 

outline briefly the way to calculate the first-order 

term of this expansion. 
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consider a formal opera tor 

1S defined by a formal ser1es: 
00 

-1 
R= (I-AB) . Operator R 

R= Z (AB)m (4.40) 
m=o 

In every term of this series, we want to place operators 

A left to opera tors B. In order to do this, we have to 
commutate B with A from left to right. The commutation 

of every pair BA yields the elementary transform 
BA ~ AB - [A,B] 

where [A, B]=AB-BA. Extracting the terms with no 

commutators [A,B] and with a single commutator [A, B], we 

arrive at the following representation: 
R=Ro+R

1
+(terms with more than two brackets) (4.41a) 

Here 

R = 
1 

00 

- Z 
m Z iAm-i[A,B]Ai-lBi-l~-i 

m=2 i=2 

operator RO (4.41b) 1S the zeroth-order 
parametrics expansion derived above. operator 
first-order term of parametrics expansion) 

represented as follows: 
00 00 .. 00 

(4.41b) 

(4.41C) 

term of 

Rl (the 

can be 

R
1
=- Z mAm[A,B](.Z A1.B1.)~=_ Z mAmC~, C=[A,B]R

O 
(4.41d) 

m=1 1.=0 m=1 

This expression can be c.onsidered as an ansaiz for the 

formal series (4. 40), and it gives the most convenient 

way to calculate R
I

. Its structure is similar to that of 

Ro. continuing 1n this manner, we can derive the 
second-order term R

2
, etc. We will not discuss these 

questions in this paper. 

In the next section we will consider 1n a more 

detail the first-order term of parametrics expanS10n. 

4. 3 Finite-Dimensional 

Equations 

Approximations to Integral 



METHOD OF INVARIANT MANIFOLDS 615 

Deal~ng further only with the zeroth-order term of 
~- parainetrics expansion (4. 38), we have to solve two 

linear integral equations, (4_ 3 9a) and (4. 3 9c). These 

equations satisfy the Fredholm alternative, and thus 
they have unique solutions. The problem we face here is 

exactly of the same level of complexity as that of the 

chapman-Enskog method [1]. The usual approach 1S to 

replace integral operators with some appropriate 

finite-dimensional operators. 

First we will recall standard objectives of finite-

dimensional approxima tions, 

(4.39a). 
. ~ 

1mL-> (V). 
x 

~ -> 
Let Pi(X, V), where 

Every function 

represented in this basis as: 
00 

considering 
i= 1, 2, . _ ., be a 

-)- ~. --} 

CP(x, v)E1mL~(v) 
x 

--} --} -7 -7 -7 

equation 
basis 1n 

might be 

-7 -7 ~ 7 -7 -7 
CP(x, V)= u a .(x)p .(X, v); 

. ~ ~ 
~= 1 

aieX)=(cp(X, V), Pi(X, V))~ (4.42) 
x 

Equation (4.39a) 

linear algebraic 

is equivalent to an infinite set of 

equations with respect to unknowns 
-> 

ai(x): 

Here 

00 
'\1 --} -7 -7 
U mk .(x)a .(x)=dk(x), k=1, 2, ... 
. 1 ~ ~ 
~= 

7 -7 -7 --} ~ 

dk(X)=-(Pk(X, V),D(X, V»-> 
x 

(4. 43) 

(4. 44) 

For a finite-dimensional approximation of equation 
(4.43) we use a projection onto a finite number of basis 

-> ~ 

elements Pi(X, V), ~=~1"'" in' Then, instead of (4.42), 
we search for the function CPf' : 1n 

77 ~ -7 7-7 CPc (x, V)= u a. (x)p. ex, V) 
1n s=1 ~s ~s 

(4.45a) 

Infinite set of equations (4. 43) 1S replaced with a 
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finite set of linear algebraic equations with respect to 
~ 

a i (x), where s=l, ... ,n: 
s 

n ~ ~ ~ L m· . (x)a. (x)=d. (x), 
1 = 1 :L s:L 1 :L 1 :L s 

s= I, ... , n (4.45b) 

There are no a priori restrictions upon the choice 

of the basis, as well as upon the choice of its 

finite-dimensional approximations. In this paper we use 

the standard basis of unreducible Hermit tensors (see, 

for example, [2, 4 j). The simples t appropriate version of 

a finite-dimensional approximation occurs if the finite 

set of Hermit tensors is chosen as: 

i, j= 1, 2, 3; 

(4. 46) 

It 1S importan t to stress here that "good" 

properties of orthogonal i ty of Hermit tensors, as well 

as of other similar polynomial systems in BE theory, 
... 

have the local in x character, L e. when these functions 
... ~ ... 

are treated as polynomials 1n C(X,V) rather than 
-> ... ... 

polynomials 1n V. For example, functions Pk(X, v) and 
... ... 

Pi.;Cx, V) (4.46) are orthogonal 1n the sense of the 
scalar product (', .) : 

-> 

X 2"'''' 
... -> -> -> f -C (X V) ...... ->... 3 ... -> 

(Pk(X, V), Pi/x, V))x 0:: e ' Pk(X, V)Pij(X, v)d c(x, v)=o 

77 ...... ~ 

On contrary, functions Pk.cy,V) and p .. (x,v) are not 
:L.l 

orthogonal neither in the sense of the scalar product 

( " . ) ... ' nor in the sens e of the scal ar product (., . ) ... ' 
Y x 

if y7"x. This distinction 1S important for constructing 

the parame trics expansion. Further, we will omit the 

dependencies on x and t in the dimensionless velocity 
-> ... 

Ci(x, V) (4.46) if no misunderstanding might occur. 
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In this paper we will 

one-dimensional in ; equations. 

consider the case 
We assume that: 

of 

(4.47) 

We write x instead of Xl below. Finite-dimensional 
approximation (4.46) requires only two functions: 

... 2'" 12'" ...... 2'" 5 
P3(X, V)=c

1 
(x, V)-'3c (X, V), P

4
(X, V)=c

1 
(X, V)(C (X, V)-'2)' 

(4. 48) 

We now will make a step-by-step calculation of the 

zeroth-order term of parametrics expansion, In the 
one-dimensional case, for the finite-dimensional 

approxima tion (4. 48). 

step 1. Calculation of ~l (X,~) from equation oc ... 
We search for the function ~loc(X, v) 

approximation (4.48) as: 
... ? 1 2 2 5 

~loc(X, v)=a loc (X)(Ci-'3c )+b1oc (X)C 1 (C -'2) 

Finite-dimensional 
equa tion (4. 3 9a) in 

Notations used are: 

approximation (4.45b) of 

the basis (4.48) yields; 

A 11 Ou m33 (x)=n(x) 3(X)+9 OX; 

VT(X) [Olnn 11 OInT] 
m34 (x)=m43 (X) 3 OX + 2 Ox ; 

(4.39a). 
In the 

(4. 49) 

integral 

(4. 50) 

...... 3 ...... 
4 (X, v)d c(x, V»O 

(4. 51) 

Parameters A3 (X) and A
4

(X) are easily expressed via 
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Enskog integral brackets. and they are calculated in II] 

for a wide class of molecular models. 

solving equation (4.50). we obtain coefficients 

a l (x) and b l (X) in the expression (4.49): oc oc 
Aloc(X) . B1oc(X) 2 

a loc Z(x. 0) ; bloc Z(X,O); Z(x,0)=m33(x)m44(x)-m34(x); 

Aloc(X)=aloc(x)m44(x)-~loc(x)m34(x); 

Bloc(X)=~loc(x)m33(X)-aloc(x)m34(x); 

( A, .l.l au) (A, 27 au) v ~ (Olnn .l.l 
n 3+ 9 Ox n 4+ 4 Ox - 9 ox + 2 

2 

( A, .l.l au) (A, 27 au) v T (Olnn .l.l 
n 3+ 9 ox n 4+ 4 ox - 9 ox + 2 

These expressions complete step 1. 

OInT) 
ox 

OInT) 2 
ox 

OInT) 2 
ax 

(4.52) 

-> 
step 2. Calculation of Fourier transform of CjJloc(X, V) 

and its expression in the local basis. 

In this step we make two operations: 
-> 

i) The Fourier transformation of the function CjJloc(x. V): 
.A. ~ +00 -+ 
CjJloc (k, v)= f exp( -ikV)CjJloc (Y. v)dy 

_00 
(4.53) 

A -> 
m (k V) In the local basis '+'loc . ii) The representation of 

-> -> 
{PO (X, V), ... , P4(X, v)}: 

(4. 54) 

-> 2 -> 1 2 ->. -> -> 2 -> 5 
P3(X, V)=c 1 (X, V)-3C (x. V), P4 (X, V)=c

1 
(x, V)(C (x, V)-"2) 

operation (ii) lS necessary for completing step 3 

because there we deal with x-dependent operators. 
A -> 

Obviously, the function CjJloc(k.v) (4.53) lS a 
-> 

fini te-order polynomial In V. and thus the operation 

(ii) is exact. 
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We obtain in (ii): 

4 A ~ 
A -7'" -+ -+ \:'l ~ 
qJI (X, k, V),=qJl (X,k,C(X,V»= L.J hi(X,k)Pi(X,V) 

oc oc i=O 
(4. 55) 

Here 

(4. 56) 

Introduce notations: 

iJ=iJ(X, n=(T(X)/T(y)1!2, /=/(X, n (4. 571 

A 

coefficients h .(X, k) (4.56) have the following explicit 
~ 

form: 

A 

h .(X, k)= 
~ 

+00 -1 
f exp(-ikYlhi(x,y)dy; hi(x,y)=z (y,O)Ri(X"y) 
_00 

3 5 2 2 2 
Ro(X, n=Bloc(Yl(/ +2/CiJ -1) 1 + 3Aloc(y)/ ; 

Rl (X, n=Bloc(n (3iJ/
2
+tiJ (iJ

2
-1) 1 + ;AlocC.Y)'()/; 

5 ",,2 
R2(X,n=3BlocCYlu /; 

R3 (X,Yl=B loc (Y12iJ/ + Aloc Cy )iJ
2

; 

R4CX,Y)=BlocCYliJ3 C 4. 58) 

Here Z (Y, 0), Bloc (y) and A loc C n are functions defined 

in (4.52) 

step 3. calculation of the function from 
equation (4. 39C). 

Linear integral equation C 4. 3 9C) has character 

simil ar to that of equation (4. 3 9a). We search for the 

function ~o(X, k, 't) in the basis (4.48) as: 

(4. 59) 

Finite-dimensional approximation of the integral 

equation (4.39c) 1n the basis (4.48) yields the 
A A 

following equations for unknowns ao(x, k) and boCx, k) 
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Notations used here are: 

A A A A 

ao(x,k)=m33(x)h3(x,k)+m34(x)h4(x,k)+Sa(X' k); 

~0(X,k)=m43(x)h3(x,k)+m44(x)h4(X,k)+~~(X' k); 

+00 
~a, ~(X, k)= {oo eXP(-ik.Y)Sa, ~(X, .Y)dy; 

(4. 60) 

1 (Olnn ")OlnT) Z ou 
Sa(X'.Y)="3VT(X) OX +- Ox h 1(x'.Y)+"3 ox(ho(x,'y)+Zhz(x,'y)) 

5 (olnn oInT ) S~(X,·j')=4VT(X) ox hz(x,.Y)+ ox (3h z (x,y)+h o(x,y)) + 

z au 
+"3 OXhl(X,.Y) (4. 61 ) 

A 

solving equations (4.60), we 
A 

obtain functions ao(x, k) 

and bo (x, k) in (4. 59): 

A ..... 1 . 
ao(x,k)m44(x)-~0(x,k)(m34(x)+"3~kvT(X)) 

(4. 6 Z ) 

Here 

1 ·kv Z(X'"3.1 T(X)) = Z(X, 0) + 

(4. 63) 

step 4. calculation of the inverse Fourier transform of 
A ... 

the function Cj)o(x,k,v). 
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The inverse Fourier transform of the function 
A ... 

CflO(X, k, v) (4.59) yields: 

(4. 64) 

Here 

A 

exp(ikx)ao(x,k)dk, 

A 

exp(ikx)bo(x,k)dk (4. 65) 

Taking into account expressions (4.52), (4.61)-(4.63), 

and (4. 58), we obtain the explicit expression for the 

finite-dimensional approximation of the zeroth-order 

term of parametrics expansion (4. 64): 

1 +co +co -1 1 
a O(x)=2'11: f dyf dk exp(ik(x-y))Z (x, 3ikvT(X))X 

_00 -00 

x{Z(X, 0 )h3 (X,.y)+ [Sa(x' 'y)m44 (X)-S~(X, 'y)m34 (X) 1-

-tikVT(X)[m34(X)h3(x,y)+m44(X)h4(x,y)+s~(X,Y)I}; 
+00 +00 

b o (X)=2i f dyf dk exp(ik(x-y))Z-l(X, ;ikvT(x))X 
_00 -co 

x{Z(X, 0 )h 4 (X, y)+ [S~(X, .f)m33 (X)-Sa(X, .nm34 (X) 1-

-;ikvT(x) [m 34 (x)h 4 (X, 'y)+m33 (x)h 3 (x, 'y)+sa(X,.n I} (4. 66) 

4. 4 Hydrodynamic Equations 

Now 

obtained 

The 

we will discuss briefly the utility of results 

in section 4. 3 for hydrodynamics. ... 
correction to LM functions f 0 (n, U, T) (4. 1) 

obtained has the form: 

(4. 67) 

Here the function Cflo(n,~, T) is given explicitly with 

expressions (4.64)-(4.66). 
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The usual form of closed hydrodynamic equations for 
-> 

n, u, and T,where the traceless tension tensor (J ik and 

the heat flux vector qi are expressed via hydrodynamic 

variables, will be obtained if we substitute the 

function (4.67) into balance equations of the density, 

of the mom6ntum, and of the energy. For LM 

approximation, these balance equations result in Euler 

equation of the nonviscid liquid (i. e. (Jik(fo)=O, and 

q i(f 0 )=0). For the correction f 1 (4. 67), we obtain the· 

following expressions of (J=(Jxx(f
l

) and q=qx(f
l

) (all 

other components are equal to zero In the one­

dimensional situation under consideration): 

5 q=-nb 
4 0 

Here ao and b o are glven by expression (4.66). 

(4. 68) 

From the geometrical viewpoint of section 2, 

hydrodynamic equations with the tension tensor and the 

heat flux vector (4.68) have the following 

in terpretation: we take the corrected manifold 'llt
l 

which 

consists of functions f 1 (4. 67), and we project the BE 

vectors Ju(f
l

) onto tangent spaces T f uSlng the LM 
1 

projector P f (4. 6a). 
o 

Although a detailed investigation of these 

hydrodynamic equations lS a subject of a special study 

and it is not the goal of this paper, some points should 

be mentioned. 

Nonlocality. Expressions (4. 66) expose a nonlocal 

spa tial dependency, and, hence, the corresponding 

hydredynamic equations are nonlocal. This nonlocality 

appears through two contributions. The first of these 

contributions might be called a frequency-response 

contribution, and it comes through explicit non­

polynomial k-dependency of integrands in (4. 66). This 

latter dependency has the form: 
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.+00 

f 
_00 

A(X, y)+ikB(X, y) 
exp(ik(x-y) )dk (4. 69) 2 . 

C(X, n+ikD(X, n+k E(x,'y) 

Integration over k ln (4.69) can be completed Vla 

axillary functions. 

The second· nonlocal 

correlative, and it lS 

contribution might be called 

due to relationships via 

(U(X)-U(y)) (the difference of flow velocities in points 

x and y) and via T(x)/T(y) (the ratio of temperatures in 

pOints x and y). 

Acoustic spectra. The purely frequency-response 

contribution to hydrodynamic equations is relevant to 

small perturbations of equilibri~ The tension tensor a 
and the heat flux q (4.68) are: 

( aU' 2 a2T') 
0= -(2/3)noToR 28 ar - 38 of;2 ; 

( 
0' 0

2 
') q = -(5/4)T3

0
/ 2n oR 38 T -(8/5)82 ~ ar of; 2 

(4. 70) 

Here 

2 
R = (1 - (2/5)8 2 a zJ- 1 

of; 
(4. 71 ) 

In (4. 70), we have expressed parameters 11.3 and 11. 4 via 

the viscosity coefficient ~ of the chapman-Enskog method 

[lJ (it is easy to see from (4.51) that A.3=A.4<X ~-1 for 

spherically symmetric models of a collision), and we 

have used the following nota tions: TO and no are the 

equilibrium temperature and density, f;=('7T~/2)-lnox is 

th d . . 1 d . t ' -1/2" e lmenSlon ess coor lna e, '7=~(TO)/TO' u =TO uu, 
T'=aT/T o' n'=an/no' and au, aT, an are the deviations of 

the flux velocity, of the temperature and of the density 

from their equilibrium values u=o, T=TO and n=n
o

. We 

also use the system of units with k B=m=l. 

In the linear case, the parametrics expansion 

degenerates, and its zeroth-order term (4.39d) gives the 

solution of equation (4.24). 
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FIG. 1 

The dispersion reI a tionship for the approximation 

(4. 70) is: 

w3 +( 23k2 /6D)W 2 +{k2 +( 2k4 /D2) +(8k6 / 5D2) }W+( 5k
4

/2D)=0; 

D=1+(4/5)k
2 (4. 72) 

Here k is the wave vector. Acoustic dispersion curves 

W(k) for approximation (4.70) are depicted In FIG. 1 

(solid line). They are compared with the second (the 

Burnett) approximation of the chapman-Enskog expansion 
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[3] (dashed line) and with the regularization of the 

Burnett approximation Vla partial summing of the 

Chapman-Enskog expansion [5, 7] (punctuated dashed line). 

Arrows indicate an increase of k 2
. 

Acoustic spectra given by dispersion rela tionship 

(4. 72) contains no nonphysical short-wave instability 

characteristic to the Burnett approximation. The 

regularization of the Burnett approximation [5,7] has 

the same feature. Both of these approximations predict a 

limit of the decrement ReW for short waves. 

Nonlinearity.· Nonlinear dependency on g~, on O~~T, 
and on o~~n appears already in the local approximation 

<Ploc (4. 52). In order to outline some peculiarities of 

this nonlinearity, we represent the zeroth-order term of 

the expansion of a loc olnn 
( 5 . t f OInT and 4. 2) ln 0 powers 0 Ox 

Ox : 
. . 1 
_1. OU(n' +l1. ou)- + O(OlnT Olnn) 

a loc= 3 Ox ~3 9 Ox Bx' Bx (4.73a) 

This expression describes the asymptotic of the "purely 

nonlinear" contribution to the tension tensor a (4. 68) 

for a strong divergency of a flow. The account of 

nonlocality yields instead of (4. 70a): 

+00 +00 1 
1 J J . 2 au (' 11 Ou)-

8 0 (X)=-27C _oodY_oodk exppk(x-Y))3" oy n'''3+9 oy x 

2 2 

[ ( A 11 au) (A 27 au) k v T] -1 [( A 1 IOU) (A 27 
x n 3+9 Ox n 4+4 Ox + 9 n 3+9 Ox n 4+4 BU] - + Ox 

+ o(OInT 
Ox ' 

Blnn) 
Ox (4. 74b) 

Both expressions, (4.74a) and (4. 74b) become singular 

when 
* 9nA3 au au (4. 75) ---> --oy oy - 1 1 

Hence, the tension tensor (4. 69) becomes infinite 'f Bu 1 -
By 
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• Bu - ln any By 
infinitel~ 
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value 11 
a transfer 
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viscid 

In other 
Bu 

when By 
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words, the flow 

approaches the 

This infinite viscosity threshold 

of the flow into nonphysical region 
• 

f t . . . t . f Bu AU onega lve V1SCOSl y 1 oy > By because of the infini-

* AU 
at By' This peculiarity was tely strong dumping 

detected in [6,7] as a result of partial summing of the 

chapman-Enskog expansion. In 
for the simplest nonlinear 

particular, partial summing 
situation [6] yields the 

following expression for the tension tensor v: 

4[ 520
2 )-1[ Bu' 20

26') 6' , , v=v lR+0IIR; V IR=-"3 1- "3E -2 Ear +E -2; =T +n ; 
o£ o£ 

28 [ 7 ou') -la2u' 
V IIR=9 l+"3Ear a£2 (4.76) 

Notations here follow (4.70) and (4.71). Expression 

(4. 76) might be considered as a "rough draft" of the 

"full" tension tensor defined by aD (4. 66). Ii accounts 
both the frequency-response and the nonlinear 

contributions (0 IR and 0 IIR, respectively) in a simple 
form of a sum. However, the superposition of these 

contributions in (4. 66) is more complicated. Moreover, 

the explicit correlative nonlocality of expresslon 
(4.66) was never detected neither ln [6]. nor ln 
numerous examples of partial summing [7]. 

Nevertheless, approximation (4.76) contains the 

peculiarity of viscosity similar to that in (4.73a) and 
(4. 73 b). In dimension 1 ess variabl es and E= 1, expression 
(4.76) predicts the infinite threshold at velocity 

divergency equal to -(3/7), rather than -(9/11) ln 

(4.73a) and (4. 73b). viscosity tends to zero as the 

divergency tends to positive infinity in both approxima­
tions. physical in terpre ta tion of these phenomena was 

given in [6]: large positive values of g~ means that the 
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--- -9/tl -3/{ 3/7 au' 

" \ ~ 
\ 

\ \ 
\ 

FIG. 2 

gas diverges rapidly, and the flow becomes nonviscid 

because the particles retard to exchange their momentum. 

On contrary, its ne!?ative values (such as -(3/7) for 

(4.76) and -(9/11) for (4.73a) and (4.73b)) describe a 

strong compression of the flow. strong deceleration 

results ln "solid fluid" limit with an infinite 

viscosity. 

FIG. 2 compares the 

dimensionless viscosities 

qualitative 

where 

character 

DNS is 

of 

the 
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Navier-stokes 

(solid line), 

dashed line), 

(dashed line). 
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viscosity, for approximation (4.73a) 

for partial summlng (4.76) (punctuated 

and for the Burnett approximation [6] 

The latter changes the sign at a regular 

point and, hence, nothing prevents the flow to transfer 

into the nonphy~ical region. 

Thus, hydrodynamic equations for approximation 

(4. 67) are both nonlinear and nonlocal. This resul t is 

not surprlslng, accounting the integro-differential 

character of equation (4.24). 

It is important that no small parameters were used 

neither when we were deriving equation (4. 24) nor when 

we were obtaining the correction (4.67). 

We stress once again that the problem of reduced 

description (such as derivation of hydrodynamics) can be 

posed and investigated without using small parameters. 

This question was already discussed in section 2. 5. Here 

we will make some additional clarifications. 

It seems 'natural' to introduce the usual parameter 

E- 1, where E is Knudsen number, ln front of the 

collision integral in equation (4.20), and to develop a 

Taylor-type perturbation technique for this equation. 

Representing ~ in (4.20) as a formal serles 
00 

Cj)= 1:: Em+ 1 ~ ( m) (4. 7 7 ) 
10=0 

one can easily obtain a set of linear integral equations 

with respect to unknown functions ~(m): 

D(m) -> =-K -> (~(m-l)), 
fo(n,U,T) fo(n,U,T) 

m?n (4.78) 

Func tion D -> and opera tor K -> ar~ defined 
fo(n, u,T) fo(n, U,T) 

in (4. 21 ). 
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The system (4.78 )is recurrently solvable. In 

particular, the correction cp( 0) coincides with the first 

correction of the Chapman~Enskog method [1]. The higher 

order terms in expansion (4.78) also have the form simi­

lar to that ·of the Chapman-Enskog method, i. e. they have ... 
polynomial dependency on spatial derivatives of n, u, 

and T. However, it is preferable to avoid this approach 

because of at least two reasons: 

i) A truncation of the formal series (~. 77) at any 

m~1 is not reliable. Even though the corrections cp(m) do 

not completely coincide with the corresponding terms of 

the chapman-Enskog expansion, the experience of dealing 

with the Burnett and the super-Burnett approximations 

shows that they are "bad" when used directly. In parti­

cular, the Burnett and the super-Burnett corrections 

result in a short-wave instability of equilibria [3] and 

ln "negative viscosity" regimes under high gradients. 

ii) Examples given above show a certain similarity 

between results obtained via Newton-type method of sol­

ving the invariance equation and parametrics expansion, 

and those obtained via partial summing of Taylor-type 

expansions (i. e. a method which treats the series (4.77) 

as a whole), especially in the highly nonequilibrium 

reg~ons. This similarity of a properly chosen method of 

partial summing to the method of invariant manifold is 

not random (see, 

theory). However, 

for instance, 

it is rather 

[18] in the case of KAM­

difficult to define the 

notion "the proper choice", and thus "successful methods 

of partial summing" are always of an ad hoc character. 

5. CONCLUSIONS 

We have considered the two main problems of reduced 

description for dissipative systems: the problem of 

thermodynamicity (problem 1 of section 2. 1) and the 
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problem· ·of dynamic invariance (Problem 2 of section 

2. 1). Main results 1n this direction are: 
i) problem 1 1S solved completely in section 2.2. 

There is no other universal way (i. e. independent of the 
particular choice of collision integral) to construct 

thermodynamic parameterization for an arbitrary 

manifold. 
ii) Iterative Newton-type methods to correct the 

dynamic noninvariance are developed 1n section 2. 3 1n 

order to solve Problem 2. 
These two resul ts are combined into the method of 

invariant manifold. The method developed requ1res no 

special choice of initial approximation, as well as 

small parameters. Thus, it provides a common approach to 

such different problems as the obtaining of hydro­
dynamics, shock waves, initial layers, etc. specificity 
of each problem is to be accounted via a relevant choice 
of initial manifold, while the procedure of thermo­

dynamic parameterization and of obtaining corrections is 
uniform in its essence. 

As applied to the problem of derivation of hydro­
dynamics from the Boltzmann equation (section 4), the 

method of invariant manifold, together with the para­

metrics expanS1on, eliminates the necessity of using 
Knudsen number expansions. New nonlocal and nonlinear 
hydrodynamic equa tions de rived in Sec tions 4. 3 and 4. 4 

contain no short-wave instability and negative viscosity 
characteristic to the chapman-Enskog method. 

The question about the convergency of successive 
approxima tions is not difficul t for finite-dimensional 

dissipative systems. For the Boltzmann equation this 
question rema1ns open. The complexity of this problem is 

stressed by the fact that the global existence and 
uniqueness of the solution is a particular case of this 
problem. 
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