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a b s t r a c t

A new framework of simulation of reactive flows is proposed based on a coupling between accurate
reduced reaction mechanism and the lattice Boltzmann representation of the flow phenomena. The
model reduction is developed in the setting of slow invariant manifold construction, and the simplest lat-
tice Boltzmann equation is used in order to work out the procedure of coupling of the reduced model with
the flow solver. Practical details of constructing slow invariant manifolds of a reaction system under var-
ious thermodynamic conditions are reported. The proposed method is validated with the two-dimen-
sional simulation of a premixed counterflow flame in the hydrogen-air mixture.

� 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

Accurate modeling of reactive flows requires the solution of a
large number of conservation equations as dictated by detailed reac-
tion mechanism. In addition to the sometimes prohibitively large
number of variables introduced, the numerical solution of the gov-
erning equations has to face the stiffness due to disparate time scales
of the kinetic terms. These issues make computations of even simple
flames time consuming, and have particularly negative impact on
the lattice Boltzmann method [31,32], whose number of fields (dis-
tribution functions or populations) may be significantly larger than
the number of conventional fields (density, momenta, temperature,
species mass fractions). The lattice Boltzmann (LB) method is a rel-
atively novel approach to numerical flow simulations, and recent
studies have proved that it is competitive to traditional methods
when simulating compressible [28] and turbulent flows [29] in
terms of both accuracy and efficiency. Although this makes LB a good
candidate for computing reactive flows, applications in this field are
still limited by the stiffness of the governing equations and the large
number of fields to solve.

On the other hand, the difference of time scales can be exploited
in order to construct a reduced description of the detailed model. In
ion Institute. Published by Elsevier
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fact, because of the stiffness, the dynamics of homogeneous reactive
systems is often characterized by a short transient towards a low
dimensional manifold in the concentration space, known as the slow
invariant manifold (SIM). The subsequent dynamics is slower and it
proceeds along the manifold itself, until a steady state is reached.
Constructing such manifolds can lead to a simpler and less stiff
description of the reactive system, where the fast transient is ne-
glected and the slow dynamics can be reproduced with high accu-
racy. Therefore, much effort has been devoted to achieving that
aim; the intrinsic low dimensional manifold (ILDM) approach [35],
the computational singular perturbation (CSP) method [36] and
the Flamelet-Generated Manifolds (FGM) method [22,23] are repre-
sentative examples.

In this work, we make use of the method of invariant grids (MIG)
[1–3] which is also based on the notion of SIM, and it has been
recently elaborated for combustion applications [8,9] with the aim
of automating the model reduction procedure. In particular, its
realization follows two key steps. First, an initial rough reduced
description of the complex chemical mechanism is constructed
making use of the notion of quasi equilibrium manifold (QEM).
Second, the latter initial approximation is iteratively refined until
the invariant grid is constructed. Finally, we employ the reduced
model of the hydrogen mechanism in a lattice Boltzmann code for
simulating laminar flames throughout a homogeneous mixture.

This paper is organized in sections as follows. In Section 2, the
kinetic equation for a batch reactor is reviewed. The construction
of a reduced model using the method of invariant grids is briefly
Inc. All rights reserved.
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described in Section 3. In Section 4, the lattice Boltzmann method
for reactive flows is reviewed, and the coupling with a reduced
model is presented in Section 4.2. Results are discussed in Section
5. A detailed discussion on the construction of thermodynamic
Lyapunov functions, and on the exact computation of their deriva-
tives (as requested in order to implement the MIG to combustion
applications) is presented in Appendix A. Finally, the exact evalua-
tion of the Jacobian matrix of a system of kinetic equations is ad-
dressed in the Appendix B.

2. Detailed reaction kinetics in a batch reactor

In this section, we focus on homogeneous mixtures of ideal
gases reacting in a closed system. Let x1, . . . ,xn be n chemical spe-
cies participating in a detailed reaction mechanism with r revers-
ible steps

m0s1x1 þ � � � þ m0snxn� m00s1x1 þ � � � þ m00snxn; s ¼ 1; . . . ; r; ð1Þ

where m0si and m00si are the stoichiometric coefficients of species i in
the reaction step s for reactants and products. Let the stoichiometric
vectors be m0s ¼ m0s1; . . . ; m0sn

� �
; m00s ¼ m00s1; . . . ; m00sn

� �
and ms ¼ m00s � m0s. The

reaction rate of step s reads

Xs ¼ Xþs �X�s ;

Xþs ¼ kþs ðTÞ
Yn

i¼1

cai
i ; X�s ¼ k�s ðTÞ

Yn

i¼1

cbi
i :

ð2Þ

Let Ni and V be the mole number of species i and the reactor volume,
respectively, the corresponding molar concentration is given by
ci = Ni/V. The forward and reverse reaction rate constants kþs , k�s take
the Arrhenius form

ksðTÞ ¼ AsT
bs exp

�Eas

RT

� �
; ð3Þ

where As denotes the pre-exponential factor, bs the temperature
exponent, Eas the activation energy of reaction s and R is the univer-
sal gas constant. The rate of change of species i is given by

_xi ¼
Xr

s¼1

msðiÞXs; i ¼ 1; . . . ; n; ð4Þ

with forward and reverse reaction rate constants related by the
equilibrium constant Kc;s ¼ kþs =k�s , which can be obtained by impos-
ing the principle of detail balance at the steady state:

Xþs ¼ X�s ; s ¼ 1; . . . ; r: ð5Þ

In the following, an arbitrary point of the composition space
will be denoted by c = (c1, . . . ,cn), where ci is the molar concentra-
tion of species i. Moreover, a given state of a homogeneous ideal
gas mixture is fully described by a vector c and one independent
intensive property, e.g., the corresponding temperature T. An alter-
native description of the system is also given by w = (Y1, . . . ,Yn) and
two independent intensive properties, e.g., temperature T and total
pressure p, where Yi is the mass fraction of species i.

Under isochoric and isothermal conditions (V, T = const), the
reaction kinetic Eq. (4) are closed, and the temporal evolution of
the species concentrations in the reactor obeys the following sys-
tem of ordinary differential equations:

dc
dt
¼ ð _x1; . . . ; _xnÞT ¼ f ; ð6Þ

whereas, for different cases, additional closure relations are needed.
Two cases are relevant to combustion: isolated reactor with con-
stant volume and mixture-averaged internal energy (V ;U ¼ const),
and thermal isolated isobaric reactor with constant total pressure
and mixture-averaged enthalpy (p; �h ¼ const). In the first case, the
governing equations read
U ¼
Xn

i¼1

UiðTÞYi ¼ const;

dc
dt
¼ ð _x1; . . . ; _xnÞT ¼ f ;

ð7Þ

where for each species i, the temperature dependence of the specific
internal energy Ui is taken into account by a polynomial fit

UiðTÞ ¼ R a1iT þ
a2i

2
T2 þ a3i

3
T3 þ a4i

4
T4 þ a5i

5
T5 þ a6i

� �
�RT: ð8Þ

Here, following [42], the temperature dependence of thermody-
namic properties of species i are expressed in terms of tabulated
constants aji, with j = 1, . . . ,7.

Let Wi be the molecular weight of species i, for closed reactors un-
der fixed total pressure and mixture-averaged enthalpy, the dynam-
ics of the mass fractions Yi obeys the following equation system

�h ¼
Xn

i¼1

hiðTÞYi ¼ const;

ci ¼
pðYi=WiÞ

RT
Pn

j¼1Yj=Wj
;

dw

dt
¼ W1 _x1

�q
; . . . ;

Wn _xn

�q

� �T

¼ f ;

ð9Þ

where the mixture density �q and the specific enthalpy hi of species i
take the explicit form

�q ¼
Xn

i¼1

Wici; hiðTÞ ¼ UiðTÞ þRT: ð10Þ

Notice that, for non-isothermal cases, the temperature corre-
sponding to the composition state w is not explicitly known. There-
fore, the right-hand side of (4) can be evaluated after solving the
two energy conservation equations in (7) and (9) with respect to
T (e.g., using the Newton–Raphson method).

Finally, in a closed chemically reactive system, the atom mole
numbers Nk of each element k must be conserved:

DwT ¼ ðN1; . . . ;NdÞT ;
dNk

dt
¼ 0; Dðk; iÞ ¼ lik

Wi
; ð11Þ

wherelik is the number of atoms of the kth element in species i, and D
is a (d � n) matrix, while d is the number of elements involved in the
reaction. In other words, the vector field f of motions in the phase-
space is always orthogonal (in Euclidean sense) to the rows of D.

The interested reader is delegated to the classical work of Wil-
liams [40] for a detailed discussion on the theory of chemical
kinetics.

3. Reduced description

In our study, the detailed mechanism of Li et al. [4] (9 species,
21 elementary reactions) for hydrogen combustion is considered,
and we search for a reduced description with two degrees of free-
dom. Here, we present a general overview of the method of invari-
ant grids (MIG) for model reduction in chemical kinetics. The
interested reader can find more details in Refs. [1,2,6–9].

3.1. Initial approximation: quasi equilibrium manifold

Approximated reduced descriptions in chemical kinetics can be
based on the notion of quasi equilibrium manifold [1,2]. Hence, let
us construct a quasi equilibrium manifold for a stoichiometric
H2-air mixture under fixed pressure p = 1 bar and enthalpy
�h ¼ 2:8 kJ=kg, corresponding to the temperature T0 = 300 K for
the stoichiometric unburned mixture H2 + 0.5O2 + 1.88N2. A gener-
ic q � dimensional QEM is obtained by solving the following min-
imization problem:
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G!minP
i

mi
jYi ¼ nj; j ¼ 1; . . . ; q:

8<
: ð12Þ

Here, G represents a thermodynamic Lyapunov function with
respect to the kinetic Eq. (4), whose construction is discussed in de-

tail in Appendix A. The vector set mj ¼ m1
j ; . . . ; m9

j

� �n o
is used to

re-parameterize the mass fractions Yi in terms of new variables nj,
which are expected to follow a slow dynamics. Several suggestions
for defining slow lumped variables in chemical kinetics can be
found in the literature, and for our purposes here we use a 2-dimen-
sional manifold parameterized by the total number of moles n1 and
the free oxygen n2, respectively (see, e.g., [5]):

n1 ¼
X9

i¼1

Yi

Wi
; n2 ¼ YO

WO
þ YOH

WOH
þ YH2O

WH2O
: ð13Þ

It is worth stressing that, when searching for a QEM as a reduced
description of a detailed model in combustion problems, the param-
eters ni in (12) are assumed to be slow variables. The choice of the lat-
ter variables is crucial since it affects the accuracy of the QEM in
describing the corresponding SIM. In this study, the chosen param-
eters ni (13) are referred to as slow variables because we make use of
the Rate Controlled Constrained Equilibrium (RCCE) parameteriza-
tion [10], where the ni are directly linked to slow physical quantities.
In particular, n1 is typically termed the total number of moles and is
expected to (globally) follow a slow dynamics due to the slow
recombination/dissociation reactions. On the other hand, the free
oxygen n2 (linked to the species with any oxygen which is not
bonded to another oxygen) is imposed by reactions where the O–O
bond is broken. A more general discussion on the RCCE constraints,
can be found in the literature [11]. Note that, a different systematic
parameterization of quasi equilibrium manifolds was also intro-
duced recently [7], where the vectors mj are defined on the basis
of the eigenvectors of the Jacobian matrix J = [@fi/@Yj] evaluated at
the steady state ceq. In this case, it can be shown that the QEM is tan-
gent to the corresponding SIM at ceq (see Refs. [6,7]), proving that the
chosen parameters are slow variables at least in a vicinity of ceq. The
latter will be referred to as spectral quasi equilibrium manifold
(SQEM) parameterization. It is worth stressing that, although the
choice of the parameterization vectors affects the accuracy of a quasi
equilibrium manifold in describing the corresponding SIM, solutions
of (12) are anyway refined and the final result does not depend on
the initial approximation (and parameterization) (see also Section
3.2). Finally, notice that below we deal with discrete representations
of manifolds: grids. A grid consists of a set of nodes in the concentra-
tion space and connections between them, that enable to define the
grid tangent space at each node.

In particular, in the following we review the quasi equilibrium
grid algorithm [6] for constructing discrete approximation of a
QEM. Let E be the (d + q) � n matrix, obtained by adding the mj vec-
tors as q additional rows to the matrix D. Let the steady state of (9)
be denoted by c0 ¼ c0

1; . . . ; c0
n

� �
. The QEM state c1 can be computed,

in a neighborhood of c0, by solving the linear algebraic systemXz

i¼1

tjHqT
i

� �
ui ¼ �tj$GT ; j ¼ 1; . . . ; z� q;

Xz

i¼1

m1q
T
i

� �
ui ¼ 0;

..

.

Xz

i¼1

mkq
T
i

� �
ui ¼ ek;

..

.

Xz

i¼1

mqq
T
i

� �
ui ¼ 0;

ð14Þ
with respect to the unknowns ui, where $G and H are the gradient
and the second derivative matrix of G, respectively (the explicit
computation of those derivatives is given in Appendix A). If
{q1, . . . ,qz} and {t1, . . . ,tz�q} are two vector bases spanning the null
space of the matrix D and E, respectively, then

c1 ¼ c0
1 þ dc1; . . . ; c0

n þ dcn
� �

;

ðdc1; . . . ;dcnÞ ¼
Xz

i¼1

uiqi:
ð15Þ

By referring to system (14), all derivatives of G are evaluated at
c0 and, through the last q equations, we impose that c1 belongs to a
Cartesian grid in the space {n1, . . . ,nq}, with the fixed parameter ek

defining the grid step along nk. Similarly, by solving (14) at c1, a
new QEM point c2 can be found. In general, this procedure can
be iterated as long as all the coordinates of the computed state re-
main non-negative. In the following, we refer to the collection of
computed states as quasi equilibrium grid. An approximated solu-
tion to (12), computed making use of the above algorithm, is
shown in Fig. 1, where q = 2 and e1 = e2 = 1. 8 � 10�4.

3.2. Grid refinement and invariant grids

An arbitrary quasi equilibrium grid G is defined by a mapping
c = F(n1, . . . ,nq) of a discrete subset of the parameter space into
the concentration space. According to MIG, the reduced description
of a batch reactor is given by the corresponding invariant grid,
which is the stable fixed point of the relaxation of a QEG G under
the following film equation of dynamics [1]

dG
dt
¼ f � Pf ; ð16Þ

where f and P denote the vector of motion in the phase-space and a
projector operator onto the grid tangent space Tn, respectively.
Defining P on a grid requires a smooth continuation of the discrete
mapping F on the parameter space: To this end, low-order interpo-
lation schemes can be successfully adopted in order to compute lo-
cal tangent vectors [8]. In this work, the independent vectors ûj

spanning Tn are approximated with second-order accurate finite dif-
ferences, and grid refinement is addressed using an explicit low-or-
der numerical scheme for integrating the film Eq. (16). Namely, at
each iteration, all grid nodes c are shifted by the amount dc such
that the updated nodes are c + dc with

dc ¼ #ðf ðcÞ � Pf ðcÞÞ: ð17Þ

The parameter # has the dimension of time, and its estimate can be
found in the literature [2]:

# ¼ DHDT

DHJ 0DT ; ð18Þ

where D is the defect of invariance and it is defined by the right-
hand side of (16), while J

0
is the symmetric part of the Jacobian ma-

trix J = [ @fi/@Yj] as discussed in Appendix B. The convergence crite-
rion is based on a comparison of the Euclidean norm of defect of
invariance jDj against the norm of vector field jfj [7]. In particular,
here iterations are terminated when at all nodes the following
inequality holds: jDj/jfj 6 0.01. Whenever the latter ratio keeps
increasing during refinement, the corresponding grid node is dis-
carded. The projector P is constructed as discussed in Section 3.4.
The 2-dimensional refined grid is shown in Fig. 2, and it is compared
to the initial quasi equilibrium grid in Fig. 3.

Notice that in the low-temperature region (T < 800 K), the
invariant grid is not convergent, meaning that a 2-dimensional
reduced description is not sufficient and the dimension of the slow
invariant manifold is larger than two.
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Fig. 1. 2-dimensional quasi equilibrium grid (QEG) for stoichiometric mixture of hydrogen and air, under p = 1 bar and �h ¼ 2:8 kJ=kg. Six coordinates function of the
parameters n1, n2 with e1 = e2 = 1.8 � 10�4.
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Remark. Notice that, in the example under study, the choice of a
two-dimensional reduced system assumes a separation between
the two slowest scales of the chemistry and the rest of the
dynamics. Such an assumption is confirmed, at least in a neigh-
borhood of the steady state ceq, by the following spectral analysis of
the Jacobian matrix J = [@fi/@Yj] evaluated at ceq:

h1 � 2� 10�4; h2 � 7:7� 10�6; h3 � 4� 10�7;

h4 � 2:5� 10�7; h5 � 2:2� 10�7; h6 � 1:5� 10�7;
ð19Þ

where the two time scales h1 and h2 (defined as the inverse of the non-
zero eigenvalues of J) are well separated from the others (hi, i = 3, 4, 5,
6). However, in the framework of the Method of Invariant Grid (MIG),
the stability of the refinements, and hence the convergence of a solu-
tion toward a stable fixed point of the film Eq. (16), does provide a
valuable indication of the existence of the slow invariant manifold
(SIM) with a given dimension. Consequently, the convergence of
the MIG algorithm (discussed in Section 3.2) demonstrates the valid-
ity of the above assumption concerning the dimension of the adopted
reduced model, also in a large portion of the phase-space far from
equilibrium. On the other hand, the lack of convergence of the MIG
iterations in the low temperature domain (T < 800 K) denotes that
here the dimension of the SIM q is larger than two. In this respect,
it is worth stressing that only recently it has been possible to exploit
the stability of solutions to the Eq. (16) for establishing a fully adap-
tive model reduction technique, where the dimension q of the SIM is
automatically and consistently chosen without resorting to any a-pri-
ori assumptions [14]. Nevertheless, the latter issue is beyond the
scope of the present work, whereas our main concern here is to show
in full details the coupling of the MIG technique within the lattice
Boltzmann method. Thus, for the sake of simplicity, in the low tem-
perature domain, following others (see, e.g., [15,16]), we adopt a
one-dimensional induction manifold obtained by a fit of a detailed
solution of freely propagating flames trough hydrogen-air mixtures.
The latter one-dimensional manifold is parameterized by the first
reduced variable n1 and, by starting from the fresh mixture composi-
tion, it bridges the gap between the unburned condition and the two-
dimensional invariant grid.
3.3. Tabulation and interpolation

The grid coordinates, the thermodynamic projection of the vec-
tor field f and the two parameters n1, n2 are redistributed on a reg-
ular Cartesian grid, stored in two dimensional arrays and each grid
node is identified by an index pair (i, j). Any tabulated quantity Q,
associated with a generic parameter pair (n1, n2), can be recon-
structed by linear bi-variate interpolation:

Q ¼ iAQA þ iBQB þ iCQC þ iDQD; ð20Þ

where A, B, C, D are the grid nodes corresponding to (i, j), (i + 1, j),
(i, j + 1), (i + 1, j + 1), respectively, while iA, iB, iC, iD are the interpo-
lation weights

iA ¼ ð1� p1Þð1� p2Þ; iB ¼ p1ð1� p2Þ;
iC ¼ ð1� p1Þp2; iD ¼ p1p2;

ð21Þ

with p1 ¼ n1 � n1
A

� �
= n1

B � n1
A

� �
and p2 ¼ n2 � n2

A

� �
= n2

C � n2
A

� �
. Similar

strategies of tabulation and interpolation are also used in other
methods, such as the ILDM [35,18,19] and FGM [22,23].

3.4. Thermodynamic projector

It is important to discuss the projector P appearing in Eq. (16).
MIG makes use of the thermodynamic projector [1], whose con-
struction is briefly reviewed below. Let $G and Tn be the gradient
of G and the tangent hyperplane, evaluated at a given grid node
c, respectively. Let Tn0 ¼ Tn \ kerð$GÞ, where kerð$GÞ indicates
the hyperplane orthogonal to $G. Assuming that Tn – Tn0, let û1

be a vector of the tangent plane Tn, such that $GûT
1 ¼ 1 and

û1HxT ¼ 0; H ¼ @2G
@ci@cj

" #
; ð22Þ

where x is an arbitrary vector of the subspace Tn0. The thermody-
namic projector acts on a generic vector g as follows

Pg ¼ ðg$GTÞû1 þ
Xn

i¼2

gHûT
i

� �
ûi: ð23Þ

Here, the set of vectors fû2; . . . ; ûng forms a basis of Tn0, such that

ûiHûT
j ¼ dij; 8i; j ¼ 2; . . . ;n; ð24Þ

with dij denoting the Kronecker delta. In the case Tn = Tn0, let
fû1; . . . ; ûng be a basis of s such that ûiHûT

j ¼ dij, then (23) takes
the form:
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Pg ¼
Xn

i¼1

gHûT
i

� �
ûi: ð25Þ

It is worth noting here a remarkable feature of the thermody-
namic projector: the construction of (23) or (25) performs slow-
fast motion decomposition. In other words, in a neighborhood of
an invariant grid, the slow dynamics of the kinetic Eq. (4) takes
place in the image of P, while the fast dynamics evolves in its null
space. More details can be found in Refs. [1,6,12,8].

4. Lattice Boltzmann method for reactive flows

We consider here the simplest lattice Boltzmann formulation
suitable for simulations of combustion. To this end, following the
suggestion of Yamamoto et al. [25], reactive flows can be simulated
with the lattice Boltzmann method as reported below. More elab-
orate and complete LB models for mixtures [27] and compressible
flows [28] will be taken into account in the near future, too.

According to the standard terminology, LB schemes are usually
denoted as DMQN, meaning that N particles move on a M-dimen-
sional lattice. In Fig. 4, the most popular 2-dimensional lattice is
shown, where each distribution function is represented by its
own velocity ea. In the following, we briefly review the LB algo-
rithm with the BGK [30] collision model. A single-component fluid
is described by a set of populations, which can be regarded as
microscopic properties of the fluid. On the contrary, macroscopic
quantities such as density and momentum (and also energy for
thermal cases) are given by various moments of those populations.
In terms of pressure distribution functions pa, the LB equation
takes the following discrete form at the lattice node x:

paðxþ ea; t þ dtÞ ¼ paðx; tÞ �
1
sF

paðx; tÞ � peq
a ðp;uÞ

� 	
; ð26Þ

where the equilibrium populations peq
a read:

peq
a ¼ wa~p 1þ 3ðeauTÞ þ 9

2
ðeauTÞ2 � 3

2
u2


 �
: ð27Þ

The pressure ~p and the fluid velocity u are expressed in LB units
(dimensionless), and are given by:

~p ¼
X

a
pa; u ¼ 1

~p0

X
a

eapa; ð28Þ

where the reference pressure ~p0 ¼ ~q0=3, with ~q0 denoting the refer-
ence density of the LB model. Let dt be the time step, the relaxation
parameter sF is related to the kinematic viscosity m by (see, e.g.,
[34])
D2Q9

e0 exemx

emxy ey exy

exmyemyemxmy

Fig. 4. 2-Dimensional 9-velocities lattice: D2Q9.
m ¼ 2sF � 1
6

dt: ð29Þ

In general, the discrete velocities can be regarded as the nodes
of a Gauss–Hermite quadrature applied to the Maxwell–Boltzmann
distribution function, and each of them is characterized by a proper
weight wa.

According to [25], the flow field in the present simplest LB mod-
el is not affected by the chemical reaction, transport coefficients
are constant and Fick’s law applies to the diffusion. In this case,
the background flow is treated as a one-component medium
whose pressure populations evolution obeys (26). Let �h0 be a refer-
ence enthalpy, the evolution equations for enthalpy and concentra-
tion of species i are written as

~haðxþ ea; t þ dtÞ � ~haðx; tÞ ¼ �
1
sh

~haðx; tÞ � ~heq
a ð~h;uÞ

h i
þwaQh; ð30Þ

Yiaðxþ ea; t þ dtÞ � Yiaðx; tÞ ¼ �
1
sYi

Yiaðx; tÞ � Yeq
ia ðYi;uÞ

� 	
þwaQ Yi

; ð31Þ

where

~h ¼ �hs=�h0 ¼
X

a

~ha; Yi ¼
X

a
Yia; ð32Þ

and the equilibrium populations ~heq
a ;Y

eq
ia are expressed as in (27)

after replacing ~p with ~h and Yi, respectively. We notice that the
Eq. (30) has been written in terms of the sensible enthalpy �hs, which
is linked to �h by the caloric equation of state:

�h ¼
Xn

i¼1

hiðTÞYi ¼
Xn

i¼1

h0
i ðTÞYi þ

Xn

i¼1

hs
i ðTÞYi ¼ �h0 þ �hs; ð33Þ

with �h0 denoting the chemical energy due to the species heats of
formation, whereas the sensible (or thermal) enthalpy of species k
can be expressed in terms of the heat capacity Cpk(T) (at constant
pressure) and reads:

hs
kðTÞ ¼

Z T

0
CpkðTÞdT: ð34Þ

Let t0 be a factor for converting physical time into LB time units:
(t)LB = (t)phys/t0, the source terms take the explicit form

Qh ¼
1
�h0

X9

i¼1

_xiWi

�q
h0

i

 !
t0dt; Q Yi

¼
_xiWi

�q
t0dt; ð35Þ

where �q is the mixture-averaged density (in physical units), while
_xi, Wi, h0

i denote the rate of change, molecular weight and enthalpy
of formation of species i, respectively. The enthalpy Eq. (30) can also
be written in terms of the mixture-averaged enthalpy �h. In this case,
the latter equations have no source terms: Qh = 0 and
~h ¼ �h=�h0 ¼

P
a
~ha. Similarly to (29), the thermal diffusivity j and

diffusion coefficient Di of species i are related to the relaxation
parameters as follows:

j ¼ 2sh � 1
6

dt; Di ¼
2sYi

� 1
6

dt: ð36Þ
4.1. Discussion of the model

In the above section, we briefly reviewed the lattice Boltzmann
model for reactive flows originally presented in [25], where more
details can be found. However, it is worth reporting here the basic
assumptions of the model:

� The chemical reaction does not affect the flow field in the
incompressible model.
� The transport properties are constant.
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� The diffusion follows the Fick’s law.
� Viscous energy dissipation and radiative heat loss are neglected.

It is worth noticing that, the LB Eq. (26) for pressure density
functions pa recovers, in the low-Mach number regime, the incom-
pressible Navier–Stokes equations, which can be written as follows
(in the absence of body forces):

@juj ¼ 0

@tui þ uj@jui ¼ �
1
�q
@ipþ @jðm@juiÞ: ð37Þ

Here, @t and @j denote partial derivatives with respect to time and
the jth spacial direction respectively, while Einstein summation
convention is adopted for j. Therefore, pressure and density only
have small fluctuations around their reference values, and com-
pressibility effects are not taken into account in this model. The
above assumptions are adopted for the sake of simplicity, and the
methodology of Section 4.2 can be used, in combination with more
recent LB models where compressibility is included as well (see,
e.g., [26]).

A detailed discussion on fundamental aspects of the lattice
Boltzmann Eq. (26), derivation of the equilibrium populations
(27), relations between transport coefficients and relaxation
parameters (e.g., (29) and (36)) can be found in [31–34]. Moreover,
the lattice Boltzmann Eqs. (30) and (31) simulate the following
partial differential equations (PDE) [25]:

@t
�hs þ uj@j

�hs ¼ @j j@j
�hs

� �
þ
Xn

i¼1

_xiWi

�q
h0

i ; ð38Þ

and

�qð@tYi þ uj@jY iÞ ¼ @jð�qDi@jYiÞ þ _xiWi; ð39Þ

which account for the conservation of energy and a generic species
i, respectively. We finally notice that, the utilized lattice Boltzmann
scheme [25] only considers Fourier heat flux in the enthalpy Eq.
(38) (no relative enthalpy fluxes).

4.2. Lattice Boltzmann and reduced model

In the following, in order to reduce the complexity of the valida-
tion procedure, we use the assumption of equal diffusivity Di = D
and Lewis number Le = j/D = 1 for all chemical species. In this case,
the mixture enthalpy �h and the element compositions Nk in (11) re-
main constant throughout the domain, thus the reduced dynamics
takes place along a single invariant grid constructed under fixed
pressure, mixture-averaged enthalpy at stoichiometric propor-
tions. As discussed in more detail below, the latter assumption is
not restricting and a fully general case can be handled by extending
the invariant grid with enthalpy, pressure and element composi-
tions as additional degrees of freedom, in the same spirit as the
ILDM [35,18,19] method is applied to similar problems. On the
other hand, in premixed systems, element fractions are often con-
served up to small fluctuations and, for such applications, only
pressure and enthalpy are needed as new grid parameters. Finally,
in combustion problems with low-Mach number, the pressure p
can be considered constant for most cases (isobaric assumption
[24]). The species Eq. (31) describe transport phenomena (diffusion
and convection) in addition to the chemical reactions. On the other
hand, by construction, the reduced models of Section 3 deliver
invariant grids under the dynamics of the only chemical source
terms. The basic assumption of the suggested procedure for reduc-
ing chemical kinetics (with n degrees of freedom) is that a generic
state c is (at any time and at any point in space) close to an attrac-
tive chemical low dimensional manifold (of dimension q� n).
Therefore, the reactive system admits a significant simplification
by assuming that all states are confined to those manifolds and
are function of a few independent variables only. In other words,
we assume that transport phenomena only act as small perturba-
tions rapidly relaxing toward the above invariant (with respect
to the chemistry) manifolds. Therefore, a coupling of the flow sol-
ver and the reduced combustion model can be achieved by project-
ing the dynamics due to transport onto the slow subspace (see also
the ILDM strategy [35]). Here, for projection purposes, it proves
convenient to assume (following the rationale behind the quasi
equilibrium manifold) that the fixed parameterization vectors mj

(approximately) globally span the slow subspace (see e.g., the RCCE
ans SQE parameterization discussed in Section 3.1). In fact, a pro-
jection of the species Eq. (39) onto the latter slow subspace yields:

�qð@tn
j þ ua@an

jÞ ¼ @að�qD@an
jÞ þ

Xn

i¼1

mi
j

_xiWi; ð40Þ

which is recovered by the following lattice Boltzmann equations in
terms of the slow variables nj:

nj
aðxþ ea; t þ dtÞ � nj

aðx; tÞ ¼ �
1
sn
½nj

aðx; tÞ � njeq
a ðn

j;uÞ�

þwaQ nj : ð41Þ
Here, the equilibrium populations for the reduced variables nj read

njeq
a ¼ wan

j 1þ 3ðeauTÞ þ 9
2
ðeauTÞ2 � 3

2
u2


 �
; ð42Þ

where D ¼ dtð2sn � 1Þ=6;Q nj ¼
P

im
i
jQYi

; nj ¼
P9

i¼1mi
jYi ¼

P3
a¼1n

j
a.

Now, simulations can be carried out by solving for only the two
lumped variables nj using Eq. (41) and tabulated source terms Q nj ,
while the flow dynamics still obeys (26). Computation results are
expressed in terms of slow variables nj, while other relevant fields
Yi(n1,n2), T(n1,n2) can be reconstructed by interpolation on the
invariant grid in a post-processing as described in Section 3.3.

Remark. In the case of low-Mach number combustion and fixed
pressure [24], the above assumptions can be gradually relaxed, so
that three cases of different complexity are obtained.
1. Equal diffusivities with Le = 1. Even though this might lead to an
inaccurate approximation for hydrogen systems (e.g., quite differ-
ent diffusivities should be used for light species such as H2 and H),
here it is considered for validation purposes. Moreover, such a
condition is of interest for simulating turbulent flames [37].

2. Equal diffusivities with Le – 1. In this case, the element compo-
sition is conserved but the mixture-averaged enthalpy �h
changes in the domain. Now, the conservation equation for
enthalpy (30) has to be solved along with (41), and the reduced
system is fully described by three variables: n1, n2 and �h (three
dimensional grid). Hence, the construction of Section 3 has to be
performed for a discrete set of enthalpies.

3. General case. In general, also the element composition varies in
the domain due to differential diffusion effects. Thus, equations
for the lumped variables nj, mixture enthalpy �h and the element
mole numbers Nk need to be solved, whereas a generic tabu-
lated quantity is function of additional variables:
Q ¼ Qðn1; n2; �h;NH;NO;NNÞ. Now, a projection of the species Eq.
(39) onto the slow subspace spanned by mj gives:
�qð@tn
j þ ua@an

jÞ ¼ @að�qDj@an
jÞ þ

Xn

i¼1

mi
j

_xiWi þ @að�qnj@aDjÞ;

ð43Þ
where an effective diffusion coefficient Dj of the slow variable nj can
be defined as follows:
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Dj ¼
Xn

i¼1

Dimi
jYi

,Xn

i¼1

mi
jYi: ð44Þ
Moreover, the evolutionary equation for the element mole number
Nk is obtained from (11) and (39):
�qð@tNk þ uj@jNkÞ ¼ @j �q@j

Xn

i¼1

DilikYi

Wi

 ! !
; ð45Þ
where
Nk ¼
Xn

i¼1

likYi

Wi
:

For mass is conserved, the contribution due to the source terms _xi

vanishes in (45). Formula (45) can be recast as follows:
�qð@tNk þ uj@jNkÞ ¼ @jð�qDk@jNkÞ þ Q Nk
; Q Nk

¼ @ jð�qNk@jDkÞ
ð46Þ
where the quantities
Dk ¼
Xn

i¼1

DilikYi

Wi

 !,Xn

i¼1

likYi

Wi
; ð47Þ
and Dj (44) can be also tabulated as functions of the grid parame-
ters. Notice that, both Eqs. (43) and (46) present the same form as
the species Eq. (39) with diffusivity Dj and Dk, respectively and
non-local source terms. Therefore, the latter partial differential
equations can be still solved using a lattice Boltzmann type Eq.
(31) with a variable relaxation parameter and the extra source
terms approximated e.g., with finite differences (see Section 4.6).

4.3. Example: premix counterflow flames

Here, we consider the so-called counterflow laminar flame as a
two dimensional benchmark of the suggested methodology. A well
premixed stoichiometric H2-air mixture is uniformly ejected from
two parallel stationary flat nozzles, located at y = ±Ly. When prop-
erly ignited, the fuel reacts generating two twin flames in this
counterflow, while the burned gas exits the domain along the x-
direction. As illustrated in the sketch of Fig. 5, under the assump-
tion of symmetrical flow with respect to the symmetry lines
x = 0 mm and y = 0 mm, the computational domain can be re-
stricted to the region where x P 0 mm and y P 0 mm, and simula-
tions can be carried out using the standard 2-dimensional lattice
D2Q9 by detailed and reduced models. In both cases, the mixture,
initially under room temperature T0 = 300 K, is ignited by placing a
hot spot at the origin of the reference system.

In the present configuration, the half-length of the gap between
the two nozzles is Ly = 2 mm, the computational domain is rectan-
gular with aspect-ratio Lx/Ly = 1.67, and symmetry conditions at
the stagnation lines are used. At the inlet, we impose a constant
velocity uin = �2.4 m/s, room temperature Tin = 300 K, pressure
p = p0 = 1 bar and species concentrations corresponding to the un-
burned mixture. At the outlet, the pressure is constant p = p0, and
we utilize fully developed boundary conditions as discussed below.

Notice that, all quantities given in physical units of time (s) and
length (m) are converted into LB units dividing by the factors

t0 ¼
Ly

uin

� �
phys

Ly

uin

� �
LB

; L0 ¼
ðLyÞphys

ðLyÞLB
; ð48Þ

respectively. Let dy be the space step along the y direction, the time
step
dtLB ¼
dy
e

� �
LB

; dtphys ¼ t0dtLB; ð49Þ

is set by defining the ratio (Ly/uin)LB, and e = 1 is the magnitude of
the intermediate non-zero lattice velocities (ex, emx, ey, emy) of Fig. 4.
4.4. Flow field

In our simulation, we adopt a 200(Nx) � 120(Ny) grid, and a con-
stant kinematic viscosity: m = 1.6 � 10�5 m2/s. At the inlet, the
equilibrium populations, corresponding to the pressure
p = p0 = 1 bar and velocities ux = 0,uy = uin, are maintained. In order
to implement symmetry condition, we apply the mirror bounce-
back scheme to the missing pressure density functions along the
stagnation line x = 0 mm:

px ¼ pmx; pxy ¼ pmxy; pxmy ¼ pmxmy; ð50Þ

while along the line y = 0 mm,

py ¼ pmy; pxy ¼ pxmy; pmxy ¼ pmxmy: ð51Þ

At the outlet, fully developed boundary conditions are imposed
by replacing all pressure populations with the corresponding equi-
librium populations evaluated with p = p0 and velocities at the
neighbor node along x:

paðNxÞ ¼ peq
a ðp0;uxðNx � 1Þ;uyðNx � 1ÞÞ: ð52Þ

Finally, the wall of the nozzle at the end of the upper limit of the
domain is simulated using five nodes, where the usual bounce-back
condition is imposed:

pmy ¼ py; pxmy ¼ pmxy; pmxmy ¼ pxy: ð53Þ

It has been proved that the lattice Boltzmann method is able to
reproduce the results of conventional methods (finite differences)
in the case of counterflow with high accuracy [25]. Figure 6 shows
the streamlines of the flow field when the steady solution is
reached, while in Fig. 7 we report the normalized velocities (with
respect to uin) along the stagnation lines.
4.5. Temperature and concentration fields

In the following, we compute the temperature and concentra-
tion fields using both the detailed and reduced (two degrees of
freedom) models. For the sake of simplicity, here we assume equal
diffusion coefficients Di = D = 5 � 10�5 m2/s for all species, and
unity Lewis number: Le = D/j = 1. In this case, the two-dimensional
invariant grid of Fig. 3 can be adopted as reduced description of the
detailed model. According to the procedure of Section 4.2, here we
apply the lattice Boltzmann equation only to the grid parameters
n1,2 (13), while species mass fractions and temperature field are
reconstructed in a post-processing via bi-linear interpolation on
the grid. Notice however that, the invariant grid does not extend
in the low-temperature region of the phase-space. Therefore, in-
stead of detailed chemistry, a 1-dimensional induction manifold
is used. The latter manifold (squares in Fig. 3) is obtained by a fit
from a detailed solution in the case of 1-dimensional freely propa-
gating flame trough a stoichiometric homogeneous mixture of
hydrogen and air.

Similarly to the pressure populations, the mirror bounce-back
scheme is used as boundary condition for the missing density func-
tions, Yi;a; n

i
a, along the stagnation lines. At the inlet, the equilib-

rium populations corresponding to the unburned mixture are
constantly imposed, while at the outlet we make use of the follow-
ing extrapolation:

YiaðNxÞ ¼ YiaðNx � 1Þ; ni
aðNxÞ ¼ ni

aðNx � 1Þ; ð54Þ



Fig. 5. Schematic representation of the 2-dimensional counterflow setup.
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for the detailed and reduced model, respectively. The nozzle wall is
supposed to be adiabatic and the usual bounce-back condition is
adopted. Because of unity Lewis number, the mixture-averaged en-
thalpy �h remains constant in the entire domain, thus it is dependent
on the species concentrations through the uppermost equation in (9).

The hydrogen-air mixture, initially under room temperature
T0 = 300 K, is ignited by placing a hot spot at the origin of the refer-
ence system. A comparison between the detailed and reduced fields,
along two lines (x = 0 mm and x = 2.16 mm) at two time instants
(t = 0.42 ms and t = 1.05 ms) is shown in Figs. 8–10, and an excellent
agreement is demonstrated. Moreover, in Figs. 11–14 we report se-
quences of snapshots where the mass fraction of the OH radical and
the temperature field are shown, according to both the detailed and
reduced model, in the whole computational domain.

On the basis of the present study, we can argue that the reduced
model is indeed able to match the detailed solution with high accu-
racy. However, due to the reduced stiffness of the dynamics along
the invariant grid, the time step dt needed for stably solving the
lattice Boltzmann equations can be increased by an order of mag-
nitude in the reduced model. In particular, the computation of the
reduced solution, carried out by means of a 2 GHz Intel Core 2 Duo
CPU, requires around 1 h per 1 ms simulation, whereas the compu-
tation of the detailed solution requires around 2 days (� 48 h) per
1 ms simulation.
4.6. Summary of the suggested procedure

For the sake of clarity, below we further illustrate all the steps
involved in the construction of a reduced model and its implemen-
tation in a lattice Boltzmann flow solver. In Section 3, we discuss
the construction of a simplified model (described by q independent
parameters ni) of an homogeneous reactive mixture in a closed
system under fixed mixture-averaged enthalpy �h an pressure p,
whose detailed description requires n � d > q degrees of freedom.
The latter task is accomplished by computation of a discrete
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approximation of the quasi equilibrium manifold (i.e. a quasi equi-
librium grid [6]) and subsequent refinement according to the
numerical scheme (17), with the aim of finding the stable fixed
point of the film equation of dynamics (16). The above procedure
can be summarized by means of the following pseudo-algorithm:

1. Start from full system of kinetic Eq. (9) of dimension n � d.
2. Find steady state.
3. If a SQE-manifold [7] is to be constructed, compute Jacobian
matrix at steady state (e.g., by the exact formula (85) in
Appendix B) and find the q slowest left eigenvectors.

4. Else use the RCCE parameterization (e.g., total number of
moles, free oxygen, etc.) [10,11].

5. Construct the initial QE-grid according to the system (14)
supplemented by the formulas in Appendix A for the deriv-
atives of G.
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6. Compute the q tangent vectors at any grid node by finite
differences.

7. Compute both the vector field f and its local projection Pf
according to the thermodynamic projector (23) (rG and H
are explicitly reported in Appendix A).

8. Correct each grid node according to (17).
9. Compare norm of invariance defect vs norm of vector field:
jDj/jfj.

10. If jDj/jfj is larger than a threshold then go to 6.

Upon convergence of the above algorithm, the q grid parame-
ters ni and the invariant grid coordinates can be stored in tables
along with their rates:

dni

dt
¼ miPf : ð55Þ

It is worth stressing that, although the chosen parameterization
vectors mi affect the accuracy of the QE-manifold, the invariant
grid delivered by the subsequent refinement is anyway a remark-
ably accurate description of the corresponding SIM (see, e.g.,
[2,7]). Importantly, the reduced stiffness in the rates (55) is en-
sured by the thermodynamic projector P (23) since the fast compo-
nent of f: f fast belong to the null space of P [12]:

Pf fast ¼ 0: ð56Þ

Toward the end of coupling such reduced models within a flow
solver, in the same spirit of other techniques (e.g., ILDM [35,17]),
the above algorithm is to be performed over a range of enthalpies
�h and element mole numbers Nk (for low-Mach number problems,
we may invoke the isobaric assumption [24]). Thus, in general, all
tabulated quantities Q depend on q chemical variables ni, the mix-
ture-averaged enthalpy �h and d element mole numbers
Nk : Q ¼ Qðni; �h;NkÞ. Namely, in a reduced model, only the evolu-
tionary equations for the latter independent variables are to be
solved. In particular, the set of governing equations of the reduced
description is formed by (26), (30) conveniently written in terms of
the mixture-averaged enthalpy �h in addition to the equations
recovering (43) and (46):

nj
aðxþ ea; t þ dtÞ � nj

aðx; tÞ ¼ �
1
sj

nj
aðx; tÞ � njeq

a ðn
j;uÞ

h i
þwa Q nj þ Q 0j

� �
; ð57Þ

Nka xþ ea; t þ dtð Þ � Nka x; tð Þ ¼ � 1
sNk

Nka x; tð Þ � Neq
ka Nk;uð Þ

� 	
þwaQ Nk

; ð58Þ

where

Nk ¼
X

a
Nka; Dj ¼ 2sj � 1

6
dt; Dk ¼

2sNk
� 1

6
dt; ð59Þ

with Dj and Dk given by (44) and (47) respectively, while the
non-local source terms Q 0j ¼ @að�qnj@aDjÞ;QNk

¼ @að�qNk@aDkÞ can be
estimated by finite differences. Notice that a reduced stiffness of
the Eqs. (41) and (57) is achieved by imposing the chemical source
terms:

Q nj ¼
dni

dt
; ð60Þ
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Fig. 13. Detailed model using the D2Q9 lattice in combination with a 2-dimensional invariant grid: evolution of the temperature field.
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according to (55). As discusses above in the Section 4.2, under the
simplifying assumptions of equal diffusivities for all the chemical
species and unity Lewis number (typically done in turbulent
combustion), the number of table entries (hence of governing equa-
tions to solve) can be reduced to (ni, �h) and ni, respectively.

We stress that, instead of the global method described in Sec-
tion 3 where invariant grids are pre-computed in the entire
phase-space, tabulated and used at a later time, as an alternative,
local approaches can be adopted since their coupling in the pre-
sented framework is straightforward. In particular, the recently
suggested local construction of invariant grids [13,14], circum-
vents the issue of storage and interpolation of relatively high
dimensional tables, by a local closure of the set of reduced gov-
erning Eqs. (26), (30), (57) and (58). In other words, any quantity
Q ¼ Qðni; �h;NkÞ can be obtained by targeting the construction of
the invariant grid in the small region of the phase-space only
when required in the simulation. In general, the coupling of a re-
duced model for combustion within a lattice Boltzmann flow sol-
ver can be schematically summarized by the following pseudo-
algorithm:

1. Initialize the Eqs. (26), (30), (57) and (58).
2. Compute all source terms Q ¼ Qðni; �h;NkÞ by interpolation on

pre-computed table or, as an alternative, by local construction
of the invariant grid [13,14].

3. Integrate the Eqs. (26), (30), (57) and (58).
4. Go back to 2 until convergence.
5. Post-processing for computing all fields of interest.
Finally, the efficiency of local model reduction approaches can
be remarkably improved when used in combination with stor-
age-retrieval methodologies such as in situ adaptive tabulation
(ISAT) [20,21].
5. Discussion

In this paper, we suggested a methodology for using accurate
reduced chemical kinetics in combination with a lattice Boltzmann
solver for simulating reactive flows. It has been shown that the
method of invariant grids (MIG) is suitable for providing the re-
duced description of chemistry, and this approach enables to cope
with stiffness when solving the species equations. This is particu-
larly desirable in the case of explicit solvers, and it results in a
remarkable speedup due to the possibility of choosing a larger time
step dt.

Moreover, the number of fields involved in the computation is
drastically reduced, and this aspect is of paramount importance
because it effectively addresses the issue of large memory demand.
Indeed, while simulating reactive flows with detailed chemistry by
the lattice Boltzmann method, the number of fields (density func-
tions) stored in memory is remarkably large compared to conven-
tional methods by a factor ranging from tens to hundreds in the
case of 2- and 3-dimensional problems. Therefore, for instance, de-
tailed LB simulations of 2- and 3-dimensional hydrocarbon flames
(with hundreds of chemical species) are currently not affordable. In
that respect, the present study intends to be a first step toward the
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Fig. 14. Reduced model using the D2Q9 lattice in combination with a 2-dimensional invariant grid: evolution of the temperature field.

1846 E. Chiavazzo et al. / Combustion and Flame 157 (2010) 1833–1849
efficient, yet accurate, solution to this problem. Applications with
hydrocarbon fuels (e.g., methane) and more sophisticated LB mod-
els, capable to take into account compressibility effects, shall be
considered in the near future.

The construction of thermodynamic Lyapunov functions G for
reactive mixtures under non-isothermal conditions, the exact com-
putation of the derivatives of G and Jacobian matrix are presented
in an exhaustive manner with the help of two appendixes. Those
are important details concerning the construction of quasi equilib-
rium grids, the construction of thermodynamic projector and
implementation of the method of invariant grid.

Finally, notice that the method of invariant grids is a general
technique for model reduction of chemical kinetics, and it can be
still adopted together with different flow solvers, not necessarily
based on the lattice Boltzmann method.
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Appendix A

In Section 2, we assume that the reaction kinetic Eq. (4), to-
gether with a proper closure, describe the temporal evolution of
a closed reactive system towards a unique steady state. In particu-
lar, there are two classical conditions relevant to combustion
applications:

1. isobaric isenthalpic system;
2. isolated system.

Due to the second law of thermodynamics, for those cases there
exists a strictly convex function, only dependent on the state, that
decreases monotonically in time under the dynamics dictated by
the kinetic equations. Such a function is a global Lyapunov function
with respect to the governing Eq. (4), and it reaches its global min-
imum at the steady state. In particular, for both isobaric isenthalpic
mixtures and isolated systems, the thermodynamic Lyapunov
function G can be constructed on the basis of the specific mix-
ture-averaged entropy �s (in mass units) as follows:

G ¼ ��sþ
Xd

k¼1

kk

Xn

i¼1

lik

Wi
Yi

 !
; ð61Þ

where the evaluation of the Lagrange multipliers kk is discussed be-
low, and �s takes the explicit form:

�s ¼ 1
W

Xn

i¼1

siðTÞ �R lnðXiÞ �R ln
p

pref

 !" #
Xi: ð62Þ

The mixture mean molecular weight W and the mole fraction Xk

can be expressed in terms of mass fractions as

W ¼ 1Pn
j¼1Yj=Wj

; Xk ¼
Yk

Wk
Pn

j¼1Yj=Wj
: ð63Þ
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The specific entropy sj of species j depends on the temperature T
as follows:

sjðTÞ ¼ R a1j ln T þ a2jT þ
a3j

2
T2 þ a4j

3
T3 þ a5j

4
T4 þ a7j

� �
; ð64Þ

and pref represents a reference pressure, which generally is assumed
to be 1 bar. Computing the gradient $G and the Hessian matrix H in
the phase-space is not straightforward, since (61) explicitly de-
pends on the temperature, which is in turn implicit function of �h
or U through the non-linear relations in (8) and (10). In our study,
three approaches have been implemented and tested. The first ap-
proach is named finite differencing, and it approximates the exact
first derivative (e.g., for isobaric isenthalpic systems) by the follow-
ing ratio:

@G
@ci

����
p;�h

ffi GðT 0; . . . ; ci þ e; . . .Þ � GðT; . . . ; ci; . . .Þ
e

; ð65Þ

with the temperature T
0

evaluated by solving (e.g. iteratively by
Newton–Raphson method) the following equation:

�hðT 0; . . . ; ci þ e; . . .Þ ¼ �hðT; . . . ; ci; . . .Þ: ð66Þ

In general, first derivatives are evaluated using either forward
(such as (65)) or backward approximations, while central schemes
are preferred for second derivatives. Moreover, in order to improve
the accuracy, the positive small parameter e must be chosen of the
order of the square root of machine precision. More details can be
found e.g., in [38].

Alternatively, it is possible to differentiate (in principle up to
any order) the subroutine itself which evaluates the function
(61): such a technique is known as automatic differentiation (AD).
In the case of systems with fixed �h and p, the AD was applied to
the main subroutine implementing (61), where the temperature
is given by a secondary subroutine implementing a Newton–Raph-
son method for solving the enthalpy conservation equation in (10).
The AD systematically applies the chain rule to the full sequence of
elementary assignments in the code, and it provides with exact
values of the derivatives, which are thus not affected by any
round-off errors (unlike the finite differencing). However, by using
the code INTLAB [39] for Matlab, we have found that the AD is
slower than the finite differencing by one order of magnitude.

Finally, it is possible to find the exact form of the derivatives of
G, and in the following we illustrate this approach for an isobaric
isenthalpic reactor. The mixture-averaged specific enthalpy for an
ideal mixture is

�hðT;YiÞ ¼
Xn

i¼1

hiðTÞYi; ð67Þ

and the total differential d�h takes the form:

d�hðT;YiÞ ¼
@�h
@T

�����
Yi

dT þ @�h
@Y1

�����
T;Yi–1

dY1 þ � � � þ
@�h
@Yn

�����
T;Yi–n

dYn: ð68Þ

Setting d�h ¼ 0 (isenthalpic system), and recording the definition of
mixture-averaged specific heat under constant pressure Cp and spe-
cific enthalpies hi, the exact differential of temperature is written
as:

dT ¼ � 1
CpðT;Y1; . . . ;YnÞ

Xn

i¼1

hiðTÞdYi: ð69Þ

In other words, the partial derivatives of temperature under
constant pressure and mixture-averaged specific enthalpy read:

@T
@Yi

����
p;�h

¼ � hiðTÞ
CpðT;Y1; . . . ; YnÞ

¼ � hiðTÞPn
j¼1

CpjðTÞYj

; ð70Þ
where the fit for the specific heat Cpj of species j takes the form [42]

CpjðTÞ ¼ Rða1j þ a2jT þ a3jT
2 þ a4jT

3 þ a5jT
4Þ: ð71Þ

The derivative of (70), with respect to Yj, reads

@2T
@Yi@Yj

�����
p;�h

¼ hiðTÞCpjðTÞ
C2

pðT;Y1; . . . ;YnÞ
� hiðTÞhjðTÞ

C3
pðT;Y1; . . . ;YnÞ

Xn

k¼1

Yk
dCpk

dT
ðTÞ:

ð72Þ

By making use of the relations (63) and the chain rule, it is now
possible to write explicitly the components of the gradient $G,

@G
@Yi

����
p;�h

¼ � si

Wi
� @T
@Yi

����
p;�h

Xn

k¼1

Yk

Wk

dsk

dT
þ R

Wi
ln

YiW
Wi

 !
þ R

Wi

� ln
p

pref

 !
þ
Xd

k¼1

kk
lik

Wi
; ð73Þ

and of the Hessian matrix H,

@2G
@Yi@Yj

�����
p;�h

¼ �1
Wi

dsi

dT
@T
@Yj

����
p;�h

� 1
Wj

dsj

dT
@T
@Yi

����
p;�h

� @2T
@Yi@Yj

�����
p;�h

Xn

k¼1

Yk

Wk

dsk

dT

� @T
@Yi

����
p;�h

@T
@Yj

����
p;�h

Xn

k¼1

Yk

Wk

d2sk

dT2 þ
R

Wi

dij

Y i
� W

Wj

 !
;

ð74Þ

with dij denoting the Kronecker delta.
Let us assume that the steady state of the system has been com-

puted (e.g., using STANJAN [41]). Let @G*/@ Yi be the first derivative
of G, at the steady state, evaluated by setting kk = 0, k = 1, . . . ,d, in
(73). Imposing the following zero-gradient condition at the steady
state (point of global minimum):

l11
W1

. . . l1d
Wd

..

. . .
. ..

.

ln1
W1

. . . lnd
Wd

2
6664

3
7775

k1

..

.

kd

2
664

3
775 ¼ �

@G


@Y1

..

.

@G


@Yn

2
6664

3
7775; ð75Þ

and applying the first Gauss transformation to the rectangular alge-
braic system (75), the condition for the Lagrange multipliers kk is
explicitly written:

l11
W1

. . . l1d
Wd

..

. . .
. ..

.

ln1
W1

. . . lnd
Wd

2
6664

3
7775

T l11
W1

. . . l1d
Wd

..

. . .
. ..

.

ln1
W1

. . . lnd
Wd

2
6664

3
7775

k1

..

.

kd

2
664

3
775 ¼ �

l11
W1

. . . l1d
Wd

..

. . .
. ..

.

ln1
W1

. . . lnd
Wd

2
6664

3
7775

T @G


@Y1

..

.

@G


@Yn

2
6664

3
7775:

The case of an isolated system (U;V ¼ const) can be analyzed in
a similar manner. This time, the partial derivatives (70) and (72)
can be written as:

@T
@Yi

����
V ;U

¼ � UiðTÞ
CvðT;Y1; . . . ;YnÞ

¼ � UiðTÞPn
j¼1

CvjðTÞYj

;

@2T
@Yi@Yj

�����
V ;U

¼ eiðTÞCvjðTÞ
C2

vðT;Y1; . . . ;YnÞ
� UiðTÞUjðTÞ

C3
vðT;Y1; . . . ;YnÞ

Xn

k¼1

Yk
dCvk

dT
ðTÞ;

where Cv is the mixture-averaged specific heat under constant vol-
ume, and Cvj(T), for any species j, is given by the Meyer relation:

Cvj ¼ Cpj �R:

Moreover, now the mixture density �q is constant while the
pressure
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p ¼ �qRT
Xn

i¼1

Yi

Wi

changes in time, and this needs to be taken into account in formulas
(73) and (74).

Notice however that, it proves convenient to describe isolated
reacting mixtures in terms of molar concentrations ci. Indeed, since
the mixture density �q ¼

Pn
i¼1Wici is now both a conserved quan-

tity and a linear combination of molar concentrations, it can be
used for constructing the Lyapunov function G as follows:

G ¼ ��sþ
Xd

k¼1

kk

Xn

i¼1

lkici

 !
þ k

Xn

i¼1

Wici: ð76Þ

Thus, it suffices to compute all derivatives under fixed U, and
their explicit expressions are derived below. The conservation of
the mixture-averaged internal energy can be written

CvdT þ 1
�q
Xn

k¼1

WkUkðTÞdck ¼ 0;

so that the first and second partial derivatives of temperature with
respect to molar concentrations take the form:

@T
@ci

����
U

¼ �WiUiðTÞ
�qCv

; ð77Þ

@2T
@cj@ci

�����
U

¼ �
Wi Cv

dUi
dT

@T
@cj

���
U
� Ui

@Cv
@cj

���
U

� �
qC2

v
; ð78Þ

where

Cv ¼
1
�q
Xn

k¼1

WkCvkðTÞck;
@Cv

@cj

�����
U

¼ 1
�q

@T
@cj

����
U

Xn

k¼1

Wk
dCvk

dT
ck

 !
þWjCvjðTÞ

" #
:

By definition, mole fractions and molar concentrations are re-
lated by

mix ¼
Xn

j¼1

cj; Xk ¼
ck

mix
;

so that the following condition holds:

@Xk

@ci
¼ dkimix� ck

mix2 : ð79Þ

The gradient of the G function (76) has the following
components:

@G
@ci

����
U

¼ � 1
�q

@T
@ci

����
U

Xn

k¼1

dsk

dT
ck

 !
þ si

" #
þR

�q
ln

ciPn
k¼1ck

� �

þR

�q
ln

p
pref

 !
þ
Pn

k¼1ck

p
@p
@ci

����
U

" #
þ
Xd

k¼1

kklik þ kWi; ð80Þ

where

p ¼ RT
Xn

k¼1

ck;
@p
@ci

����
U

¼ R
@T
@ci

����
U

Xn

k¼1

ck þRT;

while the Hessian matrix of G is computed as follows:
@2G
@cj@ci

�����
U

¼ � 1
�q
@2T
@cj@ci

�����
U

Xn

k¼1

dsk

dT
ck

 !
� 1

�q
@T
@ci

����
U

@T
@cj

����
U

Xn

k¼1

d2sk

dT2 ck

 !

� 1
�q
@T
@ci

����
U

dsj

dT
� 1

�q
@T
@cj

����
U

dsi

dT
þR

�q

Pn
k¼1ck

ci

@Xi

@cj

þR

�q
1
p

@p
@cj

����
U

þ @p
@ci

����
U

� �
�
Pn

k¼1ck

p2

@p
@cj

����
U

@p
@ci

����
U

þ 1
RT

@2p
@cj@ci

�����
U

" #
; ð81Þ

and the second derivative matrix of pressure reads

@2p
@cj@ci

�����
U

¼ R
@2T
@cj@ci

�����
U

Xn

k¼1

ck þ
@T
@ci

����
U

þ @T
@cj

����
U

 !
:

The Lagrange multipliers kk and k in (80) are derived in a similar
way as illustrated for the previous case, by imposing zero gradient
at the steady state.

Finally, we should stress that, due to the second law of thermo-
dynamics, (61) and (76) represent two global Lyapunov functions
with respect to the kinetic systems (9) and (7), respectively. The
condition (75) is imposed at the equilibrium point ceq, and it is
adopted only to identify the Lagrange multipliers kk such that the
zero-gradient condition is fulfilled at ceq (consistently with the
Lyapunov second theorem on stability). Therefore, the above
expressions are general and can be adopted in the entire phase-
space for implementing the quasi equilibrium grid algorithm
(14), constructing the thermodynamic projector (23), and comput-
ing the exact Jacobian matrix J as reported below in Appendix B.
Toward this end, only the coefficients aji (readily available from
the Chemkin databases [42]) in the expressions (8), (64) and (71)
are required for each chemical species involved in a complex
reaction.

Appendix B

Let w be an arbitrary point of the phase-space. The linearization
of the vector field of motion f about w is written:

f ðwþ dwÞ ffi f ðwÞ þ JðwÞdw; ð82Þ

where the Jacobian matrix J = [@fi/@Yj] can be related to the Hessian
matrix H = [@2G/@Yi @Yj] of the Lyapunov function G, and it acts on
an arbitrary vector g as follows:

JgT ¼
Xr

s¼1

ms Xþs ðasHgTÞ �X�s ðbsHgTÞ
� 	

: ð83Þ

The matrix J in (83) can be decomposed as shown below:

J ¼ J 0 þ J 00; ð84Þ

where the two matrices J
0

and J
00

act as follows:

J 0gT ¼ �1
2

Xr

s¼1

Xþs þX�s
� 	

msðmsHgTÞ; ð85Þ

J 00gT ¼ 1
2

Xr

s¼1

Xþs �X�s
� 	

ms ðas þ bsÞHgT
� �

: ð86Þ

The Jacobian decomposition (84) splits J in two parts. The first
one J

0
is symmetric in the following sense

g1J 0HgT
2 ¼ g2J 0HgT

1; 8g1;g2; ð87Þ

while the second one J
00

vanishes at the steady state, due to the prin-
ciple of detail balance: Xþs ¼ X�s . In other words, at the steady state
of the system, we have

J ¼ J 0: ð88Þ

The symmetric part J
0
is relevant to the MIG method, and it takes the

following explicit form:
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Xn

j¼1

J 0ði; jÞgðjÞ ¼ �
Xr

s¼1

Xþs þX�s
2

msðiÞ
Xn

j¼1

HmT
s

� �
ðjÞgðjÞ;

Xn

j¼1

J 0ði; jÞgðjÞ ¼ �
Xr

s¼1

Xn

j¼1

Xþs þX�s
2

msðiÞ HmT
s

� �
ðjÞgðjÞ;

Xn

j¼1

J 0ði; jÞgðjÞ ¼ �
Xn

j¼1

Xr

s¼1

Xþs þX�s
2

msðiÞ HmT
s

� �
ðjÞgðjÞ;

J 0ði; jÞ ¼ �
Xr

s¼1

Xþs þX�s
2

msðiÞ HmT
s

� �
ðjÞ: ð89Þ

Similarly, the non symmetric part of the Jacobian matrix J
00

can
be written as follows:

J 00ði; jÞ ¼
Xr

s¼1

Xþs �X�s
2

msðiÞ½Hðas þ bsÞ
T �ðjÞ: ð90Þ
Remark. Notice that, any function obtained by multiplying G in
(61) and (76) by an arbitrary factor is still a thermodynamic
Lyapunov function with respect to the kinetic equations. Therefore,
the matrices J, J

0
and J

00
can be analytically determined, up to an

unknown multiplicative constant, using (84), (89), (90) and the
explicit expressions for H described in Appendix A. Nevertheless, if
needed, the unknown multiplicative constant can be recovered by
computing the Jacobian J via automatic differentiation only at the
steady state, and imposing the equality condition (88).
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