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Collective dynamics: when one plus one does not make two
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A brief introduction into the interdisciplinary field of collective dynamics is given, followed by an
overview of ‘Mathematical Models of Collective Dynamics in Biology and Evolution’ (University of
Leicester, 11–13 May 2009).
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Indeed,when? Solution to this apparent paradox is amazingly simple, provided we do not interpret
the problem straightforwardly. Take one female and one male individual of any animal species, keep
them together for a sufficiently long time, feed them properly and then after a while you will normally
get more than two of them. Otherwise, keep them far away from each other or do not feed them well
enough and you will obtain zero at the end.

The above example may look somewhat like an anecdote but it is, in fact, quite serious. As a matter
of fact, it grasps the essence of the population dynamics and very much that of collective dynamics in
general: once the interaction between subsystems becomes strong enough, a new entity may emerge.
It emphasizes the importance of different temporal and spatial scales and also stresses the principal
difference between the dynamics of closed and open systems. Once the system is open to influxes of
mass, energy and information, one plus one is not necessarily two any more.

Collective dynamics—understood as the dynamics arising from the interplay between the consti-
tuting elementary argents or parts of a more complex system—has been one of the main paradigms of
the natural sciences over the last several decades. Interactions between the argents are often non-linear
and therefore it also greatly fertilized mathematical development, in particular, in the areas such as non-
linear ordinary differential equations, partial differential equations and dynamical systems in general.
The importance of collective and non-linear effects was perhaps best appreciated in physics, resulting in
new fields of non-equilibrium thermodynamics and synergetics (Glansdorff & Prigogine,1971;Nicolis
& Prigogine, 1977;Haken,1978), but eventually spreading across different disciplines. Especially over
the last three decades, its most fruitful applications were arguably in the life sciences. Dynamics of
interacting populations in ecology, natural selection and the theory of evolution, and tumour growth in
medicine give a few examples where application of concepts and tools of collective dynamics have been
especially fruitful.

Collective dynamics had reached the stage of maturity in the works by I. Prigogine and H. Haken
(see the references above), culminating in Prigogine winning 1977 Nobel Prize, but it has a much longer
history.Ecological dynamicswas created byLotka (1925) andVolterra(1926). They modified the mass
action law proposed for chemical dynamics byGuldberg & Waage(1879) and applied this approach
to population dynamics. Simple as it may seem nowadays, these works created the cornerstone of the
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wholediscipline of mathematical ecology, with the idea of self-organized population cycles being one
of its central points.

The mathematical approach tobiological evolutionwas intensively developed in the 1930s. The
notion of ‘Darwinian fitness’ was reconstructed mathematically.Fisher(1930) proposed to construct
fitness as a combination of independent individual contribution of various traits.Haldane(1932)
criticized the approach based on independent actions of traits.Gause(1934) modelled the concurrent
exclusion on the base of ecological dynamics. Modern synthetic definitions of the fitness function are
based on adaptation dynamics. For the structured populations, the fitness should be defined through the
dominant Lyapunov exponents (Metz et al., 1992). Recent developments have seen an interplay and
convergence between different approaches. In particular, Fisher’s and Haldane’s approaches were com-
bined (Waxman & Welch, 2005): Haldane’s concern is incorporated into Fisher’s model by allowing the
intensity of selection to vary between traits.

Is this synthesis now complete? Not yet. This is an endless story.Animal behaviorintroduces a
new dimensions in the problem. Emerging phenomena in space and time (Malchowet al.,2008) make
the whole game mysterious and complicated. Elementary processes seem to be known and well under-
stood but how do they combine in the complete dynamics? This may be a difficult question. Efforts to
understand complexity creates new challenges and lead to new synthesis. We have to combine ecology,
evolution, behaviour and emerging phenomena in space and time dynamics. Sometimes, we also have
to revisit the formal mathematical background of the main phenomena like natural selection (Gorban,
2007) or reaction–diffusion waves in biology (Volpert & Petrovskii, 2009) and then resume our struggle
with complexity.

It is impossible to perform such a synthesis in one paper or even in one life. This should be
a collective work with regular intensive communication between participants. The challenges that have
risen from the recent development in life sciences, especially in mathematical medicine, population
dynamics, ecology and evolution have been the focus of ‘Mathematical Models of Collective Dynam-
ics in Biology and Evolution’ (University of Leicester, 11–13 May 2009), an international conference
and London Mathematical Society workshop organized by S. Petrovskii. Presentations by 38 partici-
pants, including eight keynote speakers (F. Berezovskaya, D. Grunbaum, A. Hastings, G. Karev, J. King,
A. Neishtadt, D. Rand, and E. Venturino) covered a broad range of topics. The following specific issues
were examined and discussed in detail:

• interplay between deterministic and stochastic approaches to modelling biological systems, with
emphasis on scenarios of pattern formation and spatial spread;

• hybrid models of the collective dynamics arising as a result of the interplay between agents of
different origin, with emphasis on eco-epidemiological systems;

• complexity of biological dynamics and models reduction;

• progress in the mathematical theory of evolution and interplay between the population dynamics
on the evolutionary and ecological time scales.

The honorary lecture ‘Invasion using microcorrelations in spatial and network games’ was given by
D. Rand (University of Warwick). He presented some new results on the influence of microcorrelations
on spatial and network game dynamics and developed new techniques that allow one to deduce analytical
results about such games. In particular, he applied the analytical theory to the case where the number
of neighbours (the so-called coordination number) is not constant and varies from site to site. A general
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resultwas obtained that allows application of these ideas to a very broad range of models including those
involving imitation and learning in addition to birth–death ecological processes. Also, a new analytical
approach to invasion was presented which sees it as a two-stage process in which firstly the invaders
create a local micro-correlated population and then the microcorrelations determine whether or not this
local population can invade the resident population. Effectiveness of these methods was demonstrated
by applying them to the Prisoner’s Dilemma game where an exact criteria for the case of cooperative
strategies invasion were obtained.

We also mention here a few other keynote talks.
A. Hastings (University of California at Davis) addressed the issue of multiple scales in ecological

dynamics. He considered ways that time (and necessarily space) scales enter into ecological understand-
ing, and how ecological dynamics plays out over intermediate time and space scales. The concepts were
illustrated with examples drawn from variety of ecological systems ranging from diseases to marine
systems (including coral reefs) and many others.

J. King (University of Nottingham) revisited recent progress in cancer modelling with emphasis on
multi-scale properties of tumour growth.

The issue of collective dynamics in its most literal sense was the focus of the talk by D. Grunbaum
(University of Washington) who considered the dynamics of social groups such as schools, swarms,
flocks and herds, which are a common feature of many animal species. Grouping strongly affects the
ecological and evolutionary dynamics of these species. However, a theoretical understanding of the
mechanics of social groups sufficient to describe and predict their evolutionary causes and ecological
consequences is lacking. The talk revisited recent efforts to quantitatively link individual social be-
haviours, group-level characteristics and population dynamics.

G. Karev (National Institute of Health USA) considered mathematical models of several seemingly
different phenomena such as global demography, early biological evolution, tree stand self-thinning, and
some others, and showed that their properties can be described in a unified manner by relating them to
replicator equations minimizing the production of information (Karevet al.,2011).

This volume includes seven carefully selected papers from the total of about 40 presented at the
workshop. Ecology was one of the major themes at the workshop and hence it is not surprising that
most of these papers are concerned with ecological problems. A broad range of topics is covered.
Banerjee(2011) considered an old problem of ecological pattern formation and addressed it using
a novel mathematical technique based on higher order stability analysis.Berezovskayaet al. (2011)
considered the dynamics of interacting population on a fragmented habitat under the presence of the
strong Allee effect and presented a careful and exhaustive mathematical analysis of the problem. Full
bifurcation structure has been restored and the rich variety of dynamical regimes has been revealed.Mal-
chowet al. (2011) considered biological invasions in an unstable environment stochastically perturbed
and applied their findings to weeds invasion in New Zealand.Sazonovet al. (2011) accomplished a
detailed mathematical study of epidemics spread on a fragmented habitat focusing on a particular but
important one-dimensional case. The results make an important contribution to understanding pecu-
liarities of epidemics spread on a network. Morozov et al. (2011) considered a generic mechanism
of self-regulation of plankton dynamics in eutrophic ecosystems based on the interplay between the
vertical gradient of the phytoplankton growth rate due to the light attenuation with depth and the graz-
ing by fast-moving zooplankton. Finally,Zemskovet al. (2011) studied a reaction–diffusion system
of FitzHugh–Nagumo type with linear cross-diffusion terms. Based on the analytical description us-
ing piecewise linear approximations of the reaction functions, they accomplished a complete analytical
study of travelling pulses for two generic reaction–diffusion systems of high relevance for many appli-
cations in physical and biological sciences.

 at U
niversity of Leicester on June 6, 2011

im
am

m
b.oxfordjournals.org

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


88 A. GORBAN AND S. PETROVSKII

REFERENCES

BANERJEE, M. (2011) Spatial pattern formation in ratio-dependent model: higher order stability analysis.Math.
Med. Biol.,28, 111–128.

BEREZOVSKAYA, F., WIRKUS, S., SONG, B. & CASTILLO-CHAVEZ, C. (2011) Dynamics of population commu-
nities with prey migrations and strong Allee effects: a bifurcation approach.Math. Med. Biol., 28, 129–152.

FISHER, R. A. (1930)The Genetical Theory of Natural Selection. Oxford: Oxford University Press.
GAUSE, G. F. (1934)The Struggle for Existence. Baltimore, MD: Williams & Wilkins.
GLANSDORFF, P. & PRIGOGINE, I. (1971)Thermodynamics of Structure, Stability, and Fluctuations. New York:

Wiley-Interscience.
GORBAN, A. N. (2007) Selection theorem for systems with inheritance.Math. Model. Nat. Phenom., 2, 1–45.

E-print: arXiv:cond-mat/0405451 [cond-mat.stat-mech].
GULDBERG, C. M. & WAAGE, P. (1879) Concerning chemical affinity.Erdmann’s J. Practische Chemie, 127,

69–114.
HAKEN, H. (1978)Synergetics. Berlin: Springer.
HAKEN, H. (1983)Advanced Synergetics. Berlin: Springer.
HALDANE, J. B. S. (1932)The Causes of Evolution. London: Longmans Green.
KAREV, G. P., NOVOZHILOV, A. S. & BEREZOVSKAYA, F. S. (2011) On the asymptotic behavior of the solutions

to the replicator equation.Math. Med. Biol.,28, 89–110.
LOTKA , A. J. (1925)Elements of Physical Biology. Baltimore, MD: Williams and Wilkins.
MALCHOW, H., JAMES, A. & B ROWN, R. (2011) Competition and diffusive invasion in a noisy environment.

Math. Med. Biol.,28, 153–163.
MALCHOW, H., PETROVSKII, S. V. & VENTURINO, E. (2008)Spatiotemporal Patterns in Ecology and Epidemi-

ology: Theory, Models, and Simulations. London: Chapman & Hall/CRC Press.
METZ, J. A. J., NISBET, R. M. & GERITZ, S. A. H. (1992) How should wedefine fitness for general ecological

scenarios.Trends Ecol. Evol., 7, 198–202.
NICOLIS, G. & PRIGOGINE, I. (1977)Self-organization in Nonequilibrium Systems. New York: Wiley-Interscience.
MOROZOV, A. Y., A RASHKEVICH, E., NIKISHINA , A. & SOLOVYEV, K. (2011) Nutrient-rich plankton commu-

nities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity.Math. Med. Biol.,
28, 185–215.

SAZONOV, I., KELBERT, M. & G RAVENOR, M. B. (2011) Travelling waves in a network of SIR epidemic nodes
with an approximation of weak coupling.Math. Med. Biol.,28, 165–183.

VOLPERT, V. & PETROVSKII, S. V. (2009) Reaction-diffusion waves in biology.Phys. Life Rev., 6, 267–310.
VOLTERRA, V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi.Mem.

R. Accad. Naz. dei Lincei,2, 31–113.
WAXMAN , D. & W ELCH, J. J. (2005) Fisher’s microscope and Haldane’s ellipse.Am. Nat., 166, 447–457.
ZEMSKOV, E. P., EPSTEIN, I. R. & M UNTEAN, A. (2011) Oscillatory pulses in the FitzHugh-Nagumo type

systems with cross-diffusion.Math. Med. Biol., 28, 217–226.

 at U
niversity of Leicester on June 6, 2011

im
am

m
b.oxfordjournals.org

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/

