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Abstract. { When a wave function is represented as a linear combination over an overfull
set of elementary states, an ambiguity arises since such a representation is not unique. We
introduce a variational principle which eliminates this ambiguity, and results in an expansion
which provides \the best" representation to a given Schr�odinger operator.

Operational simplicity of an expansion of a wave function over a basis in the Hilbert space
is an undisputable advantage for many non-relativistic quantum-mechanical computations.
However, in certain cases, there are several \natural" bases at one's disposal, and it is not easy
to decide which is preferable. Hence, it sounds attractive to use several bases simultaneously,
and to represent states as expansions over an overfull set obtained by a junction of their
elements. Unfortunately, as is well known, such a representation is not unique, and lacks many
convenient properties of full sets (e.g., explicit formulae to compute coe�cients of expansions).
Because of this objection, overfull sets are used less frequently than they, perhaps, deserve.

Let us consider a dense set 
 of the wave functions '(x; k) (elementary states), where x
is the spatial variable, and k is a label which enumerates the states of 
. The parameter k
can be discrete and/or continuous. We assume, for simplicity, that '(x; k) are bound states
of some known potentials. The density of the set 
 means that any normalized wave function
 (x) can be approximated with a superposition of wave functions '(x; k). Consider a formal
expansion of a wave function  over the set 
:

 (x) =
X
k

a(k)'(x; k); (1)

where
P
k
is a summation over all the labels k (integration over continuous and summation

over discrete values). Expression (1) is formal, and its coe�cients, a(k), are not de�ned. The
rules of computation of a(k) are the central point in question.

In this letter, we develop a formal method which eliminates the ambiguity of the expansion
(1). The main features of our approach are
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i) We put the question of the expansion over the set 
 in connection with the Schr�odinger
operator under consideration (an accurate formulation will be given below).

ii) We seek such an expansion of the form (1), for which the Schr�odinger operator acts most
similarly to an operator of multiplication with a function. In other words, we are going to �nd
an expansion for which the algebra associated with the Schr�odinger operator has the simplest
explicit representation.

Below, we cast these intuitive features into the form of a variational problem. It turns
out that a formal solution to this problem results in a unique choice of expansion (extremal
expansion), with explicit rules of computations for its coe�cients a(k). We �nish the letter
with an example of computations.

Preliminary discussion. Denote as H = �� + U the Schr�odinger operator with the
potential U of interest. The action of H on the formal expansion (1) may be written as
H (x) =

P
k
a(k)h(x; k)'(x; k). The functions h(x; k) are de�ned by the action of H on the

elementary states '(x; k), i.e. H'(x; k) = h(x; k)'(x; k). Denote as h(x; k)� the operator of
multiplication with the function h(x; k). Generally speaking, the action of powers of H on
the function '(x; k) is not identical to the action of powers of the operator h(x; k)�. Indeed,
H2'(x; k) = H(h(x; k)'(x; k)) 6= h2(x; k)'(x; k). Thus, if we de�ne the operators h(�) and
h2(�) as

h( (x)) =
X
k

a(k)h(x; k)'(x; k);

h2( (x)) =
X
k

a(k)h2(x; k)'(x; k);

then H2 6= h2( ). Consequently, the commutator [H;h(�)] is not equal to zero:

[H;h(�)] (x) =
X
k

fH [h(x; k)'(x; k)] � h2(x; k)'(x; k)ga(k) 6= 0: (2)

Remark i). We are led to the consideration of two algebras. The �rst one is the usual algebra,
Alg

H
, whose elements are formal linear combinations of the powers Hm. The elements of the

second algebra, Algh, act as linear combinations of the operators hm(�), where hm( (x)) =P
k
a(k)hm(x; k)'(x; k). Because of the inequality (2), algebras AlgH and Algh are di�erent.

Notice that our de�nition of the algebra Algh is essentially based on the formal expansion (1).
Loosely speaking, AlgH and Algh di�er by the commutator (2).

After this preliminary consideration, we are able to formulate the problem of an extremal

expansion. An expansion of the form (1) will be called extremal, if it gives a minimum to a
di�erence from zero of the commutator (2), where the minimum is understood in some suitable
sense. Speci�cally, we de�ne the extremal expansion as a solution to the following variational
problem:

A[a] = k[H;h(�)] k2 ! min;  (x) =
X
k

a(k)'(x; k): (3)

Here k � k is the L2-norm. The coe�cients of the extremal expansions will be labeled with an
asterisk: a�(k).

Remark ii). Let us discuss the sense of the problem (3). If the operators H and h(�)
commute, then AlgH coincides with Algh. This case is especially simple. Indeed, then
the action of the functions of the operator H is given by explicit integrals in the k-space.
For example, the evolution operator UH(t) = exp[itH ] acts on the function  as follows:
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UH(t) =
P
k
exp[ith(x; k)]a(k)'(x; k). On the other hand, with an overfull set 
, we have

the freedom to choose the coe�cients of the expansion (1). We use this freedom to obtain the
maximal simpli�cation of the algebra AlgH or, in other words, to minimize the deviation of
the operator H2 from its \integral piece" h2(�).

In a general situation, a formal solution to the variational problem (3) exists and is unique.
This solution should give us the desired rules for computation of the coe�cients a�(k). Now
we will derive an explicit form of these rules.

Formal solution. We denote q(x; k) = [H;h(x; k)�]'(x; k). The functional A[a] in the
problem (3) may be written as

A[a] =
X
k

X
k0

a(k)Q(k; k0)a(k0);

where the overbar denotes complex conjugation, and where Q(k; k0) = Q(k0; k) is the kernel of
a symmetric integral operator in the k-space:

Q(k; k0) =

Z
dx q(x; k)q(x; k0):

In the following, we assume the nondegeneracy of the quadratic functional A (3), which
amounts to invertibility of the operator Q, and this requirement is met in a general case
where none of the elementary states '(x; k) is an eigenfunction of H . Denote as Q�1(k; k

0)
the kernel of the integral operator Q�1. Solving the problem (3) with the help of the Lagrange
multipliers, we obtain two formulae which give the direct and the inverse transforms for the
extremal expansion:

a�(k) =

Z
dx �(x)

X
k0

Q�1(k; k
0)'(x; k0);

 (x) =

Z
dx0 K�1(x; x

0)�(x0):

HereK�1(x; x
0) = K�1(x0; x) is the kernel of a symmetric integral operatorK�1 in the x-space:

K�1(x; x
0) =

X
k

X
k0

'(x; k)Q�1(k; k
0)'(x0; k0):

Denoting as K(x; x0) the kernel of the inverse operator K, one can write down explicit
expressions of direct and inverse transforms for the extremal expansion (3):8>>>><

>>>>:

a�(k) =

Z
dx

Z
dx0K(x; x0) (x0)

X
k0

Q�1(k; k
0)'(x; k0);

 (x) =
X
k

a�(k)'(x; k):

(4)

Expressions (4) determine the extremal expansion over an overfull set of elementary states,
and are our main result. Their properties have much in common with those of conventional
expansions over an orthogonal basis. For example, formulae (4) result in the following identity:

X
k

X
k0

a�(k)Q(k; k0)a�(k0) =

Z
dx

Z
dx0 (x)K(x; x0) (x0);

which reminds us of the usual
P
k
ja(k)j2 =

R
dxj (x)j2 of an expansion over a basis.
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Diagonal approximation. One can further simplify the problem of inversion of the two
integral operators, Q and K�1, required for the extremal expansion (4), by the weakening of
the requirement (3). Namely, instead of the functional A let us consider another functional,
AD =

P
k
ja(k)j2k[H;h(x; k)�]'(x; k)k2, in the variational problem (3). Using the functional

AD instead of A amounts to a replacement of the kernel Q(k; k0) with its diagonal piece
QD(k; k

0) = Q(k)�(k � k0), where Q(k) =
R
dxjq(x; k)j2. Invertibility of Q requires here that

the function Q(k) be nowhere zero. Within this diagonal approximation, the kernel K�1(x; x
0)

takes the form

K�1(x; x
0) =

X
k

Q�1(k)'(x; k)'(x0; k); (5)

while the extremal expansion (4) becomes
8>>>><
>>>>:

a�(k) =

Z
dx

Z
dx0K(x; x0)Q�1(k) (x)'(x0 ; k);

 (x) =
X
k

a�(k)'(x; k) :

(6)

Here K(x; x0) is the kernel of the inverse to the operator K�1 in the diagonal approximation.
Thus, the diagonal approximation to the extremal expansion amounts to invertion of the
operator K�1 with the kernel of a rather simple form (5).

Example. We will give a simple example of a situation when the set 
 contains both bound
and free states. Let 
 be obtained by adding a single normalized function '0(x) to the basis
of plane waves '(x; �) = exp[i� � x]. As above, let '0 be a bound state of a known potential
U0, i.e. (��+ U0)'0 = E0'0. Considering the expansions of the form

 (x) = a0'0(x) +

Z
d� a(�)'(x; �); (7)

and a given Schr�odinger operator H = ��+U , let us �nd out the value of the coe�cient a�0 in
the corresponding extremal expansion. The variational principle (3) amounts to a minimization
of the quadratic form

Q(0; 0)ja0j
2+a0

Z
d� Q(0; �)a(�)+a0

Z
d� Q(�; 0)a(�)+

Z
d�

Z
d�0 a(�)Q(�; �0)a(�0); (8)

subject to the constraint (7). The various coe�cients in eq. (8) are

Q(0; 0) =

Z
dxjq(x; 0)j2;

Q(0; �) =

Z
dxq(x; 0)q(x; �);

Q(�; 0) = Q(0; �);

Q(�; �0) =

Z
dxq(x; �)q(x; �0);

where the integrands are constructed with the help of the following functions:

q(x; 0) = '0�(U0 � U) + 2r'0 � r(U0 � U);

q(x; �) = � exp[i� � x][�U + 2i� � rU ]:
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Now we �nd the minimum of the quadratic-in-a0 expression (8), and using the constraint (7),
derive the coe�cient of the extremal expansion a�

0
:

a�0 = �

Z
d� b(�)Q(�; 0)

Q(0; 0)�

Z
d� b0(�)Q(�; 0)

: (9)

Here b(�) and b0(�) are conventional Fourier coe�cients of the functions  and '0. Thus,
eq. (9) gives a \share" of the bound state '0 in the \net" state  for the potential U . The
example considered is easily extended to an arbitrary �nite number of bound states, and the
construction of the extremal expansion amounts to �nding a minimum of a �nite-dimensional
quadratic form. We will close this letter with a number of comments.

i) We have demonstrated that the overfull sets can be operated largely in the same spirit as
conventional full sets of elementary states. The key point is the variational principle (3), or its
weaker version (the diagonal approximation). Otherwise stated, this is the request to simplify
the representation of the algebra of a given Schr�odinger operator. With this, we have done the
�rst (and necessarily formal) step into the program of constructing an analog of operational
calculus with the overfull sets.

ii) One of the advantages brought about by the extremal expansion is the trace formulae of
operator-valued functions �(H). In the diagonal approximation, in particular, we are able to
write for the trace Tr�(H) an explicit integral representation: Tr�(H) �

R
dx�H(x; x), where

�H (x; x
0) =

X
k

Z
dx00Q�1(k)K(x0; x00)�[h(x; k)]'(x; k)'(x00 ; k):

Here the \�" means that for the extremal expansion, the algebra of the operator H is most
close to the algebra of its symbol [1], [2]. Techniques of inversion of the operators Q and K�1

can be borrowed from the so-called parametric expansions [1]-[3].
iii) A natural �eld of application of the suggested formalism seems to be studies of bound

states in complex potentials, where the approach makes it possible to use several bases of
solvable problems simultaneously. A description of neutral K-mesons might serve as an

example. There, the overfull set appears as the junction of the states of K0 and K
0

mesons
with the decay states. It can be demonstrated [4] that the minimum principle (3) reduces to
the minimum of the norm of the commutator of the weak and strong interaction Hamiltonians,

and to compute the e�ective amplitudes of the K0 and K
0

states. Details of the analysis will
be reported separately [4].
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