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ABSTRACT

A new approach to the problem of reduced description for
Boltzmann-type systems 1s developed. It involves a
direct solution of two main problems: thermodynamicity
and dynamic invariance of reduced description. A
universal construction is introduced, which gives a
thermodynamic parameterization of an almost arbitrary

approximation. Newton-type procedures of successive
approximations are developed which correct dynamic
noninvariance. The method is applied to obtain

corrections to the 1local Maxwell manifold |using
parametrics expansions instead of Taylor series 1into
powers of Knudsen number. In particular, the high
frequency acoustic spectra is obtained.

1. INTRODUCTION

In this paper we 1introduce a new method of
successive approximations for solving the problem of
reduced description for  Boltzmann-type kinetic
equations. The method is concordant with the #&-theorem
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at each iteration. It is based on rapidly converging
procedures of the Newton type. The method is freé of any
essential restrictions upon the choice of the initial
approximation. In its basis 1t does not require any
small parameters.

The method to be developed will be applicable to
any dissipative system with a global convex Lyapunov
function (e.g. the Boltzmann equation provided with
suitable boundary conditions, chemical kinetic equations
for closed systems, the Fokker-Planck egquation, etc).

In this section we give a short survey of some
difficulties of classical methods of +the Boltzmann
equation theory.

The main difficulty of the Chapman-Enskog method
11] are "nonphysical" properties of high-order
approximations. This was stated by a number of authors
and was discussed in detail in [2]. In particular, as it
was noted in [3], the Burnett approximation results in a
short-wave instability of the acoustic spectra. This
fact contradicts the #-theorem (cf. in [3]). |

The Hilbert expansion contains secular terms {2].
The latter contradicts the #-theorem. However, we are
not sure this question was discussed in detail.

The other difficulties of both of these methods
are: the restriction wupon +the <choice of initial
approximation (the local equilibrium approximation), the
demand for a small parameter, and the usage of slowly
converging Taylor expansions. These difficulties never
allow a direct transfer of these methods on essentially
nonequilibrium situations.

The main difficulty of the Grad method [4] is the
uncontrollability of the chosen approximation. An
extension of the list of moments can result in a certain
success, but it can also give nothing. Difficulties of
moment expansions 1n the problems of shock waves and
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-sound prOpagatlon can be seen im {2].

Many attempts were made to make these methods more -
perfect Fo the Chapman- Enskeg and Hllbert. methods
these attempts are based 1n general on some “goed"
rearrangement of expansions (e. g. neglecting high-order
derivatives [2]; reexpanding [2], Pade approximations
and partial summing [5-7], etc. ). This type of work with
formal series is wide spread in physics. Sometimes the
results are surprisingly good - from the renormalization
theory in quantum fields to the Percus-Yevick equation
and the ring-operator in statistical mechanics. However,
one should realize that a success 1is not at all
guaranteed. Moreover, rearrangements never remove the
restriction upon the choice of the initial local
equilibrium approximation.

Attempts to improve the Grad method are based on
gquasi-equilibrium approximations [8,9]. It was found 1in
[10] that Grad distributions are linearized versions of
appropriate quasi-equilibrium approximations. A method
which treats fluxes (e.g. moments with respect to
collision integrals) as independent wvariables 1in a
quasi-equilibrium description was introduced in
[7, 11, 12].

An 1important feature of quasi-equilibrium approxi-
mations is that they are always thermodynamic, 1.e. they
are concordant with the H-theorem due +to their
construction. This question was discussed in detail 1in
[13, 14]. However, quasi-equilibrium approximations do
not remove the uncontrollability of the Grad method.

Quasi-equilibrium approximations were criticized in

'[15]. This criticism holds also for the Grad method.

Finishing this short survey of classical methods,
we pay attention to the fact that there exist some
approximations which are assumed ad hoc, and which are
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not inserted into any successive procedure. The mnmost
famous of these approximations 1is the Tamm-Mott-Smith
approximation in the shock wave problem [2].

It is convenient to formulate the problem of
reduced description in a uniform way (a more precise
formulation will be given in Section 2.1). Let an
approximated reduced description is chosen. This means
that a manifold (a r"surface") is fixed in the space of
distributions. Here we arrive at two general problens:

1. Thermodynamicity. We must define macroscopic dyramics
on the manifold. In order to do this, we must project
the Boltzmann equation onto some macroscopic parameters.
The first problem is: how and onto which macroscopic

parameters should one perform this projection? Wwhich

projector would make physical sense and will preserve
the thermodynamicity (the concordance with the
H-theorem) at the chosen macroscopic level?

2. Dvynamic invariance. Wwe understand that the chosen

manifold is not a dynamic invariant manifold of the
Boltzmann equation. The notion "dynmamic invariant
manifold" appears in most of dynamic theories: a
manifold is called dynamic invariant if the vector field
of the dynamic system is tangent to this manifold in
every point. Hence, we are willing to improve the chosen
manifold 1in order to make it r"more invariant". The
second problem is: how to obtain these corrections in a
general case (e. g. when there are no small parameters or
other simplifications)? Wwe hope that the solution of the
second problem would be a method of successive
approximations which would not require a +too strong
restriction upon the choice of the initial manifold.

The general problem of classical methods is that
none of them gives a successive removal of dynamic
noninvariance of reduced description with preservation
of 1its thermodynamicity. The Grad method and its
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géneralizations7"‘give thermodynamic 5appr0iimations.‘
‘HQWever, if one takes the‘”Gfﬁd distribution as an
initial comdition for the'Bolfzmann equation at the time -
t;o, then for {>0 the trajectorymof the kinetic equation
"takes off" from the initial manifold. One can neither
obtain the corfections caused by this ~take off", nor
even evaluate them. On the other hand, the
Chapman-Enskog and the Hilbert methods do not guarantee
thermodynamicity. The question about the correction of
noninvariance is also unclear for themn.

In classical mechanics the problem of invariant
manifolds was developed essentially by the famous
Kolmogorov-Arnold-Moser theory (KAM) [16-18]. Two points
of KAM methods are of prime importance: 1) to comstruct
directly an invariant manifold rather than a solution,
and, 1i) to use rapidly converging Newton method instead
" of Taylor expansions for this constructing.

we understand the problem of reduction for the
Boltzmann equation as a problem of constructing a
dynamic invariant manifold from a given initial
manifold.

However, a direct application of the KAM methods
faces many problems. The most essential of these
problems is that at every iteration we should obtain
approximations which are concordant with the H-theorem
(the problem of thermodynamicity). If not, then the
practical sense of these approximations is unclear.

In this paper we show how to solve this and some
other problems and how to reduce the problem of
reduction to solving linear problems. These linear
problems are of one type in their essence.

In Section 2 we introduce a general method for
constructing dynamic invariant manifolds for dissipative
systems with a global convex Lyapunov function. In
Section 3 we develop this method for +the Boltzmann
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equation. Section 3 serves for an intermediate between
the general theory of Section 2 and Section 4 where we
apply it to the problem of derivation of hydrodynamics
from the Boltzmann equation. In Section 4 we apply the
technique of pseudodifferential and Fourier integral
operators to solve the equation of the first Newton-type
iteration. In particular. we consider a simple
application of the method to the problem of acoustic
spectra. As it was mentioned above, the short-wave
instability 1is a typical problem of the Chapman-Enskog
expansion. Usual methods of removing this phenomenon
always require some ad hoc assumptions on the character
of the improvement. All these methods are of a recipe
character. A more general basis is required for making
the regularization free of arbitrary assumptions. The
method of invariant manifolds yields the improvement
without any a priori assumption. Results are compared
with the Burnett approximation and with a method of

partial summing [5-7].

2. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS
FOR DISSIPATIVE SYSTEMS

In this section we introduce a formal general
scheme for constructing dynamic invariant manifolds for
an abstract dissipative system. Basic notions we use are
not rigorous in mathematical sense but they are
sufficiently clear to understand the procedure, and to

deal with its particular and more rigorous realizations.
2.1 Dynamic Invariance and Thermodynamicity

We denote as F a convex domain in a linear space £,

and consider an equation in F:

df /dt=T(f) (2. 1)
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. Here feF, t is the time, and J(f) is the vector field (a
. smooth mapping f;+E: fF+J(fjjf'Furthen e @all F the
phase space bf'Systémr(z.l).'Wé-assume that the domain F
is positively invariant with fespect to equatiom (2.1):
if £, is a solption of eq. (2.1) and fy<F, then f,<F for
all ¢20.

Equation (2. 1) will be <called the dissipative
system, if a strictly convex functional F(f) is defined
in £, for which the following inequality is valid:

d#(f)/dE=s fo[(f)-f(f) <0 (2.2)

Here DfH(f) is the linear functional (the differential
of the functional H(f) in the point f).

Denote as A a domain in a linear space B, and
consider a smooth immersion A—F:. a+>f(a), where a<4,
and f(a)sF. The set of points f(a), where a runs the
domain 4, will be called the manmifold with intermal
coordinates a2 (or the manifold for short). The manifold
will be denoted as {f(a)} if we want to stress the
coordinate dependence, or as M if we are not interested
in this dependence. The elements of the manifold will be
denoted either as f(a) or as f .

Thus, we can say that the immersion a+»*f(a) equips
the manifold M with the coordinate systen. The
coordinates a identify the points on the manifold.

For a given manifold M, we denote as Tfm the linear

tangent space to M at the point f M Wwe always can
identify T with some linear subspace of the space E.
m

Further, we will make no distinction between these two
objects. The tangent space Tf(a) is constiructively
defined as the image of the linear operator Daf(a), the
latter is the differential of the immersion 4—F at
the point f(a). For the finite-dimensional case (1.e.
when A is the domain in the finite-dimensional space B),
the tangent space Tf(a) is defined as the linear
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envelope of partial differentials Da_f(al,...,a ), where

1

n
i=1,...,n and p=dims.

Let the manifold M is given. The problem which
always arises in applications is: how to determine the
dynamics induced with the vector field Js(f) om the
manifold M? In the Boltzmann equation (BE) theory, this
problem appears when one deals with a wmanifold of
distributions, and which approximates a solution of BE.

For example, 'the Tamm~Mott-Smith (TMS)
approximation gives us the manifold {f(a_,a+)} which

consists of distributions
f(a_,a+) = a f + a+f+ (2.3)

Here a and a, (the coordinates on the manifold

mTMS

position vector x, and f_ and f_ are fixed Maxwellians.

The problem of induced dynamics for mTMS is as follows:

considering a_ and a  as values of the functions a_(},t)

={f(a_,3+)}) are non-negative real functions of the

and a+(},t), to obtain dynamic equations for these
functions induced with BE.

Next example is the manifold {f(m 2, 7)} which
consists of local Maxwellians (LM):

R 2MK Ty ~3 /2 m(v-1)°
f(n u, TY)=n " exp{~ —EE—?_‘M} (2. 4)
B

X > .
The coordinates n, uw, and 7 are functions of ¥. The

probleh of induced dynamibs for the LM manifold oy is

the same as for M considering m, 3, and 7 as the

values of the funé??ins ﬂ(},t), 3(},t), and T(},t), to
obtain dynamic equations for these functions from BE.
Remark. Wwhen speaking about manifolds for BE, we
usual ly deal with distributions which are labeled with a
finite number of parameters for every spatial position
vector X. Distributions (2.3) and (2.4) illustrate this

situation. Further, when speaking about such
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locally finite-dimensional manifolds, we will omit the
term “local"EISee remark'(i)ﬁin Section 3).
The problem of induced dymamics is to construct

vectors in tht tangent spacés Ty induced with vectors
: ™

J(fm) for every fmem. More precisely, for every fmem, we

have to introduce a projector P, : E—T which projects
I I

the vector J(fm) into the tangent space Tp
m

Pp (J(f.)) €T ' (2. 5)
fTIl " f’m

The result of these projections for all £ M will give
us a vector field of induced dynamics, and thus it will
define the time evolution induced inside the manifold

we may expect that the projectors Pp might be different
m

for different points £, ™. Because of the immersion
A—F, we can identify the induced vector field in the
tangent spaces with a certain vector field in the space
B, and thus we can obtain the equation for the
coordinates a.

1t should be stressed that the problem of induced
dynamics itself is not a mathematical problem: one can
choose any projector (2.5). Even monsters, such as
me(l(fm))=0 for all fmem, do not <contradict the

mathematical viewpoint while they are absolutely
senseless for solving a physical problem. On the other

hand, the ambiguousness of the choice of Py makes us to
m

search for additional reguirements upon +the induced
dynamics.

The only case, when no problems arise with the
induced dynamics,occurs when the vectors J(£y,) belong to

the tangent spaces T ¢ for all £ <R The manifold M with
m

this property will be called the dymamic invariant

mapnifold of equation (2. 1):

J(fm)erf for all fmem (2. 6)
m
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However, in the majority of cases, one deals with
manifolds which lack the property of dynamic invariance
(2.6). In applications, one usually solves the problem

of induced dynamics by introducing the projectors P
m

based on a tradition and (or) physical motivation. For
example, in the case of LM manifold, one usually defines

the projector P N as:
f(n u T)
> 1 .
P . (J):f(n,u,T){ 77 KO(J)+
f(n u, T) n -
m i N 1 m(v-0)° 3N
+ (V —u N (T)+ [ ——] (J)};
(2anT)1’21=1 1 171 nt’? 2k T 2} 4
Ny (Fymr 1 7d3y A G :
(J)= 1+Jd v; (J)= (v ~u.)yJdv, 1=1,2,3
0 ﬂ1/2 AN (sznT)lfz 1 1
1 m(v-u)?
A ()= I[ - i}Jd3v (2. 7)
4 2172 2k T 2

For the TMS manifold, different types of projectors

Pf(a a) were considered in (2,19, 20], and the choice
_? +

of projector is the subject of an old discussion [2].
The example of LM manifold is remarkable: one can
interpret the <coordinates as the wvalues of linear

operators

. 3 1p. 43 > > 2 .3
Mo (D)=F17d%v; M (F)=7]v Jd v M4(f)=3kznf(v—u) Jd v,

I

The latter are definmed in a mneighborhood of_ﬂ&M, and

projector P S is generated with the differentials
f(nu T) '
of these operators. The wvalues of operators Mk(f),

k=0,...,4, are mnaturally interpreted as macroscopic
parameters (1i.e. the density, the flow wvelocity, and
the temperature). This example brings us to a general

way of constructing the projector Pe .
m
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For a.given manifold % we define the projector Pp o
R - mo

in two steps. | o

" step 1. We introduce a parameterization with

macroscopic'parameters # for the manifold M Denote as

v, a neighborhood of the manifold # in £ W <F. Let

¥(*) be a smooth mapping M:Umf+ﬂ, where # is a linear
space. We assume that M(*) has two properties:

(1) H(Uy)=H () (2. 8a)

i. e. the image of the neighborhood U coincides with the
image of the manifold M, and
(ii) The restriction of M(:) to % W e has a smooth

reverse mapping #(M)—M which maps #(f) into F(¥)em
M= (M= (2. 8b)

The mapping M(*) with +these two properties will be
called the macroscopic mapping.

In order to stress the parameterization of the
manifold M with macroscopic parameters #, we write it as
{f(¥)}. Note that, due to the properties (i) and (ii),
the mapping M(°) gives a (nonlinear) projection of the
neighborhood & into M according to the rule:

U, MR — M
| (2. 9)
frF> M(FYy V> ()
Step 2. Given a manifold {f(#)}, we define the

projector P as

(M)

P (J)=D,f(M)°D M(f)‘ J (2. 10)
£ M f Ff (M)

Here DMf(M) is the differential of the immersion M(M)—F

in the point f(#), and DfM(f)’ is the differential
| =1 (M)

of the mapping #(f) in the point F£f(#). Obviously,

P?(y)(I)=Pf(M)(J) because [(M(FY)=f if Ff=m
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Projector (2.10) gives us the wvector field of
induced dynamics:
Pf(M)(I(f(M)) ' (2.11)

Operator Bf(M) projects -the vector J7(f(#)) 1into the
tangent space Tf(M)’ the latter being the image of the
operator th(M). Definition (2.11) yields the equation
of induced dynamics in terms of macroscopic parameters #

%% =<DfM(f) T (L(M)) (2.12)

F=F(#)

~ If we have fixed a manifold ({f(a)} using some
immersion A4—F, then the introduction of parameteriza-
tion with macroscopic parameters # assumes the smooth
isomorphism M({f(a)}+«—A established with the relation
a->M(f(ay)=Mca). In this case we say that #(f) equips
the manifold {f(a)} with a new coordinate system M(a),
and we write it as {f(M(a))}. Then formula (2.12) 1S

rewritten as follows:

ggﬁél = DAM(T) T(F(H(a))) (2. 12a)
f=r(Mcay)

The latter equation can be considered as the induced

equation for the coordinates a2 on the manifold {f(a)},

created with macroscopic mapping #(f). Due to the smooth

isomorphism a-»M(a) assumed, we can rewrite it as:

M(a)
[DDaa ]C’g? = DM (L) | T(F(M(a))) (2. 12b)
r=f(M(a)y)

Here [Dgégg] is the derivative of the isomorphism

a->M(aj).

The notion ~"macroscopic parameters® used reflects
the situation with BE: the values of operator #(f) can
be interpreted as observable physical quantities. It 1is
necessary to distinguish the parameterization of M with

macraoscopic parameters from that with the coordinates a.
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In the latter case we do not undertake a consideration
of the neighborhood ¢, . For example, natural coordinates
of the LM manifold are macroscopic parameters, while the
coordinates & and a, of the TMS manifold are not (1. e.
they are not defined as the values of some macroscopilc
mapping with properties (2. 8a) and (2. 8b)).

Further we consider only the approach to obtain the
induced dynamics via macroscopic parameterization. It
should be stressed here that this approach does not yet
solves the problem of ambiguousness in the choice of

projector Pp we  have only reformulated . this
m
ambiguousness by replacing it into the choice of the

macroscopic mapping M{f). Hence, we have to search for
additional restrictions upon the choice of #(f) for a
given manifold M

Up to now, all considerations were appropriate to
any equation (2.1), regardless of whether it is the
dissipative system or not. The main feature of
dissipative systems is the inequality (2.2) (this 1is the
H-theorem for BE).

Hence, 1t is natural to introduce the principle of
conservation of the {fype of dynamics in the induced
dynamics. For dissipative systems, this principle states
that the vector field of induced dynamics should
preserve the i1nequality (2. 2).

For a given manifold M and for 1its macroscopic
parameterization {f(#)}, we denote as H(M) the function
H(f(#)), and we assume that #&(#) is smooth for all
M<M(M). Parameterization {f(#)} of the manifold M will
be called thermodynamic (for short, manifold {f(#)} will
be called thermodynamic as well), 1if the following

inequality is valid for all MsM(M):

dgt(Ml__DMH(M)ODfM(f) r CJ(F(M)H)HKD (2. 13)
= (#)
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Here DMH(M) is the differential of the functional #(#).

- In ‘ether words, ‘the principle of conservation of
the type of dynamics for dissipative systems is
expfessed‘with inequality (2. 13) as a request upon the
choice of macroscopic mapping #(f) in the neighborhood
of the given manifold M we stress here that the request
on thermodynamicity is directed to the mapping M(')
(i.e. to the choice of induced dynamics) rather than to
the manifold M itself. of coufse, not any manifold M is
suitable for creating the thermodynamic parameteriza-
tion, but the restriction upon the choice of suitable M
is incomparably weaker than that of the thermodynamic
parameterization (see mnext section). Obviously, not
every choice of M(f) for given M satisfies inequality
(2.13), and thus the request on thermodynamicity of
parameterization is not +trivial. Thermodynamicity of
parameterization will be stressed with the asterisks )
{f*(M)} for the manifold, and M*(°) for macroscopic
mapping. Dynamic invariant manifold of dissipative
system is obviously thermodynamic for any choice of M(f)
in its neighborhood.

The request on conservation of the type of dynamics
is very important. For example, if we consider
Hamiltonian systems instead of dissipative ones, then
this request means that the induced vector field should
have the Hamiltonian structure.

we consider the reqﬁest on thermodynamicity as the

prime restriction upon the choice of projectors Pf .
"

Other (additional) restrictions depend on the particular
type of the dissipative system under consideration. For
BE, these additional restrictions may respond, for
example, to usual conservation laws (1. e. to
conservation of the number of particles, of momentum,

and of energy).
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. ~A specific family of approximations for dissipative
systems consists of quasi-equilibrium manifolds. Let U
be an bpen convex domain in F. Consider a smooth mapﬁing
M(*): U;+}, where # is a linear space. We assume thaf
1) For every M<M(U), there exists an unique solution

f*(M)EU of the variational problem:

H(f)Yy— min for M(FH)=M (2. 14)

2) There exists a smooth reverse mapping #Mrf (#) for

every M<M(U), and this is a smooth immersion #(U)—F.
The manifold {f*(M)}, which consists of solutions of the
variational problem (2. 14), is called the Gquasi-
equilibrium manifold. It is easy to see that the mapping
M('), for which assumptions 1) and 2) are valid, holds
at a time the properties (2.8a) and (2. 8b). Vector field
of induced dynamics for quasi-equilibrium manifold

{f*(M)} is determined with projector ~P (2. 10).
- r (#)
Quasi-equilibrium manifolds are thermodynamic due to
their construction (see elsewhere, for example
{8, 9, 13, 14]). However, usually in applications,

quasi-equilibrium manifolds are not dynamic invariant.
The general problem 1s to construct a dynamic
invariant manifold, starting with a given initial
dynamic noninvariant manifold. For dissipative systems
this problem consists of two main parts:
Problem 1. For a given manifold M, one has to determine
the thermodynamic parameterization {f*(M)}.
Problem 2. For a given manifold {f*(M)}, one has to
obtain a correction which decreases its deviation from a
dynamic invariant manifold (i.e. to make the initial
manifold "more imnvariant").
These two problems are interconnected. On the one
hand, the search for thermodynamic parameterization

gives us the projector P , and thus defines the
£ (M)
defect caused with noninvariance. On the other hand, a
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correction of  dynamic noninvariance gives Us a new
manifold, and we have to determine the induced dynamics
for this new manifold.

Tt is convenient to rewrite the condition (2. 6) 1in

other form, utilizing the projector Pf(M):
Acfmy) = Pf(M)(J(f(M))—J(f(M))=O (2. 15a)
or, in detail notation:

ACF(HY) = Dyl (M) DM (L) s T (F(M))=-T(F(HM))=0 (2. 15b)
=1 (H)

According to Problem 2, we consider expression (2. 15a)
as the nonlinear equation (the imvariance equation)
which we have to solve starting with a given initial
manifold mo. Thus, we have to develop a method of
successive approximations to solve equation (2. 15a).
According to Problem 1, we have to create thermodynamic
parameterization for each of these approximations,
including the initial approximation mo.

Thus, the problem of reduced description for
dissipative systems consists of Problems 1 and 2.

Ih next section we solve Problem 1 (the problem of
thermodynamic parameterization) for an almost arbitrary
manifold M, for dissipative systems of the general type.
In section 2.3 we develop Newton-type methods to solve
equation (2. 15a), and this methods will be combined with
the method of thermodynémic parameterization.

2. 2 Thermodynamic Parameterization

In this section we introduce a universal
construction which gives the thermodynamic parameteriza-
tion {f*(M)} for the manifold M This construction is
based on a specific choice of the thermodynamic

macroscopic mapping M*(f) in the neighborhood U CF. The
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~mostly important features of our construction are:

1) This construction depends only on A(f) but nbt on
J(f) (i.e. it is wmiversal for all dissipatiée.systems
(2. 1) with given #(f)), " |

2) This comnstruction is {he only universal one (1. e.
this 1is the uniqhe construction with property 1).

In order to fulfill +this program, we firstly
introduce a method of constructing the macroscopic
mapping M(f) with the properties (2.8a) and (2. 8b).
Macroscopic mapping #M(f) will be constructed 1in two
steps:

Step 1. For every fEUm, using linear in f equations, we
search for the point meﬂ which satisfies the condition

M(EY=H(f)

Step 2. For every fﬁ;m, we define parameters M(fm) SO

that smooth reverse mapping #(#)—® should exist, and 1t

should be a smooth immersion M(M)—F.

In other words, in Step 1, we define a projection
of the neighborhood Uy onto the manifold M (see also
(2.9)). In Step 2 we create a coordinate system on the
manifold M and, in accordance with Step 1, this will be
the parameterization with macroscopic parameters.

In Step 1, for every £ sk, we define linear
transforms Mfm(f) which depend smoothly on fm, and we

take:
M(Fy=#(f ), if Me (F=F,)=0 (2.16)
m

T
Here féyﬁ. In other words, we give the value M(fm) to
feu, if f—fm belongs to the kermel of Mfm(f):

M(f)zM(fm){ if f—fﬁ;keer (2. 16a)

m
The sufficient condition for the univalent
solvability of linear equations Mf (f—fﬁ):O in U, (we
m .

can choose a sufficiently small Uy) is the



576 GORBAN AND KARLIN

-~ transversality conditiom:
‘kerM. + T, = E, keryM, OT = {0}
fm fm fm fm
The essence of the method proposed for constructing

macroscopic mapping #(f) is a description of keer in
’ m

(2.16). Step 1 has the principal meaning because for a
given M one can introduce many different transforms

Mf (). Step 2 1s usually straightforward after H ()
™ m

was chosen. Usually in applications, in Step 2, we are
~able to identify Mf (fy with M(fy (i.e. we can create
m

the coordinate system on M using the values M (£ ,))- 1In
m

this case we can take:

M(E Y=M,. (£ ), M()=M,. () (2.17)

m fm m fm Mo (F~F )=0
f m
m
For example, in the case of LM manifold, we take M ()
W

as the direct sum of five linear mappings:

M 5 (f):{ fl-fd3v; fvifd3v, I=1, 2, 3; fvzfd3v}
f(nou T)
These do not depend on f(n,Z,T)emLM, and the kernels
keryd N are the same for all an,Z,T)EmLM
f(n u,T) |
Physically, condition ¥ 5 (f—f(n,Z,T))=0 gives
f(nu T)

those distributions £ which have the density, the flow
velocity, and the temperature equal to corresponding
parameters n, 3, and T of the local Maxwellian f(n,E,T).

For the given manifold M the derivation of the
thermodynamic macroscopic mapping M*(f) in accordance
with the procedure proposed requires a specific choice

of linear transforms M; (f) in U, We will now introduce
m

a condition under which the transforms M (fy will be
m

thermodynamic. Next we will discuss the sufficiency and

the necessity of this condition.
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Denote as_uf the dual variable:
| W=D e (£) o (2.18)

Here DfH(f) is the linear functional: the differential
of the functional #(f) in the point f. Due to the strict
convexity of #(f), there exists a one-into-one relation
M1,

Macroscopic mapping M(f) will be thermodynamic if,
for all fmem, the equalities

M(LY=M(f)
imply

f—fmekerufm (1. €. Mfm-(f—fm)=0),

where

br =D B ()
fm r f=f

m

Thus, the condition of thermodynamicity is:

M(f):M(fm) = f—fme keer (2.19)
m

Here fGUm. In other words, the linear transform Mp ()
m

in (2.16) will be thermodynamic, 1if
kerM . (f)<kerjt (2.20)
fm fy

Equations Mf -(f—fmjzo are solvable with respect to
m

fm, for every f from some neighborhood of M, only if the

manifold M is not tangent to the level of the functional

H(f) in any point fm. This {transversality condition is

the only principal constraint on the choice of M
Further, we assume this transversality condition Is

satisfied.

Condition (2.19) (or (2.20)) initializes +the
construction of M () in (2. 16) for the a priori given
m

manifold M The standard description of kcruf is given
m
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by functionals M% (f):
Iy

M (F) = }.Lfm-f (2.21)

m

Here fe<U . Linear transform M (f) will give thermo-
. m
dynamicity if keer (f)CkerM; (). oObviously, if we take
m m
keerm
arbitrary linear mapping, then implication (2.19)

remains valid for Ly (). This makes possible to
m

complete Step 2, and to construct the thermodynamic

(f)zkerM* (Fynker#, (F), where M, (£) 1s an
r f f
m m m

macroscopic mapping M*(f) in the manner of (2.17).

Usually in applications, the following strategy of

constructing of thermodynamic keer (f) 1s convenient:
m

one takes kerM; () and intersects it with a sufficient
m

number of kerZ, where kerZ are kernels of some linear
mappings L(f), so that (2.17) gives a coordinate systenm
on M. Linearity plays no key role.

wWe will mnow consider the sufficiency and the
necessity of condition (2. 19).

Condition (2.19) is sufficient for thermodynamicity
of M*(fd because of the following duality principle:

f,, is the unique solution of the variational problem:

#(f)—mnin for f= Uﬁﬁ(kerufm+fm) (2.23)

This 1s so because:

i) #(f) is the strictly convex functional, and

ii) Kp =Umh(keruf +fm), is the convex neighborhood of fm
m M

in (keruf +fm) (1f necessary, one can always take for U
m

a smaller neighborhood of ).
In other words, fm gives the only minima of #(f) in

the convex domain Kf which belongs to the hyperplane
m
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T,

m

T ={feElM*(f~f )=0} o (2.24)
fIﬂ. fm m

Taking into account (2.19) and (2. 23), we see that

fm is also the wunique solution of +the wvariational

problem:

H(fy—min for M*(f)=M*(fm) (2.25)

Here f<U,. This is so because, due to (2.20), K is
m

wider than lﬁ;ﬂ(keerm+f;J, and according to (2.23) £

gives the only minima to #(f) in Kf
m

Finally, as we have defined fm as the solution of
variational ©problem (2.25), the thermodynamicity of
M*(f) can be proved straightforwardly in the same manner
as for quasi-equilibrium manifolds {f*(ﬂ)} (2. 14) (see
elsewhere, for example [8, 9, 13, 14]). .

An 1important particular case 1s that when the
manifold M 1is a quasi-equilibrium manifold {f*(M)}
(2. 14). Then no new macroscopic mapping is required.
Quasi-equilibrium manifold {f*(M)} is thermodynamic due
to its construction because

keerM(f) | . <kerfh
= (M) (M)
pue to the duvality principle (2. 23), one can consider an
arbitrary manifold M as if it was a quasi-equilibrium
manifold after the appropriate parameterization.

It is remarkable that condition (2.19) accounts
only the Lyapunov functional # but not the vector field
of dissipative systems. Now we will demonstrate the
necessity of this condition. In order to do this, we
have to turn to a consideration of a whole family of
dissipative systems with a given functional #.

Denote as 3H the family of vector fields J(*) which
define dissipative systems (2. 1) with the given Lyapunov



580 GORBAN AND KARLIN

functional #. Due to imequality (2.2), vector J€E can

represent a vector Js(f) for some J(')ESH if it belongs

to the allowed half-space E}h:

th
Efp = J€E| uf-JSO}

The interior of E;h will be called the sirictly allowed
half-space E;:
E}: J€E| Mf-1<0}

Condition Hf'f=0. defines a 'partitioh of E 1into two

half-spaces, EEE}hUE;, where E; is the strictly

forbidden halfl-space:

E}:{JGE uf-1>0}

None of vectors from E; can represent a vector J(f) for

any J(')ESH,

Dealing with the whole family 3, it is convenient
to reformulate the request on thermodynamicity of
induced dynamics. Same as for the space £, we define the
allowed, the strictly allowed, and the strictly
forbidden half-subspaces of Tp

T
th I th
r-l=d yer M~ JSO=EL T
fTIL fm fm. fm. fm
T, =3J<r, | W '-J<0}=E_ o
fm fTH. f'ﬂl ' f'ﬂl. fIﬂ

+ +
T, ={Jer | L 'J>0}=E ar
fm f]‘ll f'I[I. f'ﬂl f’[

n

Projector Pr will be called wniformly thermodynamic if
m

th th
Pe (Ef ST (2.26)
AR e
Note  that, due to the tramsversality condition

formulated above, the latter inclusion 1s an equality:
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. th __th
P, (Ef )=T
; fm:ﬁfﬁ Iy
and that two similar equalities also take,blace:
T T
Py (Eq )=T
o Ty’ Ty
In other words, the uniformly thermodynamic projectors
transform all r"physically allowed microscopic vectors®

E}h into r"physically allowed macroscopic vector§'T}E
"

m
and thus they give thermodynamic induced dynamics for

all representatives of the family SH.

Consider the family 3H and a manifold M Condition
(2. 19) 1s mnecessary for thermodynamic parameterization
in the following sense: this is the unique condition in
Step 1 which defines the thermodynamic parameterization
of M for all dissipative vector fields TSH. In other
words, projector defined by condition (2.19) is the only
uniformly thermodynamic projector.

In fact, 1let us consider a parameterization of M
defined with some macroscopic mapping KN('), different
from M*(‘) defined via condition (2. 19). It means that

ker?, ¢kerl
f'ﬂl f'Ill
for some [ €M
n
Here vfﬁ=0fﬁ(fj féfﬁf Then there exists IOEEfm, for
which IOEkerV x and Joﬁkerufm. Let UJOCEfm be a
neighborhood of 7o Denoting as Py, the projector
f

m
defined by the macroscopic mapping #(+), we see that the
image £, (U, )<Tp 1s a neighborhood of zero in Te s

m 11
" 0 1

and, hence,

+
Py (U, YT, #O
0 T
m
In other words, there exist strictly allowed vectors

J(fm) that transform into strictly forbidden vectors
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T} under the action of projector Py . On contrary, a
m f
mi
strictly allowed neighborhood v, always transforms into
‘ 0

a strictly allowed neighborhood under a projection which
satisfies condition (2. 19).

The uniform character of condition (2. 19) might be
illustrated with the following example. Consider .all
kinetic equations with the Boltzmann #-function (1i.e.
all BE with all possible collision integrals including
rigid spheres, Lennard-Johnes, BGK, etc) and a fixed
manifold (say, the TMS manifold). Then, if we derive the

induced dynamics for mTM using only linear mappings

S
(such as fvifd3v, fvifd3v, etc; see [2]), then, for some

fmemTMS’ there exist collision integrals for which the
induced dynamics will not satisfy the thermodynamicity
condition in the point fﬁ (see 1n this connection the
paper [21]). The only condition which will give
thermodynamic induced dynamics for all BE 1is the

TMS [20].
Thus, in this section, we have introduced a method

realization of condition (2. 19) for M

for constructing the thermodynamic parameterization in
the general case, and thus we have solved the Problem 1
of Sectionm 2. 1. In the next section we will consider an

approach to correct dynamic noninvariance.
2.3 Iterative Methods for Invariance Equation

In this section we introduce Newton-type procedures
for a search of corrections to a dynamic noninvariant
manifold M. We consider the case when the manifold is
parameterized with macroscopic parameters #: W={f(#)}.
In the preceding section we have learned to construct
thermodynamic macroscopic parameterization. Thus, when

we are developilng procedures of corrections, we are free
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to pay no-attention tolwhether {f(#)} is thermodynamic
or not: th@rmodynamicitygpan be alWays érranged in the
end of calculations. The invariance equation (2. 15a) is
completely geometric, if contains no“eXplicit time
dependence. The latter appears only when we derive the-
induced dynamicé, and only at this step we have to apply‘
the principle of thermodynamic parameterization.

We start with the invariance eqguation (2. 15b). Let
the manifold {fO(M)} is given. Its dynamic noninvariance
means that the defect A(fO(M)) is not identical to =zero.

In order to correct the manifold {fO(M)}, we search
for a new manifold {fl(M)}, representing fl(M) as

fl(M)sz(M)+@f1(M) (2.27)

This search should give a one-into-one relation
fl(M)++f0(M). In order to arrange this relation, we
require-

5fl(M)€ kerp (2.28)

£ ()

In other words, we search for the new point fl(M)
labeled with the same value # as the point fO(M).

We are going to obtain the correction to {fO(M)}
via a method of successive approximations. We want that
this method would not require mneither any strong
restriction upon the choice of {fO(M)}, nor small
parameters, etc. We represent two methods of this type.

Method 1. Substitﬁting expression (2.27) into
(2. 15b) instead of f(#), and next preserving linear in
Gfl(M) terms, we obtain a formal 1linear in Gfl(M)

equation:

D, OFf (My°D M(F) | CT(E L (M))+
M1 r f=f | (#) 0

+D (M)°DZM(f)  (BF (MY, T(F (M)~
M0 f [=F ,(h) 1 0
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-];fo(f)‘f= (OF [ (M))+

_|1=p.r (uyep M(f)‘

ANED
+A(L(#))=0 (2.29)

Here D%M(f)‘ . is a bilinear operator (the second
f=f0(M)

differential of ¥(f)), and fo(f) is the linear
f=f0(M)

operator (the differential of the mapping J(f): E—E).
Equation (2.29) 1is the first iteration of the
Newton method ([22] as applied. to equation (2.15Db).
Constraint (2.28) 1is the additiomal condition for
unambiguous solvability of equation (2.29). Eguation

(2.28) initializes the method of successive
approximations for solving +the 1invariance equation
(2. 15b).

It is clear that the first and the second terms in
(2.29) give the linear variation of the projector: the
first term gives the wvariation of the image of the
projector, while the second term gives the variation of
its kernel. The rest of the terms in (2.29) give the
variation of the vector field.

Method 2. we search for a new manifold {fl(M)}
where fthe vector field J(fl(M)) is parallel to the

tangent space Ty In linear approximation, we obtain

(MY
0
an equation for the first correction Gfl(M) (2.27) as:
P (')—1](I(f (MY+D 2T () (OF  (M)))=0 (2.30)
[ fO(M) 0 f : f:fo(M) 1

Additional condition for this equation is again the
constraint (2.28).

In order to demonstrate the sense of the two
methods proposed, we will consider the case of linear
manifolds for linear dissipative systems.

Consider real Hilbert space ¢ with the scalar
product (f, g), and a linear dissipative system
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df /dt=af : (2. 31)
withthé‘functionallﬂ(f}. |
| H(f)=%(f,f) (2.32)

In (2.31), 4 is a linear, negatively defined, bounded,
and selfadjoint operator, 4:6—¢. We assume that the
spectra of A4 consists of non-degenerated eigentvalues
;\'(ﬂ])’ m=0, 1, ... |

The dual variable Hf (2.18) 1is

=13 hp8=(L, 8) (2.33)

Consider linear manifolds mg:ac, where (e, e)=1, and
ask (1. e. m, is a line in ¢, defined with the unit

vector e).
Invariance equation (2. 15b) for me 1S:

e(e, Ae)-Ae=0 (2.34)

Normalized solutions of equation (2.34) are unit vectors

€m) which define the eigentspaces me(m):ae(m)
of operator 4, corresponding to eigentvalues K(m)'
Assume that we have chosen the linear manifold

W =ae_, and e, is not the eigentvector of operator 4.

6’0 0’ 0
we have to correct the initial manifold ﬁe in order to

‘ 0
make i1t closer to a solution of equation (2. 34).

we search for a new linear manifold me =ac,. 1t 1is
1

sufficient to find ‘any vector Xleme , then
1
M =a(x1/HX1H). we search for x. in the form (2. 27):

61 1

X1=60+6X1 (2.35)
Additional condition (2.28) vields:
(Ox |, €4)=0 (2.36)

Method 1 (formula (2.29)) gives:

(A—(co,AeO)Id)(eO+6x1)=250(6xl,(A—(eO,AeO)Id)eO) (2.37)
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Here Id - is the identy operator. Using additional
condition (2.36), we obtain the unique solution of

equation (2.37):

! 1

e +0x = (A-(e., Ae YId) e, (2. 38)
0 1 -1 0 0 0
(60,(AT(60,A60)Id) e,)
Being rewritten in the basis € my’ expression (2.38)
gives:
(e » €4)
e By « Y e (m)” 9 (2.39)
0 1 (m) Y
(m) (m)—(EO’Aeﬁ)

we see that the leading term of the series (2.39)
corresponds to the number m  which gives the minima to

the function z(m)=|K(m)*(80,Aeo)L In other words, the

leading term corresponds to the eigentspace M ., Wwhich
(m )

is the r"pmearest neighbor" of the linear manifold me .
0

Thus, Method 1 gives a search of the eigentvector e , .
(m )
Method 2 (formula (2. 30) gives:

(Id—eo(eo,-))A(eo+6x1)=0 (2. 40)

Taking into account the additional condition (2.36), we
obtain the unique solution of equation (2. 40):
e +0x =— A e (2. 41)

0 1 (e A—le 0

In the basis e(m) we obtain:
¢ (my %)
(m)

e +5Xl ® 3 e (2. 42)

0

(m) (m)
The leading term of the expansion (2. 42) corresponds to
the number m, which labels the eigentvalue with the
minimal module. Thus, Method 2 results in a search for

the eigentvector €m.) which is the direction of the

"slowest relaxation" to the equilibrium point x=0.
The example of linear manifolds for linear
dissipative systems considered shows +the difference
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between the two methods for obtaining corrections. The
choié?”of a method in particular applications'dcpends on
the pﬁysical_sense of the problem. In particular, Method
2 is preferable when one searches for invariant
manifolds with slowest relaxation properties, and it
will be wused in Section 4 for derivation of
hydrodynamics from the Boltzmann equation..

Thus, we have introduced the two main objectives

for constructing dynamic invariant manifolds for

dissipative systenms: the method of thermodynamic
parameterization (Section 2. 2) and Newton-type
successive procedures to correct the dynamic

noninvariance (Section 2. 3). In the next section we will
combine these +two procedures into the algorithm of
constructing dynamic invariant manifolds for dissipative

systems (the method of invariant manifold).

2. 4 Description of the Method of Invariant Manifold

The algorithm starts with the choice of an initial
manifold M. This choice depends on the particular
physical problem, and we are not able to consider this
question in general. However, the rest of the algorithm
does not essentially depend on this choice. Here we
assume only that mo satisfies the +transversality
condition of Section 2. 2.

Step 1. Choose the initial manifold -

Step 2. Construct the thermodynamic parameterization
{f;(M)} for the manifold mo in accordance with
the algorithm of Section 2.2

Step 3. Calculate the defect A(f;(ﬂ)) (2. 15a). If
A(fO(M))EO, theq* ﬁo is a dynamic invariant
manifold. 1If A(fO(M))io, then search for a mew
manifold ml in accordance with Method 1 or
Method 2 of Section 2. 3.

Step 4. cConstruct +the thermodynamic parameterization
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{f (#)} for the manifold W, in accordance with
the algorithm of Section 2. 2.
Then the procedure is continued (go to Step 3).
In the next section we will discuss physical ideas
behind the method of invariant manifold.

2. 5 Physical and Geometrical Interpretation

The method introduced in Section 2.4 is based on
two points: 1) thermodynamic parameterization (Section
2.2) and, 2) successive corrections of the dynamic
noninvariance (Section 2.3). These points reflect the
Problem t and the Problem 2 outlined in Section 2.1, and
they give the immediate formalization to the two general
assumptions of macroscopic kinetics:

1) The choice of any approximated reduced description
{i.e. of any manifold) always involves an implicit
assumption on decomposition of times of relaxation.
2) A dynamic invariant manifold of slow motions is
located in a neighborhood of the chosen approximation.
when obtainihg the thermodynamic parameterization
for the initial manifold WM, we act as If a times
hierarchy hypotheses corresponded to the choice. This
means that we acté as if a "rapid" relaxation to the
states fﬁem occurs in some neighborhood of the manifold
M, and then a "slow” motion along M takes place. During
relaxation, the Lyapunov functional #¢(f) decreases, and
at the end of rapid processes it reaches a minimum on
manifolds of rapid motioms. The gradient of the Liapunov
functional is mormal to these manifolds of rapid motions
at the minima points. Therefore, in linear

approximation, equation Mf 'fﬁuf -fm is valid for those
m T

points £ which relax to the point fm in rapid processes.

In other words, in linear approximation, rapid

relaxation occurs on hyperplanes of rapid motions Ff
m
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(2.24), the latter are linear ‘-approximations to the
manifolds of rapid motions. |

" puality principle (2.23) states that the p01nt f
is the only point of minima of the functional on the

hyperplane of rapid motions Tf . In general, the
’ m

hyperplanes of rapid motions Pf are nonparallel] for
m

different points f <M

In order to create a coordinate system on WM, we
simply have to add some macroparameters #(f). This
addition i1s almost arbitrary, one should only supply the

independence and completeness of the set {Mf (£, M(F)H}
m

in the neighborhood of M Then the manifold M will be
parameterlzed with the set {Mf ( m) M(fm)}

The choice of the set {Mf (fy, M(f)Y)} yields the

following picture of rapid relaxation in the
neighborhood of the manifold M the system relaxes

towards M along the planes of rapid motions Rp . The
m

plane of rapid motions Rf which includes the point fm
m

is the cross-sect{ion of the hyperplane of rapid motions

Tf with the planes {f’DfM(f)’f_f '(f—fm)=0}:
' m

m

(- )= 0}

R ={fIM* f-f. )=0:
fnl f.ﬂl ( h )

The simplest case occurs when #(f) 1s a set of linear

m

functionals.

The hyperplane of rapid motions I‘f is the only
T

hyperplane where the levels of the functional #(f)
"surround" the point fm. This illustrates the duality
principle (2. 23).

Thus, 1n Step 2 of sSection 2.4, we take (for a
while) that the dinitjially chosen manifold is already a
"good" manifold of slow motions, and this alone yields
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the proper induced dynamics. Naturally, we understand
that the decomposition of motions assumed might be only
approximate. Hence, 1in Step 2, which immediately follows
step 1, we reject this picture of relaxation, and we
approximately correct the dynamic nominvariance. Then,
in step 4, we again acf as if the corrected manifold 1is
a manifold of slow motions, etc.

The problem of dynamic invariant manifolds has a
very specific sound for dissipative kinetics. Ramely,
one should expect that these manifolds are manifolds of
slow motion. This is rather a fine point, and we give
some additiomnal explanations.

Usually when one talks about decomposition of
motions (i.e. about the times hierarchy), then one keeps
in mind the existence of a small parameter. This small
parameter should express the ratio of the time of rapid
relaxation to the time of macroscopic observation. one
may expect that +the rapid relaxation results 1n a
"sufficiently good" manifold of slow motions (i.e. 1in a
"sufficiently invariant" manifold).

However, this situation is far from being simple.
There 1is always a place to doubt on whether the chosen
parameter 1is sufficiently small. Even for finite-
dimensional dissipative systems (e. g. chemical kinetics)
the steady-state manifolds might not always be referred
as to good approximations (see a precise study "The
Steady-State Approximations, Fact or Fiction?" by E.
Farrow and D. Edelson [23], and also [24]).

On the other hand, there are no small parameters in
the general case, but still one can construct a rgood*
approximation which approximately describes the
evolution at a considerable period. For example, the TMS
approximation illustrates this situation: a small
parameter lacks in the strong shock wave problem but,
nevertheless, one can consider the TMS approximation as
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a suitable approximation for this problem. Hence, we
should take that the two assumptions mentioned above are
éppropriate {d, the TMS approximation fat least
approximately).

For a chosen approximated reduced description, one
can not say beforehand whether the decomposition of
motions indeed corresponds to the choice. Nevertheless,
we act as 1f the chosen manifold 1is already a "good*
manifold of slow motions. This immediately leads to the
definition of hyperplanes of rapid motions wvia the
principle of decrease of the Lyapunov functional in
rapid relaxation as described above in Section 2.2. It
is important that the method of invariant manifold
avoids a search for small parameters for constructing
the manifolds of rapid motions. We obtain thermodynamic
parameterization for the initial manifold. at the same
time we remember that the chosen approximation is not a
dynamic invariant manifold. we are able to measure the
error A(fm) caused by noninvariance, and we are able to
approximately correct this error by solving the linear
equation of the first Newton-type iteration. Then we
again act as if the corrected manifold is a good
manifold of slow motions, etc.

in the next section we apply the method of

invariant manifold to the Boltzmann equation.

3. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS
FOR THE BOLTZMANN EQUATION

In this section we apply the method of invariant
manifold to the Boltzmann equation (BE). Firstly, we
will interpret the key notions of section 2 for BE.

The phase space F (Section 2.1) consists of
distribution functions f(?,}) which depend on the
spatial wvariable X and on velocity wvariable V. The
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variable ¥ spans an open domain ngmi, and the variable
v spans the space RS- We require that £(v,X)sF are
nonnegative functions, and also that the following
integrals are finite for every }EQX (the existence of

moments and of the entropy):

(1. .7.1.) i, 1, 1
17273 T B Mk B N F P
I} (f)_jvl v,V (v, x)yd’v, 1,20, 1,20, 1;20; (3.1a)
H, (F)=Jf (v, %) (1nf (¥, x)-1)d’v, H(F)=TH, (FHdx (3. 1b)
X X
Here and below integration in v is made over Rg, and it
is made over QX in ¥. For every fixed }GQX, I’ and H}
b

might be treated as functionals defined in F.
we write BE in the form of (2.1) using standard

notations [2}:

a o)
ag;f(f), T(Fy==v a§3 + O(f, ) (3.2)

Here and further a summation in two repeated indices 1is
assumed, and OQ(f,f) stands for the Boltzmann collision
integral [1]. The latter represents the dissipative part
of the vector field 7(f) (3.2).

In this paper we consider the case when boundary
conditions for equation (3.2) are relevant fto the local
with respect to X form of the H-theorem.

For every fixed x, we denote as Hg(f)'the space of

X
linear functionals
4
,Zoai(?)f¢i(3)f(3,})d3v,
I=

> . . .
where ¢i(v) represent summational invariants of a
collision [1, 2] (¢0=1, ¢i=vi, i=1, 2, 3, ¢4=v2). We write

(modﬁg(f)) if an expression is valid within the accuracy
X

of adding a functional from HE(f). The local KH-theorem
X
states: for any functional
B (£)=JF(V, %) (1nf (¥, X)-1)d>v (moda’(f)) (3.3)

X X
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"~ the following inequality is valid:

dr, (£y/dt=fo(f, F) N ; Inf (¥, ¥yd>v<o (3. 4)
X | | =1 (v, x)

Expression (3.4) 1s equal to zero if and only if
. ,
> >
1nf=i§031(x)¢i(v).

Although all functionals (3.3) are equivalent in
the sense of the #-theorem, it is convenient to deal

with the functional &, (£)=Jf(V.%)(Inf(V,x)-1)d’v.
X
All what was said in Section 2 can be applied to BE

(3.2) with no significant changes. Now we will discuss
some specific points.

i) Local manifolds. Although the general description of
manifolds Mm<F (Section 2.1) holds as well for BE, a
specific class of manifolds might be defined due to the
different character of spatial and of velocity
dependencies in BE vector field (3.2). These manifolds
will be called local manifolds, and they are constructed
as follows. Denote as Flo the set of functions f(?)

c
with finite integrals

1
2

(1

1,.1.) 1 I
ay 1 23 (f)=fv11v 2v33f(3)d3v, i

by ([ )=fF(v)1nf (v)d v

In order to construct. a 1local manifold 1in F, we,
firstly, consider a manifold in Floc Namely, we define
a domain 4<B, where £ is a linear space, and consider a
smooth immersion A—%Floc:ak+f(a,3). The set of functions
f(a,?)eFIOC, where a spans the domain 4, is a manifold
in Floc‘ Secondly, we consider a7/ bounded and
sufficiently smooth functions a(}):QX—»A, and we define
the 1local manifold in F£ as the set of functions
f(a(}),g). Roughly speaking, the local manifold is a set
of functions which are parameterized with }~dependent
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functions a(}). A local manifold will be called a
locally fimpmite-dimensiopnal manifold if B 1is a finite-
dimensional linear space.

Locally finite-dimensional manifolds are a natural
source of initial approximations for <constructing
dynamic invariant manifolds in BE theory. For example,
the TMS manifold (2.3) and the LM manifold (2. 4) are
locally finite-dimensional manifolds. They are
parameterized with finite sets of }—dependent functions.
The LM manifold is parameterized with five macroscopic
parameters (i.e. with five hydrodynamic moments), the
T™™S manifold is parameterized with two coordinates,
a_(}) and a+(}). Further, all expressions corresponding
to the function f(a(}),ﬁ) will be labeled with a(}).

11) Thermodvnamic parameterization. The specificity of

thermodynamic parameterization for manifolds in BE
theory is due to the type of the Boltzmann #-function.

Namely, the functionals # (f) (3.3) are homogeneous: for
X

any A, where 0<A<®, we have:

H, (AMY=M (£) (moda’(f)) (3. 6)
X X X

The dual variable Mf (2.18) 1is:

=1nf(v, x) (3.7)

Consider the local form of M} (Fy (2.21):

W, (f)=ff(3,})1nfm(3,})d3v (3. 8)
X,fm '
The value of the functional M: in the point fmem is
x, [,
S 1

equal to:

¥ > _ O
M, (fh)=ffﬁ(v,})1nfm(3,})d3v=ﬂé(fm) (mod#; (Fg)) (3. 9)
x,fm X X

Thus, equation (2.12) for the macroscopic parameter
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>

|

M. (fm) is_the entropy.balance equatiqnf

It is necessary to sifcss here that, in spite of
external simplicity of this result (the chtropy balance
equation is indeed “natﬁral“y the idea to  use
functionals (3:8) for cons{ructing the thermodynamic
projector is not evident. Indeed, functionals (3.8) are
neither usual moment functionals (3. 1a) nor the entropy
(3. 1b) in the neighborhood of the manifold M According
to the physical interpretation (Section 2. 5), the
entropy balance equation appears immediately from the
idea of decomposition of motions in the neighborhood of
the manifold .

Let {fka(}),ﬁ)} be a locally r-dimensional mani-
fold, where a(})z(al(}),...,ar(})). We now give explicit
expressions for thermodynamic  parameterization of
{f(a(}jlz)} in the important particular case when one
adds r-1 independent linear functiomals L, (f) to the

* X, 1
functionals ¥, () (3.8):
X,fm
La‘_(f)=fli(3)f(},3)d3v, i=1,...,r-1 (3.10)
X, 1

The natural source of these linear functionals are, for
example, the moment functionals (3. 1a).
. > . > >
For every fixed x, we can consider {f(a(x),v)} as a
finite-dimensional manifold.
The thermodynamic macroscopic mapping M:(f) 1s

X
defined as:
M}(f) = ' (3.11a)
~([f(x,v)lnf(a(x), v)d’v, fli(ﬁ)f(},ﬁ)d3v, I=1,...,1r-1)

This mapping equips the manifold {f(a(x),v)} with a new

coordinate system:

H(a(x))=JF(a(x), vilnfca(x), vydlv,
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Li(a(}))=fli(?)f(a(}),3)d3v, =1, ..., r—1 (3. 11b)
Thus, in -detail notation, we can write
(7 Ha)), L (2K L (a(X)), V)

for the manifold {f(a(x),v)} parameterized with macro-
scopic parameters (3. 11b).
Thermodynamic projector P , (J) is defined as:

. a(x)
P, ()= . (3. 11cC)
a(x)
of  (H(a(X)), L, (a(X).) L. (a(X)) V)
— ~ 1 R  TInf(a(x), vysd v+
SH(a(x))
r=1 8f (H(a(x)), L, (a(xX)) L._.(a(X)),v)
+ 2 1 ’;." r=1 , fli(g)fd3v
7=1 0L (a(X))

Dynamic equations for macroscopic parameters
(3. 11b) 1induced with the BE vector field (3.2) via
thermodynamic projector (3. 11c) are:

facach) + divy,(a(X)) = O(a(x));
3t A ’
OL;(a(X)) ., R
+ le]L(a(X)) = R.(4(X)): (3. 11d)
B8t 7 *
Here

Ty(a()=[ve(a(xy, vylnf(a(x), v)d v
Fpla(xN=VI(Vyf(a(x), viddy:
1

Oea(x)y)=J1nf(a(x), vYo(f(a(xy, vy, f(a(x), vy)d v

R (a(x))=1 (VYO(F(a(x), V), F(a(x), v))d v (3. 11¢)
Equations (3.11d) might be also treated as r dynamic
equations for unknowns 31"“’3r'

1i11) Dypamic invariance. All considerations of Section 2

concerning construction of dynamic invariant manifolds
are completely applicable to BE vector field (3.2). we
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represent only an equation for the first correction to
the locally r- dimensional manifold M _{f (a(x),v)}
we search for a flrst correctlon 1n the form of

(2.27): |
Fo(a(X), V)=F (a(X), V)+OF  (a(X), 7) (3.123)
Considering the thermodynamic parameterization of mo

given with expressions (3.11), we obtain an equation
(Method 2 of Section 2. 3)):

(P07, (-0 (B (a), VA (a(). ¥))=0;
a(x) lin, a(x)
0 Og
J (8)=-V + L (£);
1in, a(x) s Oxg fo(a(}),ﬁ)
ME (a@R), V)=(P , ()= (£y(a(x), 7)) (3. 12b)
a(x)
Here L IR stands for the Boltzmann collision
fo(a(x)y,v)
integral, linearized in the point fo(a(}),ﬁ), and
projector P , 1s defined according to (3. 11c).
a(x)

Additional conditions (2.28) for egquation (3. 12b)

dare:

flnf(a(?),?)@fl(a(}),3)d3v=0,

ffj($)6fl(a(}),3)d3V=0, i-1,...,r-1 (3. 12c¢)

According to the iterative scheme of section 2.4, after
solving equation (3.125), we have to 1introduce new
thermodynamic parameterization, and next we can make the
second 1iteration, etc. In some cases, W& can use
linearizations of vector field different from that in
equation (3. 12b). For example, instead of the pure
Newton scheme, we can use its Kantorovich’s modification
[22] (i.e. linearization of operator J(f) in a fixed
point at every iteration).

iv) Invariance equation in a moving reference system.
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In some cases, it is convenient to consider BE vector
field in a reference system which moves with the flow
velocity. 1In this reference system, we define the BE

vector field as:

ar_ df of af
of _
J (£y==(v _~u (f))—— + Q(f, ) (3. 13)
u s 7=
X, S
Here v, ([) stands for the s—th component of the flow
X, s
velocity:
-1 > > 3 > > 3
u, (£)=n, (f)fvsf(v,X)d vi n(FHH)=ff(v, x)d7v (3. 14)
X, s X X

In particular, this form of BE vector field 1is
convenient when the initial manifold mo consists of

functions fmo which depend explicitly on (3—3+(f))
X

(i.e., 1if functions fm emo do not change under velocity
0

shifts: 3—+3+Z, where P is a constant vector).

Substituting Ju(f) (3.13) instead of J(f) (3.2)
into all expressions which depend on the BE vector
field, we transfer all procedures developed above into
the moving reference system. In particular, we obtain
the following analog of the invariance equation of the
first iteration (3. 12b):

07, (-0 (BF (a(X), V))+h (£ y(a(x), V))=0;

>

a(x) g, 1in, a(x)
7 = (Fad)) v gdPve
7, 1in, a(x) X :
N N , O8f (a(x), V)
vu, (Foaeom, (£oax)))fgdvi— 55 -
X, 5 X oy
~(vu, (F (a(x))))——f— £ L L, (8%

X, S fo(a(x),v)
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: N (‘)—I)Iu(fo(a(}),?)) (3. 15)
a(x)
Additional conditions (3.12c) do not depend on the

vector field, and thus they remain valid for equation

A(F o (a(X), V)= (P

(3. 15).
v) Positivity and normalization. Wwhen searching for a
correction, we should be ready to face two problems that
are typical for any method of successive approximations
in BE theory. Namely, the first of this problems is that

the correction

f.  =f. +Of
Revr P By

obtained from the linearized invariance equation of the
k+1-th iteration may be not a non-negatively defined
function and thus it can not be used directly to define
the thermodynamic projector for the k+1-th
approximation. In order to overcome this difficulty, we
can treat the procedure as a process of correcting the
dual wvariable uf (3. 9) rather than the process of
immediate correcting the distribution functions. Then,
at the &k+1-th iteration, we search for new dual

variables K | :
fim
k+1

= + Ol (3. 16)
k+1 r mk- r M+

Due to the relationship Hf+—+f (3. 9), we have:

-1
O =0 +O(6f2 Y, @ =f, Of (3.17)
FIM i e L e T M

Thus, solving the linear invariance equation of the 4-th

r|

iteration with respect to the unknown function 5fm

k+1,
we find a correction to the dual variable ®m (3. 17),
k+1
and we derive the corrected distributions fm as
k+1
£, =exXp(p + )=fg exp (& ) (3.18)
Ryt f‘mk Rpv1 By L

Functions (3. 18) are positive, and they satisfy the
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invariance equation and the additional conditions of the

type (3.12c) within the accuracy of Py -
o - k+1
However, the second difficulty which might occur is

that functions (3.18) might have no finite integrals
(3.1). In pafticnlar, this difficulty can be a result of
some approximations used in solving equations (3. 12b) or
(3.15). Hence, we have to rregularize" the functions
(3. 18). A sketch of an approach to make this

regularization might be as follows: instead of fm
k+1

(3. 18), we consider functions:
f(ﬁ) =fg exp(P +P

mk+1 mk mk+1
Here Q'°8(B) is a function labeled with PeB, and B is a
linear space. We assume that integrals (3.1a) and (3. 1b)
are finite for all values P in (3.19). Then we deriver

P, from the condition of coincidence of macroscopic

TCE (B (3.19)

parameters

(F)
Mk(fm w ) (3.20)

k+1 k
Here M, is the macroscopic mapping of the k-th

)=Mk(f

approximation. Further consideration of this procedure

remains out of frames of this paper. 1In particular,

()
regularization fﬁ is required for the first time only

1
at Step 4 of Section 2.4 (i e for obtaining

thermodynamic equations for the first correction). The
two difficulties mentioned here are not specific for the
approximate method developed. For example, corrections
to the LM distribution in the Chapman-Enskog method [1]
and the thirteen-moment Grad approximation [4] are not
non-negatively defined functions, while the thirteen—
moment quasi-equilibrium approximation [10] has no
finite integrals (3. 1a) and (3. 1b).
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4. CORRECTIONS TO THE LOCAL MAXWELL MANIFOLD

 In this section we apply the method of invariant
manifold to a particular situation when the initial
manifold consists of 1local Maxwellians (2.4) (the LM
manifold). This manifold and its corrections play the
central role in the ©problem of derivation of
hydrodynamics from BE. Hence, any method of approximate
investigation of BE -'should be tested with the LM
manifold. Classical methods (Chapman-Enskog and Hilbert
methods) use Taylor-type expansions into powers of a

small parameter (Knudsen number expansions). However, as

we have mentioned above, the method of invariant
manifold, generally speaking, assumes no small
‘parameters, at least in its formal part where

convergency properties are not discussed. we will
develop an appropriate technigque to <consider the
invariance equation of the first iteration 1in Section
4.2. This involves ideas of parametrics expansions of
the theory of pseudodifferential and Fourier integral
operators [25,26). This approach will make it possible

to reject the restriction of using small parameters.
4.1 Equation of First iteratiom

The LM manifold consists of distributions fo which
are labeled with parameters n, 3, and 7

5 2Tk g7y =3 /2 > 2
fo(n,u,T)zn[ pe ] exp{ Q%Eg%l%} (4. 1)

Parameters nz, o, and T 1in (4. 1) are functions
depending on X. In this section we will not indicate
this dependency explicitly.

Distribution fO(ﬁ,E,IW is the unique solution of

the variational problem:
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H(f)=[f1nfd*>v—min for Mo(f)=f1~fd3v=n;
| (4.2)

3 3nkBT

M (0)=fv £87v=nu ., 1=1,2,3; # (£)=[v I d v=—" P inu

Hence, the LM manifold is a quasi-equilibrium manifold.
Considering a, 2, and T as five scalar parameters (see
the remark on locality in Section 3), we see that LM
manifold is parameterized with the values of Ms(f),
s=0,...,4, which are defined in the neighborhood of LM
manifold. It 1is sometimes convenient to consider the
variables Ms(fo), s=0,..., 4, as new coordinates on LM
manifold. The relationship between the sets {Ms(fo)} and

4 .
{n,u, T} 1s:

- _y 1 — . __m —1 -1
n=My; U =M M, I=1,2,3; T_3kB o (M M H M) (4. 3)
According to (4.2), the parameterization with
Mo(fo)’“"’M4(f0) (or, which is the same, with n, o, and
T) 1s thermodynamic.
Thermodynamic projector P S (/) onto the
£,(n, u,T)
tangent space T 5 is defined as:
fo(ﬂ,u,T)
i afo(n,Z,T) s’
P (/)= Jd v (4. 4)
fo(n,Z,T) Ear s

Here we have assumed that g, 3, and T are functions of

My, ... H#, (see relationship (4. 3)), and
2

q)0=1, Lpl'tvl‘a i=1, 2, 3, LP4=V (4 5)

Calculating derivatives in (4. 4), and next returning to

. 4 .
variables n, u, and 7, we obtain:

P (J)=F (1,0, T) [l‘—mui (v .—u )+F“ﬂ!~lj[m v-i)?_
fo(ﬂ,z,T) 0 Fej HkBT i I 3ﬂkB n szTz
2nn . 2> > 2
3 R b _ _ 1lm(v—-u) 3 3
ZT]]fl Jd V+[ﬂk 7 (V =U ) T [ 5 - ZT]]fvin v o+
B B 2kBT
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w (m(v-03% 3 Y- 2. .3 '
el (BT 3] 2 v} (4. 62)
3k szTz 27 | |

It is sometimes convenient to rewrite (4. 6a) as:

' 4
P . (J)=f0(n,3,r) o) 1S rd?v (s eb)
fO(H,U,T) 5=0 fo(n,u,T) fo(n,u,T)
Here _
¢(0) N =H-1/2, ¢(1) X :(%)1/zci, =12, 3,
fO(H,U,T) : fo(n,u,T)
h(4) _/2 .1/2 2 3. _ 1/2 _
O H H

It is easy to check that
ffo(n,ﬁ,r) ¢(k) . $(1) R d3v=6k1 (4. 8)
fo(n,u,T) fo(n,u,T)

Here Skl is the Kronecker delta.
The defect of the LM manifold at the point

-> .
fo(n,u,T) is:

. 8f  (m, U, T) N
A(f (n u, TY)=P —(v_—u_) 0 +Q(f (nu, TY)|-
0 fo(n,z,r)[ 5 s GXS 0 ]
>
Gfo(n,u,r) N
—[—(vs—us) 6XS +O(f0(ﬂ,u,T))]=
[ 6f0(n,3,T)] 6f0(n,3,T)
=P . —(v _~u_) . +(v_-U_) (4. 9)
fo(n,u,T) 5 S 6x5 5 S 6XS

Substituting (4. 6a) into (4. 9), we obtain:

+> > 2 -
> _ > mv-u) 5 dlnT
A(fo(n,u,T))_fO(n,u,T){[ szT - 2](Vi'u')ﬁxi +

Ou
- _ _ _d > 2. S
+ kBT(((Vi U (v ~u )30 (v-u) )6Xi} (4.10)

The LM manifold i1s not a dynamic invariant manifold
of the Boltzmann equation (the defect (4.10) is not

identical to zero).
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we search for a correction to the LM manifold as:
fl(n,3,7)=f0(ng3,r) + Of (m,u,T) (4. 11)

In this paper we will use the Method 2 (see section 2. 3)
for obtaining the correction Sfl(ﬂ,z,T) because we
search for a manifold of slow (hydrodynamic) motions. We

introduce the representation:
Sfl(n,ﬁ,T)=f0(n,3,T)@(n,3,T) (4.12)

Then the equation of the first iteration in the form of

(3. 17) for the correction @(H,Z,T) is:

{ afo(n,?z,r)

P N (-)—1}(—(v ~-u ) +

fo(n,u,T) s S Ox ¢

P 0 O(fy(m, u, T)P)

+f , (m u, TYL L, (0)y - (v _~u) -
"0 fo(ﬂ,U,T) s s 6XS

—ﬂﬁl(fo(n,z,T))[fvsfo(ﬂ,E,T)@d3v +

8f (n, 0, T)
> > 3 O 4 ? B
+u5(f0(n,u,T))Ifo(n,u,r)md V] T )=0 (4. 13a)
Here fb(n,Z,T)L 5, () 1s the linearized Boltzmann
fo(ﬂ,u,T)
collision integral:
> >, > D >
L s (O)=lwv v |v,v )L (8, u, T)x
£o(nu,T) 1 1740

<10 40) -9 -0y v dvidv, (4. 14)
>, >, - > . .
and w(v ,VIIV,VI) is the kernel of the Boltzmann
collision integral, standard notations label the
velocities before and after a collision.

Additional condition (3. 14c) for equation (4. 13a)

has the form:

P N (fo(n,E,T)@)=0 (4. 15)
fO(H,u,T)

In detail notation:

fl-fo(n,ﬁ,r)@d3v=o, jvifo(n,E,T)$d3v=0, i=1, 2, 3,
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Ivzfo(ﬂ,z,T)$d3v=O ‘ : - (4. 16) .
. Eliminating iﬁ_ (4. 13a) the terms containing
fvsfo(n,ﬁ,T)$d3V and ffo(ﬂ,E,T)®d3v with the aid of
(4. 16), we obtain the following form of -equation

(4. 13a):
5f0(a,3,T)
N 8(Fy(a, u, TP)
+f0(ﬂ,u,T)L S, () - (vs-us) aXS )=0 (4.13b)

: fo(n,u,T)

In order to consider the properties of equation
(4. 13b), 1t 1is useful to introduce real Hilbert spaces

G R with scalar products:
fo(n u,T)
(0, & R - ffo(n,ﬁ,r)w¢d3v (4.17)
fo(ﬂ,u,T)

Each Hilbert space i1s associated with the corresponding
LM distribution fO(n,E,T).

The projector P (4. 6b) 1s associated with a

fe(ﬂ,u,T)
projector II R which acts in the space & N :
fo(n,u,T) fO(H,U,T)
I, (\=fy (a5, TP, (£, 7)) (4 18)
fO(H,U,T) fo(n,u,T)

It is an orthogonal projector because

4
I L (@)= R o) o5 g L (4.19)
fO(H,U,T) 5=0 fo(n,u,T) fﬂ(n,u,T) fO(H,U,T)
Here O5) S are given by the expression (4. 7).
fo(n,u,T)

we can rewrite the eguation of the first iteration
(4. 13b) in the form:
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L L, (@ + K , (® =0 L (4.20)
fo(ﬂ,U,T)- fo(n,u,T) fo(ﬂ,u,T)

Notations used here are:

D L =@ L, AL (0, T K , (®)=
fo(n,u,T) _ fO(H,U,T)

8(F y(m, u, TH§)

-1 -
= (1l (*)=1) £_"(mu TY(v ~u_) (4.21)
fo(n,ﬁ,T) 0 s S 5XS
The additional condition for equation (4.20) 1is:
(@) . ©) =0, s=0,...,4 (4.22)

> >
fo(ﬂau,?) fO(H,U,T)
Now we will 1list the properties of the equation

(4. 20) for usual models of a collision [1]:

a) The linear integral operator L 5 1s
fD(ﬂ,U,T)
selfadjoint in the scalar product (-, *) 5 , and
fo(ﬂ,U,T)
the quadric form (§, L L {(®)) 1is negatively defined
fO(H,U,T)
in ImL S :
fO(H,U,T)

b) The kermel of L~ does not depend on fo(u,E,T),

>
fo(n,u,T)
and it is the linear envelope of the polynomials ¢0=1,

— -— — 2
¢i_vi’ 1=1,2,3, and ¢4_V )

¢) The RHS D 5 is. orthogonal to kerZ 5 in

fO(H,U,T) fO(B,U,T)

the sense of the scalar product (-, *) . :
fo(n u,T)

d) The projecting operator II is the selfadjoint
fo(ﬂ,U,T)

projector onto kerZ 5 :
fo(ﬂ,u,T)

11 ($y € kerzZ . (4. 23)

_)
fO(H,U,T) fO(H,U,T)
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Projector II projects orthogonally.
_ fo(n,u,T) S
€) The image of the operator X . is orthogonal to
kerlL 5 .
| fo(muT)

f) Additional condition (4.22) require the solution of

equation (4.20) to be orthogonal to kerL S )
fo(n,u,T)

These properties result in the necessity condition
for solving the equation (4.20) with +the additional
constraint (4.22). This means the following: equation
(4.20), provided with constraint (4.22), satisfies the
necessary condition for to have an unique solution in

ImL 5 }
fo(ﬂ,u,T)

Remark. Because of the differential part of the operator
K - 5 , we are not able to apply the Fredholm
fo(n,u,T)

alternative to obtain the onecessary and sufficient
conditions for solvability of equation (4.22). Thus, the
condition mentioned here is, rigorously speaking, only
the necessity condition. Nevertheless, we will still
develop a formal procedure for solving the equation
(4.20).

To this end, we paid no attention to the dependency
of all functions, spaces, operators, etc, on X. It is
useful to rewrite once  again the equation (4.20) 1in
order to separate the local inm x operators from those
differential. Furthermore, we will replace the subscript
fo(n,a,T) with the subscript.} in all expressions. We

represent (4. 20) as:
> > > 8 > > >
AlOC(X’ V)(P"Adiff(«’(, a—}, vIP=-D(X, v);

4] oc (K VIP=={L, (V)O+(IL, (V)-1)r 0}
X X X
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> 4 - 5
Agirs (X o D=L CH=1) (VU 59
. X X R

> & (S) 1(S)
vy =2 2,77 577, 2);
be S=0 X X

¢£0):ﬂ—1/2, ¢£S)=(%)ljzc.(},3), s=1, 2, 3,
X

2 bl
2
4 2 . 1/2 3 1/2 2
¢§ =M e 0y-dy o D=k gr o R v G0
3u . 2 > 7
8lnn Vi bl m(V—il) 3)81nT
r.o=(v _~-U )[ + (V~U_-)Y5—— + [ - —]————];
2 s s GXS kpl' 1 71 OXS ZkBT 2 BXS
> > m(? 3)2 5 81nT
- 2
D(X’V)={[ 2k, T 5}(Vi"ui)axi *
Bu
7/ 1 > > 2 s
* kBT(((Vi“"i)(vs_us)—géis(v u) )axi} (4.24)
Here we have omitted the dependence on X in the
. > > > .
functions n(x}y, U (x), and T (x). Further, if no

discrepancy might occur, we will always assume this
dependence, and we will pot indicate it explicitly.
The additional condition for this equation 1is:

IL (0y=0
X

Equation (4.24) is lipnear in . However, the main
difficulty in solving this equation is caused with the
differential in x operator Aqipg Which does not
commutate with the local in x operator A1 oc

4. 2 Parametrics Expansion

In this section we introduce a procedure to
construct approximate solutions of equation (4;23). This
procedure 1involves an expansion similar to the
parametrics eXxpansion in the theory of pseudo-
differential (PD0O) and Fourier integral operators (FIO).

Considering @<=ImZ,, we write a formal solution of
X
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equation (4. 24) as:
> > > > > J » = > > _
PET)= (41 5 D =dgipp (% 25 9)) L-D(%, V) (4.25)

It is useful to extract the differential operator Q;
Ox

£ t th erat 7.9 2.
rom ou e operator Adiff(x,gi,vy

> > > > 4 -1 > >
O )= (1B Vg )™ 0o (51 ¥) (4.26)

Notations used here are:

Py oo (%o VI=4] 5o (X, VI (-D(X, V)=
— (-, (V)-(L (v)-1)r, 17 (-p(X, V) )
X X X
> o -1, >
Bs(x,V)=Aloc(x,V)(H}(V)—l)(vs—us)= (4.27)

-> -
=(-L, ("=, ()-1yr, 1AL (7)) -1) (v u )
X X X X
we will now discuss in more detail the character of

expressions in (4. 27).
_> - Y
For every x, the function wloc(},ﬁy, considered as

a function of 3, is an element of the Hilbert space G,.
X

It gives a solution to the intepral equation:
> >
~L, (V)9 oo~ AL (V)=1) (1,0 )= (-D(X, V) (4.28)
X X X
This Jlatter linmear integral equation has an unique
solution in imLa(ﬁ). Indeed,
X
> -
kerd] . (X, v)=ker (£, (V)+(L, (v)-1)r,)*=
X X X
=ker (L, (v)) rker ((IL, (V)~1)r,) =

X X X
=ker (L, (v)) nker(r, (Il (v)-1)), and ¢,0l (¥)o, ={0}.
X X X X X X

Thus, the existence of the unique solution of equation
(4. 28) follows from the Fredholm alternative.

Consider the operator R(;,Q;,3):
Ox
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R(X“a—V) (1-B (X, v) ) -1 (4.29)
Y
One can represent it as a formal serles:
< m
R(X V)= 2 (B (X, V)a ] (4.30)
ox m=0
Here
> > Jd > > Jd > > 0
[Bs(x,_v)gx—]”’=BS (X, V)gg— - - Bg (X, Vg (4.31)
s 1 S @ s

Every term of the type (4.31) can be represented as a
finite sum of operators which are superpositions of the

=

following two operations: of the integral in v
operations with kernels depending on X, and of
differential in x operations.

our goal is to obtain an explicit representation of

the operator R(x V) (4. 29) as an integral operator.

_)7

Ox
If the operator BS(}’;) would not depend on X (1. €. if
no dependence on spatial variables would occur 1in
kernels of 1integral operators, 1in 35(3,3)), then we
could reach our goal via usual Fourier transformation.

However, operators B (},3) and g—— do not commutate, and
s X,
thus this elementary approach does not work., Wwe will

develop a wmethod to obtain the required explicit
representation using the ideas of PDO and TOF techmnique.

We start with the representation (4. 30). our
strategy is to transform every summand (4.31) in order
to place integral in v operators BS(},a) left +to

differential operators gx‘ The transposition of every
~ k
pair gx BS(},z) yields an elementary transform:

ad > 3> 0
anB (X V) —> B (X V)axk — [BS(X,V),EIZ] (4. 32)

Here [M, Nl=MN-A¥ denotes the commutator of operators #

and N. We can represent (4.31) as:
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(B (X, V)

&3

—1" = B (X,V)...B (X’g)EEf*"'BxS +

7
=]
n

‘ 1) | (4.33)
7 : S
» > 4 £ . )
Herte O([BS (X, v gy 1) denotes the terms which contain
b Sk '
one or more pairs of brackets [+, -}. The first term in
(4. 33) contains no these brackets. We can continue this
process of selection and extract the first-order in the
number of pairs of brackets terms, the second-order
terms, etc. Thus, we arrive at the expansion into powers
of commutator of the expressions (4. 31). ,
In this paper we will consider explicitly the
zeroth-order term  of this commutator expansion.
Neglecting all terms with brackets in (4. 33), we write:

> 3> 4 > > > > 8 Is}
[Bs(x,v)ayg]mo = B, (X,V)...B, (X,V)axs - ax, (4.33a)
1 m

1 Vi)

Here the subscript zero indicates the zeroth order with
respect to the number of brackets.

bstitut i B_(%.0)2—17

we now substitute EXPressions [ S(X,V)axs] 0

M (4.31) into

(4.33a) instead of expressions [35(},3)2;—]
s
the series (4. 30):
.
5V) = T IB(X Vg
3% p=0 ° g O

The action of every sunmand (4. 33a) might be defined via
the Fourier transform with respect to spatial variables.
Denote as F the direct Fourier transform of a

=
R (X, (4.30a)

Q)

ol

function g(},ﬁ):

Fg(},3)5§(1,3)=fg(},3)exp(-igsgs)dpx (4.34a)
Here p 1s the spatial dimension. Then the inverse

Fourier transform is:

g(},3)£F_1§(I,3)=(2%)‘pj§(2,3)exp(iksxs)dpk (4. 34b)
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Thc“abtion of the operator (4.33a) on a function g(},é)

is defined as:

> > 3 W > >
[BS(X1 V)aXS] Og(xi V)_'

5> 3 a A ik _x
= (B, (},3).,.35 (X, V)35 By (2T Prock vye *° SdPi=
1 m s
1 o
| =(2%)"pfexp(iksxs)[ikJBI(},3)]” 2k vydPk (4.35)

The account of'(4.35) in the formula (4.30a) yvields the
following definition of the operator R
Rog(},3):(2%)‘pjelksxs(1—ik]BJ(},3))_1§(},3)dpk (4.36)
This 1s the Fourier integral operator (note that the
kernel of this integral operator depends on % and on }).
The commutator expansion introduced above is a version
of the parametrics expansion [25, 26], while expression
(4.36) is the leading term of this expansion. The kernel
(1—ik131(},3))"1 is called the main symbol of the
paramectrics.

The account of (4.36) in the formula (4. 26) yields

the zeroth-order term of parametrics expansion ®O(},3):

@O(},3)=F'1(1—1k131(},3))_leloc (4.37)
In detail notation:
—)—)_ —p N _ <
Py (x, v)=(2T) " Jexp(ik (X -y )
1

X . > > -1 > > -1,
(1-Zk [-L, (v)~dL (v)-1)yr, 1 dL(v)-1) (vg-ug(x)))
X X X X

“[-L, (v)-(IL, (Vy-1)r, 17 (-p(y, v))dPydPk (4.38)
¥ v ¥
we mnow will list the steps +to calculate the

function wo(},ﬁ) (4. 38).
Step 1. Solve the linear integral equation

[—La(g)_(na(g)*l)r41®1oc(}13)="D(}:3) (4. 39a)
X X X
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and obtain the functlon @1 (x 3)
Step 2. Calculate thc Fourler transform m c(}’$):

@100(},V)=I®IOC(Y,V)exp(—iksys)dpy (4. 39b)
Step 3. Solve the linear integral equation

(L, (V)= (9)-1) (r,+ik (v -t (X)) 10, (%, & ¥)=-D(%, k. 9);
X X X
-D(%, & 9)=1-L,(V)-L, (¥)-1)r, 10, (& ) (4. 39¢)
X X X
and obtain the function @ (X } ﬁ)
Step 4. Calculate the inverse Fourier transform $ (X v)

@, (. Ez’):(z%)"pﬁpo(?, t ?F)exp(iksxs)dpk (4. 39d)

Completing these four steps, we obtain an explicit
expression for the zeroth-order term of parametrics
expansion $0(},3) (4. 37).

As we have already mentioned above, equation

(4.392) of step 1 has an unique solution in imL+(3y
X

Equation (4.39c) of sStep 3 has the same property.
Indeed, for every I, the RHS —D(},I,g) is orthogonal to

imﬂé(g), and thus the existence and the uniqueness of

X . ~ > .
formal solution ®0(X,},V) follows again f{rom the

Fredholm alternative.
Thus, 1in Step 3, we obtain the unique solution
@O(X I v) For every } this is a functlon whlch belongs

to imL, (V) Accounting that f (x V) f (u(x) U(X) T(X) V)
X
expose no explicit dependency on ;, we see that the

inverse Fourier transform of Step 4 gives
> > . >
$O(X,V)€lmL+(V).
X

Equations (4.3%a)-(4.39d) provide wus with the
scheme of constructing the =zeroth-order term of
parametrics expansion. Finishing this section, we will
outline briefly the way to calculate the first-order

term of this expansion.
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1

consider a formal operator R=(1-4B) . Operatorrk

is defined by a formal series:
(¢ 4]

R=3 (aB)" (4.40)
n=0
In every term of this series, we want to place operators

4 left to Operdtors B. In order to do this, we have to
commutate B with 4 from left to right. The commutation
of every pair B4 ylelds the elementary transform
"BA — AB - [A, B]

where [A, B|=AB-BA. Extracting the +terms with no
commutators [4, B] and with a single commutator [4, B], we
arrive at the following representation:

R=R +R1+(terms with more than two brackets) (4. 41a)

0
Here
co
Ry= 2 A5, (4. 41b)
a=0
o oom . . . .
Ri=~-2 A" T, B1at T BT BT (4. 41c)
m=2 i=2
Operator Ry (4. 41b) 1s the =zeroth-order +term of

parametrics expansion derived above. Operator R, (the
first-order term of parametrics expansion) can be

represented as follows:

00 © .. 0
R == 3 ma"[4,B]( 3 ATBB"=- § na"cB", C=14, BIR, (4. 41d)
=1 1=0 m=1
This expression can be considered as an ansatz for the
formal series (4.40), and 1t gives the most convenient
way to calculate R,. Its structure is similar to that of
R Continuing in this manner, we can derive the
second-order term Rz, etc. we will not discuss these
questions in this paper.
In the next section we will consider 1im a more

detail the first-order term of parametrics expansion.

4.3 Finite-Dimensional Approximations to Integral

Equations
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pealing further only with the zeroth-order term of
parametrics expansion (4.38), we have to solve two
linear integral equations, (4.3%a) and (4.39c). These
equations satisfy the Fredholm alternative, and thus
they have unique solutions. The problem we face here is
exactly of the same level of complexity as that of the
Chapman-Enskog method [1]. The usual approach is to
replace integral operators with some appropriate
finite-dimensional operators. '

First we will recall standard objectives of finite-

dimensional approximations, considering equation

(4.39a). Let p.(x,v), where 7=1,2,.... be a basis in

- > 1 . = > . > .

imL, (V). Every function Q(x, vieimL (V) might be
X X

represented in this basis as:

o

PX, V)= 0 a,(XIp (6, V) a (X=X, V), p;(X, ), (4 42)
I=1 X

Equation (4. 3%a) 1s equivalent to an infinite set of

linear algebraic equations with respect to unknowns

Y
31-()():
® > > ->
iglmki(x)ai(x)zdk(x), k=1,2,... (4. 43)
Here
> > > e > >
Wkl'(x)z(pk(xa V), AlOC(X’ V)pl-(X, V))};
> > > > >
dp(X)==(Pg(X, V), D(X,V)), (4. 44)

X
For a finite-dimensional approximation of equation
(4. 43) we use a projection onto a finite number of basis

elements pi(},g), i=il,...,jﬂ. Then, instead of (4. 42),
we search for the function @f. :
in
> > I > > >

s=1 "8 s
Infinite set of equations (4.43) is replaced with a
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finite set of linear algebraic equations with respect to

_)
a; (xy, wvhere s=1,...,m
s
Ly > > > _
m; ; (X)a; (x):di (X), s=1,...,n (4. 45b)
I=1 s 1 s
There are no a priori restrictions upon the choice
of the basis, as well as upon the choice of its
finite-~-dimensional approximations. In this paper we use
the standard basis of unreducible Hermit tensors (see,
for example, [2, 4]). The simplest appropriate version of
a finite-dimensional approximation occurs if the finite
set of Hermit tensors is chosen as:

2 5
PL(X. V)= (X, V) (X (X, V)=3), k=1,2, 3;

pi (% V)=c (K Vye (3, V) =30, e? (R V), 4 =12, 3
> > —1 2 > —>_k > 1/2 4 46
Ci (X V=V (X)(V;=U (X)), Va(X)=(2KT(x) /@) (4. 46)
It 1is importanmt +to stress here that “rgood”

properties of orthogonality of Hermit tensors, as well
as of other similar polynomial systems in BE theory,
have the local in x character, 1.e. when these functions
are treated as polynomials in Z(},g) rather than
polynomials 1n V. For example, functions pk(},g) and

_>
pii(x,z) (4. 46) are orthogonal in the sense of the

scalar product () ),
> > > > :c _cz(},?;) > > > > 3 <> >
(pk(x,v),pij(x,V))} Je Pr(X, VIPy (X, v)d e(x, v)=0

On contrary, functions pk(},ﬁ) and pij(}’;) are not
orthogonal neither in the sense of the scalar product

(*. *),, nor 1in the sense of the scalar product (5 "),
y | X
if y#x. This distinction is important for constructing
the parametrics expansion. Further, we will omit the
dependencies on X and v in the dimensionless velocity

ci(},ﬁ) (4. 46) if no misunderstanding might occur.
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1n this paper' wve will consider the case of

. . . i -
one—~dimensional in x eguations. We assume that:

U (X)=u(x ), U,=u,=0, T(X)=T(X;), n(X)=n(X;) (4.47)

wWwe write x instead of X below. Finite-dimensional

approximation (4. 46) requires only two functions:

p3(X’3)=C$(Xr3)"%02(X,3), p4(X,;)=CI(X,3)(02(X,3)—%),
¢ (X, V)= V (X)(V —u(xX)), €, 4(X, V)= V (X)v2 3 (4. 48)

we now will make a step-by-step calculation of the
zeroth-order term of parametrics expansion, 1in the
one-dimensional case, for the finite-dimensional

approximation (4. 48).
Step 1. calculation of @loc(x,z) from equation (4. 39a).

we search for +the function Qloc(x,ﬁ) in the
approximation (4. 48) as:

=N 2 1.2 2 5

®1OC(X,V)_310C(X)(01—3C )+bloc(x)cl(c 2) (4. 49)
Finite-dimensional approximation (4. 45b) of 1integral
equation (4.39a) in the basis (4. 48) yields;

loc

m 3(x)a (x)+m44(x)bloc(x)=ﬁloc(x); (4. 50)

loc

Notations used are:

11 Ou
9 Ox

27 Bu

3 (=0 (X)+7g LO=R0ON (O F5

VT(X)[alnn 1] alnr]_

By (Xm0 5 (X)=73 ox T T2 Tox
2 1 f --6‘2(:!(), ;;)) > > 3> > d3 > >
3, 4(X)——f]'[;3/2 € p3, 4(X,V)L}(V)p3, 4(X! V) C(X,V):’O
3 3lnT
1OC(X)=_% _%; Bloc(X)z_g Vr(X) é; (4.51)

Parameters h3(x) and K4(x) are easily expressed via
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Enskog integral brackets, and they are calculated in [1]
for a wide class of molecular models.
solving equation (4.50), we obtain coefficients
o (1) and b o (X) in the expression (4. 49):

loc(x) : loc(X)_ 2 ‘
A oc=Z(x, 0y Ploc™ Z(x, 0y 206 =85 (X)m  (X)=Hy, (X);
Aloc(x)zaloc(x)m44(x)*ﬁloc(x)m34(X);
By e (N)=P o (X34 (X) =04 [ (XY, (X);
2 8u 27 Bu 5 ,201n7(8lna 11 81lnT
3 6x[ﬂk4+ 4 ax] 1277 Ox [ 5x T 2 Ox ]
210c” 5 5 2 2;
11 Ou 27 8u "T(8lnn 11 8inT
[”K3+ 9 ax][ﬂk4+ 4 5x]_ 9 [ ox T 2 dx ]
5. 8lnr 11 Gu) . 2  Gu(8lnm 11 8lnT
a'T Ox [ Aatg x]+9 Y1 x[ ox T2 ox ]
b - (4.52)

loc 5 v 5
11 Gu 27 6u) 'Tr({8lnnmn 11 8lnT
[HK3T 9 ax][ﬁk4+ 4 ax]_ 9 [ ox 2 dx ]
These expressions complete Step 1.

Step 2. calculation of Fourier transform of wloc(x’;)
and its expression in the local basis.

In this step we make two operations:

i) The Fourier transformation of the function Py oc (X V)
+00

Py oo (b V)= §  exp(-1ky)P;, . (¥, V)dy (4.53)

-0
i1) The representatlon of @1 k,?) in the local basis
{PO(X V),---,P4(X V)}
-» > 2 -> 3
pO(X,V)=1, pl(x,v)zcl(x,v), pz(X,V)=c (X,V)—E, (4. 54)

> 2 > 1 2 > > > >
Py (X, V)=CT (X, V)=3c (0, V), p,(x, V)=c (x, V)(c(x, V)-2)

Operation (1ii1) 1s necessary for completing Step 3
because there we deal W1th X~ dependent operators.
Obviously, the function @loc(k V) (4. 53) is a
finite-order polynomial in v, and thus the operation

(ii) 1s exact.
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wWe obtain in (3i1):

A - : > 4 R S -
Qloctx’k’;)Ewloc(X'k’c(x’g))z,E hi(x»k)Pj(X,V) (4. 55)

=0

Here
h v YD, (kv (X, V) (4.56)
B B=(p (0 %), py (VN FE@ (KT, Py (6 V), |

introduce notations:

) u(x)-u(y)

8=8(x, p)=(T O TN T = (4. 57)

Coefficients Bj(x,k) (4. 56) have the following explicit
form:

- T ) -1
b (x, k)=] exp(-Zky)h;(x, y)dy; h;(X, y)=Z "(§. )8 (X )

—00

5 2 2 2
2, (x, ¥)=B1 (VP HT(=1)) + A1,

2 5q..q2 4 .
g, (X, ¥)=B (N (3TYT438(B7-1)) + Ay (YT

2
£, (X, ¥)=3B,  (7)8;
_ 9 92,
g3(X’ y)_Bloc(Y)Z%IY + A]_OC(Y) F)

g,(x, ¥)=By (1)’ (4. 58)
Here Z(y,0), By .(¥) and Aloe(y) are functions defined
in (4. 32)
Step 3. <calculation of the function @O(X,k,ﬁ) from
equation (4.39c).

Linear 1ntegral equation (4.39c) has character
similar to that of equation (4. 39a). we search for the
function @O(X,k,ﬁ) in the basis (4. 48) as:

o > ~ > -~ > _
Do (x, &, vy=a, (X, K)p, (X, V)+b (X, K)p,(X. V) (4.59)

Finite-dimensional approximation of the integral
equation (4.39c) 1in the basis (4. 48) vyields the
following equations for unknowns ao(x,k) and bo(x,k)
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o | 1 P _0 :
m33(X)30(x,k)+{m34(X)+31kVT(x)]bD(x.k)—ao(x,k),

[m43(x)+%iva(x)]aO(x,k)+m44(x)50(x,k)=ﬁ0(x,k) (4. 60)
Notations used here are:

ao(x,k)=m33(x)b3(x,k)+m34(x)b4(x,k)+sa(x,k);

Ly

ﬁo(x,k)=m43(x)b3(x,k)+m44(x)b4(x,k)+§ﬁ(x,k);

+00

s X, k)= exp(-1ky)s X, y)dy;

a, g0 k)= ] exp(-iky)sy g(x, y)dy

a1 d 3

sq (0 =2, 0 (B2 b (x, yy42 Gk (x, yy+2h, (x,¥))

8 d
sﬁ(x,y)=§vT<x)[ Sh, x, )+ 050 (3hy (x, y)+hy (0, y ) +
d
+3 Gyl (6 9) | (460

Solving equations (4.60), we obtain functions go(x,k)
and bO(X,k) in (4. 39):

ay(x, kym,  ()-B(x, k) (@ (X)457kv (X))

Eo(x,k)= I
Z(X,gikVT(X))

) Po (X kymy L ()0 (x, k) (my , (X)+31kv, (X))
b (x, k)= : (4. 62)

0 1.
Z(x,3;va(x))
Here
1. kzvi(x) 5 .
Z(X,—lkVT(x)) = Z(x, 0) + 5 + glkVT(X)m34(X) =
11 8u 27 Bu Vi(x) Slnn 11 81n7Y) > kzv%(x)
=[ﬂh3+—§ 5}][”K4+_I 5?]' 9 [ dx * 2 Bx ] t 9 +
2,2 8lnn . 11 alnf]
+91va(X)[—5E— + > Bx (4. 63)

Step 4. calculation of the inverse Fourier transform of
the function §,(x, k, V.
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~ The inverse Fourier transform of +the function

éo(x,k,3) (4. 59) yields:

- > >
@O(X,V)=3O(X)P3(X,V)+bO(X)P4(X,V) (4. 64)
Here _
1 B -
a2, (X)=5q {m exp(ikx)a,(x, kydk,
1 ¥ o
b (X)=5p {m exp(Zkx)b (x, k)dk (4. 65)

Taking into account expressions (4.352), (4.61)—(4.63),
and (4. 58), we obtain the explicit expression for the
finite-dimensional approximation of the =zeroth-order

term of parametrics expansion (4. 64):

p B -1, 1
a,(X)=5 [ dy[ dk exp(ik(x-y))z (X,gikVT(X))x

4] -C0

X{Z(Xs 0)]23(X, _V)+{Sa(x, V)m44(X)—SB(X: Y)m34(X)]-_

1.
—;lkVT(X)[m34(X)b3(X,Y)+m44(x)b4(X’Y)+5ﬁ(XaY)]};

] RO A -1, 1
by (X)=77 {mdy{wdk EXP(Ik(X-y))Z ~ (X, 3LV (X))~

X{Z(X, 0)b4(X: .y)+{SB(X7 Y)HI33(X)—Sa(X, y)ﬂ?34(X) ]_

—%ikv,,(x)[m34(x)b4(x,y)+m_33(X)b3(x,_V)+sa(x,y)1} (4. 66)

4. 4 Hydrodynamic Equations

Now we will discuss briefly the utility of results

obtained in Sectiom 4.3 for hydrodynamics.
. . >

The correction to IM functions fo(n,u,T) (4. 1)

obtained has the form:
fl(n,E,T)=f0(n,3,T)(1+®O(u,3,r)) (4. 67)

Here the function @O(H,E,Tj 1s given explicitly with
EXPressions (4. 64)—(4. 66).
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The usual form of closed hydrodynamic equations for
n, 3, and T, whgre the tracelﬂss tension tensor Gik and
the heat flux vgctor q; are expressed via hydrodynamic
variables, will be obtained 1if we substitute the
function (4. 67) into balance equations of the density,
of the momentum, and of the energy. For LM
approximation, these balance equations result in Euler
equation of the nonviscid liguid (1. e. Gik(fo)EO, and
qi(fo)EO). For the correction fl (4. 67), we obtain the:
following expressions of G=Gxx(f&) and qqu(fl) (all
other components are equal to zero in the one-

dimensional situation under consideration):

1 S
0_3ﬂ30, q—4ﬂb0 (4. 68)
Rere a, and bo are given by expression (4. 66).

From +the geometrical viewpoint of Section 2,
hydrodynamic equations with the fension tensor and the
heat flux vector (4. 68) have the following
interpretation: we take the corrected manifold ml which
consists of functions fl (4. 67), and we project the BE

vectors Ju(f&) onto tangent spaces Ty using the LM
1
projector Pr (4. 62).
0
Although a detailed 1investigation of these

hydrodynamic equations is a subject of a special study
and 1t is not the goal of this paper, some points should
be mentioned.

Nonlocality. Expressions (4. 66) expose a nonlocal

spatial dependency, and, hence, the corresponding
hydredynamic equations are nonlocal. This nonlocality
appears through two contributions. The first of these
contributions might be called a ffequcncy—response
contribution, and 1t comes through -explicit non-
polynomial £-dependency of integrands in (4. 66). This
latter dependency has the form:



METHOD OF INVARIANT MANIFOLDS 623

J .

5 ‘ exp(Iik(x-y))ydk ‘(4-69)
—0 (X, Y)+IKD(X, y)+k"E(X,y)

Integration over % 1in (4.69) can be completed wvia
axillary functions. ,

The second- nonlocal contribution might be called
correlative, and it 1s due to relationships wvia
(u(x)-u(y)) (the difference of flow velocities in points
x and y) and via T(x)/T(y) (the ratio of temperatures in

points x and y).
| Acoustic spectra. The purely frequency-response
contribution to hydrodynamic equations 1is relevant to
small perturbations of equilibria. The tension tensor C
and the heat flux g (4. 68) are:

z 2 Fl
8u 2 8°T'Y.
O = —(2/3)n,T R [28 3F - 3E agz ],
i 2 i
3/2 8T .02 G7u
g = -(5/4)T," "n R [38 5t -(8/3)€ 555 ] (4. 70)
Here
2
R = [1 - (2/5)82—é13]'1 (4. 71)
a¢

In (4. 70), we have expressed parameters A@ and K4 via
the viscosity coefficient W of the Chapman-Enskog method
[1] (1t 1is easy to see from (4. 51) that K3=K4m u_l for
spherically symmetric models of a c¢ollision), and we

have used the following notations: Th and m, are the

equilibrium temperature and density, Ez(nTé/z)_lnox is

the dimensionless coordinate, N=(T )/ T, u'=T51/26u,

T’=6T/T0, n':@n/ﬂo, and Bu, 871, On are the deviations of
the Tlux velocity, of the temperature and of the density
from their equilibrium values wu=0, T=T, and o=m,. We
also use the system of units with kB=m=1.

In the 1linear case, the parametrics expansion
degenerates, and its zeroth-order term (4.39d) gives the

solution of equation (4. 24).
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The dispersion relationship for the approximation
(4. 70) is:

W e (23k% /60y 4 (k2 2kt /0P Y+ (8k8 /507y we (5K % 2Dy =0;

D=1+(4/5)k2 (4. 72)
Here k£ 1s the wave vector. Acoustic dispersion curves
W(k) for approximation (4.70) are depicted 1in FIG. 1
(solid line). They are compared with the second (the
Burnett) approximation of the Chapman-Enskog expansion
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[3] (dashed 1line) and with .the regularization of the
Burnett approximation +wvia partial summing of the.
Chapman-Enskog expansion [5, 7] (punctuated dashed line).
Arrows indicate an increase of k.

Acoustic spectra given by dispersion relationship
(4. 72) contains no nonphysical short-wave instability
characteristic to the Burnett approximation. The
regularization of the Burnett approximation [5, 7} has
the same feature. Both of these approximations predict a
limit of the decrement ReW for short waves.

Nonlinearity. Nonlinear dependency on g%, on aéET,
and on 6%;” appears already in the local approximation
wloc (4. 52). In order to outline some peculiarities of

this nonlinearity, we represent the zeroth-order term of

the expansion of d14c (4 52) into powers of aéiT and

Olnn
Ox -

) 1
2 8oyt 897 ofoha, 2hpe) (4730

N oc™

This expression describes the asymptotic of the r"purely
nonlinear” contribution to the tension tensor O (4. 68)
for a strong divergency of a flow. The account of
nonlocality yields instead of (4. 70a):

a (X)=—k }md }mdk exp(ik 2 [ A 41l Qg]_
o(¥)=7m J VI PLIEX=Y T 3y (™39 &y

[, 2 &) [oh 22 a_u]f "T]‘l[[ #9842 98]

3t ¢ By 4t 4 Bx) o 3 x) |PMat 4 Bx) T

27 Bu)dbu
+-§[nk4+ i H%J@x Vo (U(X) uiyy) ——1kg§(u(X) U(Y))] +
a a
+ O[ é?T, éﬁﬂ] (4. 74b)

Both expressions, (4.74a) and (4. 74b) become singular

when

_5_1_1, au* 9IIK3
dy 3y = 11 (4.73)
Ju

Hence, the tension tensor (4. 69) becomes infinite if 3y
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tends to g in any point y. In other words, the flow

becomes 1nf1n1tel viscid when g% approaches the

9n

negative value h—TTé‘ This infinite viscosity threshold

prevents a transfer of the flow into nonphysical region

of negative VlSCOSlty if 5} g% because of the infini-

tely strong dumping at g% . This peculiarity was
detected in [6, 7] as a result of partial summing of the
Chapman-Enskog expansion. In particular, partial summing
for the simplest nonlinear situation [6] yields the

following expression for the tension tensor O:

_ . __4f,_ s zi] (e3¢ 208’ ) & <1 4a
=0 YR [1" € 7)) Bar v ) BT
ola 86
142
28 (,,20u’) "0Tu
GIIRZ 9 [l+3855] a§2 (4. 76)

Notations here follow (4.70) and (4.71). Expression
(4. 76 ) might be considered as a "rough draft" of the

"full" tension tensor defined by a, k6 (4. 66). It accounts

0
both the frequency-response and the nonlinear
contributions (GIR and OiIR’ respectively) in a simple

form of a sum However, the superposition of these
contributions in (4. 66) 1s more complicated. Moreover,
the explicit correlative nonlocality of expression
(4. 66) was never detected neither in [6], nor in
numerous examples of partial summing [7].

Nevertheless, approximation (4. 76) contains the
peculiarity of viscosity similar to that im (4. 73a) and
(4. 73b). In dimensionless variables and &=1, expression
(4. 76) predicts the infinite threshold at velocity
divergency equal to -(3/7), rather +than -(9/11) in
(4. 73a) and (4. 73b). Viscosity tends to =zero as the
divergency tends to positive infinity in both approxima-
tions. Physical interpretation of these phenomena was
given in [6]: large positive values of g% means that the
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gas diverges rapidly, and the flow becomes nonviscid
because the particles retard to exchange their momentum.
on contrary, its negative values (such as -(3/7) for
(4. 76) and -(9%9/11) for (4. 73a) and (4. 73b)) describe a
strong compression of the flow. Strong deceleration
results din "solid fluid* 1limit with an infinite
viscosity.

FI1G. 2 compares the qualitative character of

dimensionless viscosities DIDycs where Dys is the
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Navier-Stokes wviscosity, for approximation (4. 73a)
(solid line), for partial summing (4.76) (punctuated
dashed, line), and for the Burneft approximatioh [6]
(dashed line). The latter changes the sign at a regulaf
point and, hence, nothing prevents the flow to transfer
into the nonphysical region.

Thus, hydrodynamic eqguations for approximation
(4. 67) are both nonlinear and nonlocal. This result 1is
not surprising, accounting the integro-differential
character of equatlon (4, 24).

It is important that no small parameters were used
neither when we were deriving equation (4. 24) nor when
we were obtaining the correction (4. 67).

We stress once again that the problem of reduced
description (such as derivation of hydrodynamics) can be
posed and Iinvestigated without using small parameters.
This question was already discussed in Section 2. 5. Here
we will make some additional clarifications.

It seems "natural" to introduce the usual parameter
8”1, where € 1s Knudsen number, in front of the
collision integral inm equation (4.20), and to develop a
Taylor-type perturbation technique for this equation.
Representing @ in (4. 20) as a formal series

co
o= 3 eMtlelm (4.77)
m=0
one can easily obtain a set of linear integral equations
with respect to unknown functions w(m):

fo(n u, T) f (n, u T) f (n, u T) fo(n,u,T)
p{#) - K LoDy sy (4. 78)
r o (1, u T) fo(n,u,T)
Function D 5 and operator & 5 are defined
fo(ﬂ,u,T) fo(ﬂ,u,T)

in (4. 21).
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The system (4.78) 1s recurrently . solvable. In
particular, the correction @(0) coincides with the first
correction of the Chapman-Enskog method [1]. The higher
order terms in expansion (4. 78) also have the form simi-
lar to that of the Chapman-Enskog method, i.e. they have
polynomial dependency on spatial derivatives of n, o,
and 7. However, it is preferable to avoid this approach
because of at least two reasons:

i) A truncation of the formal series (4. 77) at any
mz1 is not reliable. Even though the corrections w(m) do
not completely coincide with the corresponding terms of
the Cchapman-Enskog expansion, the experience of dealing
with the Burnett and the super-Burnett approximations
shows that they are "bad" when used directly. In parti-
cular, the Burnett and the super-Burnett corrections
result in a short-wave instability of equilibria [3] and
in "negative viscosity" regimes under high gradients.

ii) Examples given above show a certain similarity
between results obtained via Newton-type method of sol-
ving the invariance equation and parametrics expansion,
and those obtained via partial summing of Taylor-type
expansions (i.e. a method which treats the series (4. 77)
as a whole), especially in fthe highly nonequilibrium
regions. This similarity of a properly chosen method of
partial summing to the method of invariant manifold is
not random (see, for instance, {18] in the case of KAM-
theory). However, it is rather difficult to define the
notion "the proper choice", and thus "successful methods
of partial summing" are always of an ad hoc character.

5. CONCLUSIONS

we have considered the two main problems of reduced
description for dissipative systems: the problem of
thermodynamicity (Problem 1 of Section 2.1) and the
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problem - of dynamic invariance (Problem 2 of Section
2.1). Main results in this direction are:

1) Problem 1 is solved completely in Section 2. 2.
There is no other universal way (1.e. independent of the
particular choice of collision integral) to construct
thermodynamic parameterization for an arbitrary
manifold.

1i) Iterative Newton-type methods to correct the
dynamic noninvariance are developed in Section 2.3 1in
.order to solve Problem 2.

These two results are combined into the method of
invariant manifold. The method developed requires no
special choice of initial approximation, as well as
small parameters. Thus, it provides a common approach to
such different problems as +the obtaining of hydro-
dynamics, shock waves, initial layers, etc. Specificity
of each problem is to be accounted via a relevant choice
of 1initial manifold, while the procedure of thermo-
dynamic parameterization and of obtaining corrections 1is
uniform in its essence.

As applied to the problem of derivation of hydro-
dynamics from the Boltzmann equation (Section 4), the
method of invariant manifold, together with the para-
metrics expansion, eliminates the necessity of using
Knudsen number expansions. New nonlocal and nonlinear
hydrodynamic equations derived in Sections 4.3 and 4. 4
contain no short-wave instability and negative viscosity
characteristic to the Chapman-Enskog method.

The question about the convergency of successive
approximations 1is not difficult for finite-dimensional
dissipative systems. For the Boltzmann equation this
question remains open. The complexity of this problem is
stressed by the fact that the global existence and
uniqueness of the solution is a particular case of this

problem.
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