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Additive generalization of the Boltzmann entropy
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There exists a unique extension of the classical Boltzmann entropy functional to a one-parametric family of
additive trace-form entropy functionals. We find the analytical solution to the corresponding deformation of the
classical ensembles, and present an example of the deformation of the uncorrelated state caused by finiteness
of the number of particles.
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[. INTRODUCTION time ago[8], the result of the papdi] indicates that it can
be most pertinent to a unified study of systems out of the
The growing interest in nonclassical entropies in recenstrict thermodynamic limit.
years[1,2] is motivated by the fact that they can be used to  The finding of the present paper is that the solution to the
describe observable statistical effects such as the followingmaximization problem pertinent to this class of entropies is
(i) Nonclassical tails of distribution functions which can actually tractable analytically almost as efficiently as the
deviate significantly from the Gaussian distribution. In par-classical Gauss distribution.
ticular, this asymptotics can be power ldtlong tails” ) or, Thg structure of the paper is as foIIovys_. In Sec. Il, we
instead, distribution functions can decay in a more rapiciescribe the one-parametric family of additive entropigs
fashion(“short tails”), in particular, they can become equal for the sake of completeness. In Sec. lll, we demonstrate that

to zero at finite distancé&cut tails”). the maximum entropy problem for the family of entropi&$
(i) Strong correlations between subsystems in equilipfeduces to studying of one function of one variable. This
rium and quasiequilibrium states. result enables the analytical formulas for the deformation of

The entropy-based description of these effects in the spiri’€ classical ensembles around the thermodyna@sS)
of the Gibbs ensembles is advantageous both in static arltnit in Sec. IV. An example of such a deformation of the
dynamic problems. For the lattédynamio aspect, we refer Classmal_ uncor_related _engem_ble of 'Fhe configurational
here to a vast literature on theories of nonequilibrium statisN-body distribution function is discussed in Sec. V. Conclud-
tical thermodynamic§see, e.g., Ref3]), as well as entropy- N remarks are given in Sec. VI.
based kinetic modelinf4].

Usually, when one attempts to introduce nonclassical en- Il. ADDITIVE TRACE-FORM ENTROPIES
tropies, there is a price to be paid. Nonclassical entropies at
use in most of the contemporary studies violate at least one For the sake of presentation, we consider a finite set of
of the following important and familiar properties of the states characterized by the probabilitigs (finiteness and
Boltzmann-Gibbs-ShannofBGS) entropy: (i) Additivity—  discreteness are by no means the crucial restrictions, and are
the entropy of the system which is composed of independer@mployed only in order to avoid the convergence questions
subsystems equals the sum of the entropies of the subVe consider systems which allow for a positive equilibrium,
systems(ii) trace form—the entropy is a sum over the statesp; >0 (for infinite systems, it is often advantageous to use
(see below. For example, the Tsallis entropg] is not ad-  unnormalizedp*). Then, any convex function of one vari-
ditive, the Rayi entropy[5] is not of the trace form. A useful able, h(x), defines thetrace-form convex function of the
discussion of various properties of the entropy can be foungrobability distributionH,(p):
in Ref.[6].

Recently[7], it was indicated that there exists a one-
parametric family of concave entropy functions which satisfy Hu(p)= E prh(pi/pf). D
both the conditions(additivity and trace form simulta- :
neously. This family is essentially the linear convex combi-
nation between the Boltzmann entropy and the so-callefWe consider below the conve;, functions rather than the
Burg entropy(cf. Ref. [7]). While the existence of such a concave entropy function§,=—H,,. The variety of the
family of additive entropies was eventually mentioned someconvex functions(1) was viewed in Refs[7,8] as a set of

Lyapunov functions of the master equation with the equi-
librium, but this is not essential to our present discussion.
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quasiequilibria. Quasiequilibrium is the probability distribu-

HﬁZZ pihg(pi/pf), tion which brings to maximum the entrop§(p) at fixed
values of the slow variablegheir choice depends on the
hs(x)=(1— B)xInx—BInx. 2 physics of a given problemM =m(p):
In particular, S(p)—max, m(p)=M. ™
In order to address the construction of the quasiequilibrium
HO:E pi In(p;/p¥), ©) in a general setting, we assume the macroscopic variables
i

M=m(p), where Ms=3,mg;p;, and consider probler()
with S= —H_. The method of Lagrange multipliers implies

Hi=—2 p¥ In(p;/p}). (4) 3
| Gp. = Mot 2 A, ®
i S

The functionH,, is the BGS entropyalso, in the form pre-
sented, sometimes referred to as the Kullback-Leibler enwhere Lagrange multipliex, corresponds to normalization,
tropy for the reference equilibrium explicitly indicated’he  and\ to the rest of the constraints. Let us denetd; the
functionH, is the Burg entropy fop* as the equipartition, right hand side of Eq(8). With this, Eq.(8) may be written,
in the present form first given in Ref8], to the best of our

knowledge. Additivity of functiondd ; (2) is readily checked In(pi /pf) —a(pf/p)=—A;. 9
[7.8]: If p=pjj=qirj, and alsdf p*=pji=qi'r} , then

Hg(p)=Hpg(aq)+Hg(r). 5

In order to avoid a possible confusion caused in a variety .
of ways, the notion of additivity of the entropy is used in May be written as follows:
current literature(see, e.g., Refl9]), and we note that the o~ Aam(aed)
additivity of family (2) is understood in the traditional sense, q=¢€ "¢ '
that is, the usual statistical independeffeetorization of the
distribution impliesEq. (5). Though we do not prove it here
rigorously, the argument why famil§2) represents all of the
additive functions of the trace forrfi) (up to a constant
factor and adding a constans readily available: Treatment xe‘=a.
of the additivity condition,H(gr)=H,(q)+H,(r) as a
functional equation in order to determine the functlome-  The function Im satisfies the following identities:
sults in averaging of the vector functiondpm;; this can be

The solution to an equation

Ing—aq t=—A (10)

(11)

where we have introduced notationdnimodified logarithm
for the function which is the solution to the transcendent
equation,

done either with the joint probabilityr (which leads to the Ima=Ina—Inim a, (12
BGS casg or with the equilibrium joint probabilityg* r*
which leads to the Burg case. The rest follows by convexity Im a=Ina—In{lna—Inflna—=In(---)]---}. (13

of their combination. Note that the second possibilayer-
aging with g*r*) is not mentioned in many sourcefor
example, the classical review by Wel#él]) because Burg’s
entropy is not continuous if some of the probabilities tend to
zero. This is, however, one of the possibilities to account for
finiteness(see below From representatiofi1), the asymptotics at— 0, and fixed
A, is obvious:g—e~*, and which corresponds to the usual

. THE MAXIMUM ENTROPY PROBLEM Boltzmann distribution. On the other hand, representation

(14) reveals the asymptotics At— oo;

Identity (13) is the recurrent application of identif{12). A
different representation of solutididl) reads

q=al/lm(ae™). (14)

Since a factor in front oH 4 is irrelevant, it proves con-
venient to use a different parametrization of fam@y, H,,, q~al(Ina+A). (15)
a=pI(1-8), a=0:

For a symmetric distribution on the axis, and far=X\,
©6) + \,x2, the first of the limits just mentioned gives the Gauss-
ian distribution, while the second limit gives the Cauchy dis-
tribution. The corresponding distribution function for the
Parametric representatidf) will be used below. The limit- limiting caseH,, is simply the Cauchy distribution on the
ing casex— o0 corresponds to the pure Burg entra@y, and  axis. We note it in passing that among nonsymmetric Cauchy
it should be considered separately. distributions of the formp=(Ag+ A x+\,x?) "%, there are

The major input into all the applications of the entropy distinguished cases with a twice degenerated zero in the de-

functionals in statistical physics is the description of thenominator:;p=[\(x—a)] 2. When one attempts to normal-

Ha=2i [pi In(p;/pf)— apf In(p;/pf)].
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ize this distribution by choosing a convergent sequence of p=p* (e *+a)+0(a). (19
functions, one gets a Dirag function §(x—a) which can be
interpreted as a microcanonical ensemble. The first-order deformation amounts to just a homogeneous
Thus, the quasiequilibrium distribution has the form shift of all quasiequilibrium populationésee also example
below).
ap* In order to compute the quasiequilibrium to second order

p=p* e*Ae'm(“eA)Zm- (16)  in a, we must use the expansion ofdnto third order,
Im a=a—a’+(3/2)a+o(a%).

(We have omitted indices of states jip p*, andA.) Ana-

lytical formula (16) is the main result of this paper. Several Then

remarks are in order. e A Lo )

(i) We have worked out the deformation of the quasiequi- p=p*(e “+a—za%e")+o(a’). (20)
librium ensembles using the dual variablewhile the de-
pendenceA (M) has been kept implicit. In general, mani-
folds of quasiequilibrium states are well defined in terms o
dual variables(Lagrange multipliers What is not always
well defined for the distributions with long tails is the mo-
ment chart of these manifoldéagrange multipliers cannot
be expressed in terms of moments if the latter do not exist  |n order to illustrate the effect of second-order deviations
For example, the manifold of Cauchy distributions men-from the BGS case, we apply E(R0) to the classical qua-
tioned above is parametrized by Lagrange multiplierssjequilibrium defined by the one-particle configurational dis-
whereas the parametrization in terms of the second momegfihution functionf,(r), wherer is position variable. Assum-
does not exist. In these cases, a regularization is require¢hg the equipartition for the reference equilibriunp*
which assumes taking into account finiteness of the physical 1\/N| whereV is the volume of the system and is the
phase spacécf. Ref.[3]). Other possibilities to parametrize n,mber of particles, we get *=eIIN W (r;), where the
quasiequilibrium manifolds were worked out in applicationsLagrange multiplier\, is responsiblé for normalization.

to the Tsallis entropy where one uses nonlinear functionals Ofhen theN-body quasiequilibrium distribution function to
the distribution functior(so-called escort probabilities, Refs. ¢a-ond order inx reads

[2,10]). The use of these nonlinear parametrizations, how-

Further corrections can also be easily computed using
fhigher-order terms in the expansion of the Im. We now shall
consider a specific example of formui20).

V. CORRELATIONS CAUSED BY FINITENESS

ever, leads to inconsistencies when dynamic problems are N N

addressedcf. Ref.[11]). VNp=ero[] ¥(r)+a— az/ZeAOH W(r;) | +o(a?).
(ii) Let us indicate a remarkable formal extension of result i=1 i=1

(16) to <0 [or, alternatively, tg3<0 in representatiof)] (21)

when the entropy functiof6) loses convexity. Function len
is defined, and is continuous, fae=—e ™! (Ima=—1). At
a——e" 1, we have the limidima/da—o. If we formally
extend Ima=—o for a<—e 1, then Eq.(16) is a distribu-
tion with a compact suppottcut tail” ). With this, there will f2(r,q)=N(N—l)J p(r,a,ra, ... ry)drg---dry,
be defined a nonzero ratjw'p*:

Our goal now is to compute the two-body configurational
distribution function

in quasiequilibrium(21). We recall that the classical result
inf{p/p*[p+0}=[al>0, (170 for the BGS entropy gives the uncorrelated two-body distri-
bution, f5(r,q)~f4(r)f1(q), which also corresponds to the
that is, eitherp=|a|p* or p=0. This is similar to a Max-  |imit (a«=0) of Eq. (21). Computation to the ordes? re-
well construction of a stretched spinodéthe cut at the in-  quires expansion of Lagrange multipliexs and ¥ to the
flection poiny, and not to the global maximum of the en- corresponding order. This computation is straightforward al-
tropy. Whereas such constructions are always necessaflough tedious, thus we give here only the final result: The

when working with nonconvex thermodynamic potentials, wo-body quasiequilibrium configurational distribution func-
we will not further discuss the case<O0 in this paper. tion f, reads

IV. ENSEMBLES NEAR THE BGS LIMIT f,(r,q)=(1+ a+a?)Fy(r)F(q) + an?

Using Eq.(16), it is possible to study perturbatively de- N—1
formations of quasiequilibrium ensembles near the thermo- o? N~ 5
dynamic limit. For the classical BGS entropw€0), the —5 B e1(Nea(a)+o(a’), (22
quasiequilibrium distribution has the form

. wheren=N/V is the average number density, and where we
p=p*e " (18)  have introduced notations,

To first order ina, we get Ti(r)=fy(r)—an, (23
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@1(r)=f,(r)/In—n/Bfy(r), (24) Note that the correlations induced by finiteness of the sys-
tem in the present example are highly nonlinear due to the

B if n dr 25) dependence of the functiopy on the one-body distribution
V Jyfq(r) f1. For that reason, deformation of the uncorrelated state

(22) should be significant, in particular, to the corresponding
It is readily checked that resul{22) gives f,=(N derivations of the Vlasov mean-field kinetic equation from
—1)N"f,f, at a=0, which is identical with the classical N-particle dynamics. This interesting problem is left for fu-

uncorrelated pair distribution. ture work.
The first two terms in Eq(22) amount again to the un-
correlated state with homogeneously shifted one-particle dis- VI. CONCLUSION
tributions[ f; (23) instead off, which amounts to a homo-  The one-parametric family of the additive trace-form en-
geneous subtraction of the average density tiaaes tropy functions considered in this paper is a convex linear

~ The underlined ternfof the order ofa?) is the contribu-  combination of the classical Boltzmann entropy and of the
tion responS|bIe for correlations caused by finiteness. Notgurg entropy, whereas the maximum entropy states are non-
that this extra correlation also has a form of a product, bufinear combinations of the Gaussian and Cauchy distribu-
not of the distribution functions, rather, of functions of onetjons (in the case of the second moment as the macroscopic
variable (24). In order to see the effect of this term more variable, and generalizations thereof for different macro-
explicitly, we assume fluctuations around the homogeneouscopic variables This feature(trace form and additivity si-
density in the thermodynamic limit, multaneously distinguishes the present family of entropies
fo(r)=n[1+(r)N-%2, (26) ~among many suggestions in the recent past. We have found
the analytic solution to the maximum entropy problem in
where( is a function with zero average, and finite amplitude,terms of one function of one variable, which enables to study
(£)=0, (£?)=0?, where we have introduced notation for perturbations of classical ensembles near the thermodynamic
averaging over the volumeéh>=vflfvhdr. Note that the limit. The corresponding deformation of the uncorrelatied
amplitude of the inhomogeneity is realistic, and it scales aghe thermodynamic limjtstate is established. .
N~*2in full accordance with the classical theory of fluctua-  The asymptotic formuld15) reveals that the tail of the
tions. Assuming largébut finite) number of particles, we distributions in this theory is parameter independent, and is

find to the leading order i, always Cauchy-like whem is away from zero. This is dif-
S . \ ’ ferent, in particular, from the Tsallis case which leads to
B=1+0°N""+0o(N""), B =e” +o(1). algebraic tails with the power dependence on the Tsallis pa-

rameterq. The present theory is explicitly focused on study-
ing perturbations to the thermodynamic limit, and this uni-
versality of the tails is remarkable. On the other hand, a
different general mechanism for nonclassical entropies was
also indicated in Ref.7], and it is related to the incomplete
N b 5 description(akin the Fermi-Dirac entropy of the electron-
N_1 (A= +ata’iy(r)f(ag)+aen whole systems This may affect the behavior at the tail of
the distribution. In a subsequent publicatipt?], we shall
—2a2n202e"2N‘10(r)0(q), (27)  study how the present entropy plus the incomplete descrip-
tion perform in fitting the recent turbulence data results of

Thus, specializing to the trial one-body distribution function
(26), the deformation to second order of the uncorreldbed
the thermodynamic limjt two-body distribution function
reads

where we have denotett=0"1¢, (6?)=1. Becket al. [13].
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