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The problem of thermodynamic parameterization of an arbitrary approximation of reduced 

description is solved. On the base of this solution a new class of model kinetic equations is 

constructed that gives a model extension of the chosen approximation to a kinetic model. 

Model equations describe two processes: rapid relaxation to the chosen approximation along 

the planes of rapid motions, and the slow motion caused by the chosen approximation. The 

H-theorem is proved for these models. It is shown, that the rapid process always leads to 

entropy growth, and also a neighborhood of the approximation is determined inside which the 

slow process satisfies the H-theorem. Kinetic models for Grad moment approximations and 
for the Tamm-Mott-Smith approximation are constructed explicitly. In particular, the 

problem of concordance of the ES-model with the H-theorem is solved. 

1. Introduction 

In this paper we develop a new method of constructing kinetic models for 
the Boltzmann equation. This method gives a model extension of an arbitrary 
approximation of reduced description. These kinetic models are concordant 
with the H-theorem. One of the principal ideas of our method is a specific 
thermodynamic parametrization of an arbitrary approximation. 

In this section we pose the problem of kinetic modeling and outline a way to 
solve it. 

One can distinguish two points of view on the idea of using kinetic models: 
(1) A simplification of the Boltzmann kinetic equation. 
(2) An extension of the approximate reduced (macroscopic) description. 

We undergo the second of these viewpoints as more constructive. 
As a rule, model kinetic equations of the following type are used [l]: 
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df 
dt = ~-l[f-fcf)l (1.1) 

Here dldt = alat + Cf=, ui a/ax, represents the substantial derivative, and r is 

the time of relaxation to the states f( f ). The distribution f(f) is related to the 

distribution f by some integral relationships. 

The choice of f(f) as the local equilibrium distribution f,(f) results in the 

well-known BGK-model [l]. This latter preserves all main properties of the 

Boltzmann equation, i.e. the conservation laws and the H-theorem. One can 

consider the BGK-model as the model extension of Euler dynamics. 

Attempts to choose f( f ), different from fo( f), result in a discrepancy with 

the H-theorem. For example, in the ES-model [l] f(f) is 

f(f) = n C”‘*(det CX)“’ exp [- i: “ij(u; - Ui)(Uj - Ui,) . 
r.j= 1 

(1.2) 

The matrix (Y,~ is chosen in order that the correct Prandtl number values are 

obtained and the conservation laws are satisfied. However, as it was noticed in 

ref. [l], one can neither prove, nor reject the H-theorem for eq. (1.1) with 

Af > (1.2). 
We now suppose that an approximation of reduced description is chosen. 

This means that a manifold {f(u)} is fixed in the space of distributions F. This 

manifold consists of distributions f(a), and a represents coordinates on the 

manifold. We wish to extend this approximation to a kinetic model. 

Looking ahead, we can assume that this model will describe two processes: 

relaxation to the manifold {f(u)} and the motion along the manifold {f(u)}. 

The latter motion should be obtained from the Boltzmann equation, while the 

relaxation to {f(u)} will be described by a model term of the type of (1.1). 

The model would concur for physical sense only if the H-theorem will be 

valid in both of these processes. 

Here we arrive at two general problems: 

(1) The problem of thermodynamic parameterization of the manifold {f(u)}. 

This means that we should determine the dynamics on the manifold {f(u)} 

from the Boltzmann equation in order that the H-theorem would be preserved. 

(2) The problem of preservation of the H-theorem in the model relaxation. 

We stress here that the first of these problems is important already by itself. 

One can also pose this problem in the form of the question: how and onto 

which macroscopic variables should one perform the projecting of the 

Boltzmann equation? In fact, there are a number of possible answers to this 

question. Which projector would make physical sense? 

The answer is not evident especially when the reduced description is defined 
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only by the coordinates on the manifold {f(a)}. An example of this situation 

gives the well-known Mott-Smith approximation in the shock wave theory [l]. 

The choice of the “natural” projector is recognized as one of the main 

unsolved problems of the Mott-Smith kinetics. It is evident that the solution of 

the second problem is impossible without the solution of the first problem. 

In this paper we solve both of these problems for an almost arbitrary 

manifold {f(a)}. Th e main idea is to act as if a decomposition of slow and 

rapid motions corresponds to the manifold {f(a)}. Then the increase of the 

entropy in the rapid process results in the essentially unique thermodynamic 

parameterization and shows explicitly along which manifolds the system relaxes 

in the neighborhood of the states f(a). After this latter structure would be 

obtained, we will model the rapid relaxation in the manner of (1.1). 

In the next section we introduce a general method of thermodynamic 

parameterization. As an example we solve the classical problem of obtaining 

the Mott-Smith dynamics. In section 3 we construct quasi-equilibrium models, 

and we prove the H-theorem for them in section 4. In section 5 we consider 

some examples of these models. 

2. Thermodynamic parameterization 

Our basic idea is to act as if a times hierarchy hypothesis corresponds to the 

chosen approximation {f(a)}. This means that a “rapid” relaxation occurs to 

the states f(u) in a neighborhood of the manifold {f(u)}, and then the “slow” 

motion along {f(u)} takes place. The rapid motion determines the direction of 

projecting. The choice of the projector is determined by the fact that the 

H-function decreases in rapid relaxation. Therefore, the state f will be able to 

relax into the state f(u) at the end of rapid motion if f belongs to the 

hyperplane rfCa,, the latter being orthogonal to the gradient of the H-function 

DfH[f] at the point f(u). We call &, the hyperplane of rapid motion. We use 

the H-function ] f(ln f - 1) d3 U. Then D$J[f] = In f, and rrCO, is defined 

according to the equation 

(2.1) 

We assume that {f(a)} is not tangent to a level of the H-function at any 

point f(a) E {f(a) 1. 
Due to the strict convexity of the H-function, the point f(u) is the only point 

of minimum of the H-function on the hyperplane of rapid motions &,. In 

other words, f(u) coincides with the solution of the variational problem 



404 A.N. Gorban, I.V. Karlin I Constructing models of the Boltzmann equation 

Wfl -3 min for 1 f In f(u) d3u = / f(u) In f(u) d3v . (2.2) 

The latter statement can be easily checked by the Lagrange multiplier method. 

Thus, the hypothesis of the times hierarchy means that the H-function 

decreases during the relaxation, and its points of minimum occur on the 

manifolds of rapid motions. The gradient of the H-function is normal to this 

manifold of rapid motions at the point of minimum. Therefore, in the linear 

approximation the equation s f In f(u) d3v = J f(u) In f(u) d3u is valid for those 

distributions f which relax to the state f(u) in rapid processes. 

We finish the constructing of the projector by choosing macroscopic parame- 

ters M which define a coordinate system on the manifold {f(u)}. As a rule, it is 

sufficient to add some linear functionals M(f) = J’ m(u) f d3u to the functionals 

m&, (f) = s f In f(u) d3 u. Then the manifold {f(u)} will be parameterized by 

the macroscopic parameters m,&,( f(u)) and M(f(u)). The notation M,*,,,(f) 
will stand for the set of functionals mf”(,,( f) and M( f ). 

Remark 1. It is necessary to distinguish the following three notions: operators 

Mf*(,)( f ), which are defined in a neighborhood of the manifold {f(u)}; their 

values, the macroscopic parameters M,*,,,( f(u)); and the coordinates a on the 

manifold. One can consider the macroscopic parameters M,*,,,( f(u)) as new 

coordinates on the manifold (i.e. for these coordinates we can write 

f “W&,(f(u))). Th e c h oice of the coordinate system on the manifold does not 

play an outstanding role while the choice of projector Mf*(,)( f) in the 

neighborhood of the manifold is principle. 

We use the asterisk * in order to stress the thermodynamicity of the chosen 

parameterization. 

The slow dynamics on the manifold {f(u)} is governed by equations 

aq@,(f(u)) 
at = wGdB(f )) / f=f(a) . (2.3) 

Here B(f) = --C3_1 uidflaxi + Q( f, f) re resents p the vector field of the 

Boltzmann equation, and Q( f, f) re p resents the Boltzmann collision integral. 

Eqs. (2.3) are obtained by projecting of the vector field of the Boltzmann 

equation in the point f(u) along the directions M,*(,,( f). 

The functionals -k B fcaj’ project the points f(u) into the values of the m * 

entropy S[f(u)] and determine the entropy balance equation on the manifold 

{f(u)}. Thus, the times hierarchy hypothesis results in the thermodynamic 

parameterization of the manifold {f(u)}. 

An important particular case occurs when the manifold we consider is a 
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quasi-equilibrium manifold. This means that f*(M) is the solution of the 
problem 

H]fl -9 min forM(f) = M . (2.4) 

Here M(f) is a given operator. Then one does not need a new projector. The 
quasi-equilibrium manifold {f*(M)} is thermodynamic due to its construction 
[2-41: In f*(M) is then a linear combination of DfM( f)lfcfcMj. Due to (2.2) 
one can consider an arbitrary manifold as if it were a quasi-equilibrium 
manifold after the appropriate parameterization. 

Remark 2. In spite of the external simplicity of the final results (the entropy 
balance equation is indeed “natural”), this parameterization has a complicated 
structure because the functional WZ* fCa)( f) is neither the usual moment function- 
al nor the entropy. 

The picture of rapid relaxation in the neighborhood of the manifold {f(u)} is 
as follows: the system relaxes along the planes of rapid motions PfC,,. The 
plane of rapid motions PrC,, which includes the point f(u) is the cross section of 
the hyperplane of rapid motions &, with the hyperplanes M( f - f(u)) = 0. In 
other words, the equation of the plane of rapid motions is as follows: 

prc,, = {f t M,*,,,(f -f(u)) = 01 . (2.5) 

It is evident that the state f(u) gives the minimum of the H-function in the 
plane PfCu, because f(u) is the point of minimum in the “more wide” set (i.e. in 
the hyperplane &, , see (2.2)). Therefore, f(u) coincides also with the solution 
of the variational problem 

H[fl -3 min for M,*,,,(f) = M,*,a,(f@)) . (2.6) 

In general, the hyperplanes of rapid motions &, are nonparallel for different 
points f(u). The structure of thermodynamic parameterization is sketched in 
fig. 1. The hyperplane of rapid motions rfCO, is the only hyperplane where the 
levels of the H-function “surround” the point f(u). This illustrates the 
variational principle (2.2). 

2.1. Example: The Tumm-Mott-Smith approximation 

The following Tamm-Mott-Smith approximation is commonly known in the 
shock wave problem [ 11: 

f(u_,u+)=u_f_ +u+f+. (2.7) 
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Fig. 1. The structure of thermodynamic parameterization. 1 - the manifold {f(a)}; 2 - the point 

f(a); 3-the gradient of the H-function at the point f(a) (D,H[f]l,=,,,, =In f(a)); 4-the hy- 

perplane of rapid motions I&,; 5 -the levels of the H-function on the hyperplane &,; 6 -the 

additional hyperplane {f 1 M(f - f(a)) = 0); 7 - the plane of rapid motions P,(., being the cross- 

section of the hyperplanes 4 and 6; 8 - the direction of rapid motions on I&,; 9 -the direction of 

slow motion on the manifold {f(a)}. 

Here f_ and f+ represent Maxwell distributions infinitely far up and down the 

flow. According to ref. [l], the choice of the “natural” projector is the main 

unsolved problem of the approximation (2.7). 

Thermodynamic parameterization of the approximation (2.7) is determined 

by the values of the functionals mf*(,_,,+)( f) and of the moment functional 

n(f) = J f d3u. Then the dynamics of a_ and a, are obtained from the 

equations for the macroscopic variables mf*(a_,a+~(f(a_,a+)) and n(f(a_,u+)): 

aw-,a+) + @,(u-,u+) 
at ax = 4a-,a+), 

a+_, a+) + ai,(b a+> 

at ax = 0, 

H(u_,u+)= f(u_,u+)lnf(a-,u+)d3u~ 
I 

jH(u_,u+)= u,f(u_,u+)lnf(u-7u+)d3~2 
I 

a(a_,u+)= Q(f(u_,a+),f(u-,u+))~~f(“-~u+)d3u7 
I 

n(u_,u+)= f(u-,u+)d3c 
I 

j,(u_,a+)= u,f(u-,u+)d3u. 
I (2.8) 
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The stationary version of the set (2.8) was originally introduced ad hoc in ref. 
[5]. Here we have shown that eqs. (2.8) are the only equations which make 
physical sense in the Mott-Smith kinetics. 

The plane of rapid motions PfCa_, a+j for the approximation (2.6) is 

pfca_, a+) = 1 I fl [f-f(u_,u+)]lnf(a-,u+)d3u=07 

X j-,f-f(~-,~+)ld3u=O}~ (2.9) 

The planes of rapid motions PrCe, ( 2.5) correspond the distribution f from 
the neighborhood of {f*(a)} to a distribution f*(u((f)) on {f*(u)}. This latter 
distribution f*(u( f)) re p resents the state into which the state f transforms in 
the end of rapid processes. In other words, the equations M,*,,,(f -f(u)) = 0 
(2.5) result in the relation f*(u(f)). Further we use sometimes the shortened 
notation f*(f) for the function f*(u(f)). 

In some cases one requires the explicit expression f*(a(f)). In particular, we 
will need them in the next section for constructing kinetic models. In order to 
obtain f*(u(f)) we should solve the equations Mf*(,,(f - f(a)) = 0 (2.5) with 
respect to a (i.e. we have to determine the function u(f)). Besides the case of 
quasi-equilibrium manifolds, the obtaining off*(u(f)) is not at all simple. Here 
we represent a method of constructing the function f*(u(f)) by successive 
approximations. 

The zeroth approximation f*(u”‘(f)) is obtained from the equations 

kqf-f(u’“‘)) = 0. (2.10) 

Next approximations f*(u@‘( f)), where k 3 1, are obtained from the recurrent 
system 

M~(,ck-l,)(f-f(u’k’)) = 0 . (2.11) 

If f is close enough to the manifold {f(u)} then this recurrent process 
converges to the distribution f*(u(f)). Here we do not prove the latter 
statement. 

This recurrent process has a clear geometrical interpretation. At the zeroth 
approximation (2.10) we take the plane of rapid motions Pf being orthogonal 
to the gradient of the H-function at the point f, and we search for the point 
f(u(‘)) which is the cross section of Pf with the manifold {f(u)}. At the first 
iteration (2.11) we project the distributionf onto the manifold {f(u)} along the 
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Fig. 2. The constructing of the function f * (f). 1 - the manifold {f(a)}; 2 - the point f; 3 - the 

gradient of the H-function at the point f; 4 -the plane of rapid motions Pr; 5 -the zeroth 

approximation f *(a@)( f)); 6 - the gradient of the H-function at the point 5; 7 - the plane of rapid 

motions P,.,,(o)~,,,; 8 - the first approximation f *(a”‘( f)). 

direction which is parallel to the plane of rapid motions PfC,(~~)). Then the 

procedure is continued. The process (2.10) and (2.11) is sketched in fig. 2. 

The procedure (2.10) and (2.11) is the Newton-type method for obtaining 

the dependence f*(f). In section 5 we consider the procedure (2.10) and 

(2.11) for the Mott-Smith approximation. 

Thus the choice of the projector M f*c,,(f) solves the problem of thermo- 

dynamicity for the arbitrary approximation of reduced description {f(a)}. Now 
we are able to extend the approximation {f(a)} to a kinetic model. This 

extension will model the rapid relaxation along the planes of rapid motions 

3. Quasi-equilibrium models 

According to the previous section we assume that the thermodynamic 

approximation {f*(a)} is chosen, and the relationship f*(f) is obtained. 

We denote Sf =f -f*(f) as the deviation of f from its image in the end of 

rapid relaxation f*(f). We stress once again that due to definition of f*(f) the 

deviation Sf belongs to the appropriate plane of rapid motions. 

Assume the model equation to be valid, 

d@f > -= -7-‘fjf. 
dt (3.1) 



A.N. Gorban, I.V. Karlin I Constructing models of the Boltzmann equation 409 

Eq. (3.1) has a clear sense: the rate of rapid relaxation is proportional to the 

deviation from the final slow state. 

We construct the vector field dfldt in the neighborhood of the manifold 

{f*(a)} in accordance with the following two assumptions: 

(1) The deviation Sf decreases according to the simple law (3.1); 

(2) On the manifold {f*(a)} th e vector field of the model equation coincides 

with the vector field of the Boltzmann equation, i.e. 

$= Q(f,f) if f E {f*(u)) . (3.2) 

Clarification. Due to assumption (l), the states relax to the slow manifold. The 

assumption (2) results in a motion along the manifold, and in a “take-off” from 

the manifold. In whole, the model vector field describes a motion in the 

neighborhood of the manifold {f*(u)}. 

Assumptions (1) and (2) define the vector field unambiguously. The explicit 

form of the equations is 

$ = J(.L f*(Q-))) 3 

W-> f*Mf>>) = -T-‘[f-f*MfNl + Q(f*(u(f)), f*(u(f))) . (3.3) 

Evolution of the state f*(a(f)) . is ex p ressed only in terms of the variables 

a(f): 

a~;*Mfdf *Mf ))) = 
at 

D,M; 

*a 
( (f))(B( f )) 

f=f’(a(f)) . 
(3.4) 

Eqs. (3.4) are obtained from (2.3) by substituting the functions u(f). Eqs. 

(3.3) and (3.4) g ive the closed set which describes both of the processes 

mentioned in the introduction. 

Macroscopic equations (3.4) are defined in the neighborhood of the manifold 

{f(u)}. In the next section we will determine the neighborhood inside which 

the H-theorem is valid for the equations (3.4). 

Now we will make some remarks. 

Remark 1. Model equations are simpler than the Boltzmann equation in the 

following sense: their nonlinearity is expressed only in the terms of some 

functionals of f but not through the distribution itself. In other words, the 

“dimension” of nonlinearity in (3.3) is “many times lower” than in the 

Boltzmann equation, and it may be even finite. 
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Remark 2. If the manifold {f*} is the local-equilibrium manifold {fO}, then 

the term Q(f*(f), f*(f)) is identical to zero, and (3.3) coincides with the 

BGK-model. The planes of rapid motion for the approximation {fO} are 

Pf, = {f]lm,(u)(f-fn)d3u =O,m,= 1,u,u21. (3.5) 

Remark 3. If the set M,*,,,(f) contains the functionals J m,(u) f d3u (3.4) then 

the model collision integral (3.3) preserves the conservation laws of the 

Boltzmann equation. 

Remark 4. If the manifold {f”} is the quasi-equilibrium manifold (2.3), and if 

the functionals J m,(u) f d3u (3.4) are included then f*(M( fO)) = fO(M( fO)). In 

this case the expression J(f,, f*(f,)) is equal to zero, and it is similar to the 

case of the Boltzmann equation Q(f,, fO) = 0. 

Remark 5. Considering the particular case of quasi-equilibrium approxima- 

tions (2.4) we mention that the solution of the problem (2.4) does not exist for 

some m(f) (see elsewhere, for example ref. [2]). For example, if all mj( f) E 
m(f) are usual polynomial moments, and if the degree of the leading 

polynomial is odd then the quasi-equilibrium distribution f*(M) cannot be 

normalized. In order to eliminate these singularities of quasi-equilibrium 

approximations a general procedure of linearization was developed in ref. [4]. 

Here we represent the sketch of this procedure for polynomial mj(f). Firstly, 

we construct the quasi-equilibrium distribution fr for the restriction m’, the 

latter being the set m without the leading odd polynomial mk. Then, secondly, 

we solve the following problem in the neighborhood of the manifold f F : 

AH[cp] = H[fF] + 1 cpff In fT d3u + i/ (p’f: d3u--tmin 

m,f :(l + cp) d3u = Mk(f T) + AM,. 

This solution results in the approximation f * = f F (1 + cp), cp = h,m, AM,. For 

this approximation all integrals are converging. In particular, if f r is the local 

equilibrium then the procedure [4] results in the Grad approximation [6]. 

Further we assume the solution of the problem (2.4) exists. The method [4] 

enables one to transfer all results onto arbitrary m. 

In the next section we will prove the H-theorem for the model equations 

(3.3). 
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4. H-theorem for quasi-equilibrium models 

Calculating the substantial derivative of the H-function induced by 

yields 

%=(%%+es 
($), =-7-q ln f Lf-f*(f)1 d3v 7 

(3*=I ln f Q<f*<f>, f*(f)> d3v . 

411 

(3.3) 

(4.1) 

The derivative (dHldt), is nonpositive for any f. In fact, due to the 

construction of the distribution f*(f) we have ] fln f*(f) d3v = 

] f* In f*(f) d3v. Th ere ore, f for any f we obtain the inequality 

(+), = -r-‘[ln -j& [f-f*(f)1 d3v CO. 

Note that (dHldt), becomes zero within the whole set f*, but not only within 

its local-equilibrium subset. 

The term (dHldt), can take both negative and positive values in the general 

case. We will now define the neighborhood around the point f*, at which the 

value (dHldt),, is nonpositive. 

Let g be some fixed distribution function. It should be determined which f 

satisfy the following inequality: 

R(f, g) = 1 ln f Qk, g) d3v s 0. (4.2) 

We will use a method similar to that discussed in refs. [3,4]. Represent f and 

g in the form f= e”, g = e“, and consider a positive functional Bf,g[h], A E Iw’: 

+ exp[p + pi + (A - 1) A(V)]} d3v; d3v’ dv: d3v . (4.3) 

Here cp = cp(v’, v;Iv, vi) is the kernel of the Boltzmann collision integral, 

A(V) = v + v1 - V’ - v;; the standard notations for variables before and after a 

collision are used. The kernel p is supposed to satisfy the detail balancing law. 

Since dOf,,[h]ldAl,,, = -iR(f, g), the inequality (4.2) is equivalent to 
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d%>&*l 
dh 

30. 
A=1 (4.4) 

Since d28/dA2 2 0 for any A, the functional (4.3) is the convex function of A for 

any pair f and g. Moreover, the derivative (4.4) is equal to zero only in the 

case when A(V) = 0. In this latter case 6f g does not depend on A. 

Due to the convexity of 8f,s[~], to satisfy the inequality (4.4) it is sufficient 

that such value A < 1 should exist for which 

If f = g (the Boltzmann H-theorem) then the function 0,,,[A] is symmetric for 

the point A=+: for any (uER’ 

Therefore 8,,,[1/2] is the minimum value of Og,g[A] and if g is not a local- 

equilibrium distribution, then the following strict inequality is valid for 0 < A < 

1: 

&PI < f$&l 3 O<A<l. (4.6) 

Hence, choosing an arbitrary value A in (4.5), where 0 < A < 1, we obtain the 

constraint which prescribes the neighborhood of the point g; inside this 

neighborhood (4.2) is valid. In particular, taking A = 3, we obtain 

I cp exp[p + pi - +A(v)] d3v; d3v’ d3v, d3v 

G cp exp(p + pr) d3vI d3vr d3v, d3v . (4.7) 

The inequality (4.7) is strict for p = V, if A(p) # 0. 

We represent v in the form of F + 6~ and expand (4.7), up to the 6~ square 

terms. The linear part becomes equal to zero, and we obtain 

J (p(gglg’g;)“‘[A(Sv)J2 d3v; d3v’ d3v, d3v Gd,(g) , 

q&d = 1 cpk&)“‘K~&)“’ - (g’g;)“‘] d3v; d3v’ d3u, d3v . (4.8) 
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The case when g is the local-equilibrium g, is singular: d,(g,) = 0. Then the 

expression (dH/dt), is identical to zero. 

Thus, for the quasi-equilibrium model kinetic equations (3.3) the local 

H-theorem is set: the derivative (dH/dt), is nonpositive for any f, and the 

neighborhood U(f*(f)) exists for the point f*(f), inside which the derivative 

(dHldt), is nonpositive. Since (dHldt), = 0 for f* =fO only, dHldt (4.1) 

becomes equal to zero at local-equilibrium distributions only. 

Remark 1. The neighborhood U(f*(f)) of the distribution f*(f) consists of 

those distributions f which could be involved into the macroscopic description. 

The conjunction of the neighborhoods U(f*(f)) for all f*(f) yields the 

neighborhood { U( f *( f ))} of the manifold {f*(f)} . The neighborhood 

{u(f*(f))) P re resents the set inside which equations of slow processes (3.4) 

are applicable. 

Remark 2. For f* =fO the local H-theorem becomes global: dHldt c 0 for any 

f and 7. If f* #&, then the relaxation to the state f* should be rapid enough to 

satisfy the inequality dH/dt c 0 for any f. It is sufficient that the inequality 

I(dHldt),I > I(dHldt),I remains true outside of the neighborhood U(f*( f)). 

5. Examples 

In this section we represent some examples of quasi-equilibrium models 

(3.3). 

5.1. Example 1: moment hydrodynamics 

In this example we consider the manifold which consists of the moment 

quasi-equilibrium distributions. These distributions are parameterized by the 

values of moment functionals ZUi(f) = J m,(u) f d3u, where m,(u) is a polyno- 

mial. We denote M(f) as the set of k chosen moment functionals Mi(f): 

M(f) = {M,(f), . . . , Mk( f)} . We assume that the hydrodynamics parameters 

(density, flux-velocity vector, and temperature) are included into the set M(f). 

The quasi-equilibrium distribution f*(f) =f*(M(f)) is the solution of the 

problem (2.4), 

WI + min for m,(u) f d3u = Mi , i = 1, . . . , k . (5.1) 

The function f*(f) = f*(M( f)) obtained depends parametrically on M, which, 

in turn, is connected with f by the integral relationships (5.1). 
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Eqs. (3.4) take the form 

y + div iMi(f> = DMu,(f) , 

Mi(f) = 1 m,(u) f d3U > h,(f) = j-m,(u) uf d3u 7 

&jf) = /- m,(u) Q(f*W(f))> f*(Wf>>> d3u . (5.2) 

According to the remark 5 in section 3, the set (5.2) is the direct generalization 

of the Grad moment equations (see also ref. [Z]). 

For the decamoment approximation, the set M(f) includes density, the 

flux-velocity vector, and the tension tensor. The distribution f* is calculated in 

ref. [2]: 

l/2 

X exp( - f Ijl ,$ (p-‘>i,(u, - ‘i)(‘j - 'j)) . (5.3) 

Here Pij is the tension tensor. 

Remark. The distribution (5.3) is similar to the function f(f) in the ES- 

model (1.2). This similarity is not only external. Indeed, according to section 2, 

the hyperplanes of rapid motions for the manifold (1.2) are parallel to those 

for the manifold (5.3). These manifolds differ only by coordinate systems on 

the manifolds. Thus, the consideration of sections 3 and 4 solves the old 

problem of the validity of the H-theorem for the ES-model. 

Now we will represent the explicit form of equations (3.3) and (5.2) for the 

linearized version of the quasi-equilibrium decamoment distributions (5.3). 

Representing Pij as P, = P 6, + aij, where P is the scalar pressure, Sp oij = 0, 

and, expanding the exponent into the powers of ci, up to linear terms, one 

yields 

f * =f; (1 + (2k,PT)-’ 5 5 qj[(ui - uj)(uj - uj) - +s,(u - u)‘,) . (5.4) 
i=l j=l 

Here f ,* is the local-equilibrium distribution. The distribution (5.4) coincides 

with the Grad decamoment distribution (see also remark 5 in section 3). 

The model extension (3.3) for the approximation (5.4) yields 
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g+ E viz= -qpf*(f)]-(2k,PT)-'5 i UiiLjj, 
i=l I i-1 j=l 

L, = 
I 
c&f& A[(ui - ui)(uj - uj) - fa,(u - u)‘] d3u’ d3u; d3u, . (W 

Here we have used notations of section 4. Functions L, are well investigated in 

ref. [7] for a wide class of kernels cp. The parameters of the function f*(f) 

(5.4) in (5.5) are 

~(f)=mj-fd’u > P(f)ui(f> = m 1 uif d3u , 

3W) = m 1 ]u - 4f)l’f d3u , 

qj,(f) = m I {[vi - ui(f)l[vj - uj(f>l- +‘ij[u - u(f>l’>f d3U . (5.6) 

Eqs. (5.2) in the situation under consideration coincide with the Grad 

decamoment system [6]: 

3 S+C a(uiP) _ o 

1~1 axj ’ 

(5.7) 

Here and in eq. (5.5) parameters are understood as the functionals (5.6), and 

y represents the viscosity coefficient in the first approximation of the 

Chapman-Enskog method. 

Eqs. (5.5) and (5.7) combined with (5.6) create the model extension of the 

Grad decamoment description. They are suitable when the Grad description 

becomes insufficient. One can also use the model for the functions (5.3). This 

model is more perfect in comparison with its linearized version (5.5) but it is 

also more complicated. 

Eqs. (5.5) and (5.7) become even more simple if we consider the neigh- 
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borhood of the equilibrium distribution F”. Then we can use the representation 

f=F0(1+6), h w ere 6 is a small deviation. Linearization of (5.5) yields 

d6 3 ais 4 

ylg+cqx=-7-* 8-C m,(u)(m,;s) 

i=l I 
( a=0 > 

- 7~1(2k,PoTo)-1 5 5 CrJS) 
i=r j=l 

L, = 
I 

cpF;A[(z+ - uoI)(u, - uoj) - +S,(u - uo)‘] d3u’ d3u; d”u, . (5.5a) 

Here the subindex zero indicates equilibrium values, and brackets denote the 

scalar product (cp; I,!I) = ] F’c& d3u. Summational invariants m, are normalized 

as (m,; mp) = &. 
The first term in the right hand side of (5.5a) coincides with the linearized 

BGK-model. The expression of gi,(6) is 

aLj(S) = m(6; (ui - uoi)(uj - uoj) - ftY,(u - uo)‘) . 

This expression and expressions for p(6), u(6) and P(a) together with the 

linearized version of eqs. (5.7) close eq. (5.5a). 

Lastly, we evaluate d,(f*) (4.8) for f* (5.4), 

d&f*) = (pipk,T)-l i 5 a,,aij . 
I=1 j=l 

(5.8) 

The estimation of the left hand side of (4.8) depends essentially on q. For the 

Maxwell molecules, supposing g =fo, we obtain 

(5.9) 

Here a(,) represents the coefficients in expansion of 6~ into Hermits nonreduc- 

ible tensor polynomials HCi,, where (i) is the tensor multi-index, and hCij is the 

eigenvalue of linearized collision integral for the Maxwell molecules corre- 

sponding to the eigenfunction HCi, [l]. 
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5.2. Example 2: the shock wave problem 

Now we will consider the manifold which consists of the functions f(a_ , a+) 
(2.7) with the thermodynamic parameterization (2.9). 

The functions fi are 

fs =ns9s, 
pi = ( 2yy3” exp( _ +-;:i”) 

Here i is the unit vector along the direction of the wave propagation, the rest 

of notations are standard. 

We start with obtaining the functions a-(f) and a+(f). Exact equations 

which we should solve with respect to a+ are 

I [f-f(a_,a+>]lnf(a-,a+>d3u=0, 

I [f-f(a_,a+)]d3u=0. (5.10) 

However, eqs. (5.10) are too complicated for direct solving. Therefore, we use 

the method of successive approximations (2.10) and (2.11). 

According to (2.10), the zeroth approximation a:‘(f) is obtained from the 

equations 

I (f- a’o’f_ - ay’f+) In f d3u = 0, 

I 
(f- a’o’f_ - a’+o’f+) d3u = 0. 

The solution of (5.11) is easily found: 

a?‘(f) = 
&Jflnfd3u+ (lnf),jfd3u 

MW- - (W)+) ’ 

(5.11) 

(5.12) 

The brackets ( . . . ) ~ mean averaging: ( . . . ) ~ = I. . . cpi- d3u. 

The expression (5.12) determines the zeroth approximation of the function 

f*(a-, a,), 

fo*(a-(f), a+(f)) = a’o’(f) f- + a?‘(f) f+ . (5.13) 

Next approximations f,* = a!“(f) f_ + a?‘(f) f+ are obtained according to 

(2.11) from the recurrent linear equations 
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I (f- a’k’f_ - a’+k’f+) In f,*-, d3u = 0, 

(f - a(k)f_ - ay’f+) d”u = 0. (5.14) 

The expression (5.12) contains the terms which are nonlinear with respect to 

the distribution f. Simplification occurs if we consider the “thin” neighborhood 

of the manifold. Then we represent the function f as 

f=a_f- +a+f+ +A (5.15) 

and suppose A to be small in some suitable sense. Within the accuracy of 

first-order terms we can write 

u’“‘(f) = a_ + sa!?(a_, a,; A) , 

u(:)(f) = a, + &$‘(a_, a,; A) . (5.16) 

Here Ga’,k’(a_ , a, ; A) are linear functionals with respect to A. The zeroth-order 

value in (5.16) yields 

&p = 
* J Aln(a_f- + u+f+) d3u ? (ln(u_f_ + u+f+))?S A d3u . 

+ n,[(W-f- + a+.f+>) - - Onkf- + a+f+>) +I 
(5 17) 

’ 

Easy calculations show that the zeroth approximation (5.17) gives the complete 

contribution within the accuracy of A, i.e. within this accuracy we have for all k 

Therefore, we can justify that the recurrent process (5.14) converges at least if 

f is close enough to the manifold {f(u _ , a, )} . One can easily check that the 

function (5.13) with parameters (5.16) and (5.17) satisfies eq. (5.10) within the 

accuracy of A. 
The quasi-equilibrium model which corresponds to the approximation (5.12) 

and (5.13) is 

$ + li uj -g = -7-p u’“‘(f) f_ - tp(f) f+] 
i=l I 

+ d!“(f) a?“(f) [Q(f- > f+) + Q(.f+ > f- >I (5.18) 

Here u!!‘(f) and u’,“‘(f) are defined by the formula (5.13). The equations of 
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slow processes (3.4) are obtained from eqs. (2.8) by substituting the functions 

a”‘(f) and a?‘(f) (5.13). 

The linearization (5.15), (5.16) and (5.17) yields instead of (5.18) 

-/[A-&z(O)(a_,a +;A)f_-~~'(u-,~+;A)f+l 

+a_u+[Q(f_,f+)+ Q<f+,f->I +a+ @“(a-,~+;4 Q<f-,f+> 

+u~~!O)(u~,u+;A)Q<f+,f-). (5.19) 

Eq. (5.19) is linear with respect to the function A and therefore it is simpler 

than eq. (5.18). The closed set of equations with respect to the unknowns a_, 

a, and A would be obtained when we will insert the functions ui (A) = ai + 
&$‘(a_, a,; A) into eqs. (2.8) and expand these latter up to the linear terms. 

This procedure is quite simple and therefore the result is not presented here. 

Lastly, we indicate that a significant simplification of the model occurs if we 

consider the small neighborhood of the equilibrium state (i.e. when we use the 

representation f = F”( 1 + S), see the previous example). 

The models (5.18) and (5.19) are suitable for investigation of the shock 

wave. 

6. Conclusions 

(1) The method of constructing the projector M,*,,,(f) introduced in section 

2 solves the problem of thermodynamic parameterization. The condition of the 

entropy growth during the rapid relaxation immediately results in the entropy 

balance equation for the slow process. One can prove that there is no other 

universal way to construct a thermodynamic parameterization of an arbitrary 

manifold. In particular, the parameterization (2.8) and eq. (2.7) solve the 

classical problem of ambiguousness of the Tamm-Mott-Smith approximation 

(see also ref. [S]). The recurrent process (2.10) and (2.11) gives the efficient 

method for explicitly constructing the planes of rapid motions. 

(2) Quasi-equilibrium kinetic models of section 3 provide an extension of the 

arbitrary approximation. Their construction is based on the decomposition of 

motions in the neighborhood of the chosen approximation. The model collision 

integral (3.3) consists of two terms. The first of these terms describes the 

model rapid relaxation to the approximation {f(u)} along the planes of rapid 

motions. The second term describes the slow motion in the neighborhood of 

{f(u)}. Both of these processes are described self-consistently. 
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(3) Due to the construction of the functionals M,*,,,(f), the entropy 

increases in the model rapid process for any deviation from the slow manifold. 

On the contrary, the slow motion does not contradict the H-theorem only in 

the neighborhood of the slow manifold. The H-theorem of section 4 gives a 

constructive approach to evaluate this neighborhood. 

(4) Examples considered in section 5 may be used for analytical and 

numerical investigations in various problems (e.g., sound propagation, shock 

waves, etc.; for more purposes of model equations see ref. [l]). Especially the 

linearized versions are probably most applicable. The problem of the validity 

of the H-theorem for the ES-model is solved. 

(5) Although the model approach to the problems of kinetic theory is 

widespread in modern investigations, it cannot be considered as the most 

consequent. Other approaches to the problem of constructing a dynamic 

invariant reduced description can be found in refs. [9-141. 
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