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Abstract. In the present work, we develop in detail the process leading to reduction of
models in chemical kinetics when using the Method of Invariant Grids (MIG). To this
end, reduced models (invariant grids) are obtained by refining initial approximations
of slow invariant manifolds, and used for integrating smaller and less stiff systems of
equations capable to recover the detailed description with high accuracy. Moreover,
we clarify the role played by thermodynamics in model reduction, and carry out a
comparison between detailed and reduced solutions for a model hydrogen oxidation
reaction.
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1 Introduction and motivation

The numerical solution of the full set of governing equations, as dictated by modeling
of reactive flows with detailed chemical kinetics, remains a challenging task. The reason
is, on one side, a large number of kinetic equations needs to be solved in order to keep
track of each chemical species. On the other side, a detailed reaction mechanism typically
contains many different chemical processes occurring on timescales that range over sev-
eral orders of magnitude, from seconds down to nanoseconds. It is this feature that gives
rise to the stiffness of the governing equations for the chemical reactions. Moreover, the
fluid mechanics of chemically reactive flows usually occurs at a narrower range on the
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order of milliseconds to microsecond. The stiffness drastically affects the implementation
of numerical solvers, where reducing the time step becomes necessary in order to both
avoid numerical instabilities (e.g., in the case of explicit schemes) and to keep a satisfac-
tory accuracy. As a result, the smallest time scales need to be resolved even when one is
interested only in the slow dynamics. In addition, the larger the number of elementary
reactions involved in the detailed mechanism, the more significant becomes the compu-
tational effort due to the evaluation of reaction rates. These issues make computations of
even simple reacting mixtures time consuming.

On the other hand, some reduction is often possible by simply setting up a crite-
rion for eliminating unimportant reactions (or species) from the detailed reaction mecha-
nism (see, e.g., the sensitivity analysis [1,2], the comparative analysis of entropy produc-
tion [3, 4], and the reaction path analysis [5]). However, in the present study we exploit
a more sophisticated concept of time-scale separation in order to construct a reduced
description of the detailed kinetic model. In fact, as mentioned above, there are many
chemical processes that are much faster than the fluid dynamic phenomena, so if we
are only interested in computing the system behavior on the scale of the fluid mechanics,
some chemical processes will be already self-equilibrated. The timescale-based reduction
techniques are all based on decoupling the fast equilibrating chemical processes from the
slower dynamics, and are implemented by seeking a low dimensional manifold of slow
motions in the solution space of the detailed system.

In this work, we focus on closed isothermal chemical reactors with a unique steady
state (equilibrium point). However, notice that applications of reduced models attained
by the suggested methodology to open reactive systems, under non-isothermal condi-
tions, have been shown recently [20, 21].

The idea that a low dimensional manifold provides a reduced description of a com-
plex system stems from the representation of its numerical solutions in the phase-space
(concentration space). The dynamics of such a complex reactive system is often charac-
terized by a short initial transient during which the solution trajectories approach low-
dimensional manifolds in the concentration space, known as the slow invariant mani-
folds (SIM). The remaining dynamics lasts much longer and evolves along the SIM to-
wards the steady state. Thus, it turns out that constructing the SIM enables to establish
a simplified description of a complex system by extracting only the slow dynamics and
neglecting the fast. As a result, the detailed large set of equations can be reduced to a
much smaller system without a significant loss of accuracy.

Therefore, much effort has been devoted to setting up automated model reduction
procedures based (explicitly or implicitly) on the notion of SIM: The method of invari-
ant grids (MIG) [6, 7], the computational singular perturbation (CSP) method [29–31],
the intrinsic low dimensional manifold (ILDM) [27, 28], the invariant constrained equi-
librium edge preimage curve method (ICE-PIC) [32], the equation-free approaches [33],
the method of minimal entropy production trajectories (MEPT) [35] and minimum cur-
vature [36], the constrained runs algorithm in [34] and the finite-time Lyapunov analysis
in [37] are some representative examples.
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This work is organized in sections as follows. In Section 2, the notions of invariant
manifold and slow invariant manifold are discussed. In Section 3, we briefly outline the
kinetic equations for reactive systems. Dissipative stiff systems and the notion of ther-
modynamic projector are discussed in Section 4. In Section 5, we review the method of
invariant grids and the quasi-equilibrium grid algorithm. The above ideas are discussed
with the help of two illustrative example in Section 6. In Section 7, we present the param-
eterization of invariant grids and numerical integration of reduced dynamical systems
while, in Section 8, the issue of reducing an arbitrary off-manifold initial condition is ad-
dressed. Finally, conclusions are drawn in Section 9.

2 Slow invariant manifold (SIM)

In this section, we discuss the notions of (positively) invariant manifold, slow invariant
manifold, invariant grid, and slow invariant grid, for a general system of autonomous
ordinary differential equations in a domain D in Rn,

ċ= J(c). (2.1)

2.1 Invariant manifold and invariance equation

A submanifold Ω⊂D is a positively invariant manifold for the system (2.1) if, for any solu-
tion c(t), inclusion c(t0)∈Ω, implies that

c(t)∈Ω, for t> t0.

Such a set Ω is often called an invariant manifold.
For each point c ∈ Ω, the tangent space TcΩ is defined. If Ω is positively invariant

with respect to system (2.1), then vector J(c) belongs to this tangent space. This gives us
a necessary differential condition of invariance

J(c)∈TcΩ. (2.2)

In the sequel, because Ω is unambiguously defined, to save notation we write Tc instead
of the full notation TcΩ. In order to transform the inclusion condition (2.2) into an equa-
tion, we need to execute the following steps:

1. to take a complement to Tc in Rn, Rn =Tc⊕Ec,

2. to split J(c) into two components: J(c)= J‖(c)+ J⊥(c), J‖(c)∈Tc, J⊥(c)∈Ec,

3. to write down an equation J⊥(c)=0.

These operations are conveniently described by means of projector operators. Let for any
subspace Tc a projector P on Tc be defined with

image imP=Tc, kernel kerP=Ec.
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Then the necessary differential condition of invariance takes the following form

(1−P)J =0. (2.3)

The left-hand side of this equation is important for many constructions and has its own
name, the defect of invariance:

∆= J⊥=(1−P)J.

The unknown in this invariance equation (2.3) is the manifold Ω. This manifold has to
be represented in a parametric form, as an immersion F :W→D of a domain W in the
parameter space into the domain D; Ω is the image of this immersion: Ω = F(W). The
tangent space at the point F(y) is the image of the differential of F at the point y. Hence,
Eq. (2.3) is a differential equation for F. The theory of analytic solutions of this equation
with analytic vector field J near an equilibrium was developed by Lyapunov [39] (the
Lyapunov auxiliary theorem). Applications of this theorem to model reduction were
developed recently [9].

Projector P depends on the point c and the space Tc. Invariance equations for different
choices of this projector field P are equivalent, the only requirement is imP= Tc. But the
convergence properties of computational methods significantly depend on the projector
choice. The definition of slowness can also be sensitive to this choice.

At a first glance, there exists a natural method for projector field P construction: If for
any c a positive definite inner product 〈x,y〉c (a Riemannian structure) is defined, then
we can choose P as 〈 , 〉c-orthogonal projector, and

J(c)= J‖(c)+ J⊥(c),

is 〈 , 〉c-orthogonal splitting. A more careful analysis shows that this idea is ”almost true”,
and after some modifications leads to the thermodynamic projector [23, 25] (see Section 4.2
below). The relevant Riemannian structure is generated by the second differential of the
entropy.

In a majority of applications, we are looking not for an approximation to an invari-
ant manifold that definitely exists, but rather for an approximate invariant manifold with
sufficiently small defect of invariance ∆ (‖∆‖≪‖J‖, for example).

2.2 Slow manifold

Reduction of description for dissipative kinetics assumes (explicitly or implicitly) the fol-
lowing picture (Fig. 1): There exists a manifold of slow motions Ωslow in the phase-space.
From the initial conditions the system goes quickly in a small neighborhood of the mani-
fold, and after that moves slowly along it. The manifold of slow motions (slow manifold,
for short) must be positively invariant: If a solution starts on the manifold at t0, then it
stays on the manifold at any future time t> t0. In some neighborhood of the slow mani-
fold the directions of fast motion can be defined. Of course, we always deal not with the
invariant slow manifold, but with some approximate slow manifold Ω.
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Figure 1: Slow-fast motion decomposition and the existence of a thermodynamic Lyapunov function G.

Thermodynamics is useful for model reduction in dissipative systems. The govern-
ing idea of these applications is [23]: During the fast motion the entropy should increase,
hence, the point of entropy maximum on the plane of rapid motion is not far from the
slow manifold, in the area where fast and slow motion have comparable velocities (Fig. 1,
inside dashed circles). This implies that differential of the entropy at points near the slow man-
ifold almost annuls the planes of fast motions (i.e., entropy gradient is almost orthogonal to
these planes). For sufficiently strong fast-slow time separation the fast invariant subspace
of a Jacobian near the slow manifold approximates the plane of fast motions, hence, this
invariant subspace is also nearly orthogonal to the entropy gradient. See also the illus-
trative examples in Section 4.

All the definitions of slow manifold for a given system are based on the comparison
of motion to the manifold with motion along the manifold. There should be relatively
fast contraction in selected transversal directions (in directions of projector kernel) and
relatively slow change of vector field tangent component along manifold. In this paper,
we do not review all these approaches (the spectral gap condition, the cone condition,
various stability conditions), the details and further references are in [10–14].

For our approach, the slow invariant manifold is the stable fixed point of one of the
following processes:

1. Relaxation due to a film extension of dynamics [17], that is defined by the equation for immersed
manifold motion with velocity J⊥(c),

dF(y)

dt
=(1−P)J, (2.4)

2. Iterations of the Newton method with incomplete linearization for invariance equation (2.3), that
is the Newton process without linearization of P: We take J in the first approximation, while for
P use the zeroth approximation (for details see Section 5.2).
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If the Newton method with incomplete linearization converges, then it leads to slow
manifold in the usual sense while the standard Newton method does not. (This is con-
venient because the standard Newton method is also more complicated.) For sufficiently
strong fast-slow time separation, most of the numerous definitions of slow invariant man-
ifold give the same result (exactly the same, or up to higher order terms, it depends on
the required regularity of manifolds) [17].

If we have found an approximate slow invariant manifold Ω, then the corresponding
slow reduced system is the system on the manifold Ω defined by the projected vector field

ċ=PJ(c), (2.5)

where c∈Ω and projector P : Rn →TcΩ depends on the point c and on the tangent space
TcΩ, both. Because F is an immersion, the differential of F(y), DF(y), is reversible on its
image, TF(y)Ω. Hence, reduced system (2.5) defines dynamics in the parameter space

ẏ=
(

DF(y)
)−1(

PJ
(

F(y)
))

. (2.6)

3 Dissipative reaction kinetics

In a closed system with n chemical species A1,··· ,An, participating in a complex reaction,
a generic reversible reaction step can be written in the form of a stoichiometric equation

αs1A1+···+αsn An ⇋ βs1A1+···+βsn An, (3.1)

where s is the reaction index, s =1,··· ,r (r steps in total), and the integers αsi and βsi are
stoichiometric coefficients of the step s. For each step, we can introduce n-component
vectors αs and βs, with components αsi and βsi, and the stoichiometric vector γs=βs-
αs. For every Ai the extensive variable Ni describes the number of moles of species i.
If V is the reactor volume, then the molar concentration of Ai is given by ci = Ni/V.
Species concentrations evolve in time, according to the stoichiometric mechanism (3.1),
as follows:

Ṅ=VJ(c), J(c)=
r

∑
s=1

γsWs(c), (3.2)

where the dot denotes the time derivative and Ws(c) is the reaction rate function of the
step s. In particular, the polynomial form of the reaction rate function is provided by the
mass action law

Ws(c)=W+
s (c)−W−

s (c)= k+
s (T)

n

∏
i=1

cαi
i −k−s (T)

n

∏
i=1

c
βi

i , (3.3)

where k+
s (T) and k−s (T) are the constants of the direct and of the inverse reactions rates

of the step s, respectively. The most popular form of their dependence is given by the
Arrhenius equation

k±s (T)= a±s Tb±s exp(S±
s

/

kB)exp(−H±
s

/

kBT). (3.4)
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In the latter equation, a±s ,b±s are constants and H±
s , S±

s activation enthalpies and entropies,
respectively. The rate constants are not independent, and the principle of detail balance
establishes the relation between those quantities

W+
s (ceq)=W−

s (ceq), ∀ s=1,··· ,r, (3.5)

where the non-negative vector ceq is the steady state (equilibrium point) of the system
(3.2). In general, in order to solve the kinetic equations (3.2), additional conditions are
needed. For instance, in the case of isolated reactors, the additional equations

ū,V = const,

where ū is the internal energy, must be taken into account, whereas for an isochoric
isothermal system we impose V,T = const, and so forth. However, in the latter case,
Eq. (3.2) takes a closed form

ċ=
r

∑
s=1

γsWs(c)= J(c). (3.6)

Finally, also other linear constraints, related to the conservation of atoms, must be con-
sidered. In general, such conservation laws can be written as follows:

Dc=const, (3.7)

where l fixed and linearly independent vectors di are the rows of the l×n matrix D, and
const is a constant vector. More details about chemical kinetics can be found, e.g., in the
classical work of Williams [8].

4 Dissipative systems with disparate time scales

In the present work, we deal with the kinetic equations (3.6) describing time evolution of
isochoric isothermal closed reactors towards the unique steady state, ceq, in the interior of
the phase-space. Moreover, let us assume that the dynamics induced by the vector field
J is characterized by different time scales. In other words, let the Jacobian matrix of (3.6)
posses non-positive eigenvalues with different orders of magnitude. In this case, relax-
ation of solution trajectories, in the phase space, presents a remarkable behaviour: After a
short initial transient, they reach the same low dimensional manifold Ω. In the remaining
evolution, which lasts much longer, trajectories do not leave Ω any more, while proceed-
ing towards the steady state (see Fig. 1). In general, the slow motions of (3.6) are relevant
for its macroscopic description. In this case, since those motions are ”anchored” to the
SIM, only m equations of (3.6) are independent (m is the SIM dimension): The minimal
subset of independent equations is the reduced system, while the rest of variables (n−m)
respect some relations dictated by the SIM equation. The final aim in model reduction is
to obtain the reduced system (smaller and less stiff than the detailed one) to solve instead
of (3.6). According to the MIG method, the following steps need to be executed [7]:
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1. Initial grid construction;

2. Grid refinements;

3. Invariant grid parameterization;

4. Reduction of both the system (3.6) and its initial condition.

4.1 Thermodynamic Lyapunov function

Our scope is to illustrate the full model reduction process, and to this end, we need to
discuss some properties of dynamical systems characterized by disparate time scales and
supported by Lyapunov functions.

Let a Lyapunov function G with respect to (3.6) be defined, such that the following
dissipation inequality holds

Ġ(c)=(∇G, J)≤0. (4.1)

Based on the ideas in Section 2.2, the introduction of G is convenient for model reduc-
tion, and in the next sections we intend to show that, when such a function G is defined
and the invariant grid constructed, the dynamics induced by the vector field J can be
decomposed in terms of slow and fast motions on the basis of thermodynamics.

There are four classical conditions in thermodynamics where the Lyapunov function
for the kinetic equation is well known:

1. Isolated systems (fixed volume V and internal energy ū);

2. Isobaric isenthalpic systems (fixed pressure p and enthalpy h̄);

3. Isobaric isothermal systems (fixed pressure p and temperature T);

4. Isochoric isothermal systems (fixed volume V and temperature T).

When dealing with both isolated and isobaric isenthalpic systems, G is related to the
mixture averaged entropy s̄ which, for ideal gas mixtures, takes the following explicit
form:

GV,ū =Gp,h̄ =−s̄=−
1

W̄

n

∑
i=1

[

si(T)−Rln(Xi)−Rln
( p

pre f

)

]

Xi, (4.2)

where W̄, R, Xi, p and pre f denote the mean molecular weight, the universal gas constant,
the mole fraction of species i, the total pressure and a reference pressure, respectively. The
specific entropy si, according to [26], is assumed to have the following dependence on the
temperature T

si(T)=R
(

ai1 lnT+ai2T+
ai3

2
T2+

ai4

3
T3+

ai5

4
T4+ai7

)

, (4.3)

where, for each chemical species i, aij are tabulated constants.
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In contrast, in the case of isobaric isothermal and isochoric isothermal reactors, the
Lyapunov function is based on the mixture Gibbs free energy ḡ and Helmholtz free en-
ergy f̄ , respectively, as follows:

Gp,T = ḡ
/

RT = ū
/

RT− s̄
/

R, (4.4a)

GV,T = f̄
/

RT = h̄
/

RT− s̄
/

R. (4.4b)

A different form of a Lyapunov function for both the latter cases can be obtained from
(4.4) and (4.2)

G=
1

ρ̄

n

∑
i=1

[

ci ln(ci)+ln(RT)ci

]

, (4.5)

where ρ̄ = ∑i ciWi is the mixture mean density, Wi the molecular weight of species i, and
all the constant terms, due to isothermal conditions, are neglected.

Here, it proves convenient, for various constructions discussed later on in the paper,
to introduce the definition of entropic scalar product

〈x,y〉c =(x,Hy), (4.6)

where H =
[

∂2G
/

∂ci∂cj

]

is the second derivative matrix of G, while x and y are two
arbitrary vectors. Note that the latter scalar product depends on the point c in which
the Hessian matrix H is evaluated. However, in the following, in order to save notation
we shall use the symbol 〈x,y〉 instead of 〈x,y〉c. Moreover, in the following, the linear
functional appearing in the left-hand side of (4.1) will be denoted as

DG(x)=(∇G,x), (4.7)

with kerDG indicating its null space.

4.2 Thermodynamic projector

In general, the invariance condition (2.3) is valid for an arbitrary projector P, whereas the
tangent space Tc, computed at the SIM point c, is spanned by the projector image:

im
(

P(c)
)

≡Tc.

However, generalizing notions of Section 2.2 leads to a special construction of P, which
has its own name: thermodynamic projector [7,23,25]. The idea behind the thermodynamic
projector is the following: If a given manifold indeed represents the manifold of slow
motions, then the Lyapunov function G has been decreasing during the fast process of
relaxation towards this manifold. Therefore, the points of the manifold appear as the
minimum points of the Lypunov function on the manifolds of fast motion. The latter can
be approximated accurately in a small vicinity of the slow manifold using the Lyapunov



710 E. Chiavazzo, I. V. Karlin and A. N. Gorban / Commun. Comput. Phys., 8 (2010), pp. 701-734

function gradient at the points of SIM. This intuitive picture is formalized below. Impor-
tantly, the thermodynamic projector is updated on each iterations when seeking the SIM
from the invariance condition as illustrated below in Section 5.2.

Let us consider a grid approximating a m-dimensional slow invariant manifold. If G
is a discrete subset in the m-dimensional parameter space Rm ={ξ1,··· ,ξm}, F |G denotes
a discrete mapping of G into the concentration space. Let us consider an approximation
procedure to restore the smooth map F from the discrete one F |G . The derivatives f i =
∂F

/

∂ξi are available, and the tangent space, at any grid point c, is

Tc = Lin{ f i}, i=1,··· ,m. (4.8)

The subspace Tc,0 =
(

Tc∩kerDG
)

defines, if Tc 6= Tc,0, the tangent vector e∈ Tc, through
the following conditions

〈e,x〉=0, ∀ x∈Tc,0, (4.9a)

DG(e)=1, (4.9b)

so that, the thermodynamic projection of an arbitrary vector x has the form

Px= DG(x)e+
m−1

∑
i=1

〈ki,x〉ki. (4.10)

The basis {k1,··· ,km−1} (orthonormal with respect to the entropic scalar product (4.6))
spans the subspace Tc,0. In the case Tc≡Tc,0, the projector (4.10) becomes

Px=
m

∑
i=1

〈ki,x〉ki. (4.11)

Remark 4.1. Here, it is worth stressing the relevant feature of the latter projector. Let us
consider a m-dimensional SIM in a n-dimensional phase space. The above construction
is based on the idea that the thermodynamic considerations (minimization of the ther-
modynamic Lyapunov function) are solely required to construct fast manifolds in the
vicinity of SIM. On the other hand, if it is possible to describe the fast subspace in dif-
ferent terms (for example, as a result of a different algorithm for construction of SIM),
both representations of fast motions should be consistent. Let a vector ari

(c) be a generic
vector of the fast subspace. Then

ari
(c)∈kerP, ∀ i=1,··· ,n−m, (4.12)

where kerP is the null space of (4.10) evaluated at c. In other words, the thermodynamic
projection of fast directions, in a neighborhood of the SIM, is ”almost” null. We shall
illustrate that the consistency is indeed achieved by considering a numerical example
below where the fast manifold is defined as the fast subspace of the Jacobian matrix at
the points of a SIM.
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5 Method of invariant grids

In this section, we present a general overview of the Method of Invariant Grids (MIG).
The interested reader can find more details in [6, 7, 16–20].

5.1 Slow invariant grids

For computational purposes, the discrete analogue of the problem of slow invariant man-
ifold was developed in [6, 7].

We are looking for SIM as an immersion F of the parameter domain W into D, F :W→
D. Now we consider a discrete subset G ⊂W . All functions are given on G, and their
smooth continuation on W could be constructed by various approximation technique
(e.g., by low-order interpolation). We use notation F |G for restricting a function on a grid.
An approximation technique gives a smooth function F[F |G ]. Let the transformation of a
discrete set of values into a smooth function

F |G 7→F[F |G ],

be chosen. For each y ∈ G image of the differential DyF[F |G ](y) is a ”tangent plain” to
discrete set F |G (G at point F |G (y)):

Ty = imDyF[F |G ](y).

We call F |G (G) an invariant grid, if it satisfies the grid version of the invariance equation

(1−P)J
(

F(y)
)

=0, for y∈G, P : Rn →Ty. (5.1)

The grid version of the film equation (2.4) is also a motion in the defect of invariance
direction (1−P)J

(

F(y)
)

. The Newton method with incomplete linearization for grids
has the same form as for continuous manifolds, and it is illustrated in Section 5.2. Hence,
we can define the slow invariant grid as a stable fixed point of (one of) these processes.
Formula (2.6) gives a velocity vector field on G and the approximation methods continue
this vector field on the parameter space W , as illustrated in more detail in Section 7. This
is the reduced model.

5.2 Grid refinements

Using grid connectivity, one can introduce differentiation operators in order to estimate
the tangent vectors and define the projector operator P at every node. Let us assume
that a rough approximation of the slow invariant manifold Ω can be constructed, and
let G0 be a grid describing this approximation. In general, the invariance defect ∆ is not
expected to vanish at each node of G0, and the latter grid has to be refined. Namely, a
generic grid node c can be updated and shifted to the new location, c+δc, with a smaller
defect of invariance

∆=[1−P]J(c+δc).
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The node correction δc can be computed by solving the incompletely linearized invari-
ance condition [24] where the vector field J is expanded up to the first order about c,
while the projector P up to the zeroth order

[

1−P(c)
][

J(c)+L(c)δc
]

=0, (5.2)

with L=
[

∂Ji

/

∂cj

]

denoting the first derivative matrix of the vector field J.
Grid refinements can be accomplished using the Newton method with incomplete lin-

earization supplemented with the solvability condition (i.e., corrections are movements in
the fast subspace)

Pδc=0. (5.3)

Let us denote the null space of D and P as kerD and kerP, respectively. It proves conve-
nient to choose an orthonormal basis {bi} in the subspace

S=(kerD∩kerP),

with respect to a proper scalar product. Let the dimension of S be r=dim(S), the correc-
tion can be cast in the following form

δc=
r

∑
i=1

δibi,

so that the linearized invariance equation (5.2) becomes a linear algebraic system in terms
of δi

r

∑
i=1

δi

(

(1−P)Lbi,bk

)

=−
(

(1−P)J,bk

)

, k=1,··· ,r, (5.4)

where the notation (x,y) indicates the Euclidean scalar product of two arbitrary vectors
x and y.

Remark 5.1. The usual scalar product (,) was used to compute the components of the
left-hand side of (5.2) with respect to the basis vectors {bi}. Nevertheless, a different
scalar product can be also used without losing generality.

In the case of the thermodynamic projector (4.10), it proves convenient to choose the
basis {bi} orthonormal with respect to the entropic scalar product 〈,〉 (see Sections 4.1
and 4.2) and write (5.4) as follows:

h

∑
i=1

δi〈(1−P)Lbi,bk〉=−〈(1−P)J,bk〉, k=1,··· ,h. (5.5)

In this case, since (4.10) is ”almost” 〈,〉-orthogonal (〈imP,kerP〉∼=0) in a neighborhood of
the SIM, (5.5) can be approximated and simplified as follows:

h

∑
i=1

δi〈Lbi,bk〉=−〈J,bk〉, k=1,··· ,h. (5.6)
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In contrast, according to the relaxation method (due to film equation (2.4)), the node
correction takes on the form

δc=τ∆(c),

where the parameter τ has the dimension of time. Estimates of τ can be found in the
literature [7]

τ =−
〈∆,∆〉

〈∆,L∆〉
. (5.7)

Notice however that, both the Newton method and the relaxation method may face the
problem of the Courant instability in the case of fine grids, as illustrated in more detail in
Section 5.5 and [7, 16].

5.3 Initial grid based on quasi-equilibrium manifolds

As demonstrated in [16], various approximated descriptions of SIM can be utilized in or-
der to initialize MIG iterations. A cheap and accurate enough approximation is provided
by quasi-equilibrium manifolds (QEM). By a definition, a q-dimensional QEM is a mani-
fold in the concentration space which minimizes a Lyapunov function G (with respect to
the kinetic equation) under a set of q linear constraints. Let us consider the minimization
problem







G(c)→min,
n

∑
i=1

a
j
ici = ξ j, j=1,··· ,q,

(5.8)

where
{

aj =(a
j
1,··· ,a

j
n)

}

is a set of q fixed vectors expressing the primitive variables ci in
terms of new parameters ξ j. Because of convexity of G, once q values are assigned to the
quantities ξ j, the solution of (5.8) is unique when it exists [40]. Regarding ξ j as variables,
the joint set of constrained minima forms the q-dimensional quasi-equilibrium manifold
(QEM) corresponding to the vector set {aj}. Quasi-equilibrium manifolds provide rea-
sonably good initial approximations of slow invariant manifolds, and the rationale be-
hind is discussed in Section 2.2. Moreover, comparisons between QEM and SIM can be
also found in the literature [16, 18].

Before proceeding further, we note that the QEM can be by itself of interest for model
reduction even before any refinement is addressed. For instance, the rate-controlled
constrained-equilibrium (RCCE) method uses directly the notion of QEM for simplify-
ing reaction mechanisms in combustion [41–43].

For the sake of completeness, below we briefly review the quasi-equilibrium grid
algorithm [18] for constructing a grid based approximation of a QEM. Let E be the (d+
q)×n matrix, constructed by adding the aj vectors as q additional rows to the matrix D.
Let the steady state of (3.6) be denoted by

c0 =(c0
1,··· ,c0

n),
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a QEM state c1 can be computed, in a neighborhood of c0, by solving the linear algebraic
system

z

∑
i=1

〈

t j,ρi

〉

ϕi =−(∇G,t j), j=1,··· ,z−q, (5.9a)

z

∑
i=1

(

a1,ρi

)

ϕi =0, ··· ,
z

∑
i=1

(

ak,ρi

)

ϕi = εk, ··· ,
z

∑
i=1

(aq,ρi)ϕi =0, (5.9b)

with respect to the unknowns ϕi. If {ρ1,··· ,ρz} and {t1,··· ,tz−q} are two vector bases
spanning the null space of the matrix D and E, respectively, then

c1 =(c0
1+dc1,··· ,c0

n+dcn), (5.10a)

(dc1,··· ,dcn)=
z

∑
i=1

ϕiρi. (5.10b)

By referring to system (5.9), all derivatives of G are evaluated at c0 and, through the last
q equations, we impose that c1 belongs to a Cartesian grid in the space

{

ξ1,··· ,ξq
}

, with

the fixed parameter εk defining the grid step along ξk. Similarly, by solving (5.9) at c1,
a new QEM point c2 can be found. In general, this procedure can be iterated as long as
all the coordinates of the computed state are non-negative. The collection of computed
states is called the quasi-equilibrium grid.

Finally, in the literature there are suggestions for choosing the set of parameteriza-
tion vectors {aj}. For instance, the spectral quasi-equilibrium manifold is constructed when
those vectors are given by q left eigenvectors of the Jacobian matrix L at the steady state,
corresponding to the q smallest eigenvalues by absolute value [16]. As an alternative, the
parameters ξ j in (5.8) may represent physical quantities such as total number of moles,
active valence or free oxygen [42].

5.4 Construction under non-isothermal conditions

In the case of non-isothermal conditions, an additional equation is needed in order to
close the system of kinetic equations (3.2). This equation imposes the conservation of
internal energy ū or enthalpy h̄, thus, for isolated and isobaric isenthalpic reactors, the
following quantities

ū=
n

∑
i=1

ui(T)Yi, h̄=
n

∑
i=1

hi(T)Yi, (5.11)

are fixed, respectively. In the following, we deal with ideal gas mixtures where the inter-
nal energy ui and enthalpy hi of species i are assumed to depend only on the tempera-
ture, while the corresponding mass fraction is denoted by Yi. Moreover, polynomial fits
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are typically utilized to account for the temperature dependence [26] of ui(T) and hi(T):

ui(T)=R
(

ai1T+
a2i

2
T2+

a3i

3
T3+

a4i

4
T4+

a5i

5
T5+a6i

)

−RT, (5.12a)

hi(T)=ui(T)+RT. (5.12b)

A Lyapunov function of the kinetic system (3.2) can take the more general expression

G̃=G+
l

∑
i=1

λi

n

∑
j=1

dijcj, (5.13)

where the G function is defined as illustrated in Section 4.1, dij is a generic element of the
matrix D defined in (3.7), and the fixed quantities λi are determined imposing that, at the
steady state ceq, the gradient

∇G̃(ceq)=0.

By observing that the rightmost term of (5.13) is a linear combination of conserved quan-
tities, it is straightforward to prove that G̃ represents a Lyapunov function with respect
to the kinetic equation (3.2), as soon as the function G also does. When dealing with non-
isothermal reactors, it proves convenient to choose the function G̃ in order to construct
the thermodynamic projector (4.10), and implement the numerical procedures described
in Sections 5.2 and 5.3. Indeed, if all derivatives ∇G̃ and H are computed by differen-
tiating (5.13) under fixed energy ū (or enthalpy h̄), then both the conservation of atoms
(3.7) and Eqs. (5.11) are automatically taken into account. In this case, we do not need to
include any further equation to describe the temperature changes in the reaction: temper-
ature values at any node of the invariant grid can be evaluated afterwards, upon solution
of (5.12) by Newton-Raphson method. Exact expressions for computing first and second
derivatives of G̃ can be found in [21].

5.5 Uniqueness, stability and computational effort

In general, there are many solutions to the invariance condition (2.3) which could be
considered as a candidate of slow invariant manifolds. For instance, a subset of those so-
lutions is given by all semi-trajectories {c(t),t>0} which are obviously invariant. More-
over, in a vicinity of a stable equilibrium point, almost all solutions have the slowest
Lyapunov exponent. Hence, almost all semi-trajectories could be considered as one-
dimensional slow invariant manifolds, since they meet intuitive expectations asymptot-
ically at t →+∞. It becomes necessary to select one slow manifold that is the best, in
some sense. It can be proven [17] that definition of slow invariant manifolds as the stable
fixed point of iterative procedure described in Section 2.2 reduces significantly the set of
solutions to (2.3) and, in a neighborhood of a stable equilibrium of an analytical system,
it guarantees uniqueness of analytical slow invariant manifolds.

Based on our numerical computations, constructing invariant grids by the above it-
erative methods has never led to multiple solutions. In this respect, it is also important
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to reflect on the consequences of a possible convergence of the proposed numerical al-
gorithm to an invariant solution which is not slow, say a generic semi-trajectory. In this
case, though one would expect that corrections (5.4), (5.6) and (5.7) vanish, they do not.
An arbitrary semi-trajectory is invariant under the dynamics of the kinetic system (3.2),
but not stable under the iterative refinement of Section 5.2. Indeed, in this case, small
perturbations (always present in any calculation on computers) have the effect to make
non-invariant the solution to the next iteration. Several illustrative examples, where the
initial grid was chosen in the vicinity of solution trajectories, confirmed the above feature
of the MIG algorithm. Once again, we intend to stress the crucial result that iteration
stability represents the key point for slowness.

Notice that, although rigorous proof concerning the existence of solutions to the New-
ton method with incomplete linearization (see Sections 2.2 and 5.2) for non-linear systems
are not yet available in the literature, rigorous proofs of global existence and uniqueness
of slow invariant manifolds, obtained by the film equation of dynamics (2.4), were ob-
tained recently for a class of linear problems [15].

Both the Newton method with incomplete linearization and the relaxation method
(Section 5.2) are explicit numerical schemes to solve the invariance condition (2.3) and
the film equation (2.4), respectively. Therefore, as it was first pointed out in [7], they
may face the issue of Courant instability. For instance, if the initial grid is characterized
by a small node spacing, at some nodes a norm of the defect of invariance ∆ exhibits a
divergent behavior, instead of dying out as iterations proceed further (see also [7, 16]).
A way to avoid such instability is well known. This is decreasing the time step. In our
problem, instead of a true time step, we have a shift in the Newtonian direction. Formally,
we can assign the value h̃ = 1 for one complete step in the Newtonian direction, so that
we can extend the Newton method to arbitrary h̃. To this end, let us find δi, e.g., from
(5.4), and update δc proportionally to h̃; the corrected node is

cn+1 = cn+ h̃δcn,

where the subscript n denotes the number of iteration. Everywhere the parameter h̃ is
maintained as large as possible without running into convergence problems. In the fol-
lowing, if not otherwise stated, we use h̃=1. Similar considerations are applied to elimi-
nate the Courant instability in the case of relaxation method.

Finally, it is worth pointing out that the number of nodes of uniform grids (therefore
the computational effort associated with the MIG approach, as well as with any other
grid-based method for model reduction) scales as ε−q, where q is the grid dimension
while the small parameter ε is representative of the grid spacing. Though this may seem
inefficient, we should stress that invariant grids are constructed and tabulated only once
for a later and efficient integration of the kinetic equations. An estimate of the computa-
tional time needed for computing two-dimensional grids, in the case of realistic hydrogen
combustion, is reported in [19].
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6 Illustration

It is useful to explain the above notions with the help of two illustrative examples. First,
we consider the four step three species reaction (Example 1):

1. A↔B, k+
1 =1, (6.1a)

2. B↔C, k+
2 =1, (6.1b)

3. C↔A, k+
3 =1, (6.1c)

4. A+B↔2C, k+
4 =50, (6.1d)

in a closed system, under fixed volume and temperature. The atom balance reads

cA+cB+cC =1,

while the equilibrium point is chosen as c
eq
A = 0.1, c

eq
B = 0.5, c

eq
C = 0.4. The inverse rate

constants k−i can be calculated from the steady state and k+
i , by invoking the principle

of detailed balance (3.5). The latter mechanism is effectively two dimensional, and a 1-
dimensional slow invariant manifold can be constructed for its reduced description. For
that reaction, the system (3.6) takes the explicit form

ċ= J(c)=W1





−1
1
0



+W2





0
−1
1



+W3





1
0
−1



+W4





−1
−1
2



, (6.2)

where

W1 = k+
1 cA−k−1 cB, W2 = k+

2 cB−k−2 cC, (6.3a)

W3 = k+
3 cC−k−3 cA, W4 = k+

4 cAcB−k−4 c2
C. (6.3b)

Example 2 is a model for hydrogen oxidation, see, e.g., [17, p. 291]. Let us consider
a closed system with six species H2 (hydrogen), O2 (oxygen), H2O (water), H, O, OH
(radicals) reacting in a constant volume and under constant temperature. The detailed
kinetic mechanism and the direct rate constants of each step are:

1. H2↔2H, k+
1 =2, (6.4a)

2. O2↔2O, k+
2 =1, (6.4b)

3. H2O↔H+OH, k+
3 =1, (6.4c)

4. H2+O↔H+OH, k+
4 =103, (6.4d)

5. O2+H↔O+OH, k+
5 =103, (6.4e)

6. H2+O↔H2O, k+
6 =102. (6.4f)
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The atom balances read

2cH2
+2cH2O+cH +cOH =bH =2, (6.5a)

2cO2
+cH2O+cO+cOH =bO =1, (6.5b)

and the equilibrium point possesses now the following coordinates:

c
eq
H2

=0.27, c
eq
O2

=0.135, c
eq
H2O =0.7,

c
eq
H =0.05, c

eq
O =0.02, c

eq
OH =0.01.

The concentration space is 6-dimensional, but the effective dimension is four because of
the linear constraints (6.5). This time, both 1- and 2-dimensional slow invariant mani-
folds can be constructed. Time evolution of molar concentrations, as dictated by (6.4), is
described by the following system of equations

ċ= J(c)=

















−W ′
1−W ′

4−W ′
6

−W ′
2−W ′

5

−W ′
3+W ′

6

2W ′
1+W ′

3+W ′
4−W ′

5

2W ′
2−W ′

4+W ′
5−W ′

6

W ′
3+W ′

4+W ′
5

















, (6.6)

where

W ′
1 = k+

1 cH2
−k−1 c2

H , W ′
2 = k+

2 cO2
−k−2 c2

O, (6.7a)

W ′
3 = k+

3 cH2O−k−3 cHcOH, W ′
4 = k+

4 cH2
cO−k−4 cHcOH, (6.7b)

W ′
5 = k+

5 cO2
cH−k−5 cOcOH, W ′

6 = k+
6 cH2

cO−k−6 cH2O. (6.7c)

6.1 Slow-fast motion decomposition

In this section, we demonstrate that the construction of the thermodynamic projector
performs decomposition of fast-slow motions of the kinetic equation (3.6). For the dy-
namical systems (6.2) and (6.6), the thermodynamic Lyapunov function is (4.5) which
can be conveniently recast as:

G=
n

∑
i=1

ci

[

ln(ci/c
eq
i )−1

]

, (6.8)

where the dependence on the steady state coordinates is explicitly shown. Hence, the
thermodynamic projector (4.10) takes, in the case of Example 1, the form

Px=(∇G,x)e, (6.9a)

∇G=
(

ln(cA

/

c
eq
A ), ln(cB

/

c
eq
B ), ln(cC

/

c
eq
C )

)

. (6.9b)
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Figure 2: (Color online). Four step three species mechanism. (a) Some solution trajectories of the system (6.2)
in the phase-space cB−cC (dashed lines). Invariant grid (diamonds). (b) Euclidean norm of the thermodynamic
projection of Jacobian eigenvectors in the grid nodes.

Fig. 2(a) shows solution trajectory samples of the kinetic equation (6.2) in the plane
cB−cC. In this case, a 1-dimensional invariant grid was constructed by refinements of
a spectral quasi-equilibrium grid (see Section 5.3) using the Eqs. (5.4). At each node c∗

of the invariant grid, the Jacobian matrix L(c∗) of (6.2) was considered, in order to es-
timate both the fast direction a f (eigenvector corresponding to the largest eigenvalue
by absolute value) and the slow direction as (eigenvector corresponding to the smallest
eigenvalue by absolute value). In fact, it is known from the literature [27] that spectral
decomposition of L enables to compute approximated slow and fast components of the
vector of motion J.

Those eigenvectors were projected onto the tangent space of the invariant grid, by
means of (6.9a), and in Fig. 2(b) the Euclidean norm ‖Pai‖ is plotted versus the grid
parameter cB, where the eigenvectors were chosen such that

∥

∥a f

∥

∥=‖as‖=1. As shown
in Fig. 3, the fast component of any trajectory lies in the affine subspace c∗+kerP, where
c∗ is an arbitrary point of the SIM. A two-dimensional grid, invariant with respect to (6.6),
was also constructed by applying the MIG procedure in the form of Newton iterations
starting from the pertinent spectral quasi-equilibrium grid (see Fig. 4). In the case of
Example 2, the thermodynamic projector (4.10) reads

Px=(∇G,x)e+〈k,x〉k. (6.10)

Now, the spectral analysis of the Jacobian L, at each grid node, delivers four non-zero
eigenvalues. Let the eigenvectors be denoted as a1

f , a2
f , a1

s , a2
s where the corresponding

eigenvalues are ordered such that

λ1
f <λ2

f <λ1
s <λ2

s .

Thermodynamic projections Pa of all eigenvectors a (with ‖a‖= 1) were evaluated at
every node, and their Euclidean norms ‖Pa‖ reported in Fig. 5.
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Figure 3: (Color online). Four step three species mechanism. The fast part of any trajectory belongs to the
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A pair of parameters (ξ1,ξ2) is uniquely associated with each grid point c.
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It is worth stressing that the fast projections do not completely vanish because of two
reasons. First, the Jacobi matrix eigenvectors only represent an approximation of fast and
slow directions. Second, as already mentioned in Section 2.2, the fast-slow motion de-
composition based on thermodynamics is approximated. Agreement between two quite
different pictures is nevertheless impressive.

7 Access of grid nodes

The described procedure delivers the location of the invariant grid nodes, and below we
address the issue of how to utilize the computed set of states during the time integration
of a reduced set of equations.

7.1 Global parametrization

Let Ω be the slow invariant manifold with respect to the system (3.6). Let m and n be the
dimension of Ω and the phase space dimension, respectively. Here, we assume that Ω

can be parameterized by a set of new coordinates

y=[ξ1,··· ,ξm],

obtained by the following linear transformation

y= Rc, (7.1)

where R is a fixed m×n matrix. By differentiating (7.1) with respect to time and invoking
(2.5), the dynamics of (3.6) on the SIM can be written in terms of the new variables as

ẏ= Rċ= RPJ. (7.2)

Since the right-hand side of the above formula depends on the primitive variables c, the
latter system can be solved as soon as the explicit equation of the SIM is known

cSIM = c(ξ1,··· ,ξm).

Let us assume that the MIG method delivers the invariant grid G approximating the
slow invariant manifold Ω. Using (7.1), a parameters set (ξc

1,··· ,ξc
m) can be associated

to each node c of G. Although the analytical expression of the manifold equation is not
known, the discrete mapping cG (ξc

1,··· ,ξc
m) is available, and interpolated values can be

used when integrating the reduced system of equations: The implementation of this will
be illustrated below with the help of Example 1 and Example 2.

Note that, the projector P of the reduced system (7.2) must be constructed as pre-
scribed in Section 4.2. In this case, the fast directions belong to the null space of the
thermodynamic projector, and the right-hand side of (7.2) is characterized by a reduced
stiffness with respect to the original system (3.6) (see Section 6.1).
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7.1.1 1D grid based integrator: global parametrization

Let the 1-dimensional invariant grid for the system (6.2) be stored in the three 1-dimensional
arrays pA, pB, pC so that the i-th grid node has the following coordinates

ci =[pA(i),pB(i),pC(i)].

Here, the choice of R is done according to the spectral quasi-equilibrium parametrization
suggested in [16,18]. Therefore, R denotes the left eigenvector, of the Jacobi matrix at the
equilibrium, which corresponds to the smallest eigenvalue (by absolute value). Only one
parameter

ξ(i) = R





pA(i)
pB(i)
pC(i)



, R=[0.881,−0.391,0.268], (7.3)

is now associated with each grid node ci. Let parameters ξ(i) be stored in the 1-dimensional
array

ζ ={ξ(i)}.

Here, the reduced system (7.2) takes the form

{

ξ̇ = RPJ
(

c(ξ)
)

,
ξ(t0)= ξ0,

(7.4)

and the initial condition ξ0 corresponds to the invariant grid node c0. The case where
c0 does not belong to the grid will be presented in Section 8. Let the components of ζ

strictly increase. If Υ denotes the number of grid nodes, for all parameters ξ∈[ζ(1),ζ(Υ)],
a small interval [ζ(i),ζ(i+υ)] can be found such that ξ belongs to it. By introducing the
Lagrangian polynomials li(x),··· ,li+υ(x):

lj(x)=
i+υ

∏
k=i,k 6=j

(

x−ζ(k)
)

/ i+υ

∏
k=i,k 6=j

(

ζ(j)−ζ(k)
)

, j= i,··· ,i+υ, (7.5)

the following primitive variables

cA =
i+υ

∑
j=i

pA(j)lj(ξ), cB =
i+υ

∑
j=i

pB(j)lj(ξ), cC =
i+υ

∑
j=i

pC(j)lj(ξ), (7.6)

can be associated with the parameter ξ. Eq. (7.4) was numerically integrated using a
fourth order Runge-Kutta explicit scheme where the right-hand side is evaluated through
(7.6) with υ=2. Fig. 6 shows a comparison between the full system and the reduced one.
The time step for the reduced system was increased up to ∆t = 0.5 without a big loss of
accuracy. Since the full system solution does not present significant deviations only when
∆t≤0.01, we can argue that the reduced system is characterized by much less stiffness.
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Figure 6: Time integration using a global parametrization of the invariant grid. An explicit fourth order Runge-
Kutta scheme (RK4) was used for both (6.2) and (7.4), and a comparison with different time steps ∆t is

reported. The initial condition was chosen as c0 =[0.423,0.138,0.439] so that ξ0 = RcT
0 =0.436.

7.2 1D grid based integrator: local parametrization

The procedure described in Section 7.1.1 is based on the assumption that there exists a
matrix R such that the mapping (7.3) is unique (ζ strictly monotonic). When this does not
occur, the same value of ξ is associated with different grid nodes: In this case, the global
parametrization is not suitable for accessing the grid nodes during the integration of the
reduced system (7.4). However, the above methodology can be regarded as a special case
of a more general strategy. Indeed, in Section 7.1.1, the matrix R is constructed by taking
into account the slow directions at the equilibrium point ceq (quasi-equilibrium manifold
parametrization). Therefore, R is expected to provide the neighbors of the steady state
with monotonic parameters, whereas this is not guaranteed when moving far from ceq.
In order to overcome this issue, the matrix R can be dynamically updated during the
time integration. Namely, R can be made dependent on the grid zone involved in the
integration and, in the sequel, a possible way is presented.

Let the initial condition c0 =[cA0,cB0,cC0] fulfill the following inequalities







pA(i′)≤ cA0 < pA(i′+υ),
pB(i′)≤ cB0 < pB (i′+υ),
pC (i′)≤ cC0 < pC (i′+υ),

(7.7)
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Figure 7: Time integration by using a local parametrization of the invariant grid. An explicit fourth order
Runge-Kutta scheme (RK4) was used. The time steps ∆t was increased up to ∆t = 0.5, by starting from
c0 =[0.423,0.138,0.439].

then R can be set as follows:

Ri′ =





pA(i′+υ)−pA(i′)
pB (i′+υ)−pB(i′)
pC (i′+υ)−pC(i′)





T

. (7.8)

If υ is small enough, then Ri′ approximately spans the slow-subspace at the i′-th node
of the invariant grid. For that reason, the parametrization carried out through Ri′ is
expected to associate uniquely the parameters with the grid nodes in a neighborhood of
c0. Starting from

ξ0 = Ri′c
T
0 ,

numerical integration of (7.4) can be performed, as described in Section 7.1.1, by using
the vector Ri′ in order to evaluate the parameter ξ1 after the first time step. For evaluat-
ing ξ2, Ri′ is kept constant if ξ1 still belongs to the interval [ζ(i′),ζ(i′+υ)]; when that does
not occur, the parametrization matrix is updated. In this case, a new index i′′ is chosen,
instead of i′, such that the inequalities (7.7) hold for the point c1=c(ξ1), and a new matrix
Ri′′ introduced according to (7.8). Now, starting from Ri′′c

T
1 , the integration is carried on,

and same procedure applies for subsequent time steps. Eq. (7.4) was solved by using an
explicit fourth order Runge-Kutta scheme in combination with the local parametrization
approach (see Fig. 7). The interpolation formulas (7.6) with υ=2 were still adopted. No-
tice that, as shown in Fig. 7(d), the updating of the matrix R makes the time evolution of
the parameter ξ non-smooth, although the dynamics is still smooth in terms of primitive
variables.
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Figure 8: Level curves of the parameters ξ (bold lines) and η (thin lines). Two level lines have, if any, only one
intersection point.

7.2.1 2D grid based integrator: global parametrization

As described in Section 7.1, the two-dimensional grid of Fig. 4 can be globally parame-
terized through a fixed matrix R. Here, the spectral quasi-equilibrium parametrization
leads to the following 2×6 matrix

R=

[

0.665 0.326 −0.671 −0.0103 −0.00568 0.0228
0.0450 −0.0196 0.378 −0.856 −0.349 0.0103

]

. (7.9)

It is worth stressing once again that R is chosen in such a way that its rows are the slowest
and the second slowest left eigenvector of the Jacobian matrix evaluated at the equilib-
rium point, respectively. Now, the invariant grid nodes can be ordered by means of two
indexes. Each node c is labeled by a pair (i, j), so that the reduced variables of c(i, j) are
given by

y(i,j) =

[

ξ(i,j)

η(i,j)

]

= Rc(i, j). (7.10)

In this case, the matrix (7.9) delivers a unique mapping (7.10) (see Fig. 8), so that the re-
duced system (7.2) is now composed of the two following ordinary differential equations

[

ξ̇
η̇

]

= RPJ
(

c(ξ,η)
)

. (7.11)

Since the explicit dependence of the vector field J on the reduced parameters is not
known, a proper interpolation of the discrete mapping (7.10) is needed and, in the se-
quel, a possible way to calculate the right-hand side of (7.11) is presented.

Let ξ0 and η0 be the initial condition for (7.11) whose location on the (ξ,η)-plane is
denoted by a square in Fig. 9. In this case, the point c0(ξ0,η0) can be reconstructed by the



726 E. Chiavazzo, I. V. Karlin and A. N. Gorban / Commun. Comput. Phys., 8 (2010), pp. 701-734

ξ

η

(ξ(i,j),η(i,j))
(ξ(i+1,j),η(i+1,j))

(ξ(i+1,j+1),η(i+1,j+1))
(ξ(i,j+1),η(i,j+1))

ξ
0

η
0

A

B

C
D

X

Figure 9: Reduced variables subspace (ξ,η): The linear transformation (7.10) maps the invariant grid nodes
into a discrete set of points (circles).

following first-order interpolation scheme:
{

c0(ξ0,η0)=wAcA +wBcB+wDcD,

wA = ABDX
AABD

, wB = AAXD
AABD

, wD = AABX
AABD

,
(7.12)

where, e.g., AABD represents the area of the triangle ABD. On the other hand, the latter
point may be also attained by performing a bilinear interpolation over the four nodes
reported in Fig. 9. The latter task is achieved by following a well known strategy used,
e.g., in the finite element method (see, e.g., [38]). Namely, interpolation can be split in two
steps. First of all, through a coordinate transformation (which maps an arbitrary four-
sided of Fig. 9 into the standard square centered in the origin whose edge length is 2 any
pair (ξ,η) can be transformed in the new one (ξ̄,η̄). Secondly, interpolation is performed
on the standard square by using, for each corner, the corresponding Lagrangian weight















wA =(1− ξ̄)(1− η̄)
/

4,
wB =(1+ ξ̄)(1− η̄)

/

4,
wC =(1+ ξ̄)(1+ η̄)

/

4,
wD =(1− ξ̄)(1+ η̄)

/

4,

(7.13)

so that the interpolated concentration vector

c(ξ,η)=wAcA+wBcB+wCcC+wDcD, (7.14)

enables to evaluate the right-hand side of (7.11) at each time step. A comparison between
the numerical solution of the full system (6.6) and the reduced one (7.11) is reported
in Fig. 10. Here, the bilinear interpolation was performed. The former system can be
accurately integrated choosing the time step not larger than ∆t≈ 7×10−4 (explicit RK4
scheme); while (7.11) was integrated by increasing ∆t up to 2×10−2. Moreover, (7.14)
can be generalized in order to use higher order interpolation schemes. In that case, all
the grid nodes with labels (i+ ι, j+κ) ι, κ=0,··· ,υ, where υ denotes the polynomial order,
need to be involved: For instance, the Fig. 9 shows the case with υ=1.
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Figure 10: Global and local parametrization strategy. (6.6) was solved by using an explicit RK4 scheme with
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(crosses) or ∆t=2×10−2 (circles). The initial condition is: c0 =[0.0440,0.0177,0.861,0.188,0.102,0.00146].

7.2.2 2D grid based integrator: local parametrization

The local parametrization approach represents an option whenever the mapping (7.10) is
not unique. In this case, the parametrization matrix R can be chosen such that its rows
almost span the slow subspace around the initial condition c0

R=χ

[

c(i+1, j+1)−c(i, j)
c(i, j+1)−c(i+1, j)

]

, (7.15)

where χ is an arbitrary parameter and (ξ0,η0)T = RcT
0 . By keeping the matrix (7.15) con-

stant during the evaluation of the next pair (ξ1,η1) after a time step ∆t, the procedure
described above in the present section is applied. At that point, only if (ξ1,η1) has left the
initial cell, the matrix R is updated according to (7.15), where (i, j) denotes the down-left
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node of the new cell which (ξ1,η1) belongs to. Similarly, numerical integration is carried
on from (ξ1,η1) to (ξ2,η2) and so forth. The system (7.11) was solved, by using the local
approach and by choosing bilinear interpolation on the four-nodes cell of Fig. 9 in order
to reconstruct the 2-dimensional slow invariant manifold of (6.6) from the corresponding
invariant grid. Computations were performed under the conditions of Fig. 10, and the
comparison shows similar results compared to the global parameterization.

Remark 7.1. Notice that, a set of independent rows for the matrix (7.15), approximating
the tangent space to a 2D manifold around c0, can be also found as follows:

R=χ

[

c(i+1, j)−c(i, j)
c(i, j+1)−c(i, j)

]

. (7.16)

The matrix R in the form (7.16) proves particularly convenient for parameterization of
q-dimensional manifolds. In the latter case, the generalized q×n matrix R can be written
as follows:

R=χ









c(i+1, j,··· ,k)−c(i, j,··· ,k)
c(i, j+1,··· ,k)−c(i, j,··· ,k)

··· ···
c(i, j,··· ,k+1)−c(i, j,··· ,k)









. (7.17)

8 The initial condition problem

In general, when the initial condition is not on the slow invariant manifold, there is a
need to find its image (on the SIM) after a fast transient before integrating the reduced
set of equations. Toward this end, first we consider the fast foliation problem (Section 8.1),
where we assume that the invariant manifold of slow motions is constructed, and the
fibers of fast motions in its neighborhood are defined with the help of the thermodynamic
projector. Second, the projection problem (Section 8.2) can be addressed as inverse to the
fast foliation problem.

Let the initial condition of (6.2) c0 not belong to the slow invariant manifold. In this
case, the reduced initial condition ξ0 can be expressed by the relation

ξ0 = Rc∗, (8.1)

where c∗ is an appropriate point on the SIM in the region where the solution trajectory
approaches it. If the dynamical system is supported by a Lyapunov function G, then each
solution trajectory starts from c0 and reaches the manifold in a neighborhood of a point
where the fast fibers are defined by the null space (kerP) of the thermodynamic projector
(see Section 6.1). Based on the above observation, in the following, we impose that the
vector (c0−c∗) belongs to kerP evaluated at c∗

c0 = c∗+kerP(c∗). (8.2)
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Figure 11: Solutions of (6.2) starting either from the invariant grid node c∗=[0.375,0.168,0.457] (dashed line)
or from the point c0, evaluated through (8.3) with α′ =−0.2 (continuous line).

8.1 The fast foliation problem

Let c∗ be an invariant grid node. By using the projector (6.9a), for Example 1, the condi-
tion (8.2) takes the form

c0 = c∗+α′ f 1, (8.3)

where α′ is an arbitrary coefficient and f 1 the unit vector spanning the null space of the
matrix

[

ln
(

c∗A
/

c
eq
A

)

ln
(

c∗B
/

c
eq
B

)

ln
(

c∗C
/

c
eq
C

)

1 1 1

]

, (8.4)

where the second row of (8.4) is due to the atom conservation. In Fig. 11 the comparison
between the solutions of the full system (6.2), starting from both c0 and the point c∗, is
reported. The results show that, after a short arrival time t∗, the two solutions join each
other. In the case of Example 2, the affine fast subspace (8.2) can be written as:

c0 = c∗+α′ f 1+α′′ f 2. (8.5)

Here, the point c∗ belongs to the invariant grid of Fig. 4, while the two unit vectors f 1

and f 2 span the null space of















ln
(

c∗H2

c
eq
H2

)

ln
( c∗O2

c
eq
O2

)

ln
( c∗H2O

c
eq
H2O

)

ln
(

c∗H
c

eq
H

)

ln
(

c∗O
c

eq
O

)

ln
(

c∗OH

c
eq
OH

)

(

k1
c∗H2

) (

k2
c∗O2

) (

k3
c∗H2O

) (

k4
c∗H

) (

k5
c∗O

) (

k6
c∗OH

)

2 0 2 1 0 1
0 2 1 0 1 1















, (8.6)
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Figure 12: Solutions of (6.6) starting from the initial conditions c0 corresponding to three different pairs (α′,α′′)
in (8.5) with c∗=[0.452,0.229,0.462,0.157,0.0636,0.0160].

where the vector k = [k1, k2, k3, k4, k5, k6] is evaluated according to (6.10). As shown
in Fig. 12, a solution starting from c0 meets the one that moves along the invariant grid
(α′=0,α′′=0), after an initial fast dynamics.

8.2 The projection problem

In general, because of the non-trivial dependence of the thermodynamic projector P on
the state c, the node c∗(c0) cannot be found by a direct solving of (8.2). Therefore, here
we employed an iterative procedure, which will be illustrated below with the help of
Example 2. Iterations start after fixing two arbitrary directions: f 0

1 and f 0
2. The hypothetic

fast subspace, passing through the initial condition c0, is described by the equation (see
(8.5))

c= c0−α′ f 0
1−α′′ f 0

2. (8.7)

Let c∗0 be the intersection point where the affine subspace (8.7) meets the invariant mani-

fold, and let { f 1
1, f 1

2} be a basis of the null space of the matrix (8.6) evaluated at c∗0.

If the latter directions are a linear combination of the pair { f 0
1, f 0

2}, then the procedure
is terminated and c∗= c∗0. When this does not occur, a new intersection point c∗1 between
the fast subspace (8.7) and the manifold needs to be found. This time the right-hand side
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of (8.7) is updated with the new directions { f 1
1, f 1

2}, iterations are carried on accordingly

and stopped as soon as the vectors { f i
1, f i

2} result linearly dependent on the previous

ones { f i−1
1 , f i−1

2 }: In the latter case, we impose c∗= c∗i .
For practical reasons, it proves convenient to set a small positive value ελ as a thresh-

old, and consider the following matrix

A=
[

f i−1
1 f i−1

2 f i
1 f i

2

]

, (8.8)

whose columns are given by the hypothetic fast directions f at the i-th step and at the
previous one. For converging iterations, when two eigenvalues of the square matrix
AT A (Gauss transformation of A) are smaller (by absolute value) than ελ, the procedure
is terminated and c∗i is picked as approximate solution of (8.2). However, the method

described above still applies if, at the i-th step, the basis { f i
1, f i

2} is replaced by the fast
eigenvectors of Jacobian matrix at the node c∗i .

The described procedure was used to estimate c∗ corresponding to the initial condi-
tion c0 =[0.285,0.04,0.6,0.08,0.17,0.15]. Here, the two fastest eigenvectors of the Jacobian
matrix, evaluated at the equilibrium point ceq, were chosen as initial directions { f 0

1, f 0
2},

while the threshold was set up as ελ = 10−6. In this case, three iterations are needed till
the method converges, and solutions of the system (6.6), starting from both c0 and c∗, are
reported in Fig. 13. As expected, they meet each other after an arrival time t∗ is elapsed.

In order to find the intersection point between the affine subspace (8.7) and the in-
variant manifold, the approximation (7.12) is used

c=wAcA+wBcB+wCcC, (8.9)

where A,B,C are only three out of the four nodes of the grid cell of Fig. 9. In this case, the
intersection point is solution of the linear system























c0(1)−α′ f 1(1)−α′′ f 2(1)=wAcA(1)+wBcB(1)+wCcC(1),
c0(2)−α′ f 1(2)−α′′ f 2(2)=wAcA(2)+wBcB(2)+wCcC(2),
c0(3)−α′ f 1(3)−α′′ f 2(3)=wAcA(3)+wBcB(3)+wCcC(3),
c0(4)−α′ f 1(4)−α′′ f 2(4)=wAcA(4)+wBcB(4)+wCcC(4),
wA+wB+wC =1,

(8.10)

where the unknowns are 0 ≤ wA ≤ 1, 0 ≤ wB ≤ 1, 0 ≤ wC ≤ 1, α′ and α′′. The first four
equations of (8.10) are given by comparing (8.9) with (8.7). Note that here, because of the
conservation equations (6.5), only four independent conditions can be imposed.

9 Conclusions

In this paper, following the MIG method we present in detail the entire process aiming
at reducing descriptions in chemical kinetics. In particular, we focus on efficient tech-
niques for invariant grid parameterization when solving the reduced dynamical system.
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Figure 13: Solutions of the system (6.6) starting from the out-manifold point c0=[0.285,0.04,0.6,0.08,0.17,0.15]
(continuous curve) and from the corresponding c∗=[0.303,0.156,0.604,0.175,0.0726,0.0109] (dashed curve). The
latter point was attained by iteratively solving the Eq. (8.5). The vertical line is drawn at the arrival time t∗.

The suggested procedures are validated in the case of a reaction mechanism for hydro-
gen oxidation, where comparisons between detailed and reduced models show excellent
agreement. In particular, it has been demonstrated that thermodynamics enables to de-
fine the reduced system of equations and to cope with the stiffness of the detailed model.
Moreover, based on the notion of thermodynamic projector, here we introduce the equa-
tion for computing reduced initial conditions and discuss a possible approach to solve
it.
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