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Abstract: Concepts of distributed robustness and r-robustness proposed by biologists to explain a
variety of stability phenomena in molecular biology are analysed. Then, the robustness of the relax-
ation time using a chemical reaction description of genetic and signalling networks is discussed.
First, the following result for linear networks is obtained: for large multiscale systems with hier-
archical distribution of time scales, the variance of the inverse relaxation time (as well as the var-
iance of the stationary rate) is much lower than the variance of the separate constants. Moreover, it
can tend to 0 faster than 1/n, where n is the number of reactions. Similar phenomena are valid in the
nonlinear case as well. As a numerical illustration, a model of signalling network is used for the
important transcription factor NFkB.
1 Introduction

Robustness, defined as stability against external perturbations
and internal variability, represents a common feature of living
systems. The fittest organisms are those that resist to diseases,
to imperfections or damages of regulatory mechanisms, and
that can function reliably in various conditions. There are
many theories that describe, quantify and explain robustness.
Waddington’s canalisation [1] was formalised by Thom [2]
as structural stability of attractors under perturbations. Many
useful ideas on robustness have been imported from the
theory of control of dynamical systems and of automata
[3, 4]. The new field of systems biology places robustness in
a central position among the living systems organising prin-
ciples, identifying redundancy, modularity and negative feed-
back as sources of robustness [5–7].
In this paper, we provide some justification to a different,

less understood source of robustness.
Early insights into this problem can be found in the von

Neumann’s discussion of robust coupling schemes of auto-
mata [8]. von Neumann noticed the intrinsic relation between
randomness and robustness. Quoting him ‘without random-
ness, situations may arise where errors tend to be amplified
instead of cancelled out; for example it is possible that the
machine remembers its mistakes, and thereafter perpetuates
them’. To cope with this, von Neumann introduces multi-
plexing and random perturbations in the design of robust
automata.
Related to this is Wagner’s concept of distributed robust-

ness that ‘emerges from the distributed nature of many bio-
logical systems, where many (and different) parts contribute
to system functions’ [9, 10]. To a certain extent, distributed
robustness and control are antithetical. In a robust system,
any localised perturbation should have only small effects.
Robust properties should not depend on only one, but on
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many components and parameters of the system. A
weaker version of distributed robustness is the r-robustness,
when r or less changes have small effect on the functioning
of the system [11].
Molecular biology offers numerous examples of distribu-

ted robustness and of r-robustness. Single knockouts of
developmental genes in the fruit fly have localised effects
and do not lead to instabilities [12]. Complex diseases are
the result of deregulation of many genetic pathways [13].
Transcriptional control of metazoa is based on promoter
and enhancer regulating DNA regions that collect influ-
ences from many proteins [14]. Networks of regulating
micro-RNA could be key players in canalising genetic
developmental programmes [15]. Interestingly, computer
models of gene regulation networks [16] have distributed
robustness with respect to variations of their parameters.
Flux balance analysis in-silico studies of the effects of mul-
tiple knockouts in Saccharomyces cerevisiae showed that
yeast metabolism is less robust to multiple attacks than to
single attacks [11].
Let us formulate the problem mathematically. A property

M of the biological system is a function of several par-
ameters of the system, M ¼ f(K1, K2, . . . , Kn). Let us
assume that the parameters (K1, K2, . . . , Kn) are indepen-
dent, random variables. There are various causes of variabil-
ity: mutations, across individuals variability, changes in the
functional context, and so on. For different causes, the
distribution of parameters may be significantly different.
For example, if parameters change because of random del-
etion of some reactions, then the appropriate model is
Ki ¼ Ki

0, with probability 12 p, and Ki ¼ 0, with prob-
ability p. On the other hand, the fluctuation of enzyme
activity can be formalised as a distribution of Ki with con-
tinuous density.
Considering independent and identical distributions of

Ki, we can give two basic examples of functions M ¼ f
(K1, K2, . . . , Kn) that have much less variability than indi-
vidual Ki. The first example considers the average value
of Ki, that is, M ¼

P
i Ki=n: Var(M) ¼ 1

n

P
i Var(Ki). If all

Var(Ki) ¼ Var(K), then Var(M ) ¼ Var(K )/n. The second
example considers the order statistics [17]: M ¼ K(l ) or
M ¼ K(n2l), where Kl is the lst parameter in the order
K(1) � K(2) � . . . K(n). When l does not depend on n (or is
IET Syst. Biol., 2007, 1, (4), pp. 238–246



uniformly bounded), Var(M ) goes to 0 when n! 1 as 1/
n2. This is faster than for the average.
Following these examples, for definitions of robustness

we can start from the inequality: Var(M )� Var(K),
where Var(Ki) ¼ Var(K ) for all i ¼ 1, . . . , n.
To avoid the problem of units and supposing that M,

Ki . 0, we can use logarithmic scale.

Definition 1: M is robust with respect to distributed vari-
ations if the log-variance ofM is much smaller than the log-
variance of any of the parameters. Let Var(log
Ki) ¼ Var(log K) for all i ¼ 1, . . . , n. Then

Var( logM)� Var( logK) (1)

Let us consider r-index subsets Ir ¼ fi1, i2, . . . , irg , f1,
2, . . . , ng for given r. Let Ki

0, i ¼ 1, . . . , n, be the central
values of the parameters. For given Ir, the perturbed
values Ki are obtained by multiplying r-selected central
values by independent random scales si . 0, i ¼ 1, . . . , r,
Ki ¼ Ki

0si, i [ Ir, Var(log si) ¼ Var(log s) for all i [ Ir,
and Var(Kj) ¼ 0 for all j � Ir.

Definition 2: M is robust with respect to r variations or
r-robust if for any Ir

Var( logM)� Var( log s) (2)

r-robustness holds if (2) is valid for any deterministic choice
of r targets. If the target set Ir is randomly chosen, we shall
speak of weak r-robustness. We call robustness index the
maximal value of r such that the system is r-robust.
The above definitions are inspired from biological ideas.

Our first definition corresponds to Wagner’s distributed
robustness [10]. It expresses the fact that M is not sensitive
to random variations of the parameters. r-robustness has
been defined in [11] as resistance with respect to multiple
mutations. r-robustness can also be interpreted as functional
redundance (this is different from the structural redundance
of Wagner [10], meaning that many genes code for the same
protein) meaning that the property M is collectively con-
trolled by more than r parameters, and cannot be consider-
ably influenced by changing a number of parameters �r.
One should also notice the introduction of a new concept.
Even if there are r critical targets (for instance genes
whose mutations lead to large effects), the probability of
hitting these r targets randomly could be small. We have
introduced the weak r-robustness to describe this situation.
Robustness with respect to distributed variations can be a

consequence of the Gromov–Talagrand concentration of
measure in high dimensional metric-measure spaces [18,
19]. In Gromov’s theory, the concentration has a geometri-
cal significance: objects in very high-dimension look very
small when they are observed via the values of real func-
tions with bounded rate of change (1-Lipschitzian
functions: j f (x)2 f(y)j , kx2 yk). This represents an
important generalization of the law of large numbers and
has many applications in mathematics. In this paper, we
shall discuss two types of concentration effects: cube con-
centration that applies to sums or averages and the faster
simplex concentration that applies to order statistics (see
above).
In both definitions, we propose a robustness criterion.

There are two difficulties in relation to this. First, it is diffi-
cult to impose an objective criterion for what ‘�’ means in
(1) and (2). In the sense of asymptotic behaviour, it is clear
that Var(logM )/Var(log K)! 0 when n! 1. When con-
centration phenomena are present, the ratio r ¼ Var(log
M )/Var(log K) should scale like 1/n or even like
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1/n2, where n is the number of independent variable par-
ameters. In practice, we always consider finite number of
parameters. In this case, r is finite and robustness means
that the ratio is smaller than some threshold, r , u.
Obviously, when Var(log M)/Var(log K) � 1, the system is
not robust, hence u , 1. In general, we should study depen-
dence Var(log M) on Var(log K) and n (or r – for
r-robustness). An example of such study for nonlinear signal-
ling network is presented below. The dependence Var(logM)
on Var(log K) may be nonlinear, but often remains close to a
piecewise linear function. In that case, the slopes
dVar( logM)=dVar( logK) are more informative than the
ratios Var( logM)=Var( logK). One can reformulate defi-
nitions of robustness and r-robustness using these slopes.
Second, some homogeneity of the parameters is implicit.

For instance, in this paper, Ki are kinetic parameters.
Because of the exponential Arrhenius law, log-variances
of the kinetic parameters can be arbitrarily large with
respect to log-variances of the activation energies. A
robust property with respect to the kinetic parameters may
be artificially declared non-robust with respect to activation
energies. Furthermore, we want to exclude trivial cases
when M does not depend on Ki. To avoid problems, we
can consider only positively homogeneous functions of
degree one: f(aK1, aK2, . . . , aKn) ¼ af(K1, K2, . . . , Kn)
for positive a. If Ki are, for example, matrix elements of a
matrix K, then eigenvalues li of K are homogeneous func-
tions of Ki of degree one. If for all li, the real part is
non-positive, Reli � 0, and non-zero purely imaginary
eigenvalues do not exist, then inverse relaxation time
1/t ¼ minf2Relijli = 0g is positively homogeneous
function of Ki of degree one. If right-hand side of a
system of differential equations is a homogeneous linear
function of Ki, _x ¼

P
Kifi(x), then eigenvalues of

Jacobian matrices at any point, inverse periods of limit
cycles, and inverse relaxation times are positively homo-
geneous functions of Ki of degree one. In logarithmic
scale, variance of log M is the same as of log(M21).
Hence, we can consider in Definitions 1, 2 positively homo-
geneous functions of degrees 1 and 21 together. This is
enough for our purposes in this paper.
In this paper, we choose a signalling module example as

an illustration of the various concepts of robustness. The
robust property that we study here is the relaxation time
of a biological molecular system modelled as a network
of chemical reactions. Relaxation time is an important
issue in chemical kinetics, but there exists biological speci-
fics. A biological system is a hierarchically structured open
system. Any biological model is necessarily a submodel of
a bigger one. After a change of the external conditions, a
cascade of relaxations takes place and the spatial extension
of a minimal model describing this cascade depends on
time. Timescales are important in signalling between cells
and between different parts of an organism. It is therefore
important to know how the relaxation time depends on the
size and the topology of a network and how robust is this
time against variations of the kinetic constants.
In this paper, first, we extend the classical results on limi-

ting steps of stationary states of one-route cyclic linear
networks onto dynamic of relaxation of any linear network.
This allows us to relate the relaxation time of a linear
network with hierarchical distribution of time scales to low-
order statistics of the network constants and to prove the dis-
tributed robustness of this relaxation time. Last, using a
model of the NFkB signalling module as an example, we
show that similar results apply to nonlinear networks. For
this nonlinear network, the robustness of another character-
istic time, the period of its oscillations is studied as well.
239



2 Limitation of relaxation in linear reaction
networks

First, we consider a linear network of chemical reactions. In
a linear network, all the reactions are of the type Ai! Aj,
and the reaction rates rji are proportional to the reagents
Ai concentration: rji ¼ kjici.
The dynamics of the network is described by

_ci ¼
X

j, j=i

(kijcj � kjici) or _c ¼ Kc (3)

where K ¼ (Kij), for i = j, Kij is the reaction rate constant
kij of the reaction producing Ai and consuming Aj (this is
zero if no such reaction exists), and Kii ¼ �

P
j, j=i kji.

For the analysis of kinetic systems, linear conservation
laws and positively invariant polyhedra are important. A
linear conservation law is a linear function defined on the
concentrations b(c) ¼

Pq
i¼1 bici (q is the number of

reagents), whose value is preserved by the dynamics (3).
The conservation laws coefficient vectors bi are left
eigenvectors of the matrix K corresponding to the zero
eigenvalue. For any kinetic system, b0 ¼

Pq
i¼1 ci is the con-

servation law. A set E is positively invariant with respect to
kinetic equations (3), if any solution c(t) that starts in E at
time t0 [c(t0) [ E] belongs to E for t . t0 [c(t) [ E if
t . t0]. It is straightforward to check that the standard
simplex S ¼ {cjci � 0,

P
i ci ¼ 1} is positively invariant

set for kinetic equation (3): just check that if ci ¼ 0 for
some i, and all cj � 0 then _ci � 0. This simple fact immedi-
ately implies the following properties of K:

† all eigenvalues l of K have non-positive real parts,
Rel � 0, because solutions cannot leave S in positive time;
† If Rel ¼ 0, then l ¼ 0, because intersection of S with
any plane is a polygon, and a polygon cannot be invariant
with respect to rotations of sufficiently small angles;
† The Jordan cell of K that corresponds to zero eigenvalue
is diagonal, because all solutions should be bounded in S for
positive time.
† The shift in time operator exp(Kt) is a contraction in the
l1 norm for t . 0: for positive t and any two solutions of (3)
c(t), c0(t) [ S

X

i

ci(t)� c0i(t)
�� �� �

X

i

ci(0)� c0i(0)
�� ��

Vertices of S correspond to components Ai (in each
vertex only one ci = 0). For any initial state, c(0) [ S;
there exists a limit state limt!1exp(Kt)c(0). We call a
linear network weakly ergodic, if these limits coincide for
all c(0) [ S. This is equivalent to uniqueness of steady
state in S. The steady-state c� [ S for weakly ergodic
network is not obligatory strictly positive, some of c�i
could be zero. This is the difference from ergodic networks
that have strictly positive steady state.
The ergodicity of the network follows from its topological

properties. A non-empty subset V of the reaction digraph ver-
tices forms a sink, if there are no oriented edges from Ai [ V
to any Aj � V. For example, in the reaction digraph
A1 A2! A3, the one-vertex sets fA1g and fA3g are sinks.
A sink is minimal if it does not contain a strictly smaller
sink. In the previous example, fA1g and fA3g are minimal
sinks. Minimal sinks are also called ergodic components.
The following properties are equivalent:

1. the network is weakly ergodic.
2. for each two vertices Ai, Aj(i = j) we can find such a
vertex Ak that an oriented paths exist from Ai to Ak and
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from Aj to Ak. One of these paths can be degenerated: it
might be i ¼ k or j ¼ k.
3. the network has only one minimal sink (one ergodic
component).
4. there is an unique linear conservation law, namely
b0(c) ¼

Pq
i¼1 ci; in other words, the zero eigenvalue of

the matrix K is not degenerate.

Hence, the number of independent linear conservation laws
is equal to the maximal number of disjoint ergodic
components.
These properties of weakly ergodic reaction networks are

well known in chemical kinetics [20]. They can be also
extracted from the theory of Markov chains [21].
In the proof of this statement, the following trans-

formation plays central role. Let b0(c), b1(c), . . . , bl(c) be
independent linear conservation laws and b0(c) ¼

P
i ci.

The map c 7! [b1(c), . . . , bl(c)] projects the simplex S
onto the l-dimensional polyhedron B. Preimage of each
point of B is a positively invariant polyhedron in S, and pre-
image of a vertex is a positively invariant face of S. The
vertices of such a face form a sink (we identify components
and vertices of S). The number of vertices in l-dimensional
polyhedron B cannot be smaller than lþ 1. So, if there are
lþ 1 independent, linear conservation laws, then there
exist lþ 1 disjoint sinks in reaction graph. Let us assume
inverse: there exist l sinks, S1, . . . , Sl. For each c [ S,
the limit exists c�(c) ¼ limt!1exp(Kt)c. The independent
conservation laws bj are b j(c) ¼

P
i[Sj

c�i (c).
Now, let us suppose that the kinetic parameters are well

separated and let us sort them in decreasing order:
k(1)� k(2)� . . .� k(n). Let us also suppose that the
network has only one ergodic component (when there are
several ergodic components, each one has its longest relax-
ation time that can be found independently). We say that
k(r), 1 � r � n is the ergodicity boundary if the network
of reactions with parameters k1, k2, . . . , kr is weakly
ergodic, but the network with parameters k1, k2, . . . , kr21

it is not. In other words, when eliminating reactions in
decreasing order of their characteristic times, starting with
the slowest one, the ergodicity boundary is the constant of
the first reaction whose elimination breaks the ergodicity
of the reaction digraph.
Relaxation to equilibrium of the network is multi-

exponential, but the longest relaxation time is given by

t ¼
1

min{�Relijli = 0}
(4)

An estimate of the longest relaxation time can be
obtained by applying the perturbation theory for linear oper-
ators to the degenerated case of the zero eigenvalue of
the matrix K. We have K ¼ K,r(k1, k2, . . . , kr21)þ
krQþ o(kr), where K,r is obtained from K by letting
kr ¼ krþ1 ¼ . . . kn ¼ 0, Q is a constant matrix and o(kr)
includes terms that are negligible relative to kr. From equiv-
alence of the properties (1)–(4), it follows that the zero
eigenvalue is twice degenerate in K,r and not degenerate
in K,rþ krQ. One gets the following estimate

a
1

k(r)
� t � a

1

k(r)
(5)

where a, a . 0 are some positive functions of k1, k2, . . . ,
kr21 (and of the reaction graph topology).
Two simplest examples give us the structure of the

perturbation theory terms for minl=0f2Relg.
IET Syst. Biol., Vol. 1, No. 4, July 2007



1. For the reaction mechanism shown in Fig. 1a,
minl=0f2Relg ¼ 1, if 1 , k1þ k2.
2. For the reaction mechanism shown in Fig. 1b,
minl=0f2Relg ¼ 1k2/(k1þ k2)þ o(1), if 1 , k1þ k2. For
well-separated parameters, there exists a trigger alternative:
if k1� k2, then minl=0f2Relg ’ 1; if, inverse, k1� k2,
then minl=0f2Relg ¼ o(1).

More generally

t ’ 1

ak(r)
(6)

with a . 1. This means that 1/k(r) gives the lower estimate
of the relaxation time, but t could be larger. The detailed
analysis of multiscale networks [22] shows that there is a
trigger alternative too: if the constants are well separated,
then either a ’ 1 or a� 1.
Thus, the well-known concept of stationary reaction rates

limitation by ‘narrow places’ or ‘limiting steps’ (slowest
reaction) should be complemented by the ergodicity bound-
ary limitation of relaxation time. It should be stressed that
the relaxation process is limited not by the classical limiting
steps (narrow places), but by the reactions that may be
absolutely different. The simplest example of this kind is
an irreversible catalytic cycle: the stationary rate is
limited by the slowest reaction (the smallest constant), but
the relaxation time is limited by the reaction constant with
the second lowest value (in order to break the weak ergodi-
city of a cycle two reactions must be eliminated).

3 Robustness of relaxation time in linear
systems

In general, for large multiscale systems, we observe concen-
tration effects: the log-variance of the relaxation time is
much lower than that of the separate constants. For
linear networks, this follows from well-known properties
of the order statistics [17]. For instance, if ki are
independent, log-uniform random variables, we have
Var[log(k(r))] � 1/n2. Here, we meet a “simplex-type” con-
centration ([19] pp. 234–236) and the log-variance of the
relaxation time can tend to 0 faster than 1/n, where n is
the number of reactions.
For parameters whose logarithm is uniformly distributed in

the interval [0, 1], k(r) has a log-beta distribution
log (k(r)) � B(r, nþ 1� r), i.e. for any 0 � a � b � 1,
P½a , log (k(r)) , b� ¼1=B(r, nþ 1� r)

Ð b
a
xr�1(1� x)n�r

dx, where B(r, nþ 1� r) ¼
Ð 1
0
xr�1(1� x)n�rdx.

The above estimates for the variance of the order stat-
istics, hence of relaxation time of linear networks, are
based on identical distributions of the kinetic constants. A
more realistic approach is to consider non-identical distri-
butions with different means. Let d be the average separ-
ation between mean parameters, in logarithmic scale (this
separation is zero for identical distributions) and let
D ¼ nd be the spread of the means. Let us suppose that

Fig. 1 Two basic examples of ergodicity boundary reaction

a Connection between ergodic components
b Connection from one ergodic component to element that is con-
nected to the both ergodic components by oriented paths. In both
cases, for 1 ¼ 0, the ergodic components are fA2g and fA3g
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all the parameters have the same variance Var(logki) ¼
Var(logk). When Var(logk) , d2, the overlap of distri-
butions of successive parameters is improbable and one
has Var(logk(r)) ¼ Var(logk). When d2 , Var(logk) , D2,
there is overlap and the variance of logk(r) is limited
by the distance d, one has saturation: Var(logk(r)) ¼ d2.
Finally, when D2 , Var(logk), we recover the case of iden-
tical distributions and one has simplex concentration
Var(logk(r)) ¼ Var(logk)/n2. The three regimes can be
observed even for relaxation times of nonlinear models as
will be discussed in Section 4.4.
Let us now discuss some design principles for robust net-

works. Suppose we have to construct a linear chemical reac-
tion network. How to increase robustness of the largest
relaxation times for this network? To be more realistic, let
us take into account two types of network perturbation:

1. random noise in constants;
2. elimination of a link or of a node in reaction network.

Long routes are more robust for the perturbations of the
first kind. So, the first recipe is simple: let us create long
cycles! But longer cycles are destroyed by link or node
elimination with higher probability. So, the second recipe
is also simple: let us create a system with many alternative
routes!
Finally, the resources are expensive, and we should create

a network of minimal size.
Hence, we come to a new combinatorial problem. How to

create a minimal network that satisfies the following
restrictions

1. the length of each route is .L;
2. after destruction of arbitrarily chosen Dlinks and Dnodes,
there remains at least one long route in the network.

To obtain the minimal network that fulfills the above con-
straints, we should include bridges between cycles, but the
density of these bridges should be sufficiently low in order
not to affect the length of the cycles significantly.
Additional restrictions could be involved. For example,

we can discuss not all the routes, but productive routes
only (that obligatory include some of the reaction steps).
For acyclic networks, we obtain similar recipes: long

chains should be combined with bridges. A compromise
between the chain length and number of bridges is needed.

4 Robustness of characteristic times in
nonlinear systems: an example

4.1 Model

Our example is one of the most documented transcriptional
regulation systems in eukaryote organisms: the signalling
module of NFkB. The response of this factor to a signal
has been modelled by several authors [23–26].
The transcription factor NFkB is a protein (actually a het-

erodimer made of two smaller molecules p50 and p65) that
regulates the activity of more than one hundred genes and
other transcription factors that are involved in the immune
and stress response, apoptosis, and so on. NFkB is thus
the principal mediator of the response to cellular agression
and is activated by more than 150 different stimuli: bacteria,
viral and bacterial products, mitogen agents and stress
factors (radiations, ischemia, hypoxia, hepatic regeneration
and drugs among which some anticancer drugs). NFkB has
complex regulation, including inhibitor degradation and
production, translocation between nucleus and cytoplasm,
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negative and positive feed-back. Under normal conditions,
NFkB is trapped in the cytoplasm where it forms a molecu-
lar complex with its inhibitor IkB. Under this form, NFkB
cannot perform its regulatory function, the complex
cannot penetrate the nucleus. A signal that can be modelled
by a kinase (IKK) frees NFkB by degrading its inhibitor.
Free NFkB enters the nucleus and regulates the transcrip-
tion of many genes, among which the gene of its inhibitor
IkB and the gene of a protein A20 that inactivates the
kinase.
Here, we would like to study the robustness of the charac-

teristic times of a nonlinear molecular system. In particular,
the double negative feed-back (via IkB and A20) is respon-
sible for oscillations of NFkB activity under persistent
stimulation [23–25]. We are thus interested in three charac-
teristic times of the NFkB model: the period and the
damping time of the oscillations and the largest relaxation
time (the damping of the oscillations is not necessarily the
only relaxation process, therefore the damping time is not
necessarily equal to the largest relaxation time).
We use the model introduced in [24] for the response of

NFkB module to a signal. This model is represented in
Fig. 2. The first reaction of the model is the activation of
the kinase. In the absence of a signal, the kinetic constant
of the activation reaction is zero k1 ¼ 0, meaning that the
kinase IKK remains inactive. The presence of a signal is

Fig. 2 Model of NFkB signalling

Non linear reaction mechanism is represented as bipartite graph. There
are 15 chemical species and 31 reactions
242
modelled by a non-zero activation constant k1 . 0,
meaning that the kinase is activated.
We have numerically studied the dependence of these

time scales on the parameters of the model, which are
the kinetic constants of the reactions. The damping time
td and the largest relaxation time tmax were computed by
linearising the dynamical equations at steady state. The
period of the oscillation has a rigorous meaning only for
a limit cycle, when the oscillations are sustained. At a
Hopf bifurcation and close to it, the inverted imaginary
part of the conjugated eigenvalues crossing the imaginary
axis provide good estimate for the period. Another
method for computing the period is the direct determi-
nation of the timing between successive peaks. We have
noticed that in logarithmic scale (throughout this paper,
we use natural logarithm), the differences between the
periods computed by the two methods were small, there-
fore we have decided to use the first method, which is
more rapid. A criterion for the existence (observability)
of the oscillations is the damping time to period ratio.
This ratio is infinite for self-sustained oscillations, big for
observable oscillations (when at least two peaks are
visible). A low ratio means over-damped oscillations. We
call the period an observable one, if the above ratio is
larger than one.

4.2 r-robustness of the period

First, we have tested the 1-robustness of the characteristic
times. Each parameter has been multiplied by a variable,
positive scale factor (changing from 0.001 to 1000), all
the other parameters being kept fixed. The result can be
seen in Fig. 3.
Large plateaus over which characteristic times are practi-

cally constant correspond to robustness. The period of the
oscillations is particularly robust. For the damping time

Fig. 3 Log–log dependence of the characteristic times (circles:
largest relaxation time, x marks: dumping time, solid line: period)
on the scale factor that multiplies the value of one parameter,
while all the other parameters are fixed

Scale factor varies from 0.001 to 1000 (from26.9 to 6.9 in logarithm).
Oscillations have limited existence regions (outside these regions they
are overdamped; our subjective criterion for overdamping is a
damping time over period ratio ,1.75). There are also regions where
oscillations are self-sustained. The limits of these regions are Hopf
bifurcation points, where the damping time and the largest relaxation
time diverge. Inside these regions, the damping time and the largest
relaxation time are infinite and not represented.
IET Syst. Biol., Vol. 1, No. 4, July 2007



and the largest relaxation time, we have domains of substan-
tial variation. There are two types of such domains:

1. domains where d log t=d log k ’ �1.
2. domains where jd log t=d log kj . 1

where k is the variable parameter.
The first type of behaviour is the same as the one of linear

networks. For linear networks, when one acts on the ergodi-
city boundary k(r), the longest relaxation time changes inver-
sely proportional to k (this corresponds to k ¼ k(r)). When
parameters change, they in turn become the ergodicity
boundary. Acting on a parameter, which is not the ergodicity
boundary, has no effect; this means a plateau in the graph.
The second type of behaviour exists only for nonlinear

networks and is related to bifurcations. The variation of
one parameter can bring the system close to a bifurcation
(for the NFkB model, this is a Hopf bifurcation) where
the relaxation time diverges.
The in silico experiment shows that the largest relaxation

time is not 1-robust; this time can be significantly changed
by modifying a single parameter, for instance k9. The
damping time has similar behaviour being even less
robust (some plateaus of the largest relaxation time are
higher than the damping time, which continues to decrease;
consider for instance the effect of k9 in Fig. 3).
As also noticed by the biologists [25], the period of the

oscillations is 1-robust. We do not have a rigorous expla-
nation of this property. An heuristic explanation is the fol-
lowing. Close to the Hopf bifurcation, two conjugated
eigenvalues l+ im of the Jacobian cross the imaginary
axis of the complex plane; l vanishes that explains the
divergence of the relaxation time, while m, whose inverse
is the period, does not change much. However, this is not
a full explanation because it does not say what happens
far from the Hopf bifurcation point.

4.3 Parameter sensitivity

Not all the parameters have the same influence on the
characteristic times. This can already be seen in Fig. 3.
To quantify these differences, we have computed the distri-
butions of the characteristic times when one parameter is
multiplied by a log-uniform random scale, all the other par-
ameters being fixed. This computation, whose results are
represented in Fig. 4, is also a first step towards testing
weak r-robustness.
Although rather robust, the period is not constant. Several

parameters induce relatively significant changes of this
quantity. In the order of increasing strength of their effect
on the period, these parameters are: k7, k9, k15, k23, k22
and k26. Among these, k22, k26, and k9 expressing the tran-
scription rates of mRNA-IkB, the translation rates of IkB
and the binding rate of the kinase to the NFkB–IkB
complex are particularly interesting because by changing
them, one can increase and also decrease the period.
These results confirm and complete the findings of [26].
The parameters that have the greatest influence on the
period are the kinetic constants of the production module
of IkB: k22 and k26. The strong influence of NFkB transloca-
tion constant k15 on the period, missed in [26], is present
here. Interestingly, the delay produced in the transcrip-
tion/translation module of A20 have smaller effect on the
period than the delay produced by the IkB production
module. Less obvious is the effect of k7 and k9 (binding
of IKK to IkB or to the complex) on the period, detected
as important both here and in [26].
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The damping time to period ratio represents a criterion
for observability of the oscillations. To increase the
number of visible peaks, one should increase the above
ratio. Because the period is robust, this is equivalent to
increasing the damping time. Figs. 3 and 4 show that this
is possible in many ways by changing only one parameter
(decrease in k3, k9, k17, k18, k23 and k27 or increase in k4,
k16, k20, k22 and k26).

4.4 Weak r-robustness of all the characteristic
times

The divergence of the relaxation time close to a bifurcation
does not necessarily imply the absence of weak r-robustness
or of distributed robustness. The set of bifurcation
points forms a manifold in the space of parameters, of codi-
mension equal to the codimension of the bifurcation; in
general, this set has zero measure (stochastic cellular auto-
mata provide an interesting counter-example: the NEC
automaton of Andrei Toom [27]). The probability of
being by chance close to a bifurcation is generally small.
We have tested the weak r-robustness of the characteristic

times, by using independent, log-uniform distributions of the
parameters over 2 decades interval. All the three character-
istic times are weakly r-robust when r is small (see Figs. 4
and 5a and b). Thus, although controlable (there are critical
parameters), the system is weakly robust. Only a directed
choice of the right targets has an effect, random choice of a
small number of targets is inefficient.
For further study of the r-robustness, we have plotted in

Fig. 6 the dependence of the log-variance of the character-
istic times on the number of the perturbed parameters r
(1 � r � n).
The dependence of the variance of the characteristic

times on the number r of perturbed parameters can easily
be predicted for a linear network. Let us present simple esti-
mates for only one critical parameter, the ergodicity bound-
ary. Suppose that perturbation of parameters is sufficiently
small, Var(log ki) ¼ Var(log k) , d2 (see Section 3 for
the definitions and notations). If the chosen target is the
ergodicity boundary, then for the log-variance of the

Fig. 4 Parameter sensitivity study; distributions of the charac-
teristic times when different parameters are, in turn, multiplied
by a log-uniform (between 0.1 and 10), random scale factor,
while all the other parameters are fixed

Distributions corresponding to various parameters are spread out ver-
tically. The lower-most, bar-plotted distribution is the average of all
the distributions and corresponds to choosing randomly the parameter
to be modified. 1-robustness means that all distributions are concen-
trated (their spread in log-scale is small). Weak 1-robustness means
that only the average distribution is concentrated
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relaxation time t we have Var(log t) � Var(log k). The
probability to pick the ergodicity boundary is 12 (12 1/
n)r ’ 12 exp(2r/n) (for sufficiently big r), so Var(logt)/
Var(logki) ’ 12 (12 1/n)r ’ 12 exp(2r/n). This result
can be extended to the case when one has r0 critical
targets. In this case Var(logt)/Var(logki) ’ C2[12
(12 r0/n)

r] ’ C2[12 exp(2rr0/n)], where C . 0 is a sen-
sitivity. In our case, we know the number of critical targets
from the sensitivity studies r0 ’ 10 (see Fig. 3). The theor-
etical curve with C ¼ 1, r0 ¼ 10 fits well with the calculated
log-variance of the damping time for small values of r, see
Fig. 6a). There are differences at larger r that should be
explained by the nonlinear interference between the vari-
ations of the parameters. For quantities that follow cube con-
centration the log-variance is just proportional to r; it is the
case of the period, see Fig. 6a). To conclude, the plot of
Var(logt) against r can be used to distinguish between cube
concentration and presence of critical targets, and in the
latter case to estimate the number of critical targets.
We have also used a protocol for testing distributed

robustness. This corresponds to changing all the parameters
(r ¼ n ¼ 31 in Fig. 6b). Distributed robustness protocol can
be used to distinguishing between cube concentration,
simplex concentration and the cases with slightly interfering
critical targets. It is then useful to plot the log-variance of
the characteristic time against the log-variance of the par-
ameters. In the case of cube concentration, one just has
the proportionality. For simplex concentration, the discus-
sion from Section 3 applies. There are three regimes: first,
proportionality for log-variances up to d2, then saturation
for log-variances up to D2 and again proportionality with

Fig. 5 Distributions of characteristic times for log-uniform
(between 0.1 and 10), independent random scales multiplying
the kinetic parameters

a one parameter, randomly chosen
b changes in two parameters, randomly chosen
c all the parameters
Unperturbed values of the characteristic times are indicated with
arrows. The concentration of the distributions at a and b shows that
the period and the relaxation time are weakly 1- and 2-robust. The
variation in all parameters produce long tailed distributions (that can
be fitted by log-generalised logistic distributions) of the period and
of the damping time, slightly biased relative to the unperturbed
values (the bias of the period is positive, suggesting that it is easier
to increase, than to decrease the period by random perturbations).
The distribution of the relaxation time can be described as a mixture
of a log-generalised logistic, and of a log-beta distribution. Let us
remind that order statistics for log-uniform, independent variables
follow log-beta distributions
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a smaller slope. The first regime applies with no modifi-
cations to the case with critical targets, but if there is no
interference between targets, no saturation is observed.
Fig. 6b suggests that the behaviours of the relaxation
time, of the period and of the dumping time are examples
of simplex concentration, of cube concentration and of
weakly interfering critical targets, respectively.
We may also want to know the distributions of the

characteristic times for a distributed robustness protocol.
When all the parameters take independent log-uniform
values, the distributions of characteristic times are much
broader than the ones induced by changing a small
number of parameters (compare Fig. 5a with c). Neither
the longest relaxation time nor the damping time has distrib-
uted robustness (quantitatively, this follows from Fig. 6a:
for r ¼ 31 the variance ratios are larger than one).
However, Figs. 6a and 5 clearly show that the period is
more robust than the other characteristic times. In logarith-
mic scale, the distributions of the dumping time and of the
period have tails with different exponential decay rates
towards 1 and 21. These distributions (a possible fit is
by log-generalized logistic distributions) have longer tails
in log scale (exponential, compared to gaussian) than log-
normal distributions that are sometimes observed in
biology [28–32]. The tails are also longer than the ones
of the Tracy–Widom distribution characterising largest
eigenvalues of certain classes of random matrices [33,
34]. These long tails are related to the critical retardation
phenomena [35] close to the Hopf bifurcation (see also
Fig. 3). The distribution of the relaxation time can be seen
as a mixture between a log-beta (sharply limited by a
maximal time) and a log-generalised logistic distribution
(accounting for critical retardation).

5 Discussion and conclusions

We demonstrated the possibility of a new kind of robustness
of biological systems. This type of robustness has geometrical
origin, being related to the high dimension inwhich variability
sources act. There are two basic types of such geometrical
effects: cube-type and simplex-type concentrations.
The classical example of the cube concentration gives the

central limit theorem, when the robust property is the sum of

Fig. 6 Relaxation times of nonlinear regimes

a Log-variance of the characteristic times against r, the number of
perturbed parameters. The choice of the r parameters is random
(uniform) and the values of the random scales are independent,
log-uniform (between 0.1 and 10). Some statistical samples corre-
spond to overdamped oscillations (dumping time/period ratio ,1);
these samples were rejected when computing the log-variance of the
observable period. The log-variance of the dumping time is compared
with the theoretical curve for r0 ¼ 10 non-interfering critical targets
b Log-variance of the characteristic times against the log-variance of
the parameters, for r ¼ 31. Relaxation time shows typically simplex
concentration behaviour, with a saturation regime (II) between two
proportionality regimes (I) and (III)
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many (n), independent contributions. For concentration of
this type, the relative standard deviation decreases as
1=

ffiffiffi
n
p

. The classical example of the simplex concentration,
is the situation when the robust property depends on the kth
order effect (parameter) in a collection of many (n) effects
(parameters), for example, the relaxation time of a system
with limiting step. For concentration of this type, the rela-
tive standard deviation decreases much faster, as 1/n.
We have also defined the concepts of distributed robust-

ness, r-robustness that occur naturally in molecular biology.
We have introduced a new notion: weak r-robustness means
that the system is robust with respect to blind attacks (the
targets are randomly chosen).
Both distributed and r-robustness imply low sensitivity.

Thus, sensitivity studies can be useful for the analysis of
robustness, but this may be not enough for proving robust-
ness. Indeed, changing many parameters could have an
effect even when there are no critical parameters (par-
ameters with respect to which sensitivity is high).
Conversely, it may be sometimes difficult to distinguish
between a system with critical parameters and a system
with limiting steps (simplex concentration). We showed
that the log-variance of the output of the system should
have a saturation plateau in the first case and not in the
latter, as a function of the log-variance of the parameters.
For the nonlinear model of NFkB signalling, we have distin-
guished among three types of phenomena: cube concen-
tration for the period, simplex concentration for the
relaxation time and critical parameters for the damping
time. We have also shown that weak r-robustness protocols
can be used to identify the number of critical parameters,
when these exist.
For linear networks, we relate the largest relaxation time to

the ergodicity boundary (a topological concept). The notion
of ergodicity boundary could not be applied directly to non-
linear systems. Nevertheless, direct computation demon-
strates that a nonlinear signalling network also has robust
relaxation characteristics, and concentration effects for relax-
ation time seems similar to linear systems (with some
additional long-tail effect related to critical retardation).
In our discussion of robust design of linear networks

(Section 3), we considered two types of noise: random
noise in constants and destruction of links. The necessity
of robustness to both types leads to a new combinatorial
problem. How to create a minimal network that has suffi-
ciently long routes (the length of each route is .L) and,
at the same time, sufficiently many routes; after destruction
of Dlinks links and Dnodes nodes, there remains at least one
long route in the network.
In a recent work, Rand et al. [36] introduces the flexi-

bility dimension that quantifies the range of evolution of
clocks. This notion applies to multitask evolution, simul-
taneously fulfilling several objectives. By using linear
response theory, the authors propose a method to compute
the directions in the characteristic space that are not
robust to changes of the parameters: the flexibility dimen-
sion is the largest linear space of characteristics that con-
tains non-robust directions. Our notion of robustness
index is different, because it does not follow from linear
response and more importantly it applies to parameters
and not to characteristics. We can explain the sense of
robustness index r as follows: for significant change of
characteristics by random perturbation, one needs to per-
turbe .r parameters. Nevertheless, the flexibility dimen-
sion and the robustness index have properties in common:
they are both small for simple networks and tend to be
increased by the loop complexity and by the unevenness
of the lifetimes of various species.
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Concerning the analysed example, several conclusions
are important. NFkB dynamics belong to the category of
ultradian oscillators. As for circadian oscillators [36], the
period of the oscillations is a relatively robust property.
Even if the biological role of these oscillations has not yet
been proved (for some conjectures the reader can refer to
[25]), it is important to know that the robustness applies
to different timescales. A specificity of the NFkB system
is the proximity to a Hopf bifurcation. Two nonlinear
phenomena could be relevant for the behaviour of the sig-
nalling system: the critical retardation and the excitability.
The first property would produce long-tail distributions of
the damping time of the oscillations. Thus, there are critical
parameters for the damping time, which is less robust than
the period of the oscillations. The second property could
raise the efficiency of the regulatory role of NFkB by
increasing the amplitude of its response to signals.
The robustness of a system could be related to its com-

plexity. To test the concentration rigorously, from high-
dimension, one needs to build an hierarchy of models
obtained from another model by model reduction.
Parameters of simpler models in the hierarchy are functions
of packages of parameters (‘atoms’) of more complex
models. Independent perturbations of the atoms produce
less variability than overall perturbation of packages.
Another source of complexity is dynamics itself. It is
necessary to take into account dynamical complexity as
well as complexity of hierarchical organisation. These
ideas have been briefly discussed in [37] and will be
presented in detail in a future work.
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