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Abstract: The focus of this article is on entropy and Markov processé& study the
properties of functionals which are invariant with resgeatnonotonic transformations and
analyze two invariant “additivity” properties: (i) existee of a monotonic transformation
which makes the functional additive with respect to the ijggnof independent systems
and (ii) existence of a monotonic transformation which nsalkee functional additive with
respect to the partitioning of the space of states. All Lyagwufunctionals for Markov
chains which have properties (i) and (ii) are derived. Wecdbe the most general ordering
of the distribution space, with respect to which all contins-time Markov processes are
monotonic (theMarkov orde). The solution differs significantly from the ordering givby
the inequality of entropy growth. For inference, this agmto results in a convex compact
set of conditionally “most random” distributions.

Keywords: Markov process; Lyapunov function; entropy functionaldaiaable region;
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1. Introduction
1.1. ABitof History: Classical Entropy

Two functions, energy and entropy, rule the Universe.
In 1865 R. Clausius formulated two main lavig:[
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1. The energy of the Universe is constant.

2. The entropy of the Universe tends to a maximum.

The universe is isolated. For non-isolated systems energgatropy can enter and leave, the change
in energy is equal to its income minus its outcome, and thexgdan entropy is equal to entropy
production inside the system plus its income minus outcarhe.entropy production is always positive.

Entropy was born as a daughter of energy. If a body getsAhéaat the temperaturé then for this
bodydS = AQ/T. The total entropy is the sum of entropies of all bodies. Heats from hot to cold
bodies, and the total change of entropy is always positive.

Ten years later J.W. Gibb&][developed a general theory of equilibrium of complex mdxtiaed on
the entropy maximum: the equilibrium is the point of the atiodal entropy maximum under given
values of conserved quantities. The entropy maximum glacivas applied to many physical and
chemical problems. At the same time J.W. Gibbs mentionetlghtiopy maximizers under a given
energy are energy minimizers under a given entropy.

The classical expressiorf plnp became famous in 1872 when L. Boltzmann proved his
H-theorem 8]: the function

H:/f(:c,v) In f(z,v)dzdv

decreases in time for isolated gas which satisfies the Baliznequation (heré(x, v) is the distribution
density of particles in phase spaaseis the position of a particle; is velocity). The statistical entropy
was born:S = —kH. This was the one-patrticle entropy of a many-particle syggas).

In 1902, J.W. Gibbs published a book “Elementary princiglesstatistical dynamics”4]. He
considered ensembles in the many-particle phase spacepvatiability densityp(pi, g1, - - - Pn, ¢n),
wherep;, ¢; are the momentum and coordinate of itteparticle. For this distribution,

S = —k/p(pl,ql, o P @) In(p(p1, @1y -+ - Py @n))dan - .. dgpdpy - . . dpy, 1)

Gibbs introduced the canonical distribution that provittesentropy maximum for a given expectation
of energy and gave rise to the entropy maximum principle (BAdx

The Boltzmann period of history was carefully studi&}l [The difference between the Boltzmann
entropy which is defined for coarse-grained distributiod ertreases in time due to gas dynamics, and
the Gibbs entropy, which is constant due to dynamics, walyzed by many author[7]. Recently,
the idea of two functions, energy and entropy which rule timverse was implemented as a basis of
two-generator formalism of nonequilibrium thermodynas&;9].

In information theory, R.V.L. Hartley (1928)1)] introduced a logarithmic measure of information
in electronic communication in order “to eliminate the pgsgiogical factors involved and to establish
a measure of information in terms of purely physical quasgit He defined information in a text of
lengthn in alphabet of s symbols d% = nlog s.

In 1948, C.E. Shannori]] generalized the Hartley approach and developed “a mattiegththeory
of communication”, that is information theory. He measungidrmation, choice and uncertainty by
the entropy:

S=- sz‘ log pi (2)
i=1
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Here, p; are the probabilities of a full set of events § " , p; = 1). The quantityS is used to
measure of how much “choice” is involved in the selectiontwd event or of how uncertain we are
of the outcome. Shannon mentioned that this quantity forthbei recognized as that of entropy, as
defined in certain formulations of statistical mechanicée Tlassical entropyl}, (2) was called the
Boltzmann—-Gibbs—Shannon entropy (BGS entropy). (In 1$#&nnon used th@ncavefunction @),
but under the same notatidi as for the Boltzmanmonvexfunction. Here we usé/ for the convex
H-function, andsS for the concave entropy.)

In 1951, S. Kullback and R.A. LeiblerlP] supplemented the BGS entropy by the relative BGS
entropy, or the Kullback—Leibler divergence between theenu distribution” and some “base” (or
“reference”) distributior():

DKL(PHQ) = sz' log% 3)

The Kullback-Leibler divergence is always non-negafiyg, (P||Q) > 0 (the Gibbs inequality). It
is not widely known that this “distance” has a very clear pbgkinterpretation. This function has been
well known in physical thermodynamics since 19th centurgearrdifferent name. I€) is an equilibrium
distribution at the same temperaturefakas, then

F(P) - F(Q)

kT
where F' is free energy and’ is thermodynamic temperature. In physids,= U — TS, where
physical entropyS includes an additional multipliet, the Boltzmann constant. The thermodynamic
potential —F/T has its own name, Massieu function. Let us demonstrate titespretation of the
Kullback—-Leibler divergence. The equilibrium distribwti Q provides the conditional entropy2)
maximum under a given expectation of enepgyw;q¢; = U and the normalization condition, ¢; = 1.
With the Lagrange multiplierg; andp, we get the equilibrium Boltzmann distribution:

D1 (P||Q) = (4)

exp(—py ;)
>, exp(— i) ©
The Lagrange multipliet; is in physics (by definition) /kT, s05(Q) = po + -2, hencepy = —%.
For the Kullback—Leibler divergence this formula givéds. (
After the classical work of Zeldovich (1938, reprinted ir@8J13]), the expression for free energy in

the “Kullback—Leibler form”
Ci
F = kT;ci (m <C;<T)) - 1)

wherec; is concentration and: (7') is the equilibrium concentration of thith component, is recognized
as a useful instrument for the analysis of kinetic equat(especially in chemical kineticd 4,15]).

Each given positive distributio could be represented as an equilibrium Boltzmann disiohbdor
givenT > 0 if we takeu; = —kT log q; + uo for an arbitrary constant level. If we change the order
of arguments in the Kullback—Leibler divergence then wetlgetrelative Burg entropyl}g,17]. It has
a much more exotic physical interpretation: for a currestribution P we can define the “auxiliary
energy” functionallU for which P is the equilibrium distribution under a given temperatiiteVe can

¢ = exp(—po — pou;) =
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calculate the auxiliary free energy of any distributi@mnd this auxiliary energy functionakz(Q). (Up
to an additive constant, fd? = P* this Fi»(Q) turns into the classical free enerdy;(Q) = F(Q).) In
particular, we can calculate the auxiliary free energy efphysical equilibriumFr(P*). The relative
Burg entropy is
Fp(P*) — Fp(P)

kT
This functional should also decrease in any Markov procegsgiven equilibriumpP*.

Information theory developed by Shannon and his succe$soused on entropy as a measure of
uncertainty of subjective choice. This understanding tfogay was returned from information theory to
statistical mechanics by E.T. Jaynes as a basis of “subgdiatistical mechanic4dB,19). He followed
Wigner’s idea “entropy is an antropocentric concept”. Th&@y maximum approach was declared
as a minimization of the subjective uncertainty. This applogave rise to a MaxEnt “anarchism”. It
is based on a methodological hypothesis that everythingawmk could be estimated by the principle
of the entropy maximum under the condition of fixed known dites. At this point the classicism
in entropy development changed to a sort of scientific madern The art of model fitting based on
entropy maximization was develope2D]. The principle of the entropy maximum was applied to plenty
of problems: from many physical problem®1], chemical kinetics and process engineeriig] [to
econometrics42,23] and psychology24]. Many new entropies were invented and now one has rich
choice of entropies for fitting need®4]. The most celebrated of them are the Rényi entr@#}, [the
Burg entropy 16,17], the Tsallis entropy27,28] and the Cressie—Read famil29,30]. The nonlinear
generalized averaging operations and generalized entnagiymization procedures were suggest®l.|

Following this impressive stream of works we understand texEnt approach as conditional
maximization of entropy for the evaluation of the probdbidlistribution when our information is partial
and incomplete. The entropy function may be the classiceb BGtropy or any function from the rich
family of non-classical entropies. This rich choice caus@gw problem: which entropy is better for a
given class of applications?

The MaxEnt “anarchism” was criticized many times as a “skassefitting”. Arguments pro and
contra the MaxEnt approach with non-classical entropies{iythe Tsallis entropy7]) were collected
by Cho [32]. This sometimes “messy and confusing situation regar@ingopy-related studies has
provided opportunities for us: clearly there are still maryy interesting studies to pursued.

DxnL(P*||P) =

1.2. Key Points

In this paper we do not pretend to invent new entropies. @hppear new functions as limiting cases
of the known entropy families, but this is not our main go&htropy is understood in this paper as a
measure of uncertainty which increases in Markov processesir paper we consider a Markov process
as a semigroup on the space of positive probability didtioing. The state space is finite. Generalizations
to compact state spaces are simple. We analyze existetiveedatropies (divergences) using several
simple ideas:

1. In Markov processes probability distributior3(t) monotonically approach equilibriun®*:
divergenceD(P(t)||P*) monotonically decrease in time.



Entropy201Q 12 1149

2. In most applications, conditional minimizers and maximszef entropies and divergences are
used, but the values are not. This means that the systemedfdets is more important than the
functions’ values. Hence, most of the important propemdiesinvariant with respect to monotonic
transformations of entropy scale.

3. The system of level sets should be the same as for additivaifuns: after some rescaling the
divergences of interest should be additive with respechégaining of statistically independent
systems.

4. The system of level sets should after some rescaling theg#inees of interest should have the
form of a sum (or integral) over statés, f(p;,p;), where the functiorf is the same for all
states. In information theory, divergences of such formcatiedseparablein physics the term
trace—form functionss used

The first requirement means that if a distribution becomesemmandom then it becomes closer
to equilibrium (Markov process decreases the informatiocess over equilibrium). For example,
classical entropy increases in all Markov processes wiifoum equilibrium distributions. This is
why we may say that the distribution with higher entropy isrexcandom, and why we use entropy
conditional maximization for the evaluation of the probepdistribution when our information is partial
and incomplete.

It is worth to mention that some of the popular Bregman digaaogs, for example, the squared
Euclidean distance or the Itakura—Saito divergence, dsatfy the first requirement (see SectB).

The second idea is just a very general methodological thiesevaluate an instrument (a divergence)
we have to look how it works (produces conditional minimgand maximizers). The properties
of the instrument which are not related to its work are notangnt. The requirements number
three and four are, in their essence, conditions for saparat variables in conditional minimization
(maximization) problems.

The number three allows to separate variables if the systarsigts of independent subsystems, the
number four relates to separation of variables for partgtiof the space of probability distributions.

Amongst a rich world of relative entropies and divergencesly two families meet these
requirements. Both were proposed in 1984. The Cressie—f&dfamily [29,30]:

(i) 1] rem

and the convex combination of the Burg and Shannon relatit®pies proposed ir3g] and further
analyzed in 85,39:

. 1
Her A (P||P7) = D) > pi

HPIP) = (0 - (1= oytos (%) L pe o

i )

When\ — 0 the CR divergence tends to the KL divergence (the relatian8bn entropy) and when
A — —1 it turns into the Burg relative entropy. The Tsallis entropgs introduced four years later
[27] and became very popular in thermostatistics (there anesdneds of works that use or analyze this
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entropy B7]). The Tsallis entropy coincides (up to a constant mukiphk + 1) with the CR entropy for
A €] — 1, 00[ and there is no need to study it separately (see discussieciton2.2).

A new problem arose: which entropy is better for a specifidofgnm? Many authors compare
performance of different entropies and metrics for varipusblems (see, for example39,40Q]). In
any case study it may be possible to choose “the best” entoapyn general we have no sufficient
reasons for such a choice. We propose a possible way to daithbice of the best entropy.

Let us return to the idea: the distributighis more random thaw if there exists a continuous-time
Markov process (with given equilibrium distributid?) that transformsP into ). We say in this case
that P andQ are connected by thelarkov preordemwith equilibrium P* and use notatio® >~%. Q.
TheMarkov order> p- is the transitive closure of the Markov preorder.

If a priori information gives us a set of possible distrilouis 1/ then the conditionally “maximally
random distributions” (the “distributions without additial information”, the “most indefinite
distributions” in1) should be the minimal elements i1 with respect to Markov order. If a Markov
process (with equilibriumP*) starts at such a minimal elemefRtthen it cannot produce any other
distribution fromIl because all distributions which are more random thaitre situated outsidé’. In
this approach, the maximally random distributions undeewgia priori information may be not unique.
Such distributions form a set which plays the same role astdedard MaxEnt distribution. For the
moment based a priori information the 3&tis an intersection of a linear manifold with the simplex
of probability distributions, the set of minimal elememtgiV is also polyhedron and its description is
available in explicit form. In low-dimensional case it is afusimpler to construct this polyhedron than
to find the MaxEnt distributions for most of specific entrapie

1.3. Structure of the Paper

The paper is organized as follows. In Sect@mwe describe the known non-classical divergences
(relative entropies) which are the Lyapunov functions fer Markov processes. We discuss the general
construction and the most popular families of such funatiaffe pay special attention to the situations,
when different divergences define the same order on disiimiand provide the same solutions of the
MaxEnt problems (SectioB.2). In two short technical Sectior’is3 and2.4 we present normalization
and symmetrization of divergences (similar discussiorhesé operations was published very recently
[38].

The divergence between the current distribution and dariuin should decrease due to Markov
processes. Moreover, divergence between any two distisishould also decrease (the generalized
data processing Lemma, Sectign

Definition of entropy by its properties is discussed in Secl. Various approaches to this definition
were developed for the BGS entropy by Shannblj,[[41] and by other authors for the Rényi entropy
[43,44], the Tsallis entropy42], the CR entropy and the convex combination of the BGS andyBur
entropies 46]. Csiszar f5 axiomatically characterized the class of Csiszar—Motiondivergences
(formula @) below). Another characterization of this class was proudd6| (see Lemma 1, Sectich3
below).

From the celebrated properties of entrogy|[we selected the following three:
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1. Entropy should be a Lyapunov function for continuous-timarkbv processes;
2. Entropy is additive with respect to the joining of indepemidgystems;
3. Entropy is additive with respect to the partitioning of tipase of states.g., has tharace—forn).

To solve the MaxEnt problem we have to find the maximizers trfiogy (minimizers of the relative
entropy) under given conditions. For this purpose, we hav&now the sublevel sets of entropy,
but not its values. We consider entropies with the same systesublevel sets as equivalent ones
(Section2.2). From this point of view, all important properties have t® ibvariant with respect to
monotonic transformations of the entropy scale. Two lasperties from the list have to be substituted
by the following:

2'. There exists a monotonic transformation which makes eptadgitive with respect to the joining
of independent systems (Sectibr);

3. There exists a monotonic transformation which makes ewtmaiditive with respect to the
partitioning of the space of states (Sect#).

These properties imply specific separation of variables the entropy maximization problems
(SectionsA.1and4.2). Several “No More Entropies” Theorems are proven in Secti@. if an entropy
has properties 1, 2’ and 3’ then it belongs to one of the falhgwone-parametric families: to the
Cressie—Read family, or to a convex combination of the @ak8GS entropy and the Burg entropy
(may be, after a monotonic transformation of scale).

It seems very natural to consider divergences as orders stnbdtion spaces (Sectiob.1), the
sublevel sets are the lower cones of this orders. For sefigmations, H,(P), ..., Hy(P) the sets
{Q | Hi(P) > H;(Q) for all i} give the simple generalization of the sublevel sets. Ini8ed& we
discuss the more general orders in which continuous timekdaprocesses are monotone, define the
Markov order and fully characterize the local Markov ordBne Markov chains with detailed balance
define the Markov order for general Markov chains (Secd@ It is surprising that there is no necessity
to consider other Markov chains for the order charactadnaiSection5.2) because no reversibility is
assumed in this analysis.

In Section6.1we demonstrate how is it possible to use the Markov orderdoae the uncertainty in
the standard settings when a priori information is givenualvalues of some moments. Approaches to
construction of the most random distributions are preskim&ection6.2

Various approaches for the definition of the reference ibigion (or the generalized canonical
distribution) are compared in Secti@n

In Conclusion we briefly discuss the main results.
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2. Non-Classical Entropies
2.1. The Most Popular Divergences
Csiszar—Morimoto Functiond,

During the time of modernism plenty of new entropies wereppsed. Esteban and Moralezh]
attempted to systemize many of them in an impressive tableveltheless, there are relatively few
entropies in use now. Most of the relative entropies havddima proposed independently in 1963 by
I. Csiszar 9] and T. Morimoto @8]:

) = Pl = S pin () ©
whereh(z) is a convex function defined on the open* 0) or closedr > 0 semi-axis. We use here
notationH, (P| P*) to stress the dependence®f both onp, andp?.

These relative entropies are the Lyapunov functions forMdirkov chains with equilibrium
P* = (pf). Moreover, they have the relative entropy contraction prgpgiven by the generalized
data processing lemma (Sectidr2 below).

For h(x) = zlogx this function coincides with the Kullback—Leibler diverge from the current
distribution p; to the equilibriump;. Some practically important function’s have singularities at
0. For example, if we také(x) = —logx, then the correspondett,, is the relative Burg entropy

Hy, = =3, p; log(pi/p;) — oo for p; — 0.
Required Properties of the Functiafir)

Formally,h(x) is an extended real-valued proper convex function on threed@ositive real half-line
[0, oo[. An extended real-valued functi@an take real values and infinite valueso. A proper function
has at least one finite value. An extended real valued fumaioa convex sel/ is calledconvexif
its epigraph
epi(h) ={(z,y) |z >0,y = h(z)}

is a convex setq0]. For a proper function this definition is equivalent to thesen inequality

h(ax + (1 —a)y) < ah(z) + (1 —a)h(y) forall z,y € U, a € [0,1]

It is assumed that the functidr(z) takes finite values on the open positive real half-liex| but
the value at point: = 0 may be infinite. For example, function$z) = —logx or h(z) = 2 (o > 0)
are allowed. A convex functioh(z) with finite values on the open positive real half-line is ¢gonbus
on |0, co[ but may have a discontinuity at= 0. For example, the step functiohz) = 0 if + = 0 and
h(z) = —1if x > 0, may be used.

A convex function is differentiable almost everywhere. iative of i (x) is a monotonic function
which has left and right limits at each point> 0. An inequality holds:h/(z)(y — =) < h(y) — h(x)
(Jensen’s inequality in the differential form). It is valdso for left and right limits ofi” at any point
x > 0.
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Not everywhere differentiable functions(x) are often used, for exampléy(z) = |z — 1].
Nevertheless, it is convenient to consider the twice diffigiable o0, oo[ functionsh(z) and to produce
a non-smootlh(z) (if necessary) as a limit of smooth convex functions. We uskely this possibility.

The Most Popular Divergencés$, (P|| P*)

1. Let h(x) be the step functiory(z) = 0 if x = 0 andh(x) = —1if > 0. In this case,

Hy(P|[P)=—= )1 (7)

i, p;>0

The quantity—H), is the number of non-zero probabilitigs and does not depend oR*.
Sometimes it is called the Hartley entropy.

2. h=|z -1,
H,(P||P*) = Z\pz P

this is thel; -distance betweeR and P*.
3. h=xlnz,
HPIP) = S pii (Z) = Dratrir ®)
this is the usual Kullback—Leibler dlvergence or the reBGS entropy;
4, h = —Inuzx,

HUPP) = =3y (%) = atrir) ©)

this is the relative Burg entropy. Itis obwous that this gaen the Kullback—Leibler divergence,
but for another order of arguments.

5. Convex combinations ok = zlnx andh = —Inz also produces a remarkable family of
divergencesh = Bz Inz — (1 — 8)Inz (8 € [0, 1]),

Hy(P|[P") = BDkL(P|[P7) + (1 = 8) Dxr(P"[| P) (10)

The convex combination of divergences becomes a symmatatibnal of( P, P*) for 5 = 1/2.
There exists a special name for this case, “Jeffreys’ eptrop

6. h = &1

2

*

b;
This is the quadratic term in the Taylor expansion of thetneaBotzmann—Gibbs-Shannon

entropy, Dk, (P||P*), near equilibrium. Sometimes, this quadratic form is chliee Fisher
entropy.

(PP = 23 PP (1)

7
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Hy(P||P") = ﬁzpz [(%) - 1] (12)

This is the CR family of power divergence®q30]. For this family we use notatio®cr . If
A — 0thenHcg » — Dxi(P|P*), this is the classical BGS relative entropy\if— —1 then
Hcr » — Dk (P*||P), this is the relative Burg entropy.

8. For the CR family in the limits\ — +oo only the maximal terms “survive”. Exactly as we get the
limit (> of /” norms forp — oo, we can use the rog¢h\(\ + 1) Hcg ») /1 for A — 400 and write
in these limits the divergences:

H@mawpvzmﬂ{%}—l (13)
Hﬁ{mGWW):mw{&}—l (14)
v Pi

The existence of two limiting divergencés-r +., Seems very natural: there may be two types
of extremely non-equilibrium states: with a high excesswfent probabilityp; abovep; and,
inversely, with an extremely small current probabilitywith respect tg;.

(a®—)

9. The Tsallis relative entropy2[/] corresponds to the choide= “~—~, a > 0.

H(PIP) = —=S ", [(jj—) - 1] (15)

For this family we use notatioA .

Rényi Entropy

The Rényi entropy of order > 0 is defined R6] as

Hy o(P) = —— log (Zp?) (16)

It is a concave function, and
Hg o(P) — S(P)

whena — 1, whereS(P) is the Shannon entropy.

Whena — oo, the Rényi entropy has a lim#tl(X) = —logmax,;—;_, p;, Which has a special
name “Min-entropy”.

It is easy to get the expression for a relative Rényi entrpy, (P|| P*) from the requirement that it
should be a Lyapunov function for any Markov chain with eidpuitim P*:

. 1 n i a—1
H o(P|P*) = —— log (Zm (—) )
i=1

b;
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For the Min-entropy, the correspondent divergence (tredivel Min-entropy) is

Ho(P||P") = log max <&)

i=1,..n p;k

It is obvious from R2) below thatmax;_; __,(p;/p}) is a Lyapunov function for any Markov chain with
equilibrium P*, hence, the relative Min-entropy is also the Lyapunov fiomal.

2.2. Entropy Level Sets

A level sebf a real-valued functiorf of is a set of the form :

{z ] f(x) =c}

wherec is a constant (the “level”). It is the set where the functiakets on a given constant value. A
sublevel setf f is a set of the form

{z [ f(x) <¢}

A superlevel sebf f is given by the inequality with reverse sign:

{z]f(x) =}

The intersection of the sublevel and the superlevel seta fven value: is the level set for this level.

In many applications, we do not need the entropy values,diber the order of these values on the
line. For any two distribution®, () we have to compare which one is closer to equilibritim i.e., to
answer the question: which of the following relations isetrd (P||P*) > H(Q|P*), H(P||P*) =
H(Q|P*)or H(P||P*) < H(Q|P*)? To solve the MaxEnt problem we have to find the maximizers of
entropy (or, in more general settings, the minimizers ofréhative entropy) under given conditions. For
this purpose, we have to know the sublevel sets, but not tliesaAll the MaxEnt approach does not
need the values of the entropy but the sublevel sets aressyes

Let us consider two functionsy and« on a setU. For anyV C U we can study conditional
minimization problems)(x) — min and«(xz) — min, 2 € V. The sets of minimizers for these two
problems coincide for any” C U if and only if the functions) and« have the same sets of sublevel
sets. It should be stressed that here just the sets of slibtgehave to coincide without any relation to
values of level.

Let us compare the level sets for the Rényi, the CressielBed the Tsallis families of divergences
(for a — 1 = X and for all values ofv). The values of these functions are different, but the Iee&d are
the same (outside the Burg limit, whete— 0): for o # 0, 1

. 1 o 1 ' o 1 B
Hg o(P||P") = po— Ine; Her oo1(P||PF) = ala—1) (c—1); HrsoP||P") = - 1(0 1) (17)
wherec = 3=, pi(pi/p;)*~".
Beyond pointsy = 0, 1
Her o1 (P PF) = mexp((a— ) Hg o(P||P")) = aHTsa(P||P )
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Fora — 1 all these divergences turn into the Shannon relative enttdpnce, ifa # 0 then for any
P, P*, Q, Q* the following equalities A, B, C are equivalentsAB«<-C:

A. Hg o(P||P*) = Hr +(Q||Q")
B. Hcr at1(P||P*) = Her 0+1(Q]|QY) (18)
C. Hrs o P||P*) = Hrs o(QQY)

This equivalence means that we can select any of these tivesgehces as a basic function and
consider the others as functions of this basic one.

For anya > 0 and\ = o + 1 the Rényi, the Cressie—Read and the Tsallis divergenoestha
same family of sublevel sets. Hence, they give the same nizeisito the conditional relative entropy
minimization problems and there is no difference which@pyrto use.

The CR family has a more convenient normalization fatfor(\+ 1) which gives a proper convexity
for all powers, both positive and negative, and providesnsibée Burg limit forA — —1 (in contrary,
whena — 0 both the Rényi and Tsallis entropies tend to 0).

Whena < 0 then for the Tsallis entropy functioh = % loses convexity, whereas for the
Cressie-Read family convexity persists for all values\ofThe Rényi entropy also loses convexity for
a < 0. Neither the Tsallis, nor the Rényi entropy were inventaduse with negativer.

There may be areason: far< 0 the functionz* is defined for: > 0 only and has a singularity at=
0. If we assume that the divergence should exist for all nagatiee distributions, then the cases< 0
should be excluded. Nevertheless, the Burg entropy whiginggilar at zeros is practically important and
has various attractive properties. The Jeffreys’ entroipy §ymmetrized Kullback—Leibler divergence)
is also singular at zero, but has many important propertids.can conclude at this point that it is not
obvious that we have to exclude any singularity at zero @iba It may be useful to consider positive
probabilities instead (“nature abhors a vacuum?”).

Finally, for the MaxEnt approach (conditional minimizatiof the relative entropy), the Rényi and
the Tsallis families of divergences (> 0) are particular cases of the Cressie—Read family becaage th
give the same minimizers. Far < 0 the Rényi and the Tsallis relative entropies lose theivesity,
while the Cressie—Read family remains convexXot —1 too.

2.3. Minima and normalization

For a givenP*, the functionH, achieves its minimum on the hyperplapé p, = > . p; =const at
equilibriump;, because at this point

gradHy, = (W' (1),...1'(1)) = I'(1)grad <Zp>

The transformatioh(z) — h(z) + az + b just shiftsH), by constant valueH,, — H, +a) ,p;+b =
Hy, + a + b. Therefore, we can always assume that the fundtior) achieves its minimal value at point
x = 1, and this value is zero. For this purpose, one should jusstoam#:

h(z) = h(z) — h(1) — K'(1)(z — 1) (19)
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This normalization transformsin z intozlnx — (z — 1), —Inz into —Inz + (x — 1), andz® into
z* — 1 — a(x — 1). After normalizationH,(P||P*) > 0. If the normalizedh(z) is strictly positive
outside point: = 1 (h(z) > 0if = # 1) thenH,(P||P*) = 0 ifand only if P = P* (i.e, in equilibrium).

The normalized version of any divergenég,(P||P*) could be produced by the normalization
transformatior(z) := h(x) — h(1) — A/(1)(x — 1) and does not need separate discussion.

2.4. Symmetrization

Another technical issue is symmetry of a divergenceh(lf) = zInz then bothH,(P||P*) (the
KL divergence) and{,(P*||P) (the relative Burg entropy) are the Lyapunov functions far Markov
chains, andd,,(P*||P) = H,(P||P*) with g(r) = —Inz. Analogously, for any.(x) we can write

Hy,(P*||P) = Hy(P||P*) with
g(x) = zh (3) (20)

X

If h(x)is convex onR, theng(x) is convex onR., too because

9"(x) = ;h" (i)

The transformation20) is an involution:
1
— _= h
g <x) (x)

The fixed points of this involution are such functidng:) that H, (P|| P*) is symmetric with respect
to transpositions of” and P*. There are many sudiaxz). An example of symmetriéf;, (P|| P*) gives

the choiceh(z) = —/x:
Hy(P||P") = Z V/pi;

After normalization, we get
1 « 1 S
h(l‘) = 5(\/5 — 1)2 ; Hh(PHP ) = 5 2(1 /pl- — pl. )2

Essentially (up to a constant addition and multiplier) fluisction coincides with a member of the CR
family, Hqg 1 (12), and with one of the Tsallis relative entropifls, 1 (15). The involution @0) is a
linear operator, hence, for any convee:) we can produce its symmetrization:

o) =)+t = 5 (0 20 (1)

For example, ifh(z) = zlogx then hgy,(z) =
s(z® +at7).

(xlogx — logx); if h(xz) = z* then hgyn(x) =

1
2
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3. Entropy Production and Relative Entropy Contraction
3.1. Lyapunov Functionals for Markov Chains

Let us consider continuous time Markov chains with positeguilibrium probabilities p.
The dynamics of the probability distributiop; satisfy the Master equation (the inverse
Kolmogorov equation):

dp;

dt Z(Qz‘jpj — jipi) (21)
J,j#

where coefficients;; (i # j) are non-negative. For chains with a positive equilibriustrebution p;

another equivalent form is convenient:

dpi « [ Pj Di
5= > ) (p— — E) (22)
7 7

J,j#i

wherep; andg;; are connected by identity

> air; = (Z qﬁ) v} (23)

J,J#i J,J#i

The time derivative of the Csiszar—-Morimoto functiéij (p) (6) due to the Master equation is

PP S s (2) () e (2) (22 <o
i p; p; D; p; Db
To prove this formula, it is worth to mention that for anynumbersh;, >_, ; ., ¢i;jp;(hi — h;) =
0. The last inequality holds because of the convexityh¢f): h'(z)(y — z) < h(y) — h(z
(Jensen’s inequality).

Inversely, if

h(z) —h(y) + 1 (y)(x —y) <0 (25)

for all positivez,y then h(z) is convex onR,. Therefore, if for some function(x) Hy(p) is the
Lyapunov function for all the Markov chains with equilibnuP* thenh(x) is convex onR ..

The Lyapunov functionalg?,, do not depend on the kinetic coefficients directly. They depend
on the equilibrium distribution* which satisfies the identity2@). This independence of the kinetic
coefficients is theiniversalityproperty.

3.2. “Lyapunov Divergences” for Discrete Time Markov Chain

The Csiszar—Morimoto function®) are also Lyapunov functions for discrete time Markov cbain
Moreover, they can serve as a “Lyapunov distancBd] petween distributions which decreases due to
time evolution (and not only the divergence between theetuirdistribution and equilibrium). In more
detail, letA = (a;;) be a stochastic matrix in columns:

Qg5 > O, Zai]’ =1 for all]
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Theergodicity contraction coefficieribr A is a number(A) [5253]:

a(A) = —max{zmm ak]|}

0<a@A) <.
Let us consider in this subsection the normalized Csisarimoto divergencedd,(P||@Q) (19):
h(1) =0, h(z) > 0.

Theorem about relative entropy contraction. (The generalized data processing Lemma.) For each
two probability positive distribution®, () the divergencéi, ( P||()) decreases under action of stochastic
matrix A [54,59):

Hy(AP|AQ) < a(A)Hu(P[Q) (26)

The generalizations of this theorem for general Markov &krseen as operators on spaces
of probability measures was given b$6. The shift in time for continuous-time Markov chain
iIs a column-stochastic matrix, hence, this contractiorotd@ is also valid for continuous-time
Markov chains.

The question about a converse theorem arises immediatelythke contraction inequality hold for
two pairs of positive distributiong”, ) and(U, V') and for allH:

Hy(U[|V) < Hu(P(|Q) (27)

Could we expect that there exists such a stochastic matthatU = AP andV = AP? The answer
is positive:

The converse generalized data processing lemmad.et the contraction inequality2() hold for two
pairs of positive distribution$P, ) and (U, V') and for all normalizedH,,. Then there exists such a
column-stochastic matrid thatU = AP andV = AQ [54).

This means that for the system of inequaliti2%)((for all normalized convex functions on |0, co|)
is necessary and sufficient for existence of a (discrete)tMerkov process which transform the pair
of positive distributiong P, Q) in (U,V). Itis easy to show that for continuous-time Markov chains
this theorem is not valid: the attainable regions for them gtrictly smaller than the set given by
inequalities 27) and could be even non-convex (sé@][and Sectior8.1below).

4. Definition of Entropy by its Properties
4.1. Additivity Property

The additivity property with respect to joining of subsystems is crucial both for tassical
thermodynamics and for the information theory.

Let us consider a system which is result of joining of two stssms. A state of the system is an
ordered pair of the states of the subsystems and the spatzded of the system is the Cartesian product
of the subsystems spaces of state. For systems with finitb@&uaof states this means that if the states
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of subsystems are enumerated by indexasd then the states of the system are enumerated by pairs
jk. The probability distribution for the whole systemjs,, and for the subsystems the probability
distributions are the marginal distributiops= >, pjx, v = >_; Djx-

Theadditive functions of statere defined for each state of the subsystems and for a stéte whole
system they are sums of these subsystem values:

Uik = Uy + Wg

wherev; andwy, are functions of the subsystems state.
In classical thermodynamics such functions are calleceitensive quantities=or expected values
of additive quantities the similar additivity conditionldes:

Zujkpjk‘ = Z Vj 4+ w)pik = Z’quj + Z’wk’f’k (28)

Let us consider these expected values as functionals ofrdbpility distributions:u({p;x}), v({g;})
andw({rx}). Then the additivity property for the expected values reads

u({pir}) = v({g;}) +w{re}) (29)

whereg; and ther;, are the marginal distributions.

Such a linear additivity property is impossible for nonelam entropy functionals, but under some
independence conditions the entropy can behave as an extgasable.

Let P be a product of marginal distributions. This means that thiesgstems are statistically
independent: p;, = ¢;7.. Assume also that the distributioR* is also a product of marginal
distributionspj,. = ¢;r;. Then some entropies reveal the additivity property wigpeet to joining of
independent systems.

1. The BGS relative entropPx,(P||P*) = Dk1(Q||Q*) + Dxr(R| R*).

2. The Burg entropyDxy,(P*||P) = Dxin(Q*||Q) + Dxin(R*||R) . It is obvious that a convex
combination of the Shannon and Burg entropies has the sadm@vay property.

3. The Rényi entropyy (P||P*) = Hr «(Q|Q*) + Hr o(R||R*). Fora — oo the Min-entropy
also inherites this property.

This property implies the separation of variables for thérapy maximization problems. Let
functionalsu! ({p;x}), ... u"({p;x}) be additive 28) (29) and let the relative entropyl(P| P*) be
additive with respect to joining of independent systemserTtine solution to the problem

H(P||P*) — min

subject to conditions
u'(P)=U; (i=1,...m)

5 p?lk‘“ = qf““ ppin, Whereq;nin, rin are solutions of partial problems:

H(Q[Q") — min
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subject to the conditions

and
H(RHR*) — min

subject to the conditions
w(Q)=W; (i=1,...m)

for some redistribution of the additive functionals valigs=V; + W;.

Let us call this property theeparation of variables for independent subsystems

Neither the CR, nor the Tsallis divergences families haeeathditivity property. It is proverdfg] that
a function H,, has the additivity property if and only if it is a convex cométiion of the Shannon and
Burg entropies. See also Theor&m Appendix.

Nevertheless, they have the property of separation of Masaor independent subsystems because
of the coincidence of the level sets with the additive fumctithe Rényi entropy (for att > 0).

The Tsallis entropy family has absolutely the same propafrgeparation of variables as the Rényi
entropy. To extend this property of the Rényi Tsallis epites for negativer, we have to change there
min to max.

For the CR family the result sounds even better: becausettdrb®rmalization, the separation of
variables is valid fof{cg » — min problem for all values\ €] — oo, co].

4.2. Separation of Variables for Partition of the State Spac

Another important property of separation of variables igvar all divergences which have the form
of a sum of convex functiong(p;, p;). Let the set of states be divided into two subséfsand I,
and let the functionals!, ... u™ be linear. We represent each probability distribution agrectisum
P = P' & P? whereP'? are restrictions of> on [ ».
Let us consider the problem
H(P||P*) — min

subject to conditions’(P) = U; for a set of linear functionals’( P).
The solutionP™" to this problem has a fornP™» = pPmin ¢ pmin - where P12 are solutions to
the problems
H(P%?||P*"*) — min

subject to conditions/'(P,,) = U;* and )", ,  p;* = m, for some redistribution of the linear
functionals valuedy/; = U} + U?, and of the total probability, = m; + m5 (712 > 0) .

Again, the solution to the divergence minimization probismmomposed from solutions of the partial
maximization problems. Let us call this property theparation of variables for incompatible events
(becausd, N I, = ).

This property is trivially valid for the Tsallis family (forv > 0, and fora < 0 with the change of
minimization to maximization) and for the CR family. For tRényi family it also holds (forv > 0, and
for a < 0 with the change from minimization to maximization), becatlse Rényi entropy is a function
of those trace—form entropies, their level sets coincide.
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Again, a simple check shows that this separation of var&apleperty holds also for the convex
combination of Shannon’s and Burg’s entropié®r, (P || P*) + (1 — 3) Dk (P*|| P).

The question arises: is there any new divergence that hafllbeing three properties: (i) the
divergenceH (P|| P*) should decrease in Markov processes with equilibrigim (i) for minimization
problems the separation of variables for independent stés\s holds and (iii) the separation of
variables for incompatible events holds. newdivergence means here that it is not a function of a
divergence from the CR family or from the convex combinatbthe Shannon and the Burg entropies.

The answer is: no, any divergence which has these threentexpand is defined and differentiable
for positive distributions is a function df;, for h(z) = p* or h(xz) = fzlnx — (1 — ) Inz. If we relax
the differentiability property, then we have to add to thef@Rily the CR analogue of min-entropy

Hon o (PIP) = mae { 2} -1
7 pZ
The limiting case for the CR family fox — —oo is less known but is also a continuous and piecewise
differential Lyapunov function for the Master equation:

Her —oo(P||PY) = max {&} 1
v P

Both properties of separation of variables are based ongéeifsc additivity properties: additivity
with respect to the composition of independent systems dddiaty with respect to the partitioning
of the space of states. Separation of variables can be @edias a weakened form of additivity: not
the minimized function should be additive but there existshsa monotonic transformation of scale
after which the function becomes additive (and differeah&formations may be needed for different
additivity properties).

4.3. “No More Entropies” Theorems

The classical Shannon work included the characterizati@ntyopy by its properties. This meant
that the classical notion of entropy is natural, aednore entropieare expected. In the seminal work of
Rényi, again the characterization of entropy by its propsmwas proved, and for this, extended family
the no more entropiesheorem was proved too. In this section, we prove the nexinore entropies
theorem, where two one-parametric families are selectezkasible: the CR family and the convex
combination of Shannon’s and Burg’s entropies. They arearaaches of solutions of the correspondent
functional equation and intersect at two points: Shannentsopy ¢ = 1 in the CR family) and Burg’s
entropy @ = 0). We consider entropies as equivalent if their level setsaide. In that sense, the Rényi
entropy and the Tsallis entropy (with> 0) are equivalent to the CR entropy with— 1 = A\, A > —1.

Following Rényi, we consider entropies dfcomplete distributionsp; > 0, > .p;, < 1. The
divergencef ( P|| P*) is aC' smooth function of a pair of positive generalized prob&ptliistributions
P=(p;),p;i >0andP* = (p;),pi >0,i=1,...n.

The following 3 properties are required for characteraabf the “natural” entropies.

1. To provide the separation of variables for incompatibleds&gether with the symmetry property
we assume that the divergence is separable, possibly,aafiesiling transformation: there exists
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such a function of two variableg(p, p*) and a monotonic function of one variabiéz) that
H(P||P*) = ¢(>_,; f(pi,p;)). This formula allows us to defin& (P || P*) for all n.

2. H(PJ|P*)isaLyapunov function for the inverse Kolmogorov equati®®) for any Markov chain
with equilibrium P*. (One can call these functions theiversalLyapunov functions because they
do not depend on the kinetic coefficients directly, but omiytiee equilibrium distributiorP*.)

3. To provide separation of variables for independent subsystwe assume that (P||P*) is
additive (possibly after a scaling transformation): thexists such a function of one variahl¢z)
that the function)(H (P||P*)) is additive for the union of independent subsystems? & (p;;),

pij = 4575, iy = 4575, theny (H(P|[P7)) = ¢ (H(Q[Q")) + ¢ (H (BR[| R7)).

Theorem 1. If a C'-smooth divergenceH (P|P*) satisfies the conditions 1-3 then, up to
monotonic transformation, it is either the CR divergender , or a convex combination of the
Botlzmann—Gibbs—Shannon and the Burg entrogig$ P|| P*) = 5Dk (P||P*) + (1 — ) Dk (P*|| P).

In a paper 46] this family was identified as the Tsallis relative entropghnwsome abuse of language,
because in the Tsallis entropy the case with 0 is usually excluded.

First of all, let us prove that any function which satisfies tonditions 1 and 2 is a monotone function
of a Csiszar—Morimoto functior6} for some convex smooth functidriz). This was mentioned in 2003
by P. Gorban46]. Recently, a similar statement was published by S. Amare@rem 1 in $7]).

Lemma 1. If a Lyapunov functiotf (p) for the Markov chain is of the trace—formd(p) = >, f(pi, p}))
and is universal, therf(p, p*) = p*h(]%) + const(p*), whereh(x) is a convex function of one variable.

Proof. Let us consider a Markov chain with two states. For such anchai

dpr « (P2 D1 _ (Pt p2\ _ dp
N, 4Py \ & — | = L T )T T (30)
dt Py P Py Ds

If H is a Lyapunov function the® < 0 and the following inequality holds:

<3f(p2,p§) - 6f(p1,p’{>) (22 ~ 12) <0

Opa op pT D

We can considep;, p, as independent variables from an open triadgle: {(p;, p2) | p12 > 0, p1 +
pe < 1}. For this purpose, we can include the Markov with two statés & chain with three states and
g3 = qiz = 0.

If for a continuous function of two variableg(z, ) in an open domairD C R? an inequality
(W(x1, 1) — Y(22,92))(y1 — y2) < 0 holds then this function does not dependoim D. Indeed,
let there exist such values , andy thaty(zy,y) # ¥ (z2,y), ¥(x1,y) — Y(x2,y) = ¢ > 0. We can
find suchd > 0 that(z,,y + Ay) € D and|¢(z1,y + Ay) — ¥(z1,y)| < /2 if |Ay| < 6. Hence,
Yz, y+ Ay) —Y(x2,y) > /2 > 01f |Ay| < 0. Atthe same timéy(xq, y + Ay) — ¥(xq,y)) Ay < 0,
hence, for a positive < Ay < § we have a contradiction. Therefore, the funct?é%’};p—” is a monotonic

function of &, hence f(p, p*) = p*h(%) + const(p*), whereh is a convex function of one variable]
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This lemma has important corollaries about many populaerdiences? (P(t)||P*) which are not
Lyapunov functions of Markov chains. This means that therstesuch distributiong’, and P* and a
Markov chain with equilibrium distributio®®* that due to the inverse Kolmogorov equations

dH(P()||P)

0
a -

t=0
if P(0) = Py. This Markov process increases divergence between thébdisdns P, P* (in a vicinity
of F,) instead of making them closer. For example,

Corollary 1. The following Bregman divergencesd are not universal Lyapunov functions for Markov
chains:

e Squared Euclidean distand®(P|| P*) = > _.(pi — p})%
e The Itakura—Saito divergenc&9] B(P|P*) =", (5_ —log 7+ — ) O

These divergences violate the requirement: due to the Mapkocess distributions always
monotonically approach equilibrium. (Nevertheless, aghtre Bregman divergences there exists a
universal Lyapunov function for Markov chains, the Kulbatkibler divergence.)

We place the proof of Theorefnin Appendix.

Remark. If we relax the requirement of smoothness and consider mditions of Theoreml just
continuous functions, then we have to add to the answerrthiedivergences,

Hcr o (P P*) = max {p—i} —-1;
? p

Hor (PP = mac {54 - 1
v Di
5. Markov Order
5.1. Entropy: a Function or an Order?

Theoreml gives us all of the divergences for which (i) the Markov clsamonotonically approach
their equilibrium, (ii) the level sets are the same as forgasable (sum over states) divergence and (iii)
the level sets are the same as for a divergence which is aldiith respect to union of independent
subsystems.

We operate with the level sets and their orders, compare ewvtter divergence is larger (for
monotonicity of the Markov chains evolution), but the va @ entropy are not important by themselves.
We are interested in the following ordeF precedes) with respect to the divergendé_(P| P*) if
there exists such a continuous curkét) (¢t € [0,1]) that P(0) = P, P(1) = @ and the function
H(t) = H_(P(t)||P*) monotonically decreases on the interval [0, 1]. This property is invariant with
respect to a monotonic (increasing) transformation of lkkerdence. Such a transformation does not
change the conditional minimizers or maximizers of the djeace.

There exists one important property that is not invariarihwespect to monotonic transformations.
The increasing functior¥’(H) of a convex functiond (P) is not obligatorily a convex function.
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Nevertheless, the sublevel sets given by inequalifi€s®) < a coincide with the sublevel sets
F(H(P)) < F(a). Hence, sublevel sets féf(H(P)) remain convex.
The Jensen inequality

H(OP + (1 -0)Q) < 0H(P) + (1 - 0)H(CQ)

(0 € 10, 1]) is not invariant with respect to monotonic transformasioimstead of them, there appears the
max form analogue of the Jensen inequality

HOP + (1 -0)Q) < max{H(P), H(Q)}, 6 €[0,1] (31)

This inequality is invariant with respect to monotonicatigreasing transformations and it is equivalent
to convexity of sublevel sets.

Proposition 1. All sublevel sets of a functioH on a convex sét” are convex if and only if for any two
pointsP, ) € V and every € [0, 1] the inequality 81) holds. O

It seems very natural to consider divergences as orders siribdtion spaces, and discuss only
properties which are invariant with respect to monotoraasformations. From this point of view, the
CR family appears absolutely naturally from the additi\ity and the “sum over states” (iii) axioms,
as well as the convex combinatigiDky, (P||P*) + (1 — 3)DkL(P*||P) (o € [0,1]), and in the above
property context there are no other smooth divergences.

5.2. Description of Markov Order

The CR family and the convex combinations of Shannon’s andgBelative entropies are
distinguished families of divergences. Apart from thenré¢here many various “divergences”, and even
the Csiszar—-Morimoto function®§) do not include all used possibilities. Of course, most sipeefer
to have an unambiguous choice of entropy: it would be niceat@lithe best entropy” for any class of
problems. But from some point of view, ambiguity of the epyr@hoice is unavoidable. In this section
we will explain why the choice of entropy is necessarily nanque and demonstrate that for many
MaxEnt problems the natural solution is not a fixed distitnutbut a well defined set of distributions.

The most standard use of divergence in many applicationfisllasvs:

1. On a given space of states an “equilibrium distributiéti’is given. If we deal with the probability
distribution in real kinetic processes then it means th#tovit any additional restriction the current
distribution will relax toP*. In that senseP* is the most disordered distribution. On the other
hand, P* may be considered as the “most disordered” distributio wespect to some a priori
information.

2. We do not know the current distributid®, but we do know some linear functionals, the moments
u(P).

3. We do not want to introduce any subjective arbitrarineskéngstimation of” and define it as the
“most disordered” distribution for given valug P) = U and equilibriumP*. That is, we define
P as solution to the problem:

H_(P||P*) — min subject to u(P)=U (32)
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Without the condition:(P) = U the solution should be simpli*.

Now we have too many entropies and do not know what is the gpthoice ofHH . and what should
be the optimal estimate aP. In this case the proper question may hehich P could not be such
an optimal estimat® We can answer the exclusion question. Let for a gi#érthe condition hold,
u(P% = U. If there exists a Markov process with equilibriuRt such that at poinf° due to the
inverse Kolmogorov equatior2®)

d(u(P))

=0
dt

% # 0 and
then P° cannot be the optimal estimate of the distributi@inder condition:(P) = U.

The motivation of this approach is simple: any Markov preoggh equilibriumP* increases disorder
and brings the system “nearer” to the equilibriéith If at P it is possible to move along the condition
plane towards the more disordered distribution tiércannot be considered as an extremely disordered
distribution on this plane. On the other hand, we can consitfeas a possible extremely disordered
distribution on the condition plane, if for any Markov prgsewith equilibriumP* the solution of the
inverse Kolmogorov equatior2®) P(¢) with initial condition P(0) = P° has no points on the plane
u(P)="Ufort > 0.

Markov process here is considered as a “randomization”. &g’ of distributions can be divided in
two parts: the distributions which retain @ after some non-trivial randomization and the distribusion
which leaveC' after any non-trivial randomization. The last are the matiynrandom elements of
C': they cannot become more random and retaid'in Conditional minimizers of relative entropies
Hy(P||P*) in C are maximally random in that sense.

There are too many functiorig, (P|| P*) for effective description of all their conditional mininges.
Nevertheless, we can describe the maximally random distoibs directly, by analysis of Markov
processes.

To analyze these properties more precisely, we need somalfdefinitions.

Definition 1. (Markov preorder). If for distributions®® and P! there exists such a Markov process
with equilibrium P* that for the solution of the inverse Kolmogorov equatiorhwi(0) = P° we have
P(1) = P! then we say thaP® and P! are connected by the Markov preorder with equilibridthand
use notation”? %, P,

Definition 2. Markov order is the closed transitive closure of the Markegqgoder. For the Markov
order with equilibriumP* we use notatiod° > p. P!.

For a givenP* = (p;) and a distribution? = (p;) the set of all vectors with coordinates
Uy = Z qiiP; <—i - 7)
4, j# by P
wherep; andg;; > 0 are connected by identity2g) is a closed convex cone. This is a cone of all

possible time derivatives of the probability distributi&trpoint? for Markov processes with equilibrium
P* = (p). For this cone, we use notati@ p -
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Definition 3. For each distribution” and an-dimensional vectoA we say thatA <pp-) 0if A €
Q(p,p+). This is the local Markov order.

Proposition 2. Qp,p+) is a proper conei.e., it does not include any straight line.

Proof. To prove this proposition its is sufficient to analyze thenata for entropy production (for
example, in form 24)) and mention that for strictly convek (for example, for traditionak In = or
(x —1)?/2) dHy,/dt = 0 if and only if dP/d¢ = 0. If the coneQ g p+ includes both vectors and—x
(x # 0 it means that there exist Markov chains with equilibridithand with opposite time derivatives
at pointP. Due to the positivity of entropy productio@4) this is impossible. ]

The connection between the local Markov order and the Maokder gives the following proposition,
which immediately follows from definitions.

Proposition 3. P° ~p. P! if and only if there exists such a continuous almost everyaiéferentiable
curve P(t) in the simplex of probability distribution tha?(0) = P°, P(1) = P' and for allt € [0, 1],
whereP(t) is differentiable,
dP(t)
dt
For our purposes, the following estimate of the Markov orttepugh the local Markov order
is important.

€ Qrw,ry U (33)

Proposition 4. If P? >p. P'thenP° > po p-) P',i.e, P! — P’ € Q(pp+).

This proposition follows from the characterization of tloedl order and detailed description of the
coneQp),p+) (Theorem2 below).

Let us recall that a convex pointed cone is a convex envelbpe extreme rays. A ray with directing
vectorz is a set of points\xz (A > 0). We say that is an extreme ray of) if for any v € [ and
anyzx,y € Q, whenever: = (z + y)/2, we must haver, y € [. To characterize the extreme rays of
the cones of the local Markov ord€p p-) we need a graph representation of the Markov chains. We
use the notationl; for states (vertices), and designate transition from state stateA; by an arrow
(edge)A; — A;. This transition has its transition intensity (the coefficient in the inverse Kolmogorov
equation 21)).

Lemma 2. Any extreme ray of the coi@p p-) corresponds to a Markov process which transition graph
is a simple cycle
Ail —>Ai2 — Alk HAil

wherek < n, all the indicesiy, ..., are different, and transition intensities for a directingotor of
such an extreme ray;_ ., ;, may be selected als/p;*j:

Qijir iy = & (34)

(here we use the standard convention that for a cyglg ;, = qi, +,)-
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Proof. First of all, let us mention that if for three vectarsy, u € Qpp-) We haveu = (z + y)/2
then the set of transitions with non-zero intensities faresponding Markov processes foandy are
included in this set for, (because negative intensities are impossible). Secojudiypy calculation

of the free variables in the equatior®3) (with additional condition) we find that the the amount of
non-zero intensities for a transition scheme which reprssan extreme ray should be equal to the
amount of states included in the transition scheme. Findgre is only one scheme withvertices,k
edges and a positive equilibrium, a simple oriented cycle. O

Theorem 2. Any extreme ray of the cor®p p-) corresponds to a Markov process whose transition
graph is a simple cycle of the length 2; == A;. A transition intensities;;, ¢;; for a directing vector
of such an extreme ray may be selected as

1 1
qij = & i = — (35)
p; D;

Proof. Due to Lemma 2, it is sufficient to prove that for any distribat P the right hand side of
the inverse Kolmogorov equatior2) for a simple cycle with transition intensitie84) is a conic
combination (the combination with non-negative real cogdfits) of the right hand sides of this equation
for simple cycles of the length 2 at the same pdiht Let us prove this by induction. For the cycle
length 2 it is trivially true. Let this hold for the cycle letitgs2,...n — 1. For a cycle of lengtim,
A, — A, — .. A, — A, with transition intensities given bya4) the right hand side of the inverse
Kolmogorov equation is the vectorwith coordinates
_ Pij_, Py

P, D

Uij

(under the standard convention regarding cyclic ordefye©toordinates of are zeros. Let us find the
minimal value ofp;, /pZ_ and rearrange the indices by a cyclic permutation to putrthismum in the

first place:
min p—f: = pi*l
J pz7 p’il

The vector is a sum of two vectors: a directing vector for the cydle — ... A;, — A,, of the length
n — 1 with transition intensities given by formul&4) (under the standard convention about the cyclic
order for this cycle) and a vector

Pin _ Piy
p;n p:-fl 2
pig _ pil
pi, Py

where v? is the directing vector for a cycle of length 24, = A;, which can have only two
non-zero coordinates:
Uizp_zf_p_ilz_vii
b, Dy
The coefficient in front of? is positive becausg;, /p;, is the minimal value Of?ijp;-‘j. A case when
Pi/Pi, = pi,/p;, does not need special attention because it is equivalehietshorter cycled;,, —
Ay — .. A, — A, (A, could be omitted). A conic combination of conic combinasios a conic

combination again. O
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It is quite surprising that the local Markov order and, hertbe Markov order also are generated
by the reversible Markov chains which satisfy the detailathbce principle. We did not include any
reversibility assumptions, and studied the general Madt@ins. Nevertheless, for the study of orders,
the system of cycles of length 2 all of which have the samelieguim is sufficient.

5.3. Combinatorics of Local Markov Order

Let us describe the local Markov order in more detail. Fifsalb we represent kinetics of the
reversible Markov chains. For each pdir, A; (i # j) we select an arbitrary order in the pair and write
the correspondent cycle of the length 2 in the fofim= A;. For this cycle we introduce the directing

vector~* with coordinates
Ve = —0ir + Ojx (36)

whered;;. is the Kronecker delta. This vector has tiie coordinate—1, the jth coordinatel and other
coordinates are zero. Vectot¥ are parallel to the edges of the standard simple®in They are
antisymmetric in their indexes”’ = —+7t,

We can rewrite the inverse Kolmogorov equation in the form

dP y
ar > 7w (37)

pairs ij

wherei # j, each pair is included in the sum only once (in the presealemtder ofi, ;) and
. (pi pj)
Wyji = Tji \ 5 = 7%
p;  D;
The coefficientr;; > 0 satisfies the detailed balance principle:
rji = Qjib; = 4ijP; = Tij

We use the three-value sign function:

-1, ifx<0;
signr = ¢ 0, if x = 0; (38)
1 ifz>0

)

With this function we can rewrite EquatioB7%) again as follows:

dpP o pi pj)
— = Ty sign (—* i
dt Z ’ pi P;

pairs ij, 7j; 70

pi D

- (39)
b Dj

The non-zero coefficients;; may be arbitrary positive numbers. Therefore, using Thaad2e we
immediately find that the cone of the local Markov order anpét is

Qp,p+) = cone {’y”sign (p—i — p—i) ‘ i > O} (40)
p;  D;

where con¢} stands for the conic hull.



Entropy201Q 12 1170

Figure 1. Compartment€,, corresponding cone, (the angles) and all tableausfor
the Markov chain with three states (the choice of equilibrip; = 1/3), does not affect
combinatorics and topology of tableaus, compartments ands).
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The numbesign <If— - Z—f) is 1, whenk: > Iﬁ—ﬂ —1, whenk < ;’—9 and 0, when: = Iﬁ—ﬂ For a

given P*, the standard simplex of distributiodsis divided by planeS% = Z into convex polyhedra

where functionsign <§j— — 1’9’—:) are constant. In these polyhedra the cone of the local Maskaber @0)
Q(p,p+ is also constant. Let us call these polyhedsenpartments

In Figurel we represent compartments and cones of the local Markov &odéhe Markov chains
with three statesd; , ;. The reversible Markov chain consists of three reversibleditions4; <= A, <
Az S A, with corresponding directing vectofd® = (—1,1,0)";v* = (0, —1,1)T; 3! = (1,0, 1) .
The topology of the partitioning of the standard simplexinbmpartments and the possible values of
the coneQp p+) do not depend on the position of the equilibrium distribotiy .

Let us describe all possible compartments and the corregmbriocal Markov order cones. For

every natural number < n — 1 the k-dimensional compartments are numerated by surjectiveifurs
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o:{1,2,...,n} — {1,2,...,k+1}. Such a function defines the partial ordering of quant@ieimside
the compartment; ’
s Biie o) <o(h); =L it () =o(j) (41)

* *

p; D p; P

Let us use for the correspondent compartment notafjoand for the Local Markov order cone
Q),. Letk; be a number of elements in preimageiofi = 1,...,k): k; = [{j | o(j) = i}|. It
is convenient to represent surjectienas a tableau witlt rows andk; cells in theith row filled by
numbers from{1,2, ..., n}. First of all, let us draw diagram, that is a finite collectiofircells arranged
in left-justified rows. Theith row hask; cells. A tableau is obtained by filling cells with numbers
{1,2,...,n}. Preimages of are located in théth row. The entries in each row are increasing. (This is
convenient to avoid ambiguity of the representation of tgestiono by the diagram.) Let us use for
tableaus the same notation as for the corresponding Sonect

Let a tableaud havek rows. We say that a tableds follows A (and use notatiodd — B) if B has
k — 1 rows andB can be produced from by joining of two neighboring rows il (with ordering the
numbers in the joined row). For the transitive closure ofrélation— we use notatiors.

Proposition 5. 70Q, =, Q. O

HereroU stands for the “relative boundary” of a 4étin the minimal linear manifold which includes
U.

The following Proposition characterizes the local orderecthrough the surjection. It is sufficient
to use in definition ofy), (40) vectorsy“ (36) with i and; from the neighbor rows of the diagram (see
Figurel).

Proposition 6. For a given surjectiorr compartment,, and cone?),, have the following description:

C, = {P | ]% = i—% for o(i) = o(j) and }% > % for o(j) =0(i) + 1} (42)
Qs = cone{y? | o(j) = o(i) +1} O (43)

Compartment, is defined by equalitie% = 1’?’—: wherei, j belong to one row of the tableauand
inequalities}f—; > Z—j wherej is situated in a row one step down frarm the tableaud(j) = o (i) + 1).
Cone@), is a conic hull onf:‘f k;k;,1 vectorsy¥. For these vectors; is situated in a row one step
down fromi in the tableau. Extreme rays ¢, are products of the positive real half-line on vectg¥s
(43).

Each compartment has tlegeral facesand thebase We call the face a lateral face, if its closure
includes the equilibriunP*. The base of the compartment belongs to a border of the sthsaaplex
of probability distributions.

To enumerate all the lateral faces of-aimensional compartmed}, of codimensiors (in C,) we
have to take all subsets withelements in{1,2,... k}. For any such a subsétthe correspondent
k — s-dimensional lateral face is given by additional equaftigife: i—j foro(j) =o(i)+1,i€ J.
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Proposition 7. All k£ — s-dimensional lateral faces of &dimensional compartmet, are in bijective
correspondence with theelement subsets C {1,2,..., k}. For eachJ the correspondent lateral face
is given inC, by equations

bi Py : N

— == forall ieJ and o(j)=0(i)+1 O (44)

*

p; D

The 1-dimensional lateral faces (extreme rays) of companti@, are given by selection of one
number from{1,2, ..., k} (this number is the complement gj. For this number, the correspondent
1-dimensional face is a set parameterized by a positive pumng|1, a,], a, = 1/ Za(i)gr pi

Pi_ o, for oli)<r; T =b, for ofi) > r;
D; pi
45
a>1>bZO,aZp;‘+pr;‘:1 (45)
i,0(1)<r i,0(i)>r

The compartment, is the interior of thek-dimensional simplex with vertice®* and v, (r =
1,2,...k). The vertexv, is the intersection of the correspondent extreme #by {vith the border of
the standard simplex of probability distribution3:= v, if

pi =pia., for o(i) <r; p;=0 for o(i) >r (46)

The base of the compartmafit is ak — 1-dimensional simplex with verticas (r = 1,2,...k).
It is necessary to stress that we use the reversible Markaingtor construction of the general
Markov order due to Theoreth

6. The “Most Random” and Conditionally Extreme Distributio ns
6.1. Conditionally Extreme Distributions in Markov Order

The Markov order can be used to reduce the uncertainty intdrelard settings. Let the plarie
of the known values of some moments be give(:°) = U, on L. Assume also that the “maximally
disordered” distribution (equilibrium¥* is known and we assume that the probability distributioRs
if there is no restrictions. Then, the standard way to evalfdor given moment conditions’(P) = U,
is known: just to minimizé{__(P||P*) under these conditions. For the Markov order we also canelefin
theconditionally extreme pointsn L.

Definition 4. Let L be an affine subspace &t", >, be a standard simplex ilR". A probability
distribution P € L N %, is a conditionally extreme point of the Markov order brif

(P+ Q) NL={P}

It is useful to compare this definition to the condition of theremum of a differentiable functiod
onL: gradH LL.

First of all, it is obvious that in the case when all the morseritP) are just some of the values,
then there exists only one extreme point of the Markov ordet,aand this point is, at the same time, the
conditional minimum orl. of all Csiszar—-Morimoto functions/, (P) (6) (see, for example, Figur®.
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Figure 2. If the moments are just some pf then all points of conditionally minimal
divergence are the same for all the main divergences anccideinwith the unique
conditionally extreme point of the Markov order (example tlee Markov chain with three
states, symmetric equilibriunp( = 1/3)) and the moment plang =const.

Extreme point
of the Markov
orderonl

L

Conditional
minimiser of all
CR divergences

NS

This situation is unstable, and for a small perturbatioh tiie set of extreme points of the Markov order

on L includes the intersection df with one of compartments (Figua). For the Markov chains with

three states, each point of this intersection is a conditionnimizer of one of the CR divergences (see

Fig. 3a). Such a situation persists for @llin general positions (Figurgb). The extreme points of the

family 5Dk (P||P*) + (1 — B) Dk (P*||P) form an interval which is strictly inside the interval of the

extreme points of the Markov order dn For higher dimensions df N ¥,, the Markov order on. also
includes the intersection df with some compartments, however the conditional mininsizérthe CR
divergences form a curve there, and extreme points of théyfahdk (P|| P*) + (1 — ) Dkr(P*|| P)

on L form another curve. These two curves intersect at two péinis 0, —1), which correspond to the

BGS and Burg relative entropies.
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Figure 3. The set of conditionally extreme points of the Markov orderthe moment
plane in two general positions. For the main divergencepdirgs of conditionally minimal
divergence are distributed in this set. For several of thetrimoportant divergences these
minimizers are pointed out. In this simple example eacheexér point of the Markov order
is at the same time a minimizer of one of theg , (A €] — 0o, +00[) (examples for the
Markov chain with three states, symmetric equilibriysh € 1/3)).

A:—OO

Extreme points
of the Markov
orderonlL

p— A=o00

Extreme points of the
CR divergences,

—o <A< oo

a)
Extreme points
of the Markov
orderonlL
Extreme points of the
CR divergenceson L,
—0< 1<
b)

6.2. How to Find the Most Random Distributions?

Let the pland. of the known values of some moments be give'ti?) = > uip; =U; (i =1,...m)
on L. For a given divergenc# (P|| P*) we are looking for a conditional minimizét:

H(P||P*) — min subject to u"(P) = U(i =1,...m) (47)

We can assume thaf(P|| P*) is convex. Moreover, usually it is one of the Csiszar-Maim
functions @). This is very convenient for numerical minimization besauhe matrix of second
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derivatives is diagonal. Let us introduce the Lagrangeiplidts u; (i = 1,...m) and write the system
of equations/ is the Lagrange multiplier for the total probability idetytEj pj=1:

OH - .
S = Mo+ D
Ip; ZZI !

> ulp; = Uy ; (48)
j=1

Y opi=1
j=1

Here we have: + m + 1 equations forn + m + 1 unknown variablesy;, 1, 1)

Usually H is a convex function with a diagonal matrix of second vaealdnd the method of choice
for solution of this equatiord®) is the Newton method. On ther 1st iteration to findP!*! = P! + AP
we have to solve the following system of linear equations

" O’H
>

s—1 8pj8ps
> uiAp; =0; (49)
j=1
> Ap;j =0
j=1

For a diagonal matrix of the second derivatives the firsjuations can be explicitly resolved. If for the

solution of this system¥@) the positivity conditiorpg- + Ap; > 0 does not hold (for some gf then we
should decrease the step, for example by multiplicafiégh:= 0 A P, where

P=P! i=1 8])]

Pl
0<f< min !
pi+Api<o |Ap;]

For initial approximation we can take any positive normadizdistribution which satisfies the
conditionsu’(P) =U; (i = 1,...m).

For the Markov orders the set of conditionally extreme dstions consists of intersections af
with compartments.

Here we find this set for one moment condition of the farf¥) = >, u;p; = U. First of all, assume
thatU # U*, whereU* = u(P*) = >, u;p; (if U = U~ then equilibrium is the single conditionally
extreme distribution). In this case, the set of conditibpnaktreme distributions is the intersection of the
condition hyperplane with the closure of one compartmedtcam be described by the following system
of equations and inequalities (under standard requirespent 0, > . p; = 1):

Zujpj :lj7
J

PLs B (U — U > uy (U — U)
b P;

(50)

(hence,g—g; = 1’?’—: if u; = uj).



Entropy201Q 12 1176

To find this solution it is sufficient to study dynamicsdfP) due to equations3{7) and to compare it
with dynamics ofu(P) due to a model systetl = P* — P. This model system is also a Markov chain
and, thereforeP* — P € Q(pp+). Equations and inequalitieS@ mean that the set of conditionally
extreme distributions is the intersection of the conditigperplane with the closure of compartmént
InC, numbers& have the same order on the real line as numbgig — U*) have, these two tuples of
numbers correspond to the same table@ndC = C,.

For several linearly independent conditions there existsalition planel:

:Zu;‘.pj:Ui (i=1,...m) (51)

Let us introduce then-dimensional spac& with coordinates:’. Operatoru(P) = (u'(P)) maps the
distribution space int@ and the affine manifold. (51) maps into a point with coordinates = U;.

If P* € L then the problem is trivial and the only extreme distribataf the Markov order ord. is
P*. Let us assume thdt* ¢ L.

For each distributio®® € L we can study the possible direction of motions of projectimtributions
onto7 due to the Markov processes.

First of all, let us mention that ifi(v*/) = 0 then the transitionsl; = A; move the distribution
alongL. Hence, for any conditionally extreme distributibhe L this transition4; < A; should be in
equilibrium and the partial equilibrium condition hold}%: ==

Let us consider processes witly/) # 0. If there exis]ts a convex combinatioB9) of vectors
u(y7)sign ( ) (u(y¥) # 0) that is equal to zero theR cannot be an extreme distribution of the
Markov order onL

These two conditions for vectorg’ with u(y”) = 0 and for the set of vectors with non-zero
projection on the condition space define the extreme digtdbhs of the Markov order on the condition
planeL for several conditions.

7. Generalized Canonical Distribution
7.1. Reference Distributions for Main Divergences

A system with equilibriumP* is given and expected values of some variablg#) = U; are known.
We need to find a distributiof® with these values,;(P) = U; and is “the closest” to the equilibrium
distribution under this condition.

This distribution parameterized through expectation eslis often called theeference distribution
or generalized canonical distributiofter Gibbs and Jaynes, the standard statement of thidgrois
an optimization problem:

H(P||P*) — min, wu;(P)=U;

for appropriate divergencE (P||P*). If the number of conditions is: then this optimization problem
can be often transformed into + 1 equations withn + 1 unknown Lagrange multipliers.

In this section, we study the problem of the generalized oeab distributions for single condition
u(P)=> " wupi=U,U#U"
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For the Csiszar—Morimoto functiors,, (P|| P*)

T () (52)
Ipi D;

We assume that the functidri(z) has an inverse functiog: ¢g(h'(z)) = = for anyx €]0,00[. The
method of Lagrange multipliers gives for the generalizetbeécal distribution:

oH, 0 j-ap) | OU ,<m) - -
=H +pa— W = ) = po + pug, pi =1, piu =U (53)
Ipi " Ip; Op; D; ’ ZZ1 ZZ1

As a result, we get the final expression for the distribution

Pi = p;g(po + uipt)

and equations for Lagrange multipligrg and ::

D o piglio+wip) = 1, > pig(po+ wip)u; = U (54)
i=1 i=1
If the image ofh/(z) is the whole real line/{' (]0, oo[) = R) then for any real numbeyrthe valuey(y) > 0
is defined and there exist no problems about positivity; afue to 64).
For the BGS relative entropy' (z) = Inz (we use the normalizetl(z) = zlnz — (x — 1) (19)).
Therefore g(x) = exp x and for the generalized canonical distribution we get

n n n
K O SUG —po * UL ¢ * Ui * Uil
Di = p;ertert, e = E p;e, E p;uie —UE p;e (55)
i=1 =1 =1

As a result, we get one equation feand an explicit expression fat, throughy.
Theseyu, and i have the opposite sign comparing &) just because the formal difference between
the entropy maximization and the relative entropy minimic@a Equation $5) is essentially the same

as b).
For the Burg entropy/(z) = —1, g(z) = —1 too and

pi
pi= -t (56)
Ho + Ui ft
For the Lagrange multipliers,, 1 we have a system of two algebraic equations

n

P e B S (57)
=7 Mo + uipd =7 Mo+ uipd

For the convex combination of the BGS and Burg entropiés) = Slnx — % 0 < p<1),and
the functionz = ¢(y) is a solution of a transcendent equation

ﬁlnx—%zy (58)

Such a solution exists for all reglbecause thig’(x) is a (monotonic) bijection of0, co[ on the real
line.
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Solution to Equation38) can be represented through a special function, the Lamiosstion [62].
This function is a solution to the transcendent equation

we =z

and is also known aB’ function, {2 function or modified logarithnimz [36]. Below we use the main
branchw = lmz for whichlmz > 0 if z > 0 andlm0 = 0. Let us write 68) in the form
4]
Inx — —=-A (59)

T

whered = (1 — 3)/8, A = —y/3. Then

_ A
r=e Aelm(ée )

Another equivalent representation of the solution gives
4]
e Im(de?)

Indeed, let us take = §/z and calculate exponent of both sides 88)( After simple transformations,
we obtainze* = je.

The identitylma = Ina — Inlma is convenient for algebraic operations with this functiddany
other important properties are collected &2]|.

The generalized canonical distribution for the convex cioration of the BGS and Burg divergence
is [36]

S —A; lm(éeAi) — 5p;k 60
pl pze € 1m(5eAZ) ( )

whereA; = —%(uo +u;pn), d = (1 — )/p and equationsid) hold for the Lagrange multipliers.
For smalll — 5 (small addition of the Burg entropy to the BGS entropy) weehav

- . 2
pi=1t ( st L ) o((1— B))

For the CR familyh(x) = 220 i/(z) = S g(a) = (A and

o (A D) (po 4 wgp) + 1\
Pi = D; ( A+ 1) ) (61)

For A = 1 (a quadratic divergence) we easily get linear equationseapticit solutions foru, and
e If A = % then equations for the Lagrange multiplie®l become quadratic and also allow explicit
solution. The same is true for = % andi but explicit solutions to the correspondent cubic or qearti
equations are too cumbersome.

We studied the generalized canonical distributions for cmadition«(P) = U and main families
of entropies. For the BGS entropy, the method of Lagrangeiphiers gives one transcendent equation
for the multiplier; and explicit expression far, as a function ofu; (55). In general, for functions
Hj,, the method gives a system of two equatiobd)( For the Burg entropy this is a system of
algebraic equation5{). For a convex combination of the BGS and the Burg entrofiesekpression
for generalized canonical distribution function includies special Lambert functior6(). For the CR
family the generalized canonical distribution is presdriiyg formula 61). for several values of it can
be represented in explicit form. The Tsallis entropy fansla subset of the CR family (up to constant
multipliers).
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7.2. Polyhedron of Generalized Canonical Distributionstfee Markov Order

The set of the most random distributions with respect to tleglgv order under given condition
consists of those distributions which may be achieved bgigamzation which has the given equilibrium
distribution and does not violate the condition.

In the previous section, this set was characterized forgleitondition) . p;u; = U, U # U* by a
system of inequalities and equatio®§). It is a polyhedron that is an intersection of the closurercd
compartment with the hyperplane of condition. Here we aoicsthe dual description of this polyhedron
as a convex envelope of the set of extreme points (vertices).

The Krein—Milman theorem gives general backgrounds of susdpresentation of convex compact
sets in locally convex topological vector spacé8]] a compact convex set is the closed convex hull of
its extreme points. (An extreme point of a convex Keis a pointr € K which cannot be represented
asanaverage = s(y+z) fory,z € K,y,z # x.)

Let us assume thatthere dre 1 < n different numbers in the set of numbex$U —U*). There exists
the unique surjection : {1,2,...n} — {1,2,...k + 1} with the following propertieso (i) < o(j) if
and only ifu;(U —U*) > u;(U—U*) (henceg (i) = o(j) ifand only if u;(U —U*) = u,;(U —U*)). The
polyhedron of generalized canonical distributions is titerisection of the condition plade,, p;ju; = U
with the closure ot, .

This closure is a simplex with verticés andv, (r = 1,2, ... k) (46). The vertices of the intersection
of this simplex with the condition hyperplane belong to esigéthe simplex, hence we can easily find
all of them: the edgér, y] has nonempty intersection with the condition hyperplarstherw(z) >
U&u(y) < U oru(z) < U&u(y) > U. This intersection is a single poiftif u(x) # u(y):

u(y) —U

u(y) — u(x)

If u(x) = u(y) then the intersection is the whole edge, and the vertices angly.
For example, ifU is sufficiently close taJ* then the intersection is a simplex withverticesw,

(r =1,2,...k). Eachw, is the intersection of the edg&*, v,| with the condition hyperplane.
Let us find these vertices explicitly. We have a system of tgquea¢ions

a Z pz—l—b Z pi =1;

i,0(1)<r

P=Xr+(1-ANy, A= (62)

(63)
a ), wpith Z up} =
i,0(1)<r >r
Position of the vertexy, on the edgéP*, v,] is given by the following expressions
p—i:a, for o(i) <r; p—i:b, for o(i) > r
D; D;
Zi,a(i)>r p;k Zi,o(i)gr ulp;k - Zi,a(i)gr p;k Zi,o(i)>r ulp;k (64)
h—1— (U - U*) Zi,a(i)gr 2

Zi,a(i)>r p; Zz’,a(i)gr uip; — Zz’,a(z’)gr p; Zi,o(i)>r (5
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If b > 0 for all » then the polyhedron of generalized canonical distributisna simplex with vertices
w,.. If the solution becomes negative for somthen the set of vertices changes qualitatively and some
of them belong to the base 6f. For example, in Figur8a the interval of the generalized canonical
distribution (1D polyhedron) has vertices of two types: betngs to the lateral face, another is situated
on the basement of the compartment. In Figglvdoth vertices belong to the lateral faces.

Verticesw, on the edge$P*, v,| have very special structure: the ratig p; can take for them only
two values, it is eithet or b.

Another form for representation of vertices (64) can be found as followsw, belongs to the edge
[P*,v,], hencew, = AP* + (1 — \)v, for some\ € [0, 1]. Equation for the value of follows from the
conditionu(w,) = U: AU* + (1 — Mu(v,) = U. Hence, we can usé2) with x = P*, y = v,.

For sufficiently large value df — U* for some of these verticédoses positivity, and instead of them
the vertices on edgés,, v,] (46) appear.

There exists a vertex on the edge, v | if eitheru(v,) > U&u(v,) < U oru(v,) < U&ku(v,) > U.

If uw(v,) # u(v,) then his vertex has the forfd = Av, + (1 — X\)v, and for\ the conditionu(P) = U
gives 62) with z = v,, y = v,. If u(v,) = u(v,) then the edgéu(v,), u(v,)] belongs to the condition
plane and the extreme distributions afe, ) u(v,).

For each ofv, the ratiop; /p; can take only two valuesz, or 0. Without loss of generality we can
assume thaj > r. For a convex combinatioku, + (1 — X\)v, (1 > A > 0) the ratiop; /p; can take three
values:\a, + (1 — A)a, (for o(i) <), (1 — A)a, (forr < o(i) < ¢) and O (foro (i) > g).

The case when a vertex is one of thes also possible. In this case, there are two possible values
pi/p§, itis eithera, or 0.

All the generalized canonical distributions from the paghon are convex combinations of its
extreme points (vertices). If the set of verticegis.}, then for any generalized canonical distributions
P =3 X\w; (\; >0,>,\; = 1). The vertices can be found explicitly. Explicit formulas the extreme
generalized canonical distributions are given in thisisact(64) and various applications 08®). These
formulas are based on the description of compartrGgmgiven in Propositiory and Equation46).

8. History of the Markov Order
8.1. Continuous Time Kinetics

We have to discuss the history of the Markov order in the widtertext of orders, with respect to
which the solutions of kinetic equations change monotdlyiagatime. The Markov order is a nice and
constructive example of such an order and at the same timgrtihetype of all of them (similarly the
Master Equation is a simple example of kinetic equations ahdhe same time, the prototype of all
kinetic equations).

The idea of orders and attainable domains (the lower condkeske orders) in phase space was
developed in many applications: from biological kineticghemical kinetics and engineering. A kinetic
model includes information of various levels of detail afigariable reliability. Several types of building
block are used to construct a kinetic model. The system aktiheilding blocks can be described, for
example, as follows:
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1. The list of components (in chemical kinetics) or populasig¢im mathematical ecology) or states
(for general Markov chains);

2. The list of elementary processes (the reaction mechanisengtaph of trophic interactions or
the transition graph), which is often supplemented by thedior surfaces of partial equilibria of
elementary processes;

3. The reaction rates and kinetic constants.

We believe that the lower level information is more accuranel reliable: we know the list of
component better than the mechanism of transitions, ankrmwvledge of equilibrium surfaces is better
than the information about exact values of kinetic constant

It is attractive to use the more reliable lower level infotioa for qualitative and quantitative study
of kinetics. Perhaps, the first example of such a analysigpeesermed in biological kinetics.

In 1936, A.N. Kolmogorov §4] studied the dynamics of a pair of interacting populatiohgrey (z)
and predatory) in general form:

under monotonicity conditions)S(z,y)/dy < 0, OW (z,y)/dy < 0. The zero isoclines, the lines at
which the rate of change for one population is zero (givendwyaéonsS(x,y) = 0 or W (z,y) = 0),
are graphs of two functiongx). These isoclines divide the phase space into compartngereiically
with curvilinear borders). In every compartment the andi@assible directions of motion is given
(compare to Figuré).

Analysis of motion in these angles gives information abguitaanics without an exact knowledge of
the kinetic constants. The geometry of the zero isoclinesgsection together with some monotonicity
conditions give important information about the systematyits p4] without exact knowledge of the
right hand sides of the kinetic equations.

This approach to population dynamics was further develdgyadany authors and applied to various
problems §5,66]. The impact of this work on population dynamics was analybg K. Sigmund in
review [67].

It seems very attractive to use an attainable region insté#ltk single trajectory in situations with
incomplete information or with information with differelgvels of reliability. Such situations are typical
in many areas of engineering. In 1964, F. Horn proposed ttyam#he attainable regions for chemical
reactors §8]. This approach was applied both to linear and nonlineaetiicnequations and became
popular in chemical engineering. It was applied to the optation of steady flow reactor$9), to
batch reactor optimization by use of tendency models witlkoowledge of detailed kinetic§ (] and
for optimization of the reactor structurél]. Analysis of attainable regions is recognized as a special
geometric approach to reactor optimizati@g][and as a crucially important part of the new paradigm of
chemical engineering/B]. Plenty of particular applications was developed: frontypeerization [/4]
to particle breakage in a ball milrp]. Mathematical methods for study of attainable regiony yiaom
the Pontryagin’s maximum principl&§] to linear programmingq7], the Shrink-Wrap algorithm7g]
and convex analysis.
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Figure 4. Attainable regions from an initial distributian, for a linear system with three
componentsd;, A,, A; in coordinates:, c; (concentrations ofl;, Ay) (c3 = const — ¢; —

c) [60]: for a full mechanismd; = A, = A3 = A; (outlined region), for a two-step
mechanismd; = A,, A; = A; (horizontally shaded region) and for a two-step mechanism
Ap &2 A,, Ay = Aj (vertically shaded region). Equilibrium is". The dashed lines are
partial equilibria.

The connection between attainable regions, thermodyrsaamid stoichiometric reaction mechanisms
was studied by A.N. Gorban in the 1970s. In 1979, he demdesttteow to utilize the knowledge about
partial equilibria of elementary processes to construetiainable region$().

He noticed that the set (a cone) of possible direction foetkas is defined by thermodynamics and
the reaction mechanism (the system of the stoichiometuaton of elementary reactions).

Thermodynamic data are more robust than the reaction mechaand the reaction rates are
known with lower accuracy than the stoichiometry of elemaentreactions. Hence, there are two
types of attainable regions. The first is the thermodyname; evhich use the linear restrictions and
the thermodynamic functiong9]. The second is generated by thermodynamics and stoicli@me
equations of elementary steps (but without reaction r@&&30].

It was demonstrated that the attainable regions significal@pend on the transition mechanism
(Figure4) and it is possible to use them for the mechanisms discritoim§81].

Already simple examples demonstrate that the sets ofldigitons which are accessible from a given
initial distribution by Markov processes with equilibriuane, in generalpon-convexolytopes 60,82
(see, for example, the outlined region in Figdkeor, for particular graphs of transitions, any of the
shaded regions there). This non-convexity makes the araliyattainability for continuous time Markov
processes more difficult (and also more intriguing).
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This approach was developed for all thermodynamic potisngéiad for open systems as wel4].
Partially, the results are summarized i461].

This approach was rediscovered by F.J. Kramb&8&kfpr linear systems, that is, for Markov chains,
and by R. Shinnar and other autho8#l][for more general nonlinear kinetics. There was even an open
discussion about priority8f]. Now this geometric approach is applied to various chehaigd industrial
processes.

8.2. Discrete Time Kinetics

In our paper we deal mostly with continuous time Markov ckairfror the discrete time Markov
chains, the attainable regions have two important proggerthey are convex and symmetric with respect
to permutations of states. Because of this symmetry andesagythe discrete time Markov order is
characterized in detail. As far as we can go in history, tlegawas begun in early 1970s by A. Uhlmann
and P.M. Alberti. The results of the first 10 years of this wamdre summarized in monograpd. A
more recent bibliography (more than 100 references) iectdtl in review38].

This series of work was concentrated mostly on processes wiiform equilibrium (doubly
stochastic maps). The relative majorization, which we als®in Sectiorb, and the Markov order with
respect to a non-uniform equilibrium was introduced by Rrétaoés in 2004499]. He used formalism
based on the Lorenz diagrams.

9. Conclusion

Is playing with non-classical entropies and divergences g extension to the fitting possibilities
(no sense—just fitting)? We are sure now that this is not tlse:céawvo one-parametric families of
non-classical divergences are distinguished by the veryragroperties:

1. They are Lyapunov functions for all Markov chains;

2. They become additive with respect to the joining of indematdsystems after a monotone
transformation of scale;

3. They become additive with respect to a partitioning of thatestspace after a monotone
transformation of scale.

Two families of smooth divergences (for positive distribas) satisfy these requirements: the
Cressie—Read family2p,30|

Her A(P||PF) = ﬁZPz [(]%) - 1] , A €] —o00,00]

)

and the convex combination of the Burg and Shannon relatitrejgies B4,35|:

HPIP) = S0~ (1= dpidtog (%) L e fon

If we relax the differentiability property, then we have tideato the the CR family two limiting cases:

Hcr o (P||P*) = max {p—i} —-1;
7 pZ
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Her —oo(P||PY) = max {pl } 1
¢ bi

Beyond these two distinguished one-parametric familiesrethis the whole world of the
Csiszar—Morimoto Lyapunov functionals for the Master &ipn 6). These functions monotonically
decrease along any solution of the Master equation. The sdlttbhese functions can be used to reduce
the uncertainty by conditional minimization: for eakchive could find a conditional minimizer @i, (p).

Most users prefer to have an unambiguous choice of entrdpyould be nice to have “the best
entropy” for any class of problems. But from a certain poihview, ambiguity of the entropy choice
is unavoidable, and the choice of all conditional optimszarstead of a particular one is a possible
way to avoid an arbitrary choice. The set of these minimiaMaluates the possible position of a
“maximally random” probability distribution. For many MBxt problems the natural solution is not
a fixed distribution, but a well defined set of distributions.

The task to minimize functiong?,(p) which depend on a functional parameterseems too
complicated. The Markov order gives us another way for tladuation of the set of possible “maximally
random” probability distribution, and this evaluation is,some sense, the best one. We defined the
Markov order, studied its properties and demonstrated hoan be used to reduce uncertainty.

It is quite surprising that the Markov order is generated Iy teversible Markov chains which
satisfy the detailed balance principle. We did not includg eeversibility assumptions and studied
the general Markov chains. There remain some questiong #imstructure and full description of the
global Markov order. Nevertheless, to find the set of conddily extreme (“most random”) probability
distributions, we need the local Markov order only. Thisdbaorder is fully described in Sectidn?2
and has a very clear geometric structure. For a given equitibdistribution P*, the simplex of
probability distributions is divided byi(n — 1)/2 hyperplanes of “partial equilibria” (this terminology
comes from chemical kinetic6(,61]): p? = ”7 (there is one hyperplane for each pair of stgteg)).

In each compartment a cone of all possmle tlme derivativéseoprobability distribution is defined as a
conic envelope ofi(n — 1)/2 vectors 40). The extreme rays of this cone are explicitly described in
Proposition6 (43). This cone defines the local Markov order. When we look fonditbonally
extreme distributions, this cone plays the same role as arpigne given by entropy growth condition
(dS/dt > 0) in the standard approach.

For the problem of the generalized canonical (or referedes)ibution the Markov order gives a
polyhedron of the extremely disordered distributions. Vesices of that polyhedron can be computed
explicitly.

The construction of efficient algorithms for numerical céétion of conditionally extreme compacts
in high dimensions is a challenging task for our future warkvall as the application of this methodology
to real life problems.
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Appendix

Proof of Theoreni. The problem is to find all such universal and trace—form luyeqy functionsH for
Markov chains, that there exists a monotonous funckipauch thatF’(H (P)) = F(H(Q))+ F(H(R))
if P =p;=qr;j.

With Lemma 1 we get that

H(P)= ;qfr;h (qi”)  H(Q) = Z;Cﬁh (q—) L H(R) =) rih (:—j)

*k pak
q;7; q; ; j

Let F'(x) andh(x) be differentiable as many times as needed. DifferentidtiegequalityF'(H(P)) =
F(H(Q)) + F(H(R)) onr, andg; taking into account thag, = 1 — 37" ¢; andr,, = 1 — 37" ' r;
we get that™” (H (P))H!,, (P) = —F"(H(P))H. (P)H. (P), or, if — 10 — G(H(P)) then

qri F"(H(P))

G(H(P)) = H"ﬁf) }(IESP)

qiri

(65)
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It is possible if and only if every linear differential opévaof the first order, which annulaté$( P) and

> pi, annulates also
H; (P)H; (P)
Hy,,(P)

and it means that every differential operator which has dinen f

D <8H(P) B 8H(P)) i‘f‘ <8H(P) B 8H(P)) 0 N <8H(P) B 8H(P)) KA (67)
9g 9qa ) Oqp 9qs 9gy ) 94a 9 dqs ) Oqy
annulates@6). For = 2, a = 3,y = 4 we get the following equation

qa71 / q2Tm qar1 1,11 qam1 _ q27’m " 2Tm,

Fl(@R)[ <q2r> h ( >+th <q§r1*> st (qa*r:fnﬂ
q3ri / q37"m qsri 1,1 qs3ri _a3rm KN q37"m

FQ ) [ () = (222) + o (22) — e (2]
r{aari\ 1 [ @arm qripn [ qari \ _ qarm pn [ qatm _

F3(Q, R) [h (qm) h (qu%) tgnh (qirt) g (qm>] =0

(66)

(68)

where

s [ 44Ty ;[ 4375
R h —h' | == :
@ R = Z ][ <qfi7“}*) <q§r§)} ’

J

;[ 4275 ;[ 44Ty .
RQB=3 1, lh <q) - <f)] |

J

Fy(Q.R) =) 1 [h/ <q§:j) - (quj)}

J

If we apply the differential operatog‘i2 -~ which annulates the conservation I@/ r; = 1,10
the left part of 68), and denotef (z) = zh” (x ) + W),z =8 2 =58 25 = q‘i, Y1 =05 Y2 = 2
Y3 = :—2 Yy = :—; we get the equation

(f(w3ys) — [(x2ys) — fzaya) + f(zaya))(f(z1y1) — f(212)) +
(f(z1ys) — fwsys) — f(zaya) + f(2sya) ) (f (w2y1) — f2212)) + (69)
(f(v2y3) — [(21ys) — fzaya) + f(z1ya))(f(23y1) — f(23y2)) = 0
or, after differentiation o, andy; and denotationg(x) = f'(z)
r1g9(w1y1)(w39(23y3) — 22g(T2y3)) + T2g(w2y1 ) (v19(21Y3) — (70)
—z39(3y3)) + w39(23y1)(229(22y3) — 19(21Y3)) = 0
If y3 = 1,11 # 0, p(x) = xg(x), we get after multiplicationq0) on y,

(r1y1)(p(r3) — (22)) + w(T2y1) (P(21) — w(23)) + p(T3Y1) (P(72) — (1)) =0 (71)

It implies that for every three positive numbers/, ~ the functionsp(ax), (5z), (yz) are linearly
dependent, and fap(z) the differential equation

az’¢” (x) + bry' (x) + cp(x) = 0 (72)

holds. This differential equation has solutions of two lend
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1. p(x) = Cyz* + Cox*?, ky # ky, ky andk, are real or complex-conjugate numbers.

2. o(z) = C12* + Cyz* In .

Let us check, which of these solutions satisfy the funclieqaation 71).

1. p(x) = Cyz™ + Cox®2. After substitution of this into{1) and calculations we get
CLCa(yy" — yi*) (@' a5? — a'ay? + af?ay’ — ay'al? + 25%ay — ay*ay’) =0

This means that', = 0, orCy = 0, ork; = 0, or ks = 0 and the solution of this kind can have
only the formy(z) = Cy2* + Cs.

2. () = Ci2* + Cox® In z. After substitution of this intoq1) and some calculations if, # 0 we
get

C2((2% — ab) b Inwg + (f — 2ol Inay + (25 — 28)ab Ina) =0

This means that eithef, = 0 and the solution isp(x) = Ci2* or k = 0 and the solution is
(p(ZE) = 01 -+ 02 In x.

So, the equation/(l) has two kinds of solutions:
1. p(z) = Ciz* + Cy,
2. p(x) =C1 +Cylnx
Let us solve the equatiofiz) = zh”(x) + h'(x) for each of these two cases.
1. p(z) = C1a* + Cy, g(x) = C1a*~1 + £, there are two possibilities:

1.1) k=0. Theng(z) = <, f(z) = Clnz + Cy, h(z) = Crolnz + Cylna + Csx + Cy;

1.2) k # 0. Thenf(x) = Cz* + C; Inx + Cy, and here are also two possibilities:
1.2.1) k = —1. Thenh(x) = C} Iz + Coxlnz + Cylnz + Cyz + Cs;
122) k 7é —1. Thenh(l‘) = leL‘kJrl + CorInz + CsInzx + Cyx + Cs;

2. p(z) = C1 + Colnz; g(z) = C1122 + &2; f(2) = CiIn’ 2+ Colna + Cs; h(z) = Cizln®x +
Corlnx + Cylnx + Cyx + Cs.

(We have renamed constants during the calculations).
For the next step let us check, which of these solutions nesreasolution to equatio®g). The result
is that there are just two families of functioh&r) such, that equatior6g) holds:

1. h(l’) :Cl’k‘FClﬁC—FCQ,k'#O,k'# 1,
2. h(z) = Cizlnz + Cylnz + Csx + Cy.

The functionh(x) should be convex. This condition determines the signs dficants C;.
The corresponding divergené&( P|| P*) is either one of the CR entropies or a convex combination
of Shannon’s and Burg’s entropies up to a monotonic transdtion. ]

Characterization of Additive Trace—form Lyapunov Funetidor Markov Chains.We will consider
three important properties of Lyapunov functiod$P|| P*):
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1. Universality H is a Lyapunov function for Markov chaing2) with a given equilibriumpP* for
every possible values of kinetic coefficierts > 0.

2. H is atrace—form function

H(P||P") = Zf (pi, ;) (73)
wheref is a differentiable function of two varlables.

3. H is additivefor composition of independent subsystems. It means that# p,; = ¢,r; and

Here and further we suppo8e< p;, p;, ¢i, ¢/, i, v} < 1.

We consider the additivity condition as a functional equatiand solve it. The following
theorem describes all Lyapunov functions for Markov chaimkich have all three properties 1) - 3)
simultaneously.

Let f(p, p*) be a twice differentiable function of two variables.

Theorem 3. If a function H (P|| P*) has all the properties 1)-3) simultaneously, then

Fr) =i (£, HPIP) - Soin (%) (74)

’L

where
h(z)=Cilnz+ Coxlnz, C; <0, Cy >0 (75)

Proof. We follow here the P. Gorban proot§]. Another proof of this theorem was proposed @]
Due to Lemmal let us takeH (P||P*) in the form (74). Let h be twice differentiable in the interval
10, +00]. The additivity equation

H(P|P") — H(Q[Q") — H(R|R") =0 (76)
holds. Here (inT6))
n—1 m—1
In = 1—2%‘7 Tmzl—ZTj> P = pij = q;r;
i=1 j=1

H(P||P*) = Zq**h(qij) H(Q|IQ") Zqz(

Let us take the derivatives of this equation firstg@rand then omr;. Then we get the equatiop(r) =

W' ()

). IR = Y (—)

4 J

R g(Z”’}) o) o)

Let us denote: = qiri, Yy = q;”’i , 2= Z%:T’ andw(a:) = g(x) + xg’(x). It is obvious that if» andm are

more than 2, them Yy andz are independent and can take any positive values. So, whettrictional
equation:

¥ (2) = v) +6(2) — vl) (77)
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Let's denote’y = —4(1) andw; (a) = ¥(a) — (1) and taker = 1. We get then

Y1(yz) = i(y) + ¥i(2) (78)

the Cauchy functional equatiof]]. The solution of this equation in the class of measurahtetions is
Y1 (a) = C Ina, whereC is constant. Sowe gét(z) = C; Inz+C5 andg(z)+xg'(z) = Cy Inx+Cs.
The solution isg(z) = & + CyInz + Cy — Cy; h(z) = [(£ + Cilnz + Cy, — Cy)dz = Cslnx +
Cixzlnz + (Cy — 2C1)x + Cy, or, renaming constant(x) = CyInxz + Coxlnz + Csz + Cy. In the

expression foh(z) there are two parasite constaftsandC', which occurs because the initial equation

was differentiated twice. S@,; = 0, C;, = 0 andh(x) = C; Inz + Cyx Inz. Becausé is convex, we
haveC; < 0 andCs > 0. O

So, any universal additive trace—form Lyapunov functionM@arkov chains is a convex combination
of the BGS entropy and the Burg entropy.
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