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ABSTRACT

An express method to approximate trajectories of space-
independent kinetic equations is developed. It involves
a two-step treatment of relaxation through a quasi-
equilibria located on a line emerging from the initial
state in the direction prescribed by the kinetic
equation. A test for the Boltzmann equation shows the
validity of the method

1. INTRODUCTION

In this paper we 1introduce a mnew method of
constructing approximate trajectories for space-
independent kinetic equations confirming to the second
law of thermodynamics. Classical examples are the space-
independent Boltzmann equation and chemical kinetics
equations for closed homogeneous systems. This family of
kinetic equations is characterized by the following
general properties:

(i). There exists a set of functions which remain
constant on a solution (these are density, momentum and
energy in context of the Boltzmann equation)
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(ii). There exists a convex function which mono-
tonically decreases along any solution from its value in
the initial state to an absolute minima in the final
equilibrium state (this is the #-theorem for the Boltz-
mann equation).

Usually we do know only the initial and the final
(equilibrium) states, and the kinetic equation neither
can be solved exactly, nor contains small parameters to
develop a reliable perturbation theory. Still, we would
like to get (perhaps a rather rough but a simple) appro-
ximation of the relaxation trajectory

To be certain, we will speak about the Boltzmann
equation. Denote as f(v, ¢) a one-body distribution func-
tion, where v is velocity of a particle, and £ is the
time. The dynamics of f(v,{t) is governed by the space-
independent Boltzmann equation

(1. 1)
ot

Here Q(f) is the Boltzmann collision integral [1]. In-
dependently of a specific choice of operator Q(f), equa-
tion (1. 1) has the following properties reflecting fea-
tures (i) and (1ii)

(1). For any a, b, and ¢, and for any f providing
existence of integrals, we have (conservation laws):

J(a+b-v+cv2)0(f)d3v=0 (1.2)

(ii). Denote as Ho(f) the space of linear

functionals f(a+b'v+cvz)fd3v. Symbol (modHO(f)) will
indicate that an expression is valid within the accuracy
of adding a functional from HO([), For any functional
H(),

H(f)=jflnfd3v (modH  (£)) (1. 3)
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the following inequality takes place (the #-theorem)
0(f)=jo(f)1nfd3v50 (1. 4)

Expression O(f) (1. 4) is called the #-function
production in the state f, and it is equal to zero only
for f“Aexp{cv2+b'v} (c<0)

Initial condition to equation (1.1) will be denoted
as fo(v), i.e. f(v,O):fO(v). Further we sometimes omit
the dependence on v. With no restriction, we assume that
the initial state satisfies the conditions:

3 3 2.3 <
Jfod v=1, JfOVd v=0, Jfov dv=3 (1.5)

Conservation laws (1.2) and the #-theorem (1.4)
result in the following properties of solutions:

(1). At each time {20, solution f(v, ) which comes
from out the initial state [0’ satisfies the equalities

jf(v,t)d3v=1, Jf(v,t)vd3v=0, Jf(v,t)v2d3v=3

(ii). For {-—»®, solution f(v,¢) tends to the
equilibrium state which is the Maxwell distribution f%

fg=(2%)‘3/2 exp[—%vz] (1. 6)

This tendency is accompanied with a monotonic decrease

of values of the #-function H(f)l :
f=f(v, t)

and %%:0 only for,fg (1. 6)
A set of states f which the solution [ (v, {) spans
as ¢ runs from zero to infinity, will be called the
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trajectory. In this paper we will consider the
trajectories as geometrical objects, regardless of at
what time the solution comes to the states on the
trajectory. Let us consider a more convenient standard
representation.

A continuous immersion of the segment 0<a<1 into
the phase space, ar-—f (v, a), will be called a
thermodynamically admissible path from fO to fg (TAP)
{21 if the following conditions are satisfied

f(v,a)‘ =f, (1.7)

a=0

fv,ay|  =fg (1.8)
a=1

Jf(v,a){l,v,vz}d3v={1,0,3} (1. 9)

H(f(a y)>#(f(a"y), if a <a” (1.10)

Roughly speaking, TAP is a r"string" in the phase
space joining the states fO and fg. The initial tip of
TAP (a=0) is the distribution fo, the final tip (a=1) is
the Maxwell function fg. Condition (1.9) expresses the
conservation of the first five moments along this
string. Condition (1.10) conforms to the second law of
thermodynamics: the motion along the TAP from the
initial tip to its final tip should be accompanied with
the decay of the #-function

one of the TAPs represents the trajectory of
solution to equation (1.1) with the initial condition
fo, and any approximation of the trajectory should be a
TAP.

our goal is to construct the simplest approximation
of a trajectory conforming with requests (1. 7)-(1.10),
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and using only the function O(fo). wve will follow the
two objectives

1. Wwithin some time after {¢=0, there occurs a
relaxation directed essentially along the vector O(foy
In the end of this process the system comes to an
intermediate state f*, such that f*—fo o 0([0), and

2. Next there occurs a rectilinear relaxation from
the state f  towards the equilibria £,

In other words, we imply a two-step picture of
relaxation. The first step is a relaxation from the
initial state fo into an intermediate state £ along the
straight line emerging from fo and directed along O(foy
The second step is a relaxation along the straight line
which connects the state £  with the Boltzmann
equilibria fg. The second step represents a trajectory
of the Bhatnagar-Gross-Krook (BGK) model kinetic
equation [3] with F° for the initial condition.
The #-theorem and conservation 1laws are valid for
BGK-model, so the second step satisfies conditions
(1. 8), (1.9), and (1.10).

The main difficulty is to derive the intermediate
state £ . Namely, £~ should represent a physical state
(i.e. it should be a non-negative function), and the
H-function should monotonically decay along the linear
segment which connects fO with £ (condition (1.9) will
be obviously satisfied on this segment due to (1.2)). If
we have constructed such state f*, then the two-step
approximation (TS) has the form

(1-za)f0+zaf*, for 0<a<1/2
fTS(a) = . . (1.11)
2(1-a)f +(2a-1)Yf, , for 1/2%a=i1

Here we have taken fTS(1/2)=f*, without any restriction
our goal is to derive a physical state f* on the line
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f0+20(f0) so that conditions (1.7) and (1.10) should be
satisfied for fTs(a) (1.11) as variable a spans the
segment [0, 1/2].

In the next section we will derive the state £ as
an equilibrium state of a new satellite kinetic
equation, and we will develop an approximate method of
calculating this state. In section 3 we will compare the
results of TS approximation with the exact
Bobylev-Krook-wu solution of equation (1.1) for Maxwell
molecules. Section 4 contains some remarks on a further
development of this approximation technique.

2. MARCELIN - DE DONDER EQUILIBRIA
2. 1. Marcelin — De Donder Kinetic Equation

In this section we introduce a model kinetic
equation which has a rectilinear trajectory running in
the direction O(fo), and satisfying the conditions
(1.7), (1.9), and (1.10). This involves a representation
of the function O(fo) as a sum of positive and negative
parts. Treating O(fo) as a function in v, we have:

{O(fo), if o(f,)>0
0 =
P 0, if 0(f0)50;

(2. 1)
{—O(fo), if o(f H<o

Qn~=

o, if o(f )20

In other words, function Oﬁ is the rate of 'probability

density" income into the state fo, while 0y is the rate

of probability density expenditure from the state fO.
Given the partition (2. 1), we consider an equation
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ar 3 3
8;=k[06—0a] cxp[foalnfd V]—exp[joﬁlnfd V] (2.2)

Here k is an arbitrary positive constant.

To explain equation (2.2), let us turn to notions
of chemical kinetics. vector O(fo) determines a
prevailing direction of relaxation in the space of
states f during some "short" time after the beginning of
relaxation in the initial state fo. Dynamics within this
period can be considered formally as a rchemical
reaction", and vector O(fo) can be interpreted as a
"stoichiometric vector of reaction". Representation
(2.1) corresponds to a selection of “stoichiometric
coefficients" of the income and of the expenditure of
some conventional "substances"

Recall [4] that, for N substances P
stoichiometric equation of reaction is:

O A+ .+, — |31A1+...+|3NAN (2.3)

Non-negative numbers O, and 61 are called
stoichiometric coefficient. AN-dimensional vector with
components Yizﬁi_ai is called the stoichiometric vector
of reaction (2.3)

In our case, the "substance number" is the velocity
v, and "the amount of substance with the number v" is
the value of distribution £ in the point v

Derivation of chemical kinetics equations involves
a concept of reactions rates. For stoichiometric
equation (2.3), the rate of reaction in the context of
Marcelin - De Donder kinetics [4, 5] is:

N N
W exp[ T G-M‘] - exp[ z ﬁ-M-] (2. 4)
=1 11 iz 12

Here Hi=—kB (as(nl,...‘nN)/Oni) is the divided by kBT
chemical potential of the 7-th chemical kind (kB is the
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Boltzmann constant, 7 1is the temperature), 1i.e. Mi is
proportional to the derivative of the entropy in i-th
substance quantity n. Expression (2.4) is called the
Marcelin - De Donder kinetic function {4,5]. Chemical
kinetics equation corresponding to stoichiometric
equation (2.3) and to reaction rate (2.4) is

dn

‘_1=kYiW (2.5)
dt

Here k>0 1is reaction rate constant. The case of a

continuous mixture assumes integration in v instead of

summatign in numbers of substances. Expression
ln[(v)sggLél is the direct analog of chemical potential
r(v)

(for perfect systems). Factor
W(f):exp[[oalnfd3v]—exp Qﬁlnfd3v] (2. 6)

in equation (2. 2) is reasonably similar to the Marcelin-
De Donder kinetic function (2. 4). Model equation (2.2)
has a formal analogy with chemical kinetics equation
(2. 5). For this reason, equation (2.2) will be called
the Marcelin - De Donder equation (MDD-equation)

A few words should be said about the choice of
partition (2. 1). There exist infinitely many partitions
of function O(fo) into positive and negative parts. In
the chemical interpretation, any choice refllects a
splitting of the given stoichiometric vector v, in two
sets of the income and of the expenditure stoichiometric
coefficient, & and Bi. Partition (2. 1) makes the sense
of splitting the chemical reagents in two groups so that
either & #0 and ﬁi=0, or O =0 and Bi#o. This corresponds
to stoichiometric equations (2.3) without
auto-catalysis. Recall that auto-catalytic step is
realized when both ai and ﬁi in (2.3) are not equal to

ZEero, at least for a single number 7. When
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auto-catalytic steps are absent, MDD reaction rate (2. 4)
for perfect systems transforms into the standard mass
action law form (MAL). Hence, partition (2.1) can be
called the MAL-representation of function O(fo). This
representation corresponds to partition of velocity
space into two domains with non-intersecting interiors,
VB and Vo The support of function’s O(fo) positive part
coincides with VB’ the support of the negative part of
O(fo) coincides with Voo Accordingly, functiomns Qq and
Oﬁ are mnon-negative, and they are concentrated on
non-intersecting domains Vo and Vﬁ

MDD-equation (2.2) possesses a set of properties
which are a formal 1immediate generalization of
elementary properties of equations (2. 5) onto continuous
case [2,4,5]):

Property 1. 1f fo is a non-negative function, then
solution to equation (2.2) with initial condition fO is
non-negative for all ¢2¢0

Property 2. Solution to equation (2.2) with initial
condition fo belongs to the straight line f0+20(f0)

Property 3. Conservation laws are satisfied in
every point of the trajectory of equation (2. 2).

Property 4. H-function (1. 3) monotonically
decreases due to equation (2.2), that is

Qgﬁél = kI[OB—OQ]{exp[Ioalnfd3v]—exp[IOﬁlnfd3V]}lnfd3vSO

Thus, the trajectory of MDD-equation (2.2) is a
segment of a straight line emerging from the initial
state fo and running in the direction O(fo). All states
on the MDD-trajectory do make physical sense,
conservation laws are satisfied, and the #-function
monotonically decays from its value in the initial state
fo to its value in a final equilibrium state of equation
(2.2). This latter state will be called the
MDD-equilibria, and it will be denoted as fﬁDD. To get
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the trajectory of MDD-equation (2.2), we have to derive

0
the state fMDD

2.2. Estimations of MDD-equilibria

Let us consider a functional A(f) which is a direct
analog of affinity [6]:

A(f):JO(fO)lnfd3v (2. 7)

Condition A(f)=0 determines a hyper-surface D(f) where

the "chemical potential" Inf is orthogonal to
0

"stoichiometric vector” O(fo). MDD-equilibria fMDD is
the state where the line f0+20(f0) crosses the
hyper-surface D(f). Due to Property 2, we have:

0
f =f0+z

MDD o(f ) (2.8)

MDD

and parameter z is a solution of an equation

MDD

A(z)=0 (2.9)
Here A(z) 1is the value of affinity A(f) (2.7) on the
line f0+Z0(f0)

A(z)=I0(f0)1n(f0+ZO(f0))d3v (2. 10)

Note that Zupp is correctly defined by equation (2.9),
and it is independent of any partition of O(foy For
practical aims, MAL-representation (2. 1) is most
convenient.

Introduce a normalization of MAL-representation

(2. 1):
-1 -1 3 3
dq ﬁ=q Oa,ﬁ q(f0)=q O(fo), q=I05d V=J0ad v (2.11)

After introducing a new variable b=gz, we have:
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MDD_f +byppd (£) (2.12)

Parameter bMDD=qzMDD is a solution of an equation
equivalent to equation (2. 9)

Aa(b)=A6(b) (2.13)
Here

Ag(b)= qaln(fo—bqa)d3v, Aﬁ(b)=jqﬁln(f0+bqﬁ)d3v (2. 14)

Functions Aa(b) and Aﬁ(b) (2. 14) have the following
properties:

1. The domain of function Aa(b) is an open
semi-axis ]—w,ba[, where ba>0 The domain of function
Aﬁ(b) is an open semi-axis ]bp, +%[, where bp<0.
Functions Aa(b) and An(b) have logarithmic singularities
in points ba and bﬁ respectively

2. Functions Aa(b) and Aﬁ(b) are monotonic, that is
dAa(b)/db<0 inside the domain of Aa(b), and dAﬁ(b)/db>0
inside the domain of Aﬁ(b)

3. Functlons Aa(b) and Anp(b) are concave, that is
a2 Aa ﬁ(b)/db L0 inside correspondlng domains.

4. A4g(0)-44(0)= =g~ O(f y<0,

where G(f )= J (f )lnf d3v is the #-function production

in initial state fO (see (1.4))
The singular point b, is the minimal value of the

ratio £ o/ 9o More specifically, let wus define a
parameter %_b 1

(V)

® = sup (2.15)
VGIR3 fO(V)

I1f *®<x, then for all v functions 1n(1—bqa(v)/f0)
are defined inside the interval [0,&_1[. Further, we
shall assume that ®<x for the initial state fo. This

means that fO(v) should decreases sufficiently rapidly
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as |v| tends to infinity (see section 4)

Properties of functions Ay (D) and AB(b) listed
guarantee that equation (2. 13) has an unique positive
solution b

MDD’ 1
To get a guaranteed first estimation b&Dg located
between zero and the wunknown solution bMDD’ it is

sufficient to approximate the function Aﬁ(b) from above
with a concave function, and to approximate Aa(b) from
below with a concave function

To get an upper estimation for function Aﬁ(b)’ turn
to logarithmic coordinates, and consider a function
Wﬁ(b)

Wﬁ(b)zexp(Aﬁ(b)) (2.16)

It can be shown that function W@(b) is monotonic and
concave. Consequently, W@(b) is majorized by a tangent
line:

dAq(b)
Wa(b)Sexp(A4a(0)) —B
P p db

b + 1} (2.17)
b=0

Inequality (2.17) vyields +the upper estimation for
function Aﬁ(b) inside its domain

dAanp(b)
Ap(b)<4 (0)+1n[1+—Ji———
P § db

b] (2.18)
b=0

Lower estimation for function Aq(b) is evident from
an inequality being true for b=[0,% |

9,
Aa(b)=Aa(0)+anln(I—bfg)d3V2Aa(0)+ln(1—%b)

Hence,

Ag(B)Z Ay (0)+1n(1-%b) (2. 19)

Equalizing the right hand sides of inequalities
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(2.18) and (2.19), we get an explicit linear equation

for the approximation b&ég which is located with a

MDD’
returning to the variable z we finally get the first

; ; (1),
approximation ZypD

guaranty between 0 and b Solving this equation and

1 - exp[q”lO(fO)]

}exp[q’10<f0)]
b=0

Let us list here the four parameters which should

be calculated to obtain the value z&é% (2.20):

(1)
“MDD

(2.20)

dap(b)
. q{_ﬁ.__
db

G(f0)=J0(f0)lnf0d3v; q=Joﬁd3V=J0ad3w

(V) ddp(b) q
&=sup a ; B = J fﬁ dlv (2.21)
veR? £,(v) db b=0 )

Substituting the value Z&ég (2.20) instead of ZyDD

into (2.8), we come to the first approximation for
MDD-~equilibria which is located with a guaranty between

fo and fﬁDD' The value (2.20) can be improved by a

method of successive approximations. To do this, one

should make the estimations (2.18) and (2.19) in the

point b&ég. This gives a start to a Newton-type process

of obtaining the solution bMDD‘ The sequence of
approximations will monotonically increase to the point
bypp: Ve will not discuss the convergency of this

sequence in this paper, and we will restrict ourselves
to the first approximation (2. 20).

Thus, we have constructively determined the state
£=f0 at which the first step of relaxation ends, and

MDD
we have completed the two-step approximation (1. 11).
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3. EXAMPLE: TWO-STEP APPROXIMATION OF BKW—MODE

A model of particles with the binary interaction
potential proportional to the inverse forth degree of
distance (in the three-dimensional case) is usually
called "Maxwell molecules*. For them, equation (1.1) is:

OF(V, E) ¢ 5 [n ~ =
—a—-Id dend(g'n) £V EYF(w', ty=F(v, tYF(w, t); (3.1)
t

Here O depends only on the projection of the unit vector
g—T%j%T on the scattering direction n~—¥;E%T‘ Notations

are standard, and follow the paper [7]

An exact automodel solution of equation (3.1) was
discovered by Bobylev (8], and Krook and wu [9] (the
BKW-mode). The TAP which represents the BKW-mode is:

2
_ 2T -3/2 _ (a(l=¢cH+c)yv o
Fpgw(2: C)‘[a(l—c)+c ] eXp{ 2 }

x E{[S 3(a(li- c)+c)] + (a(1—c)+c)[(a(1—c)+c)—1]v2} (3. 2)

Here variable a spans the segment {0, 1], while parameter
¢ labels the dinitial state of BKW-trajectory (3.2).
Parameter ¢ takes the values in a semi-opened interval

[1, [ value c¢=t corresponds to the equilibrium
dlstrlbutlon fO (1. 6). For c>§, function (3.3) becomes

negative for some v at a=0. The BKW-trajectory (3.2)
begins in the state f (c)“f gy (0, €) at a=0, and ends in
the equilibrium state fB BK
Now we will construct the two-step approximation of

the BKW-trajectory.

w(l c) at a=1.

The initial state. Initial states will be chosen on
the BKW-trajectory, and they will be labeled with
parameter c:
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2
12T 1-3/2 cv”® 2
fo(c)=2[ - } exp{— 5 }{(5—3c)+c(c—1)v } (3.3)

The final equilibrium state fg is the same for all
initial states fo(c), and it 1is given by expression
(1. 6). Thus, we are going to construct a family of
two-step approximations for initial states fo(c) (3.3)
where ¢ takes values between 1 and 5/3.

MAL-representation. Substituting functions (3.3)
into the RHS of equation (3.1), we find the functions
Oo(c)Eo(fO(c)) (the values of collision integral in the
states (3.3)):

2
oo(c)=%(c—1)2[l%—]‘3/2exp{-£§—}{15—100v2+02(v2)2} (3. 4)

Here %:éjdﬁ ackemy(1-ck:n)%).

For a given ¢, where 1<c<5/3, function Q,(c) (3. 4)
is negative only inside the spheric layer between

spheres of radii v_(c)=Y (5-Y10)/c and
V+(c)=7 (5+Y10)/c, centered in the point v=0.

MAL-partition of the velocity space is

Va(C)={v| VE(C)szévi(c)};

Vﬁ(c)={v| V2<VE(C)}U{V| V2>Vi(C)} (3.5)

The first approximation of MDD-equilibria.
Introducing a dimensionless variable Z&DD(C)
Zy o (C)=—"2 Z, ()
MDD " Ty )27 MDD

we can write down the MDD-equilibrium states fﬁDD(c) as
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2
0 2T 3/2 cv ,
MDD(C)— [ p ] exp{— 5 }{(5—30+152MDD(0))+

. 2. . 2,22
+((c=1)=10zy (c))ev +zy o (c)e™ (v7) } (3. 6)

The first approximation to ZMDD(C) (2.20) gives

() 1-exp(q” 'P4(c))
Zwpp (€)= -1 -1 ’
P (e)+q P exp(g P ()
v5+7¥10

Q9

il

|
ey
N ‘N

(15-106%2+¢%y¢%e 2 dt;

Y5-v10
15—10T(c)+T2(c)
Pl(c)= -

(5-3¢c)+(c-1)T(cy

[(5—3c)2+5(c—1)(7—3c)]”2

-(5-3c¢)
T(c)=
(¢c—-1)
vs-vV10 0 2
4.2 2 _t
Py= J P(¢)dt+ J Octrat; t)-—tis10tTet )22 T2
(5-3¢)+(c- 1)t“
0
V54710
® 2
2,,4. ,2 72 c—1_,2
P3(c)= J (15-10Lt7+¢t "HYt~e 1n[1+ 5_3Ct ]dt (3.7)
Q
All integrals in (3.7) <can be easily calculated

numerically. The first approximation Z&éé)(c) is given
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TABLE 1
(1) Py,
No| ¢ Z\pD Zvpp /4L 1M
1 1. 06 8. 2484+10 % 0.1125
2 1. 12 3. 1779107 0.2221
3 1. 18 6.8551°10° 0.3276
4 1. 24 1. 16601072 0. 4291
5 1. 30 1. 7409+ 102 0. 5268
-2
6 1. 36 2.3916°10 0. 6203
-7
7 1. 42 3.0969+10 0.7087
8 1. 48 3.8277+107 2 0. 7895
-2
9 1. 54 4. 5322410~ 0. 8563
10| 1.59 5.0791+10 2 0. 8903

First Approximation z&éé)(c) for MDD-equilibria (3.6)
(Third Column) and Capacity of its Positiveness (Fourth

Column).

in Table 1 (third column) for ten values of parameter c.
Substituting Zﬁéé)(C) (3.7) instead of ZMDD(C) into
expression fﬁDD(c) (3.6), we finally get the two-step

approximation of the BKw-trajectory:

(1—23)f0(0)+23fﬁDD(c) , Tfor o0=a=1,2
fTS(a,c)= (3. 8)
0 0
Z(I—a)fMDD(c)+(Za—1)f , for 1/2=a=1
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To make a relevant comparison of TS approximation
(3.8) with BKWw-trajectory (3.2), we have to eliminate
the dependence on a. Consider normalized moments mk(f)

-1
mk(f)= J(vz)kfd3v[[(v2)kfgd3v] , k=0,1,2,... (3.9)

we have to obtain the dependencies my(m;) for (3.2) and
(3.8) and next to compare these dependencies. Typical
dependencies of higher moments (k23) on the lowest
nontrivial moment m, are presented in Fig. 1 for c=1.3
(a moderate nonequilibrium initial states).

Qualitative behavior. Both the BKW and the TS
dependencies mk(mz) tend to be more convex with the
increase of k. This tendency is more progressive for TS
curves at small %4 For ¢ not exceeding 1. 48, there
exists a critical number k$(c) such that the BKW curve
mk(?z) does not *intersect the BGK-segment of TS for
k<k (c¢). Number k (¢) falls down with the increase of ¢
(k'~110 for c=1.06, k ~6 [or c=1.42). For k®k (c¢), the
MDD-segment of TS becomes practically horizontal (see
Fig. 1d).

Quantitative comparison. Table 2 gives the
euclidean distance between the curves my (1) for BKW and
TS (in scaled units where my and m, have equal total
variation), in percents of the total wvariation of
moments. Recall that the distance between two sets, ¥
and ¥, is defined as

dist(Xx,¥) = max min dist(x, y)
XX yey
In other words, we compare the curves my () for BKW and
TS as two sets of points in a plane (my, m,). This is an
appropriate way to make a comparison because we consider
only geometrical properties of trajectories, while time
behavior was not under consideration
Accounting that TS approximation requires only the

single state f&DD which is rather “"inexpensively”
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obtained (i.e. without solving any dynamic equations),
we can see that it is appropriate for a’priori
estimations of trajectories. It should be mentioned that
a physically interesting quantitative comparison usually
concerns a dozen of first nontrivial moments while the
higher moments are required to have a qualitative
similarity.

Finishing this section, let us note a remarkable
fact. Example considered shows that the MDD-segment of
the TS approximation is not small in comparison with its
BGK-segment. In a physical interpretation, the initial
rate of relaxation O(fo) defines the changes of the
initial state fo due to a few first collisions of
particles. MDD-equilibria gives the exact upper bound of
changes which the initial state can get in the first
collisions, and this bound turns out to be significant.
if this bound were very low, then triangles in Fig. 1
would be very narrow, and TS approximation would give a
qualitatively poor estimation of the real trajectory
(i.e. then the TS approximation would be almost similar
to the BGK-approximation). In other words, the account
of first collisions is substantial to construct an
approximation of the relaxation trajectory in a whole.
To illustrate it once again, let us note that the line
f0+20(f0) abandons the space of physical states for
Z>Z) 1w 1t is interesting to compare the limiting size
of the step Z; 1y along the line fO+ZO(f0) with the step
prescribed by MDD-equation. For states (3.6), we can
find exactly such =z so that physically possible

LIM
values =z’ can not exceed ZLIM. The fourth column in

Table 1.M230ws how far the the first approximation to
fﬁDD(C) is located from the border of physical states
(the exact MDD-equilibria is still <closer to the
border). It can be seen that for none of ¢ the step
prescribed by MDD-kinetics is negligible in comparison

with the physically possible step
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TABLE 2
k c=1. 12 c=1.24 c=1.36 c=1. 48 c=1.59
3 1. 4 2.1 2.5 2.6 2.2
4 2.6 3.9 4. 6 4. 6 3.8
5 3.8 5.6 6.3 6. 1 5.0
6 4. 9 6.9 7.5 7.2 5.7
7 5.8 8. 1 8. 6 7.9 6.2
8 6. 1 9.0 9.3 8. 4 6. 2
9 7.6 9. 8 9. 8 8.5 6.1
10 8.3 10. 5 10. 2 8.5 5.7
15 11.2 12. 1 9.7 6.5 9. 6
20 12. 8 11. 6 7.7 7.5 13. 6
40 13.2 5.6 9.2 14. 8 21. 4
60 9.9 6.3 12.3 17. 8 24. 1
80 6.5 8.1 13. 9 19. 2 25. 4
100 4.2 9.2 14. 9 20. 1 26. 2
200 5.5 11. 6 16. 7 21. 6 27.5
300 6.5 12.3 17. 3 22. 0 27. 8

Euclidean Distance Between the Curves mk(mz) for BKW and
TS in Percents to the Total variation of Moments

dist(Xk, Y,) = max min dist(x, y);
XSX, ye¥

X =0y, Mp(my)) s Y =Cy, mpmy))
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4. FINAL REMARKS AND CONCLUSIONS

It dis not much surprising that there are
practically no reliable approximate analytic methods for
the space-independent Boltzmann equation and similar
kinetic systems because there is no a traditional small
parameter (we are speaking of methods applicable to
equation (1.1) with arbitrary collision integral; the
exception are Maxwell molecules and some other similar
models, see [7]). In fact, among classical methods of
kinetic theory, perhaps only the Grad method {[10] is
formally applicable which involves a termination of the
moment chain equivalent to equation (1.1). However the
realization of Grad method for equation (3.1) has shown
its poor approximation abilities [11}]. Results of
section 3 show that, in principle, any approximate
method which "begins with the equilibria fg" will face
serious difficulties when predicting the trajectory.

The method developed in section 2 is directly
applicable to any kinetic equation of the type (1.1)
possessing the properties (i) and (dii) of section 1. The
method gives explicit approximation of a trajectory
satisfying with a guarantee conditions (1. 7)-(1.10). It
requires the obtainment of parameters (2.21), and so it
can be said that the problem is solved "in quadratures®.
The finiteness of these parameters is the main
restriction on the choice of the initial state fO, and
it has a very natural physical meaning: O(fo) is the
H-function production, *® reflects the upper bound of
expenditure of positiveness, (dAB(b)/db)lb=0 reflects
the total income of positiveness. If #=0, then f(v)
becomes negative for some v in an infinitely short
period after ¢=0. If (dAﬁ(b)/db)|b=0=m, then the
conservation laws will be violated infinitely quickly.
To apply the method of section 2, the initial state
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should decrease sufficiently rapidly as |[v| tends to
infinity. It is sufficient to consider the following
initial states:

fO x exp (—CVZ/Z)P(V)

Here c¢z1, and P(v) is a positive function which has a
polynomial growth as |v| tends to infinity.

Finishing this paper, let us list here some further
ways in development of TS approximation

(1) Multi-step approximations. when the
(approximate) MDD-equilibria o

MDD
construct the next MDD-equilibria using £

is obtained, we can
4 | ing oD instead £,
and O(fMDD) instead of O(fo). Continuing this process,
we can make n such steps, and we should complete the
process with the n+1-th BGK-step. The broken line
obtained will be a TAP. A better way is to make the
first step shorter than it is prescribed by Z&é% (2.20)

A general recipe might be as follows: make the first
step n times shorter than z&éé, and next make mn-1 such
steps. It should be stressed that adding new MDD-steps
will give a better result with a guarantee (in contrast
to Grad-type methods where adding higher moments can
even result in negative-valued functions).

(ii1) Smooth planar approximations. The three
states, fO, fﬁDD’ and fg, form a friangle consisting of
their convex linear combinations. Each point of this
triangle is a physical state, and conservation laws are
valid. We can pose a problem of constructing a smooth
TAP from fo to fg inside this triangle, and which is
tangent to the MDD-side in [0‘ Then we could get a
smooth approximation of the trajectory. 1t is possible,
but some efforts should be spend to complete condition
(1. 10) along this curve. This will be reported in a
separate paper.

(iii1) Time behavior. Though the qualitative

behavior of the relaxation is sufficient for many
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problems (in particular, in chemical kinetics), the time
evolution is also interesting. TFor TAP’s, the time
behavior should come through a dependence a(f{). To get
an ordinary differential equation for a, we have to
project the vectors ¢(f(a)) onto 8f(a)/8a in every state
f(a). There are serious reasons to believe that a
general method of thermodynamically correct projecting
[12, 13, 14] solves this problem. If so, then the equation
for a comes through the entropy balance equation along
TAP, and it has the form

da/dt=0(a)(dH(a)/da) " (4. 1)

Here O(a)=C(f(a)), H(a)=H(f(a)), 1initial condition is
a(0)=0, and we have to distinguish the 1left and the
right derivatives d#(a)/da in the point a=1/2.
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