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Abstract—We consider one-parameter semigroups of homeomorphisms depending continuously
on the parameters. We study the phenomenon of slow relaxation that consists in anomalously slow
motion to the limit sets. We investigate the connection between slow relaxations and bifurcations
of limit sets and other singularities of the dynamics. The statements of some of the problems stem
from mathematical chemistry.
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Consideration of the simplest examples of dynamical systems has already shown that the time for
the motion to get into a fixed small neighborhood of the ω-limit set can be arbitrarily large, for example,
in view of a delay near an unstable fixed point. Singularities of this kind, which we call slow relaxations,
were not studied in topological dynamics separately though the problems related to them arose in various
(usually, applied) areas. For instance, there are articles devoted to the removal of the simplest slow
relaxations (delays near saddles) under the minimization of functions by relaxation methods (see, for
example, [1]).

The impetus to this article was the problem of slow relaxations in chemical kinetics. It was
observed in a number of experiments that some chemical (catalytic) systems approach their ω-limit
set anomalously slow [2, 3]. For explaining this phenomenon, some observations about slow “outside”
processes (diffusion of reagents into the volume of the catalyst etc.) were involved. In [4, 5], it was
shown that all these slow relaxations need not be caused by outside processes and can have purely
dynamic (or, in the language of the chemists, kinetic) reason. Some mathematical results connected
with these problems are announced in our article [6]; their proofs are given in [7]. Another example of
slow relaxations in chemistry is given by the induction periods of some chemical reactions (see [8, 9]).

In physics, in the study of equilibration processes described by ordinary differential equations, the
relaxation time of the system is defined by the quantity τ = −(Re λ)−1, where λ is the eigenvalue of the
system closest to the imaginary axis. Clearly, this characteristic makes sense only in the description of
a small neighborhood of the equilibrium, where the linear approximation holds with adequate accuracy.
For nonlinear systems, the choice is nonunique of the time response describing the rate of approximation
to the ω-limit set. In this article, we consider the six “relaxation times”: the time of the first appearance
of the motion in a given neighborhood of its or the full ω-limit set, the time of stay in this neighborhood,
and the time of the ultimate entry thereinto.

In topological dynamics, the time responses were usually not considered except for the average time of
stay in a domain. More attention is paid to them in the theory of random processes and in the intensively
developing theory of small random perturbations of dynamical systems [10]. However, as far as we know,
in these areas, the relaxation times were not studied systematically either.
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SLOW RELAXATIONS AND BIFURCATIONS 55

This article aims at studying the slow relaxations of dynamical systems. The study is carried out
in the spirit of the classical topological dynamics (see [11, 12] and also [13]). However, there are some
differences: first, we consider not a single dynamical system but a practically more important class of
systems depending on the parameters; second, in these systems, the motion is in general defined only
for the positive time. This is due to the fact that, in the applications, mainly, in chemical ones, only those
notions make sense that are “positively” invariant.

1. EXTENSION OF SEMIFLOWS TO THE LEFT

Suppose that we are given a compact metric space X with metric ρ, a metric space K with metric ρK ,
which will play the role of the space of the parameters of the system, and some continuous mapping

f [0,∞) × X × K → X. (1)

Moreover, for every k ∈ K and t ≥ 0, the mapping f(t, ·, k) : X → X is a homeomorphism of X onto
a subset of X and these homeomorphisms form a one-parameter semigroup for each k ∈ K:

f(0, x, k) = x, f(t + τ, x, k) = f(t, f(τ, x, k), k) (2)

for all t, τ > 0. In the sequel, we call a semigroup of mappings f(·, ·, k) for fixed k a semiflow of homeo-
morphisms or, for brevity, simply a semiflow; and the mapping (1), a family of semiflows. Obviously,
all results valid for the semiflows hold for the dynamical systems; i.e., when each semiflow may be
extended “to the left” to the entire axis (−∞,∞) to a flow, a one-parameter group of homeomorphisms
from X onto X.

It is clear that, in general, for fixed x and k, the mapping f(·, x, k) : t → f(t, x, k) may be extended
to some negative t with preservation of the semigroup property (2). Indeed, for fixed x and k, consider
the set of all negative t for each of which there is qt ∈ X such that f(t, qt, k) = x. Let T (x, k) be the
supremum of this set:

T (x, k) = sup{t ≥ 0 | ∃ qt ∈ X : f(t, qt, k) = x}.

For given t, x, and k, the point qt, if it exists, is defined uniquely since the mapping

f(t, ·, k) : X → X

is a homeomorphism. Put f(−t, x, k) = qt. If f(−t, x, k) is defined then

f(−τ, x, k) = f(t − τ, f(−t, x, k), k)

is also defined for all τ with 0 ≤ τ ≤ t. Suppose that T (x, k) < ∞ and numbers tn are such that
tn < T (x, k) for all n and tn → T (x, k) as n → ∞. From the sequence {f(−tn, x, k)}, choose a sub-
sequence converging to some q∗ ∈ X and denote it by {qj}, and the corresponding times, by −tj ;
so that qj = f(−tj, x, k). Since f is continuous, we infer f(tj, qj , k) → f(T (x, k), q∗, k); therefore,
f(T (x, k), q∗, k) = x. Hence, f(−T (x, k), x, k) = q∗.

Thus, for fixed x and k, we have the mapping f on [−T (x, k),∞) if T (x, k) is finite, and on the entire
axis (−∞,∞) otherwise. Let S be the set of all triples (t, x, k) on which f is now defined. This extended
mapping possesses the subgroup property as follows:

Proposition 1. If (τ, x, k) and (t, f(τ, x, k), k) ∈ S then

f(t, f(τ, x, k), k) = f(t + τ, x, k). (3)

Thus, if the left-hand side of (3) makes sense then so does the right-hand side and the equality
holds.

Conversely, if (t + τ, x, k) and (τ, x, k) ∈ S then (t, f(τ, x, k), k) ∈ S and (3) holds. In other
words, if in (3) the right-hand side and f(τ, x, k) in the left-hand side are defined then the entire
left-hand side makes sense and, hence, (3) holds again.
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Proof. Since k is assumed fixed; therefore, for brevity, we do not mention it in the formulas below. Note
that if at least one of the numbers t and τ is zero then we have nothing to prove. Therefore, assume them
nonzero and consider all the four logically possible variants of their sign combinations. If they are both
positive then all our assertions are valid by definition. However, in the three remaining variants, it will be
convenient to assume that t > 0 and τ > 0 and replace in (3) one of these numbers or both of them with
the opposite numbers.

Variant I. f(t, f(−τ, x)) = f(t − τ, x).
We first stress that if t = τ then all assertions related to Variant I are obvious. Thus, we are left with

only the two possibilities that we will now discuss:
(a) Suppose first that t > τ . In this case, the hypotheses of both our assertions, direct and converse,

in view of the inequalities t > 0 and t− τ > 0, are reduced to the condition that f(−τ, x) must be defined.
If it is so then

f(t, f(−τ, x)) = f((t − τ) + τ, f(−τ, x)) = f(t − τ, f(τ, f(−τ, x))) = f(t − τ, x),

and, hence, the first case is exhausted.
(b) Suppose now that τ > t. Suppose that f(−τ, x) is defined. Then both the left-hand side (since

t > 0) and the right-hand side of the inequality (since t − τ > −τ ) are defined. Here

f(τ − t, f(t, f(−τ, x))) = f(τ − t + t, f(−τ, x)) = x,

whence, by definition, f(−(τ − t), x) = f(t, f(−τ, x)). Thus, the second case is studied:

Variant II. f(−t, f(τ, x)) = f(−t + τ, x).
As above, the inequality needs no proof for t = τ .
(a) Suppose now that τ > t. By definition, f(−τ, f(τ, x)) makes sense; and, since −t > −τ , so does

f(−t, f(τ, x)) all the more. Moreover, f(−t + τ, x) is defined since −t + τ > 0. In other words, both
sides of the equality in Variant II are defined. As for the validity of equality, it suffices to observe that
f(t, f(−t + τ, x)) = f(τ, x); and, hence, f(−t + τ, x) = f(−t, f(τ, x)) by the definition of f for negative
times.

(b) Suppose to the contrary that t > τ . Assume that the left-hand side is defined in the quality of
Variant II. Noticing that t − τ > 0, we make use of the equality of Variant I, by which

f(t − τ, f(−t, f(τ, x))) = f(−τ, f(τ, x)) = x.

Therefore, f(−(t − τ), x) = f(−t + τ) makes sense and is equal to f(−t, f(τ, x)). Conversely, suppose
that f(−t + τ, x) is defined. Since, for τ > 0, f(τ, x) is defined a priori, we may once again apply the
equality of Variant I and infer f(t, f(−t + τ, x)) = f(τ, x). This means that f(−t, f(τ, x)) is defined and
equal to f(−t + τ, x).

Variant III. f(−t, f(−τ, x)) = f(−t − τ, x).
Suppose that the left-hand side of this equality is defined. From Variant I it follows that

f(t + τ, f(−t, f(−τ, x))) = f(τ, f(−τ, x)) = x.

Consequently, f(−t − τ, x) is defined and equal to f(−t, f(−τ, x)). Conversely, suppose that f(−τ, x)
and f(−t − τ, x) are defined. By Variant I, we then have f(t, f(−t − τ, x)) = f(−τ, x) and, hence,
f(−t, f(−τ, x)) is defined and equal to f(−t − τ, x). Proposition 1 is proved.

Proposition 2. S is closed in the product (−∞,∞) × X × K, and f : S → X is continuous.

Proof. Let 〈a,∞) denote the interval [a,∞) if a is finite and the entire real axis (−∞,∞) when a = −∞.
Suppose that tn → t∗, xn → x∗, kn → k∗, and tn lies in 〈−T (xn, kn),∞). We aim at verifying that t∗ is
in 〈−T (x∗, k∗),∞) and also f(tn, xn, kn) → f(t∗, x∗, k∗). If all tn ≥ 0 then this follows from continuity
of f on [0,∞) × X × K. Consider now the case when all tn ≤ 0. A sequence in a compact metric
space always has at least one partial limit; it converges if and only if such a limit is unique. Let q∗

be one of the partial limits of the sequence qn = f(tn, xn, kn); i.e., there are numbers ni such that
ni → ∞ and qni → q∗ as i → ∞. Then the sequence xni = f(−tni , qni , kni), on the one hand, converges
to f(−t∗, q∗, k∗) and, on the other hand, to x∗. Thus, f(−t∗, q∗, k∗) = x∗. This means that, first, t∗ is
contained in 〈−T (xn, kn),∞) and f(t∗, x∗, k∗) = q∗; and, second, f(t∗, x∗, k∗) is the only partial limit
of the sequence qn, which thus converges thereto. The proposition is proved.
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Throughout the sequel, we call the mapping f(·, x, k) : 〈−T (x, k),∞) → X the (x, k)-motion; it is
natural to call its image the (x, k)-trajectory. Sometimes we will speak of the images of the intervals
〈−T (x, k), 0] and [0,∞) calling them the negative and positive (x, k)-semitrajectories. We call the
(x, k)-motion and its trajectory entire if T (x, k) = ∞.

Suppose that the (xn, kn)-motion is defined at least on [−tn,∞), where tn > 0. Assume that

(xn, kn) → (x∗, k∗), tn → t∗, 0 < t∗ < ∞.

Then the (x∗, k∗)-motion is defined on [−t∗,∞). In particular, if all (xn, kn)-motions are defined on
some common interval of the type under consideration, the (x∗, k∗)-motion is defined on the same
interval. If tn → ∞ then the (x∗, k∗)-motion is defined on the entire real axis; i.e., it is an entire
motion. In particular, if all (xn, kn)-motions are integer then so is the (x∗, k∗)-motion. All that follows
immediately from the closedness of the set S on which the extended mapping f is defined.

In the conclusion of the section, we focus the reader’s attention on the two circumstances closely
connected with the problems under consideration. Our first remark fits well under the heading “Do
Not Think.” Suppose as above that (xn, kn) → (x∗, k∗). The duration of the “prehistories” of the
corresponding motions are defined by the quantities T (xn, kn) and T (x∗, k∗). Our main conclusion
about the connection between these times may be expressed in one simple sentence: If a number τ > 0 is
such that T (xn, kn) ≥ τ for all n then T (x∗, k∗) ≥ τ . There appears the question of whether the converse
holds, of course, in the sense natural for this situation, namely: if it s known that T (x∗, k∗) > τ then can
we assume that T (xn, kn) > τ for all sufficiently large n? To debunk any illusion about that, represent
the answer in its extremely negative form: It can happen that T (xn, kn) ≡ 0 but, at the same time,
T (x∗, k∗) = ∞.

The second simple remark already has a ”positive” nature. Suppose once again that (xn, kn) →
(x∗, k∗) and all (xn, kn)-motions and, hence, the (x∗, k∗)-motion are defined on [a, b]. Then, as is easy
to understand, the (xn, kn)-motions converge to the (x∗, k∗)-motion uniformly on [a, b] in the sense that
f(t, xn, kn) → f(t, x∗, k∗) uniformly over all t in a ≤ t ≤ b. This is immediate from the continuity of f
and the compactness of the interval [a, b].

2. LIMIT SETS
Definition 1. A point p is called an ω-limit point of the (x, k)-motion if there exists a sequence

tn → ∞ for which f(tn, x, k) → p. All these points constitute the ω-limit set of the (x, k)-motion,
which we will denote by ω(x, k). If the (x, k)-motion is entire then we may speak of the partial limits of
the mapping f(t, x, k) as t → −∞ and, by analogy to the above, define α-limit points of such a motion
and its α-limit set α(x, k).

Note that, by the compactness of the space X, each motion has at least one ω-limit point, and so its
ω-limit set is always nonempty. Of course, the same holds for the α-limit sets of entire motions.

Definition 2. We call a nonempty set W ⊂ X k-invariant if, for each x ∈ W , the corresponding
(x, k)-motion is entire and the whole of its trajectory lies in W . Analogously, a set V ⊂ X is (k, ω)-
invariant or positively k-invariant if it is nonempty and f(t, x, k) ∈ V for any t > 0 and x ∈ V .

Proposition 3. The limit set ω(x, k) of every (x, k)-motion is k-invariant. The same holds for
the limit set α(x, k) of an entire (x, k)-motion.

Proof. Suppose that p ∈ ω(x, k). Find a sequence tn → ∞ for which xn = f(tn, x, k) → p. Note that
the (xn, k)-motion is defined at least on [−tn,∞). Therefore, as was observed above, the (p, k)-motion
is defined everywhere on the real axis; i.e., it is entire. Show that the entire (p, k)-trajectory consists
of ω-limit points of the (x, k)-motion. Choose a point f(τ, x, k) on this trajectory. Since tn → ∞, the
values f(τ + tn, x, k) are defined for all sufficiently large n. They are equal to f(τ, xn, k) by Proposition 1,
and, hence, by the condition xn → p and the continuity of the extended mapping f established in
Proposition 2, tend to f(τ, p, k). Thus, as was asserted, f(τ, p, k) ∈ ω(p, k).

Suppose now that the (x, k)-motion is entire and q ∈ α(x, k). Choose a sequence tn → −∞ for
which xn = f(tn, x, k) → q. Clearly, all (xn, k)-motions are entire too. Fix an arbitrary moment τ and
note that f(τ + tn, x, k) = f(τ, xn, k) → f(τ, q, k) thanks to the semigroup property and the continuity
of f . Since τ + tn → −∞, the point f(τ, q, k) is α-limit for the (x, k)-motion. The proposition is proved.
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Fig. 1. The phase portrait of the system of Example 1

Proposition 4. The set ω(x, k) is closed and connected for every (x, k)-motion. The limit set
α(x, k) of an entire (x, k)-motion possesses the same properties.

We omit the proof because it coincides almost verbatim with the proof of the analogous assertions
in [12, p. 358–362].

In the sequel, apart from the ω-limit sets of individual motions, we consider the full ω-limit set

ω(k) =
⋃

x∈X

ω(x, k).

This set is of course k-invariant, since is a union of k-invariant sets, but need not be closed.
Example 1 (the nonclosedness of a complete ω-limit set). Consider the planar system in the disk

x2 + y2 ≤ 1 defined by the equation

ẋ = y(x − 1), ẏ = −x(x − 1).

The complete ω-limit set consists of the open disk {x2 + y2 < 1} and the point (0, 1). It is not closed.
Its closure coincides with the circle, the boundary consists of two trajectories: the fixed point (1, 0) ∈ ω
and the loop {x2 + y2 = 1, x �= 1} disjoint with ω. The phase trajectories of this system are shown in
Fig. 1. In the domain {0 < x2 + y2 < 1}, they are all concentric circles with center the fixed origin.

For studying the slow relaxations of dynamical systems, we need the two classes of sets composed of
the ω-limit sets of motions, namely:

Ω(x, k) = {ω(x′, k) | ω(x′, k) ⊂ ω(x, k)}, Ω(k) = {ω(x, k) | x ∈ X}.
Thus, Ω(x, k) consists of all subsets ω(x, k) that serve as the ω-limit sets of some motions. The class
Ω(k) consists of the ω-limit sets of all kinds of motions of the system.

3. CONVERGENCES IN HYPERSPACES

In the second part of our article, we study the connection between the slow relaxations of dynamical
systems and bifurcations; i.e., the violations of the continuous dependence of the sets ω(x, k) and ω(k)
and the classes Ω(x, k) and Ω(k) on x and k. Here we only define some kinds of convergences in the
spaces of sets and the classes of sets necessary for this work and consider the mappings continuous
with respect to these convergences. One of the notions of continuity that we use is well known. This is
lower semicontinuity (see [14, § 18] and [15, § 43]). The other two are somewhat more “exotic.”

Denote the class of all nonempty subsets of X by B(X), which is the hyperspace of X. By the distance
form a point x ∈ X to a set q ∈ B(X) we mean the quantity

ρ∗(x, q) = inf
y∈q

ρ (x, y).

We first introduce the following measure of proximity in B(X): Given some sets p and q in B(X), we put

d(p, q) = sup
x∈p

ρ∗(x, q). (4)

The function d(p, q) is in general nonsymmetric and is a “half” of the well-known Hausdorff metric
[14, p. 223] in which the distance between two sets p and q is the greatest of the quantities d(p, q)
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and d(q, p). Define convergence in B(X) with the help of the above proximity measure: Let qn be
a sequence of points in B(X). We say that it d-converges to p ∈ B(X) if d(p, qn) → 0. As is easy to
understand, d-convergence defines a topology in B(X) with countable base at each point, and continuity
in this topology coincides with d-continuity (the λ-topology [14, p. 183]). In this topology, a basis of
neighborhoods of a point p ∈ B(X) is given, for example, by the family of sets

{q ∈ B(X) | d(p, q) < 1/n}, n ≥ 1.

The conditions that guarantee that this is indeed a topology are easily verifiable, since, in spite if its
asymmetry, the function d satisfies the triangle inequality d(p, s) ≤ d(p, q) + d(q, s). For this conditions,
see [16, p. 19–20].

Another measure of proximity between sets p and q in B(X) that we need is defined as

r(p, q) = inf
x∈p

ρ∗(x, q).

By analogy to the above, the r-convergence of qn to p means that r(p, qn) → 0. Note that r-convergence
does not define a topology in B(X). To prove that, make use of the following obvious property of
convergence in topological spaces: if pi = p, qi = q, si = s are constant sequences of points, and pi → q,
qi → s then pi → s. This property does not hold for r-convergence. To construct an example, it suffices
to take two points x, y ∈ X, x �= y, and put p = {x}, q = {x, y}, s = {y}. Then r(p, q) = r(q, p) = 0,
and r(p, s) �= 0. Therefore, pi → q, qi → s, but pi �→ s; hence, that the r-convergence does not define
a topology for any metric space X that is not a point.

In the sequel, we need the following two criteria for the convergence of sequences in B(X).
In connection of the first see, for example, [14, p. 184, the generalized Heine condition]; the second
follows directly from the definition of r-proximity.

Proposition 5. A sequence qn ∈ B(X) tends to p ∈ B(X) in the sense of d-convergence if and
only if ρ∗(x, qn) → 0 for all x ∈ p.

Proof. Let qn → p. Then d(p, qn) → 0; and, hence, ρ∗(x, qn) → 0 for every x ∈ p since the supremum
of these numbers over x vanishes. Suppose to the contrary that ρ∗(x, qn) → 0 for every x ∈ p. We must
prove that d(p, qn) → 0. This follows from the compactness of X. Indeed, suppose to the contrary that
d(p, qn) �→ 0. Then, passing if necessary to a subsequence, we may assume that, for some ε > 0, the
inequality d(p, qn) > ε holds for all n. In this case, there is a sequence xn ∈ p such that ρ∗(xn, qn) > ε.
Since X is compact, xn may be assumed convergent, and then there exists a number N such that
ρ (xn, xN ) < ε/2 for n > N . Consequently, if y ∈ qn and n > N then

ρ (xN , y) > ρ (xn, y) − ε/2 > ε − ε/2 = ε/2.

Therefore, ρ∗(xN , qn) > ε/2. We arrived at a contradiction because xN ∈ p and, hence, ρ∗(xN , qn) → 0
as n → ∞. The proof is complete.

Proposition 6. A sequence qn ∈ B(X) tends to p ∈ B(X) in the sense of r-convergence if and
only if there exist such yn ∈ qn and xn ∈ p that ρ (xn, yn) → 0.

Let B(B(X)) denote the class of all nonempty subclasses in B(X). Our nearest aim is to introduce
a proximity measure in this class. To simplify exposition, given p ∈ B(X) and Q ∈ B(B(X)) put

r∗(p,Q) = inf
q∈Q

r(p, q).

As a measure of proximity between the classes P and Q in B(B(X)), take the quantity

D(P,Q) = sup
p∈P

r∗(p,Q). (5)

Note that (5) repeats (4) with the only difference that it involves r instead of ρ. We may slightly
simplify (5) by introducing the following notations: Suppose that Q ∈ B(B(X)). Put SQ =

⋃
q∈Q q.

Then SQ ∈ B(X) and

D(P,Q) = sup
p∈P

r(p, SQ). (6)
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We say that a sequence Qn in B(B(X)) D-converges to P ∈ B(B(X)) if D(P,Qn) → 0. Like
the r-convergence, D-convergence does not define a topology. This may be proved similarly to how
it was done for r-convergence. Namely, suppose that x, y ∈ X x �= y. Put P = {{x}}, Q = {{x, y}},
and R = {{y}}. Then D(Q,P ) = D(R,Q) = 0, Pi → Q, Qi → R. Moreover, D(R,P ) = ρ(x, y) �= 0,
and so Pi �→ R.

Before passing to a criterion of D-convergence, prove the following topological lemma:

Lemma 1. Consider two sequences pn and qn of subsets of X. Suppose that, for some ε > 0,
the inequality r(pn, qn) > ε holds for every n. Then, for every γ < ε, there exists an infinite set of
indices J such that r(pk, ql) > γ for all k, l ∈ J .

Proof. Putting δ = (ε − γ)/4, choose a finite δ-net M of X; and, to each p ⊂ X, assign the set

p∗ = {m ∈ M | ρ∗(m, p) ≤ δ}.
As is easy to understand, every two subsets p and q in X satisfy the inequality |r(p, q) − r(p∗, q∗)| ≤ 2δ.
Therefore, r

(
p∗n, q∗n

)
> ε − 2δ for all n. Since M is finite, the number of distinct pairs in the infinite

sequence p∗n, q∗n is in fact finite. Consequently, there exist an infinite set of indices J and a number N
such that p∗n = p∗N and q∗n = q∗N for all n ∈ J . Thus, if k, l ∈ J then r

(
p∗k, q

∗
l

)
= r

(
p∗N , q∗N

)
> ε − 2δ.

This obviously implies that r(pk, ql) > ε − 4δ = γ. The lemma is proved.

Proposition 7. A sequence Qn ∈ B(B(X)) converges to P ∈ B(B(X)) in the sense of D-
convergence if and only if r∗(p,Qn) → 0 for every p ∈ P .

Proof. This is obvious in one direction: if Qn → P then, by definition, D(P,Qn) → 0 and, all the more,
r∗(p,Qn) → 0 for every p ∈ P . Assume now that, on the contrary, r∗(p,Qn) → 0 for every p ∈ P . If,
moreover, D(P,Qn) �→ 0 then we may assume that D(P,Qn) > ε for some ε > 0 and all n. In this
case, by (6), there exist points pn ∈ P for which r(pn, SQn) > ε. By Lemma 1, there exist γ > 0
and a number N such that r(pN , SQn) > γ for arbitrarily large n. Thus, the sequence r∗(pN , Qn) =
r(pN , SQn) does not tend to zero. With this contradiction, we finished the proof of the assumption.

Throughout the sequel, unless otherwise specified, by convergence in B(X) we mean d-convergence;
and convergence in B(B(X)), D-convergence. Of course, the semicontinuity of functions is also
considered with respect to these convergences.

4. BIFURCATIONS OF LIMIT SETS

Definition 3. We say that the family of semiflows (1) admits:

(a) ω(x, k)-bifurcations if ω(x, k) is not a d-continuous function in X × K;

(b) ω(k)-bifurcations if ω(k) is not a d-continuous function in K;

(c) Ω(x, k)-bifurcations if Ω(x, k) is not a D-continuous function in X × K;

(d) Ω(k)-bifurcations if Ω(k) is not a D-continuous function in K.

By the bifurcation points we mean the points in X × K or K at which the d-continuity fails of
ω(x, k) and ω(k) or the D-continuity fails of Ω(x, k) and Ω(k). The discontinuities of these functions
that we consider could be called blow-ups of limit sets (cf. a blow-up of the set of nonwandering points
in differential dynamics [17, § 6.3, p. 185–192], which is, however, a violation of upper semicontinuity).

Proposition 8. (a) If (1) admits Ω(k)-bifurcations then it admits Ω(x, k)-, ω(k)-, and ω(x, k)-
bifurcations. (b) If the system admits Ω(x, k)-bifurcations then it admits ω(x, k)-bifurcations. (c)
If there exist ω(k)-bifurcations then there are also ω(x, k)-bifurcations.

It is convenient to illustrate this proposition by the scheme in Fig. 2 in which the word “bifurcation”
is omitted.
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Fig. 2. A scheme of bifurcations (see Proposition 8)

Proof. We begin with (c). Suppose that, at a point k∗ ∈ K, system (1) has an ω(k)-bifurcation.
By Proposition 5, this means that there exist such ε > 0, x∗ ∈ ω(k∗), and a sequence kn ∈ K converging
to k∗ for which ρ∗(x∗, ω(kn)) > ε for all n. The point x∗ belongs to the limit set ω(x0, k

∗) of some point
x0 ∈ X. Note that ω(x0, kn) ⊂ ω(kn). Consequently, ρ∗(x∗, ω(x0, kn)) > ε. Therefore, ω(x0, kn) does
not converge to ω(x0, k

∗). Thus, (x0, k
∗) is an ω(x, k)-bifurcation point.

Prove (b). Suppose that, at a point (x∗, k∗) ∈ X × K, our system has an Ω(x, k)-bifurcation. Then,
by Proposition 8, there are ε > 0, ω(x0, k

∗) ⊂ ω(x∗, k∗), and a sequence (xn, kn) converging to (x∗, k∗)
such that r(ω(x0, k

∗), SΩ(xn, kn)) > ε for each n. This means that r(ω(x0, k
∗), ω(xn, kn)) > ε and,

hence, ρ∗(ξ, ω(xn, kn)) > ε for every ξ ∈ ω(x0, k
∗). Since ξ ∈ ω(x∗, k∗), this implies that (x∗, k∗) is

an ω(x, k)-bifurcation point for (1).
Prove the assertions of (a). Let k∗ ∈ K be an Ω(k)-bifurcation point for (1). Then there exist ε > 0

and a sequence of points kn ∈ K converging to kn → k∗ for which D(Ω(k∗),Ω(kn)) > ε for each n;
i.e., by (6), for each n, there exists xn ∈ X such that r(ω(xn, k∗), ω(kn)) > ε. By Lemma 1, there are
γ > 0 and a natural number N such that the inequality r(ω(xN , k∗), ω(kn)) > γ holds for an infinite set
of indices J for all n ∈ J . All the more, r(ω(xN , k∗), ω(xN , kn)) > γ. Consequently, there are Ω(x, k)-
bifurcations; namely: on the one hand, (xN , kn) → (xN , k∗) as n tends to ∞ remaining within J ; and on
the other hand, the quantity

D(Ω(xN , k∗),Ω(xN , kn)) = sup{r(ω(x, k∗), ω(xN , kn)) | ω(x, k∗) ∈ Ω(xN , k∗)}
is greater than r(ω(xN , k∗), ω(xN , kn)) > γ, so that (xN , k∗) is an Ω(x, k)-bifurcation point.

Taking the already-established validity of the implications (b) and (c) into account, we are only
left with proving that if there are Ω(k)-bifurcations then there are ω(k)-bifurcations. Prove this. Let
k∗ ∈ K be an Ω(k)-bifurcation point for (1). Then, as we have just proved, there exist a point x∗ ∈ X
( xN ) and a sequence of points kn ∈ K tending to k∗ for which r(ω(x∗, k∗), ω(kn)) > γ. All the more,
ρ∗(ξ, ω(kn)) > γ for every ξ ∈ ω(x∗, k∗). This implies that d(ω(k∗), ω(kn)) > γ and, hence, an Ω(k)-
bifurcation of the system occurs at k∗. The proposition is proved.

Proposition 9. A system has Ω(x, k)-bifurcations if and only if ω(x, k) is not r-continuous
on X × K.

Proof. Suppose that the system has Ω(x, k)-bifurcations. Then there exist a point (x∗, k∗)∈X ×K,
a sequence (xn, kn) ∈ X ×K such that (xn, kn) → (x∗, k∗), and a number ε > 0, for which the inequal-
ity D(Ω(x∗, k∗),Ω(xn, kn)) > ε holds for each n. This means that, for each n, there exists x∗

n ∈ X for
which ω

(
x∗

n, k∗)⊂ω(x∗, k∗), r
(
ω(x∗

n, k∗), ω(xn, kn

)
)> ε. Lemma 1 implies the existence of γ > 0, some

natural N , and an infinite set of indices J such that r(ω(xN , k∗), ω(xn, kn)) > γ for n ∈ J . Let x∗
0 be an

arbitrary point in ω
(
x∗

N , k∗). As we have already observed, the
(
x∗

0, k
∗)-trajectory lies in ω

(
x∗

N , k∗), and,
by the closedness of this set, ω

(
x∗

0, k
∗) ⊂ ω

(
x∗

N , k∗). Therefore,

r
(
ω
(
x∗

0, k
∗), ω(xn, kn)

)
> γ, n ∈ J.

Since x∗
0 ∈ ω(x∗, k∗), there exists a sequence ti > 0 such that

ti → ∞, f(ti, x∗, k∗) → x∗
0 as i → ∞.

Using the continuity of f , for each i, choose a number n(i) ∈ J such that

ρ(f(ti, x∗, k∗), f(ti, xn(i), kn(i))) < 1/i.
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Let f(ti, xn(i), kn(i)) = x′
i, kn(i)) = k′

i. Note that ω
(
x′

i, k
′
i

)
= ω(xn(i), kn(i)). Therefore,

r
(
ω
(
x∗

0, k
∗), ω

(
x′

i, k
′
i

))
> γ for each i.

Since
(
x′

i, k
′
i

)
→

(
x∗

0, k
∗), the function ω(x, k) does not satisfy the condition of r-continuity at the point(

x∗
0, k

∗).
We stress that an Ω(x, k)-bifurcation may fail to be an r-discontinuity point.
Suppose now that ω(x, k) is not r-continuous in X × K. Then there exist (x∗, k∗) ∈ X × K, a se-

quence of points (xn, kn) ∈ X × K, (xn, kn) → (x∗, k∗), and ε > 0 for which r(ω(x∗, k∗), ω(xn, kn)) >
ε for each n. By (6), this implies D(Ω(x∗, k∗),Ω(xn, kn)) > ε for each n. Therefore, (x∗, k∗) is an
Ω(x, k)-bifurcation point. The proposition is proved.

The points of ω(k)- and ω(x, k)-bifurcation may be called bifurcations with the appearance of new ω-
limit points, and Ω(k)- and Ω(x, k)-bifurcations, bifurcations with the appearance of new ω-limit sets.
In the first case, there exists a sequence of points kn (or (xn, kn)) converging to a bifurcation point k∗ (or
(x∗, k∗)) such that there is a point x0 ∈ ω(k∗) (or (x0 ∈ ω(x∗, k∗))) situated from all ω(kn) (ω(xn, kn))
farther than at some ε > 0. This point may be called a “new” ω-limit point. In the second case, as was
demonstrated, the existence of bifurcations is equivalent to the fact that there exists a sequence of points
kn ∈ K (or (xn, kn) ∈ X × K), converging to a bifurcation point k∗ ∈ K (or (x∗, k∗) ∈ X × K), and
some set ω(x0, k

∗) ⊂ ω(k∗) (ω(x0, k
∗) ⊂ ω(x∗, k∗)) that is at the r-distance greater than γ > 0 from all

ω(kn) (ω(xn, kn)). This means that ρ(x, y) > γ for all x ∈ ω(x0, k
∗) and y ∈ ω(kn) (y ∈ ω(xn, kn)). It is

natural to call the set ω(x0, k
∗) the “new” ω-limit set. There appears the question of whether bifurcations

with the appearance of new ω-limit points but without the splitting-off of new ω-limit sets? A positive
answer to it is given by the following example.

Example 2 (an ω(x, k)- but not an Ω(x, k)-bifurcation; see Fig. 2). Consider first the system defined
on the cone x2 + y2 ≤ z2, 0 ≤ z ≤ 1 by the differential equation

ṙ = r(2z − r − 1)2 − 2r(1 − r)(1 − z), ϕ̇ = r cos ϕ + 1, ż = −z(1 − z)2. (7)

As t → ∞, the solutions to (7) with initial conditions 0 ≤ z(0) < 1, 0 ≤ r(0) ≤ z(0) and arbitrary
ϕ(0) tend to their unique ω-limit set, the equilibrium z = r = 0. If z(0) = 1, 0 < r(0) < 1 then the
solution tends to the circle z = r = 1 as t → ∞. If z(0) = 1, r(0) = 0 then there is only one ω-limit
point: z = 1, r = 0. If z(0) = r(0) = 1 then also there is only one ω-limit point: z = 1, r = 1, ϕ = π (see
Fig. 3). Thus,

ω(r0, ϕ0, z0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(z = r = 0)} if z0 < 1,
{(z = r = 1)} if z0 = 1, r0 �= 0, 1,
{(z = r = 1, ϕ = π)} if z0 = r0 = 1,
{(z = 1, r = 0)} if z0 = 1, r0 = 0.

In the cone where the system is defined, consider an arbitrary sequence (rn, ϕn, zn) tending to
some point (r∗, ϕ∗, 1). Suppose that zn < 1 for all n and 0 < r∗ < 1. Then the trajectory of every point
(rn, ϕn, zn) tends to the vertex of the cone, situated at the origin, while the ω-limit set of the point
(r∗, ϕ∗, 1) is the circle r = z = 1. These remarks clearly show that the system has ω(x, k)-bifurcations.
It is easy to understand that they are Ω(x, k)-bifurcations. Identify now all the three equilibria as is
shown in Fig. 3. Then the ω(x, k)-bifurcations remain and the Ω(x, k)-bifurcations disappear.

Prove the correctness of the identification. Suppose that the semiflow in a space X has fixed points
x1, . . . , xn. Define a new semiflow f̃ as follows: As its phase space, assign the set X̃ that is obtained
from X by removing all points x1, . . . , xn and adding a new point x∗. Define a metric on X̃ as follows:
Suppose that x, y ∈ X̃ and x �= x∗. Put

ρ̃ (x, y) =

⎧
⎨

⎩

min{ρ(x, y), min
1≤j≤n

ρ(x, xj) + min
1≤j≤n

ρ(y, xj)} if y �= x∗;

min
1≤j≤n

ρ(x, xj) if y = x∗.
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Fig. 3. ω(x, k)- but not Ω(x, k)-bifurcations: the phase portrait of (7) (to the left)
and the phase portrait after identification (gluing) of all fixed points (to the right)

Of course, we define ρ̃ (x∗, y) for y �= x∗ as ρ̃ (y, x∗) and put ρ̃ (x∗, x∗) = 0. Finally, put f̃(t, x) = f(t, x)
if x ∈ X ∩ X̃ and f̃(t, x∗) = x∗.

Lemma 2. The mapping f̃ defines a semiflow on X̃.

Proof. The injectivity and the semigroup property f̃ are obvious by the corresponding properties of f .
If x ∈ X ∩ X̃ , t ≥ 0, then the continuity of f̃ at a point (t, x) follows from the fact that, in some its
neighborhood, f̃ coincides with f . The continuity of f̃ at the point (t, x∗) follows from the continuity
of f and the fact that any sequence converging to x∗ in X̃ may be partitioned into a finite number of
sequences each of which is either a sequence of points in X ∩ X̃ converging to one of the xj ’s or a
constant sequence with all elements equal to x∗ (there can be only one such sequence) plus maybe a
finite set. The mapping f̃(t, ·) is a homeomorphism since it is continuous and injective and X̃ is compact.
The lemma is proved.

Proposition 10. Suppose that, for every k ∈ K, every trajectory of the system lying in ω(k)
is recurrent. Then the presence of ω(x, k)-bifurcations is equivalent to the presence of Ω(x, k)-
bifurcations and the existence of ω(k)-bifurcations is equivalent to the existence of Ω(k)-
bifurcations.

Proof. Suppose that (xn, kn) → (x∗, k∗), but ω(xn, kn) �→ ω(x∗, k∗). Then, by Proposition 5, there
exists x̃ ∈ ω(x∗, k∗) such that ρ∗(x̃, ω(xn, kn)) �→ 0. Of course, we may assume that the inequality
ρ∗(x̃, ω(xn, kn)) > ε holds for some ε > 0 for all n. Let L denote the set of all limit points of the sequences
{yn} with yn ∈ ω(xn, kn). The set L is closed and k∗-invariant. Note that ρ∗(x̃, L) ≥ ε. Therefore,
ω(x̃, k∗) ∩ L = ∅, since ω(x̃, k∗) is a minimal set (Birkhoff’s Theorem, see [12, p. 404]). This implies the
existence of δ > 0 such that r(ω(x̃, k), L) > δ and, hence, r(ω(x̃, k∗), ω(xn, kn)) > δ/2 for all sufficiently
large n. By Proposition 7, this implies Ω(xn, kn) �→ Ω(x∗, k∗).

Thus, the presence of ω(x, k)-bifurcations implies the existence of Ω(x, k)-bifurcations. The con-
verse implication is guaranteed by Proposition 8. The proof of the second assertion coincides almost
verbatim with that of the first.

Corollary 1. Suppose that ω(x, k) is minimal for every pair (x, k) ∈ X ×K. Then the two claims
of Proposition 10 hold.

It suffices to observe that, by one of Birkhoff’s Theorems [12, p. 402], every trajectory lying in
a minimal set is recurrent.
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